1
|
Ma Z, Jia Y, Min Y, Fang X, Yan H, Ma Q, Cai R. Maize ZmWRKY71 gene positively regulates drought tolerance through reactive oxygen species homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109399. [PMID: 39689610 DOI: 10.1016/j.plaphy.2024.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
Drought stress severely affects plant growth and yield. The plant-specific WRKY transcription factors play an important role in regulating the plant response to abiotic stresses. In this study, we identified a group I WRKY gene from maize, designated ZmWRKY71. Real-time quantitative reverse transcription-PCR analysis revealed that ZmWRKY71 was predominantly expressed in the roots and was induced by drought. ZmWRKY71 was localized in the nucleus and showed transcriptional activity in yeast. Heterologous overexpression of ZmWRKY71 improved drought tolerance in yeast and Arabidopsis. Compared with the wild type, the overexpression lines showed a higher survival rate under drought stress with reduced malondialdehyde content and elevated antioxidant enzyme activities. In contrast, mutation of ZmWRKY71 in maize leads to increased sensitivity to drought stress, reduced survival, elevated concentrations of reactive oxygen species, and increased malondialdehyde content. RNA-sequencing analysis revealed that the expression patterns of genes associated with translation, membrane, and oxidoreductase activity pathways were altered under drought stress. Yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays confirmed that ZmWRKY71 was capable of directly binding to the W-box element in the promoter region of ZmPOD42 (Zm00001eb330550). Taken together, the results show that ZmWRKY71 positively regulates maize drought tolerance. This research enriches the drought tolerance gene pool for maize and provides a theoretical basis for maize drought tolerance breeding.
Collapse
Affiliation(s)
- Zhongxian Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Jia
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yongwei Min
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiu Fang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haidong Yan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Li S, Zheng H, Sui N, Zhang F. Class III peroxidase: An essential enzyme for enhancing plant physiological and developmental process by maintaining the ROS level: A review. Int J Biol Macromol 2024; 283:137331. [PMID: 39549790 DOI: 10.1016/j.ijbiomac.2024.137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Since plants are sessile organisms, they are inevitably exposed to various environmental stresses, and the accumulation of reactive oxygen species (ROS) could affect the growth and development of plants. ROS play either positive or negative roles in various plant life activities as a two-edge sword. Class III peroxidase (CIII PRX) is a highly conserved antioxidant enzyme family specifically identified in plants, which is involved in maintaining ROS homeostasis in the cell and plays multiple functions in plant growth metabolism and stress response. In this review, the classification and structure of CIII PRXs are represented, and the roles of CIII PRXs in physiological and developmental processes such as plant growth, cell wall modification, loosening and stiffening, and lignin biosynthesis are described in detail. The molecular mechanisms of CIII PRXs in response to abiotic stress such as salt and drought, and biological stress such as pathogens invasion are introduced, with emphasis on the research results of PRX related genes in signal transduction. Furthermore, we summarize the difficulty in exploring the function of individual CIII PRX gene due to functional redundancy and promising technique that may break this research bottleneck.
Collapse
Affiliation(s)
- Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Hongxiang Zheng
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China.
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, China.
| |
Collapse
|
3
|
Li L, He S, Zhang P, Li D, Song Y, Shang W, Liu W, Wang Z. Integration of Genome-Wide Identification and Transcriptome Analysis of Class III Peroxidases in Paeonia ostii: Insight into Their Roles in Adventitious Roots, Heat Tolerance, and Petal Senescence. Int J Mol Sci 2024; 25:12122. [PMID: 39596190 PMCID: PMC11593962 DOI: 10.3390/ijms252212122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
As a plant-specific gene family, class III peroxidases (PODs) play an important role in plant growth, development, and stress responses. However, the POD gene family has not been systematically studied in Paeonia ostii. In this study, a total of 57 PoPOD genes were identified in the P. ostii genome. Subsequently, phylogenetic analysis and chromosome mapping revealed that PoPODs were classified into six subgroups and were unevenly distributed across five chromosomes. The gene structure and conserved motifs indicated the potential for functional divergence among the different subgroups. Meanwhile, four PoPODs were identified as tandem duplicated genes, with no evidence of segmental duplication. Using RNA-seq data from eight different tissues, multiple PoPODs exhibited enhanced expression in apical and adventitious roots (ARs). Next, RNA-seq data from AR development combined with trend analysis showed that PoPOD30/34/43/46/47/57 are implicated in the formation of ARs in tree peony. Through WGCNA based on RNA-seq, two key genes, PoPOD5/15, might be involved in heat tolerance via ABA and MeJA signaling. In addition, real-time quantitative PCR (qRT-PCR) analysis indicated that PoPOD23 may play an important role in flower senescence. These findings deepened our understanding of POD-mediated AR development, heat tolerance, and petal senescence in tree peony.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weichao Liu
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (S.H.); (P.Z.); (D.L.); (Y.S.); (W.S.)
| | - Zheng Wang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (S.H.); (P.Z.); (D.L.); (Y.S.); (W.S.)
| |
Collapse
|
4
|
Wang YH, Zhao BY, Ye X, Du J, Song JL, Wang WJ, Huang XL, Ouyang KX, Zhang XQ, Liao FX, Zhong TX. Genome-wide analysis of the AP2/ERF gene family in Pennisetum glaucum and the negative role of PgRAV_01 in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109112. [PMID: 39265240 DOI: 10.1016/j.plaphy.2024.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
APETALA2/ethylene-responsive (AP2/ERF) plays crucial roles in resisting diverse stresses and in regulating plant growth and development. However, little is known regarding the structure and function of the AP2/ERF genes in pearl millet (Pennisetum glaucum). The AP2/ERF gene family may be involved in the development and maintenance of P. glaucum resilience to abiotic stresses, central to its role as a vital forage and cereal crop. In this study, PgAP2/ERF family members were identified and comprehensive bioinformatics analyses were performed, including determination of phylogenetic relationships, gene structures, conserved motifs, chromosomal localization, gene duplication, expression pattern, protein interaction network, and functional characterization of PgRAV_01 (Related to ABI3/VP1). In total, 78 PgAP2/ERF members were identified in the P. glaucum genome and classified into five subfamilies: AP2, ERF, DREB, RAV, and soloist. Members within the same clade of the PgAP2/ERF family showed similar gene structures and motif compositions. Six duplication events were identified in the PgAP2/ERF family; calculation of Ka/Ks values showed that purification selection dominated the evolution of PgAP2/ERFs. Subsequently, a potential interaction network of PgAP2/ERFs was generated to predict the interaction relationships. Additionally, abiotic stress expression analysis showed that most PgAP2/ERFs were induced in response to drought and heat stresses. Furthermore, overexpression of PgRAV_01 negatively regulated drought tolerance in Nicotiana benthamiana by reducing its antioxidant capacity and osmotic adjustment. Taken together, these results provide valuable insights into the characteristics and functions of PgAP2/ERF genes, with implications for abiotic stress tolerance, and will ultimately contribute to the genetic improvement of cereal crop breeding.
Collapse
Affiliation(s)
- Yin-Hua Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Bi-Yao Zhao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Xing Ye
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China
| | - Juan Du
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Jian-Ling Song
- College of biology and chemistry, Minzu Normal University of Xingyi, Xingyi, 562400, China
| | - Wen-Jing Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ling Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kun-Xi Ouyang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, 528000, China
| | - Fei-Xiong Liao
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Grassland Science, Tianhe, Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Yao XL, Wang YZ, Meng HX, Zhang MH, Zhou X, Kang XT, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis. PLANT CELL REPORTS 2024; 43:243. [PMID: 39340664 DOI: 10.1007/s00299-024-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.
Collapse
Affiliation(s)
- Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-Hua Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xue-Ting Kang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
6
|
Yu Q, He H, Xian B, Zhang C, Zhong X, Liu Y, Zhang M, Li M, He Y, Chen S, Li Q. The wall-associated receptor-like kinase CsWAKL01, positively regulated by the transcription factor CsWRKY53, confers resistance to citrus bacterial canker via regulation of phytohormone signaling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5805-5818. [PMID: 38820225 DOI: 10.1093/jxb/erae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
Citrus bacterial canker (CBC) is a disease that poses a major threat to global citrus production and is caused by infection with Xanthomonas citri subsp. citri (Xcc). Wall-associated receptor-like kinase (WAKL) proteins play an important role in shaping plant resistance to various bacterial and fungal pathogens. In a previous report, CsWAKL01 was identified as a candidate Xcc-inducible gene found to be up-regulated in CBC-resistant citrus plants. However, the functional role of CsWAKL01 and the mechanisms whereby it may influence resistance to CBC have yet to be clarified. Here, CsWAKL01 was found to localize to the plasma membrane, and the overexpression of the corresponding gene in transgenic sweet oranges resulted in pronounced enhancement of CBC resistance, whereas its knockdown had the opposite effect. Mechanistically, the effect of CsWAKL01 was linked to its ability to reprogram jasmonic acid, salicylic acid, and abscisic acid signaling activity. CsWRKY53 was further identified as a transcription factor capable of directly binding to the CsWAKL01 promoter and inducing its transcriptional up-regulation. CsWRKY53 silencing conferred greater CBC susceptibility to infected plants. Overall, these data support a model wherein CsWRKY53 functions as a positive regulator of CsWAKL01 to enhance resistance to CBC via the reprogramming of phytohormone signaling. Together these results offer new insights into the mechanisms whereby WAKLs shape phytopathogen resistance while underscoring the potential value of targeting the CsWRKY53-CsWAKL01 axis when seeking to breed CBC-resistant citrus plant varieties.
Collapse
Affiliation(s)
- Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
- National Citrus Improvement Center, Southwest University, Chongqing 400712, China
| |
Collapse
|
7
|
Luo W, Liu J, Xu W, Zhi S, Wang X, Sun Y. Molecular Characterization of Peroxidase ( PRX) Gene Family in Cucumber. Genes (Basel) 2024; 15:1245. [PMID: 39457369 PMCID: PMC11507654 DOI: 10.3390/genes15101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Peroxidase (PRX) gene family is essential for plant growth and significantly contributes to defense against stresses. However, information about PRX genes in cucumber (Cucumis sativus L.) remains limited. Methods: In this present study, CsPRX genes were identified and characterized using bioinformatics analysis. The expression pattern analysis of CsPRX genes were examined utilizing the RNA-seq data of cucumber from public databases and real-time quantitative PCR (qRT-PCR) analysis. Results: Here, we identified 60 CsPRX genes and mapped them onto seven chromosomes of cucumber. The CsPRX proteins exhibited the presence of 10 conserved motifs, with motif 8, motif 2, motif 5, and motif 3 consistently appearing across all 60 CsPRX protein sequences, indicating the conservation of CsPRX proteins. Furthermore, RNA-seq analysis revealed that differential expression of CsPRX genes in various tissues. Notably, a majority of the CsPRX genes exhibited significantly higher expression levels in the root compared to the other plant tissues, suggesting a potential specialization of these genes in root function. In addition, qRT-PCR analysis for four selected CsPRX genes under different stress conditions indicated that these selected CsPRX genes demonstrated diverse expression levels when subjected to NaCl, CdCl2, and PEG treatments, and the CsPRX17 gene was significantly induced by NaCl, CdCl2, and PEG stresses, suggesting a vital role of the CsPRX17 gene in response to environmental stresses. Conclusions: These findings will contribute valuable insights for future research into the functions and regulatory mechanisms associated with CsPRX genes in cucumber.
Collapse
Affiliation(s)
- Weirong Luo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Junjun Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Wenchen Xu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Shenshen Zhi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Xudong Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| | - Yongdong Sun
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang 453003, China
| |
Collapse
|
8
|
Jiao Y, Lv W, Teng W, Li L, Lan H, Bai L, Li Z, Lian Y, Wang Z, Xin Z, Ren Y, Lin T. Peroxidase gene TaPrx109-B1 enhances wheat tolerance to water deficit via modulating stomatal density. PLANT, CELL & ENVIRONMENT 2024; 47:2954-2970. [PMID: 38629794 DOI: 10.1111/pce.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level and the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.
Collapse
Affiliation(s)
- Yanqing Jiao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Weizeng Lv
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Department of Modern Agriculture, Lankao Vocational College of San Nong, Kaifeng, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haibin Lan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lu Bai
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Yang J, Chen R, Xiang X, Liu W, Fan C. Genome-Wide Identification and Expression Analysis of the Class III Peroxidase Gene Family under Abiotic Stresses in Litchi ( Litchi chinensis Sonn.). Int J Mol Sci 2024; 25:5804. [PMID: 38891992 PMCID: PMC11172018 DOI: 10.3390/ijms25115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Class III peroxidases (CIII PRXs) are plant-specific enzymes with high activity that play key roles in the catalysis of oxidation-reduction reactions. In plants, CIII PRXs can reduce hydrogen peroxide to catalyze oxidation-reduction reactions, thereby affecting plant growth, development, and stress responses. To date, no systematic analysis of the CIII PRX gene family in litchi (Litchi chinensis Sonn.) has been documented, although the genome has been reported. In this study, a total of 77 CIII PRX (designated LcPRX) gene family members were predicted in the litchi genome to provide a reference for candidate genes in the responses to abiotic stresses during litchi growth and development. All of these LcPRX genes had different numbers of highly conserved PRX domains and were unevenly distributed across fifteen chromosomes. They were further clustered into eight clades using a phylogenetic tree, and almost every clade had its own unique gene structure and motif distribution. Collinearity analysis confirmed that there were eleven pairs of duplicate genes among the LcPRX members, and segmental duplication (SD) was the main driving force behind the LcPRX gene expansion. Tissue-specific expression profiles indicated that the expression levels of all the LcPRX family members in different tissues of the litchi tree were significantly divergent. After different abiotic stress treatments, quantitative real-time PCR (qRT-PCR) analysis revealed that the LcPRX genes responded to various stresses and displayed differential expression patterns. Physicochemical properties, transmembrane domains, subcellular localization, secondary structures, and cis-acting elements were also analyzed. These findings provide insights into the characteristics of the LcPRX gene family and give valuable information for further elucidating its molecular function and then enhancing abiotic stress tolerance in litchi through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (R.C.); (X.X.); (W.L.)
| |
Collapse
|
10
|
Li G, Manzoor MA, Wang G, Huang S, Ding X, Abdullah M, Zhang M, Song C. Comparative analysis of POD genes and their expression under multiple hormones in Pyrus bretschenedri. BMC Genom Data 2024; 25:41. [PMID: 38711007 PMCID: PMC11075270 DOI: 10.1186/s12863-024-01229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Class III peroxidase (POD) enzymes play vital roles in plant development, hormone signaling, and stress responses. Despite extensive research on POD families in various plant species, the knowledge regarding the POD family in Chinese pear (Pyrus bretschenedri) is notably limited. RESULTS We systematically characterized 113 POD family genes, designated as PbPOD1 to PbPOD113 based on their chromosomal locations. Phylogenetic analysis categorized these genes into seven distinct subfamilies (I to VII). The segmental duplication events were identified as a prevalent mechanism driving the expansion of the POD gene family. Microsynteny analysis, involving comparisons with Pyrus bretschenedri, Fragaria vesca, Prunus avium, Prunus mume and Prunus persica, highlighted the conservation of duplicated POD regions and their persistence through purifying selection during the evolutionary process. The expression patterns of PbPOD genes were performed across various plant organs and diverse fruit development stages using transcriptomic data. Furthermore, we identified stress-related cis-acting elements within the promoters of PbPOD genes, underscoring their involvement in hormonal and environmental stress responses. Notably, qRT-PCR analyses revealed distinctive expression patterns of PbPOD genes in response to melatonin (MEL), salicylic acid (SA), abscisic acid (ABA), and methyl jasmonate (MeJA), reflecting their responsiveness to abiotic stress and their role in fruit growth and development. CONCLUSIONS In this study, we investigated the potential functions and evolutionary dynamics of PbPOD genes in Pyrus bretschenedri, positioning them as promising candidates for further research and valuable indicators for enhancing fruit quality through molecular breeding strategies.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xiaoyuan Ding
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Muhammad Abdullah
- Queensland Alliance of Agriculture and Food Innovation, The University of Queensland, Brisbane, 4072, Australia
| | - Ming Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Cheng Song
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
11
|
Huang X, Su L, Xian B, Yu Q, Zhang M, Fan J, Zhang C, Liu Y, He H, Zhong X, Li M, Chen S, He Y, Li Q. Genome-wide identification and characterization of the sweet orange (Citrus sinensis) basic helix-loop-helix (bHLH) family reveals a role for CsbHLH085 as a regulator of citrus bacterial canker resistance. Int J Biol Macromol 2024; 267:131442. [PMID: 38621573 DOI: 10.1016/j.ijbiomac.2024.131442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Citrus bacterial canker (CBC) is a harmful bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), negatively impacting citrus production worldwide. The basic helix-loop-helix (bHLH) transcription factor family plays crucial roles in plant development and stress responses. This study aimed to identify and annotate bHLH proteins encoded in the Citrus sinensis genome and explore their involvement and functional importance in regulating CBC resistance. A total of 135 putative CsbHLHs TFs were identified and categorized into 16 subfamilies. Their chromosomal locations, collinearity, and phylogenetic relationships were comprehensively analyzed. Upon Xcc strain YN1 infection, certain CsbHLHs were differentially regulated in CBC-resistant and CBC-sensitive citrus varieties. Among these, CsbHLH085 was selected for further functional characterization. CsbHLH085 was upregulated in the CBC-resistant citrus variety, was localized in the nucleus, and had a transcriptional activation activity. CsbHLH085 overexpression in Citrus significantly enhanced CBC resistance, accompanied by increased levels of salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and decreased levels of abscisic acid (ABA) and antioxidant enzymes. Conversely, CsbHLH085 virus-induced gene silencing resulted in opposite phenotypic and biochemical responses. CsbHLH085 silencing also affected the expression of phytohormone biosynthesis and signaling genes involved in SA, JA, and ABA signaling. These findings highlight the crucial role of CsbHLH085 in regulating CBC resistance, suggesting its potential as a target for biotechnological-assisted breeding citrus varieties with improved resistance against phytopathogens.
Collapse
Affiliation(s)
- Xin Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Liyan Su
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Jie Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Yiqi Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Houzheng He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Xin Zhong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Man Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China.
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400712, China; National Citrus Engineering Research Center, Chongqing 400712, China.
| |
Collapse
|
12
|
Freitas CDT, Costa JH, Germano TA, de O Rocha R, Ramos MV, Bezerra LP. Class III plant peroxidases: From classification to physiological functions. Int J Biol Macromol 2024; 263:130306. [PMID: 38387641 DOI: 10.1016/j.ijbiomac.2024.130306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Peroxidases (EC 1.11.1.7) are involved in a wide range of physiological processes, hence their broad distribution across biological systems. These proteins can be classified as haem or non-haem enzymes. According to the RedOxiBase database, haem peroxidases are approximately 84 % of all known peroxidase enzymes. Class III plant peroxidases are haem-enzymes that share similar three-dimensional structures and a common catalytic mechanism for hydrogen peroxide degradation. They exist as large multigene families and are involved in metabolizing Reactive Oxygen Species (ROS), hormone synthesis and decomposition, fruit growth, defense, and cell wall synthesis and maintenance. As a result, plant peroxidases gained attention in research and became one of the most extensively studied groups of enzymes. This review provides an update on the database, classification, phylogeny, mechanism of action, structure, and physiological functions of class III plant peroxidases.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - José H Costa
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Thais A Germano
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Raquel de O Rocha
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven 06511, CT, USA
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará CEP 60451-970, Brazil
| |
Collapse
|
13
|
Shah OU, Khan LU, Basharat S, Zhou L, Ikram M, Peng J, Khan WU, Liu P, Waseem M. Genome-Wide Investigation of Class III Peroxidase Genes in Brassica napus Reveals Their Responsiveness to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:942. [PMID: 38611473 PMCID: PMC11013820 DOI: 10.3390/plants13070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 04/14/2024]
Abstract
Brassica napus (B. napus) is susceptible to multiple abiotic stresses that can affect plant growth and development, ultimately reducing crop yields. In the past, many genes that provide tolerance to abiotic stresses have been identified and characterized. Peroxidase (POD) proteins, members of the oxidoreductase enzyme family, play a critical role in protecting plants against abiotic stresses. This study demonstrated a comprehensive investigation of the POD gene family in B. napus. As a result, a total of 109 POD genes were identified across the 19 chromosomes and classified into five distinct subgroups. Further, 44 duplicate events were identified; of these, two gene pairs were tandem and 42 were segmental. Synteny analysis revealed that segmental duplication was more prominent than tandem duplication among POD genes. Expression pattern analysis based on the RNA-seq data of B. napus indicated that BnPOD genes were expressed differently in various tissues; most of them were expressed in roots rather than in other tissues. To validate these findings, we performed RT-qPCR analysis on ten genes; these genes showed various expression levels under abiotic stresses. Our findings not only furnish valuable insights into the evolutionary dynamics of the BnPOD gene family but also serve as a foundation for subsequent investigations into the functional roles of POD genes in B. napus.
Collapse
Affiliation(s)
- Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Sana Basharat
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Ikram
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Jiantao Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Wasi Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| |
Collapse
|
14
|
Qian F, Zuo D, Zeng T, Gu L, Wang H, Du X, Zhu B, Ou J. Identification, Evolutionary Dynamics, and Gene Expression Patterns of the ACP Gene Family in Responding to Salt Stress in Brassica Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:950. [PMID: 38611479 PMCID: PMC11013218 DOI: 10.3390/plants13070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.
Collapse
Affiliation(s)
- Fang Qian
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Fan J, Xian B, Huang X, Yu Q, Zhang M, Zhang C, Jia R, Chen S, He Y, Li Q. Genome-Wide Identification and Characterization of the Sweet Orange ( Citrus sinensis) GATA Family Reveals a Role for CsGATA12 as a Regulator of Citrus Bacterial Canker Resistance. Int J Mol Sci 2024; 25:2924. [PMID: 38474170 DOI: 10.3390/ijms25052924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Citrus bacterial canker (CBC) is a severe bacterial infection caused by Xanthomonas citri subsp. citri (Xcc), which continues to adversely impact citrus production worldwide. Members of the GATA family are important regulators of plant development and regulate plant responses to particular stressors. This report aimed to systematically elucidate the Citrus sinensis genome to identify and annotate genes that encode GATAs and evaluate the functional importance of these CsGATAs as regulators of CBC resistance. In total, 24 CsGATAs were identified and classified into four subfamilies. Furthermore, the phylogenetic relationships, chromosomal locations, collinear relationships, gene structures, and conserved domains for each of these GATA family members were also evaluated. It was observed that Xcc infection induced some CsGATAs, among which CsGATA12 was chosen for further functional validation. CsGATA12 was found to be localized in the nucleus and was differentially upregulated in the CBC-resistant and CBC-sensitive Kumquat and Wanjincheng citrus varieties. When transiently overexpressed, CsGATA12 significantly reduced CBC resistance with a corresponding increase in abscisic acid, jasmonic acid, and antioxidant enzyme levels. These alterations were consistent with lower levels of salicylic acid, ethylene, and reactive oxygen species. Moreover, the bacteria-induced CsGATA12 gene silencing yielded the opposite phenotypic outcomes. This investigation highlights the important role of CsGATA12 in regulating CBC resistance, underscoring its potential utility as a target for breeding citrus varieties with superior phytopathogen resistance.
Collapse
Affiliation(s)
- Jie Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Baohang Xian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xin Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Qiyuan Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Miao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Chenxi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Ruirui Jia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing 400712, China
- National Citrus Engineering Research Center, Chongqing 400712, China
| |
Collapse
|
16
|
Zare T, Paril JF, Barnett EM, Kaur P, Appels R, Ebert B, Roessner U, Fournier-Level A. Comparative genomics points to tandem duplications of SAD gene clusters as drivers of increased α-linolenic (ω-3) content in S. hispanica seeds. THE PLANT GENOME 2024; 17:e20430. [PMID: 38339968 DOI: 10.1002/tpg2.20430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Salvia hispanica L. (chia) is a source of abundant ω-3 polyunsaturated fatty acids (ω-3-PUFAs) that are highly beneficial to human health. The genomic basis for this accrued ω-3-PUFA content in this emerging crop was investigated through the assembly and comparative analysis of a chromosome-level reference genome for S. hispanica. The highly contiguous 321.5-Mbp genome assembly covering all six chromosomes enabled the identification of 32,922 protein-coding genes. Two whole-genome duplications (WGD) events were identified in the S. hispanica lineage. However, these WGD events could not be linked to the high α-linolenic acid (ALA, ω-3) accumulation in S. hispanica seeds based on phylogenomics. Instead, our analysis supports the hypothesis that evolutionary expansion through tandem duplications of specific lipid gene families, particularly the stearoyl-acyl carrier protein desaturase (ShSAD) gene family, is the main driver of the abundance of ω-3-PUFAs in S. hispanica seeds. The insights gained from the genomic analysis of S. hispanica will help establish a molecular breeding target that can be leveraged through genome editing techniques to increase ω-3 content in oil crops.
Collapse
Affiliation(s)
- Tannaz Zare
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeff F Paril
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Emma M Barnett
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Rudi Appels
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Berit Ebert
- School of Biology and Biotechnology, Ruhr-Universitat Bochum, Bochum, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | |
Collapse
|
17
|
Zhang J, Yue Y, Hu M, Yi F, Chen J, Lai J, Xin B. Dynamic transcriptome landscape of maize pericarp development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1574-1591. [PMID: 37970738 DOI: 10.1111/tpj.16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/17/2023]
Abstract
As a maternal tissue, the pericarp supports and protects for other components of seed, such as embryo and endosperm. Despite the importance of maize pericarp in seed, the genome-wide transcriptome pattern throughout maize pericarp development has not been well characterized. Here, we developed RNA-seq transcriptome atlas of B73 maize pericarp development based on 21 samples from 5 days before fertilization (DBP5) to 32 days after fertilization (DAP32). A total of 25 346 genes were detected in programming pericarp development, including 1887 transcription factors (TFs). Together with pericarp morphological changes, the global clustering of gene expression revealed four developmental stages: undeveloped, thickening, expansion and strengthening. Coexpression analysis provided further insights on key regulators in functional transition of four developmental stages. Combined with non-seed, embryo, endosperm, and nucellus transcriptome data, we identified 598 pericarp-specific genes, including 75 TFs, which could elucidate key mechanisms and regulatory networks of pericarp development. Cell wall related genes were identified that reflected their crucial role in the maize pericarp structure building. In addition, key maternal proteases or TFs related with programmed cell death (PCD) were proposed, suggesting PCD in the maize pericarp was mediated by vacuolar processing enzymes (VPE), and jasmonic acid (JA) and ethylene-related pathways. The dynamic transcriptome atlas provides a valuable resource for unraveling the genetic control of maize pericarp development.
Collapse
Affiliation(s)
- Jihong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Yue
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Fei Yi
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Beibei Xin
- State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
18
|
Gull S, Ali MM, Ejaz S, Ali S, Rasheed M, Yousef AF, Stępień P, Chen F. Comprehensive genomic exploration of class III peroxidase genes in guava unravels physiology, evolution, and postharvest storage responses. Sci Rep 2024; 14:1446. [PMID: 38228714 PMCID: PMC10791677 DOI: 10.1038/s41598-024-51961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Peroxidases (PRXs) play multifaceted roles in plant growth, development, and stress responses. Here, we present a comprehensive analysis of the PRX gene family in guava, a globally significant fruit. In the guava genome, we identified 37 PRX genes, a number lower than that of Arabidopsis, suggesting a distinctive gene family expansion pattern. Phylogenetic analysis unveiled close relationships with Arabidopsis PRXs, with 12 PgPRX genes forming ortholog pairs, indicating a specific expansion pattern. Predictions placed most PRX proteins in the chloroplast and extracellular regions. Structural analysis of PgPRX proteins revealed commonalities in domain structures and motif organization. Synteny analysis underscored the dynamic role of segmental duplication in the evolution of guava's PRX genes. We explored the dynamic expression of PgPRX genes across guava tissues, exposing functional diversity. Furthermore, we examined changes in peroxidase levels and gene expressions during postharvest fruit storage, providing insights for preserving fruit quality. This study offers an initial genome-wide identification and characterization of Class III peroxidases in guava, laying the foundation for future functional analyses.
Collapse
Affiliation(s)
- Shaista Gull
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaghef Ejaz
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan.
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, MultanPunjab, 66000, Pakistan
| | - Majeeda Rasheed
- Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Piotr Stępień
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Ul. Grunwaldzka 53, 50-357, Wrocław, Poland.
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
19
|
Vodiasova E, Meger Y, Uppe V, Tsiupka V, Chelebieva E, Smykov A. Class III Peroxidases in the Peach ( Prunus persica): Genome-Wide Identification and Functional Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:127. [PMID: 38202438 PMCID: PMC10780707 DOI: 10.3390/plants13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Class III peroxidases are plant-specific and play a key role in the response to biotic and abiotic stresses, as well as in plant growth and development. In this study, we investigated 60 POD genes from Prunus persica based on genomic and transcriptomic data available in NCBI and analysed the expression of individual genes with qPCR. Peroxidase genes were clustered into five subgroups using the phylogenetic analysis. Their exon-intron structure and conserved motifs were analysed. Analysis of the transcriptomic data showed that the expression of PpPOD genes varied significantly in different tissues, at different developmental stages and under different stress treatments. All genes were divided into low- and high-expressed genes, and the most highly expressed genes were identified for individual tissues (PpPOD12 and PpPOD42 in flower buds and PpPOD73, PpPOD12, PpPOD42, and PpPOD31 in fruits). The relationship between cold tolerance and the level of peroxidase expression was revealed. These studies were carried out for the first time in the peach and confirmed that chilling tolerance may be related to the specificity of antioxidant complex gene expression.
Collapse
Affiliation(s)
- Ekaterina Vodiasova
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (Y.M.); (V.U.); (V.T.); (E.C.); (A.S.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Yakov Meger
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (Y.M.); (V.U.); (V.T.); (E.C.); (A.S.)
| | - Victoria Uppe
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (Y.M.); (V.U.); (V.T.); (E.C.); (A.S.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Valentina Tsiupka
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (Y.M.); (V.U.); (V.T.); (E.C.); (A.S.)
| | - Elina Chelebieva
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (Y.M.); (V.U.); (V.T.); (E.C.); (A.S.)
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia
| | - Anatoly Smykov
- Federal State Funded Institution of Science “The Labor Red Banner Order Nikita Botanical Gardens—National Scientific Center of the RAS”, Nikita, 298648 Yalta, Russia; (Y.M.); (V.U.); (V.T.); (E.C.); (A.S.)
| |
Collapse
|
20
|
Rana D, Sharma P, Arpita K, Srivastava H, Sharma S, Gaikwad K. Genome-wide identification and characterization of GRAS gene family in pigeonpea ( Cajanus cajan (L.) Millspaugh). 3 Biotech 2023; 13:363. [PMID: 37840881 PMCID: PMC10570252 DOI: 10.1007/s13205-023-03782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023] Open
Abstract
The GRAS proteins are plant-specific transcription factors (TFs) that play a crucial role in various plant physiological processes, including tissue development and stress responses. To date, GRAS family has been comprehensively characterized in Arabidopsis, soybean, rice, chickpea and other plant species. To understand the structural and functional aspects of pigeonpea (C. cajan), we identified 60 putative GRAS (CcGRAS) genes from pigeonpea genome and further analysed their physicochemical properties, subcellular locations, evolutionary classification, exon-intron structures, conserved domains, gene duplication events and cis-promoter regions. Based on the sequence similarity, CcGRAS family was clustered into 9 subfamilies and the genes with a similar structure and motif distribution were clustered in the same group. The gene duplication studies revealed that these genes were derived from tandem and dispersed duplication events. The cis-promoter regulatory analysis of CcGRAS genes indicated the presence of three types of cis-acting elements including light-responsive, hormone-responsive and plant growth and development related. The expression profiling of CcGRAS genes revealed their tissue-specific functions and differential nature. Collectively, this study highlights relevant functional and regulatory elements of GRAS family in pigeonpea creating a significant resource for future functional studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03782-x.
Collapse
Affiliation(s)
- Divyansh Rana
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313 India
| | - Priya Sharma
- Department of Biotechnology, Jamia Hamdard, New Delhi, Delhi 110062 India
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kumari Arpita
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Harsha Srivastava
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Sandhya Sharma
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| | - Kishor Gaikwad
- ICAR National Institute for Plant Biotechnology, ICAR, New Delhi, Delhi 110012 India
| |
Collapse
|
21
|
Zheng C, Wang X, Xu Y, Wang S, Jiang X, Liu X, Cui W, Wu Y, Yan C, Liu H, Lu Y, Chen J, Zhou J. The peroxidase gene OsPrx114 activated by OsWRKY50 enhances drought tolerance through ROS scavenging in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108138. [PMID: 39492168 DOI: 10.1016/j.plaphy.2023.108138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Drought is among the most severe environmental stressors, imposing detrimental effects on plant growth and development. In this study, we have identified a class III peroxidase gene, OsPrx114, which was induced under PEG (Polyethylene glycol) and drought conditions and found to be localized in both the plasma membrane and endoplasmic reticulum. The promoter region of OsPrx114 encompasses cis-elements, including ABRE (ABA response elements), MBS (MYB binding elements), and W-box, which are likely contributors to drought tolerance. In comparison to Nipponbare (Nip) plants, the overexpression of OsPrx114 enhanced drought tolerance by reducing the accumulation of reactive oxygen species (ROS) through the upregulation of enzyme activities, such as peroxide dismutase (POD) and catalase (CAT). This was accompanied by an increase in proline (Pro) content and a decrease in malondialdehyde (MDA) content. Furthermore, a series of assays including yeast one-hybrid, electrophoretic mobility shift, and dual luciferase assays, demonstrated that the transcription factor OsWRKY50 binds to the W-box (TTGACC) within the promoter of OsPrx114, thereby activating its transcription. OsWRKY50 plays a positive role in regulating OsPrx114-mediated drought resistance by mitigating ROS accumulation in rice. These findings offer a molecular foundation for comprehending the function of the OsWRKY50-OsPrx114 module in response to drought stress in rice.
Collapse
Affiliation(s)
- Chao Zheng
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang Wan Li University, Ningbo, 315100, China
| | - Shaomin Wang
- Agricultural Technology Extension and Service Station of Yuyao City, Yuyao, 315400, China
| | - Xin Jiang
- College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yueyan Wu
- Zhejiang Wan Li University, Ningbo, 315100, China
| | - Chengqi Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Zhejiang Wan Li University, Ningbo, 315100, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yin Lu
- College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Jianping Chen
- College of Plant Protection, Northwest A&F University, Yangling, 712100, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Ministry of Agriculture Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
22
|
Wen J, Deng M, Zhao K, Zhou H, Wu R, Li M, Cheng H, Li P, Zhang R, Lv J. Characterization of Plant Homeodomain Transcription Factor Genes Involved in Flower Development and Multiple Abiotic Stress Response in Pepper. Genes (Basel) 2023; 14:1737. [PMID: 37761877 PMCID: PMC10531376 DOI: 10.3390/genes14091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Plant homeodomain (PHD) transcription factor genes are involved in plant development and in a plant's response to stress. However, there are few reports about this gene family in peppers (Capsicum annuum L.). In this study, the pepper inbred line "Zunla-1" was used as the reference genome, and a total of 43 PHD genes were identified, and systematic analysis was performed to study the chromosomal location, evolutionary relationship, gene structure, domains, and upstream cis-regulatory elements of the CaPHD genes. The fewest CaPHD genes were located on chromosome 4, while the most were on chromosome 3. Genes with similar gene structures and domains were clustered together. Expression analysis showed that the expression of CaPHD genes was quite different in different tissues and in response to various stress treatments. The expression of CaPHD17 was different in the early stage of flower bud development in the near-isogenic cytoplasmic male-sterile inbred and the maintainer inbred lines. It is speculated that this gene is involved in the development of male sterility in pepper. CaPHD37 was significantly upregulated in leaves and roots after heat stress, and it is speculated that CaPHD37 plays an important role in tolerating heat stress in pepper; in addition, CaPHD9, CaPHD10, CaPHD11, CaPHD17, CaPHD19, CaPHD20, and CaPHD43 were not sensitive to abiotic stress or hormonal factors. This study will provide the basis for further research into the function of CaPHD genes in plant development and responses to abiotic stresses and hormones.
Collapse
Affiliation(s)
- Jinfen Wen
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming 650500, China;
| | - Minghua Deng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Kai Zhao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Huidan Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Rui Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Mengjuan Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Hong Cheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Pingping Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Ruihao Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| | - Junheng Lv
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (M.D.); (K.Z.); (H.Z.); (R.W.); (M.L.); (H.C.); (P.L.); (R.Z.)
| |
Collapse
|
23
|
Qiu CW, Ma Y, Liu W, Zhang S, Wang Y, Cai S, Zhang G, Chater CCC, Chen ZH, Wu F. Genome resequencing and transcriptome profiling reveal molecular evidence of tolerance to water deficit in barley. J Adv Res 2023; 49:31-45. [PMID: 36170948 PMCID: PMC10334146 DOI: 10.1016/j.jare.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Frequent climate change-induced drought events are detrimental environmental stresses affecting global crop production and ecosystem health. Several efforts have facilitated crop breeding for resilient varieties to counteract stress. However, progress is hampered due to the complexity of drought tolerance; a greater variety of novel genes are required across varying environments. Tibetan annual wild barley is a unique and precious germplasm that is well adapted to abiotic stress and can provide elite genes for crop improvement in drought tolerance. OBJECTIVES To identify the genetic basis and unique mechanisms for drought tolerance in Tibetan wild barley. METHODS Whole genome resequencing and comparative RNA-seq approaches were performed to identify candidate genes associated with drought tolerance via investigating the genetic diversity and transcriptional variation between cultivated and Tibetan wild barley. Bioinformatics, population genetics, and gene silencing were conducted to obtain insights into ecological adaptation in barley and functions of key genes. RESULTS Over 20 million genetic variants and a total of 15,361 significantly affected genes were identified in our dataset. Combined genomic, transcriptomic, evolutionary, and experimental analyses revealed 26 water deficit resilience-associated genes in the drought-tolerant wild barley XZ5 with unique genetic variants and expression patterns. Functional prediction revealed Tibetan wild barley employs effective regulators to activate various responsive pathways with novel genes, such as Zinc-Induced Facilitator-Like 2 (HvZIFL2) and Peroxidase 11 (HvPOD11), to adapt to water deficit conditions. Gene silencing and drought tolerance evaluation in a natural barley population demonstrated that HvZIFL2 and HvPOD11 positively regulate drought tolerance in barley. CONCLUSION Our findings reveal functional genes that have been selected across barley's complex history of domestication to thrive in water deficit environments. This will be useful for molecular breeding and provide new insights into drought-tolerance mechanisms in wild relatives of major cereal crops.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yue Ma
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK; School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Zhang Z, Chen L, Yu J. Maize WRKY28 interacts with the DELLA protein D8 to affect skotomorphogenesis and participates in the regulation of shade avoidance and plant architecture. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3122-3141. [PMID: 36884355 DOI: 10.1093/jxb/erad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Competition for light from neighboring vegetation can trigger the shade-avoidance response (SAR) in plants, which is detrimental to their yield. The molecular mechanisms regulating SAR are well established in Arabidopsis, and some regulators of skotomorphogenesis have been found to be involved in the regulation of the SAR and plant architecture. However, the role of WRKY transcription factors in this process has rarely been reported, especially in maize (Zea mays). Here, we report that maize Zmwrky28 mutants exhibit shorter mesocotyls in etiolated seedlings. Molecular and biochemical analyses demonstrate that ZmWRKY28 directly binds to the promoter regions of the Small Auxin Up RNA (SAUR) gene ZmSAUR54 and the Phytochrome-Interacting Factor (PIF) gene ZmPIF4.1 to activate their expression. In addition, the maize DELLA protein Dwarf Plant8 (D8) interacts with ZmWRKY28 in the nucleus to inhibit its transcriptional activation activity. We also show that ZmWRKY28 participates in the regulation of the SAR, plant height, and leaf rolling and erectness in maize. Taken together, our results reveal that ZmWRKY28 is involved in GA-mediated skotomorphogenic development and can be used as a potential target to regulate SAR for breeding of high-density-tolerant cultivars.
Collapse
Affiliation(s)
- Ze Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
González-Gordo S, Muñoz-Vargas MA, Palma JM, Corpas FJ. Class III Peroxidases (POD) in Pepper ( Capsicum annuum L.): Genome-Wide Identification and Regulation during Nitric Oxide (NO)-Influenced Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12051013. [PMID: 37237879 DOI: 10.3390/antiox12051013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The class III peroxidases (PODs) catalyze the oxidation of several substrates coupled to the reduction of H2O2 to water, and play important roles in diverse plant processes. The POD family members have been well-studied in several plant species, but little information is available on sweet pepper fruit physiology. Based on the existing pepper genome, a total of 75 CaPOD genes have been identified, but only 10 genes were found in the fruit transcriptome (RNA-Seq). The time-course expression analysis of these genes showed that two were upregulated during fruit ripening, seven were downregulated, and one gene was unaffected. Furthermore, nitric oxide (NO) treatment triggered the upregulation of two CaPOD genes whereas the others were unaffected. Non-denaturing PAGE and in-gel activity staining allowed identifying four CaPOD isozymes (CaPOD I-CaPOD IV) which were differentially modulated during ripening and by NO. In vitro analyses of green fruit samples with peroxynitrite, NO donors, and reducing agents triggered about 100% inhibition of CaPOD IV. These data support the modulation of POD at gene and activity levels, which is in agreement with the nitro-oxidative metabolism of pepper fruit during ripening, and suggest that POD IV is a target for nitration and reducing events that lead to its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
26
|
Wang Z, Luo Y, Yu J, Kou X, Xie L, Deng P, Li T, Chen C, Ji W, Liu X. Genome-wide identification and characterization of lipoxygenase genes related to the English grain aphid infestation response in wheat. PLANTA 2023; 257:84. [PMID: 36943494 DOI: 10.1007/s00425-023-04114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
44 wheat LOX genes were identified by silico genome-wide search method. TaLOX5, 7, 10, 24, 29, 33 were specifically expressed post aphid infestation, indicating their participation in wheat-aphid interaction. In plants, LOX genes play important roles in various biological progresses including seed germination, tuber development, plant vegetative growth and most crucially in plant signal transduction, stress response and plant defense against plant diseases and insects. Although LOX genes have been characterized in many species, the importance of the LOX family in wheat has still not been well understood, hampering further improvement of wheat under stress conditions. Here, we identified 44 LOX genes (TaLOXs) in the whole wheat genome and classified into three subfamilies (9-LOXs, Type I 13-LOXs and Type II 13-LOXs) according to phylogenetic relationships. The TaLOXs belonging to the same subgroup shared similar gene structures and motif organizations. Synteny analysis demonstrated that segmental duplication events mainly contributed to the expansion of the LOX gene family in wheat. The results of protein-protein interaction network (PPI) and miRNA-TaLOXs predictions revealed that three TaLOXs (TaLOX20, 22 and 37) interacted mostly with proteins related to methyl jasmonate (MeJA) signaling pathway. The expression patterns of TaLOXs in different tissues (root, stem, leaf, spike and grain) under diverse abiotic stresses (heat, cold, drought, drought and heat combined treatment, and salt) as well as under diverse biotic stresses (powdery mildew pathogen, Fusarium graminearum and stripe rust pathogen) were systematically analyzed using RNA-seq data. We obtained aphid-responsive candidate genes by RNA-seq data of wheat after the English grain aphid infestation. Aphid-responsive candidate genes, including TaLOX5, 7, 10, 24, 29 and 33, were up-regulated in the wheat aphid-resistant genotype (Lunxuan144), while they were little expressed in the susceptible genotype (Jimai22) during late response (48 h and 72 h) to the English grain aphid infestation. Meanwhile, qRT-PCR analysis was used to validate these aphid-responsive candidate genes. The genetic divergence and diversity of all the TaLOXs in bread wheat and its relative species were investigated by available resequencing data. Finally, the 3D structure of the TaLOX proteins was predicted based on the homology modeling method. This study not only systematically investigated the characteristics and evolutionary relationships of TaLOXs, but also provided potential candidate genes in response to the English grain aphid infestation and laid the foundation to further study the regulatory roles in the English grain aphid infestation of LOX family in wheat and beyond.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yufeng Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiuyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xudan Kou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lincai Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
27
|
Yao S, Xie M, Hu M, Cui X, Wu H, Li X, Hu P, Tong C, Yu X. Genome-wide characterization of ubiquitin-conjugating enzyme gene family explores its genetic effects on the oil content and yield of Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1118339. [PMID: 37021309 PMCID: PMC10067767 DOI: 10.3389/fpls.2023.1118339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a critical part of the ubiquitin-proteasome pathway and plays crucial roles in growth, development and abiotic stress response in plants. Although UBC genes have been detected in several plant species, characterization of this gene family at the whole-genome level has not been conducted in Brassica napus. In the present study, 200 putative BnUBCs were identified in B. napus, which were clustered into 18 subgroups based on phylogenetic analysis. BnUBCs within each subgroup showed relatively conserved gene architectures and motifs. Moreover, the gene expression patterns in various tissues as well as the identification of cis-acting regulatory elements in BnUBC promoters suggested further investigation of their potential functions in plant growth and development. Furthermore, three BnUBCs were predicted as candidate genes for regulating agronomic traits related to oil content and yield through association mapping. In conclusion, this study provided a wealth of information on the UBC family in B. napus and revealed their effects on oil content and yield, which will aid future functional research and genetic breeding of B. napus.
Collapse
Affiliation(s)
- Shengli Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ming Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - XiaoBo Cui
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Haoming Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xiaohua Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Peng Hu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs of the PRC, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoli Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| |
Collapse
|
28
|
Liu M, Wang C, Xu Q, Pan Y, Jiang B, Zhang L, Zhang Y, Tian Z, Lu J, Ma C, Chang C, Zhang H. Genome-wide identification of the CPK gene family in wheat (Triticum aestivum L.) and characterization of TaCPK40 associated with seed dormancy and germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:608-623. [PMID: 36780723 DOI: 10.1016/j.plaphy.2023.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Calcium-dependent protein kinases (CPKs), important sensors of calcium signals, play an essential role in plant growth, development, and stress responses. Although the CPK gene family has been characterized in many plants, the functions of the CPK gene family in wheat, including their relationship to seed dormancy and germination, remain unclear. In this study, we identified 84 TaCPK genes in wheat (TaCPK1-84). According to their phylogenetic relationship, they were divided into four groups (I-IV). TaCPK genes in the same group were found to have similar gene structures and motifs. Chromosomal localization indicated that TaCPK genes were unevenly distributed across 21 wheat chromosomes. TaCPK gene expansion occurred through segmental duplication events and underwent strong negative selection. A large number of cis-regulatory elements related to light response, phytohormone response, and abiotic stress response were identified in the upstream promoter sequences of TaCPK genes. TaCPK gene expression was found to be tissue- and growth-stage-diverse. Analysis of the expression patterns of several wheat varieties with contrasting seed dormancy and germination phenotypes resulted in the identification of 11 candidate genes (TaCPK38/-40/-43/-47/-50/-60/-67/-70/-75/-78/-80) which are likely associated with seed dormancy and germination. The ectopic expression of TaCPK40 in Arabidopsis promoted seed germination and reduced abscisic acid (ABA) sensitivity during germination, indicating that TaCPK40 negatively regulates seed dormancy and positively regulates seed germination. These findings advance our understanding of the multifaceted functions of CPK genes in seed dormancy and germination, and provide potential candidate genes for controlling wheat seed dormancy and germination.
Collapse
Affiliation(s)
- Mingli Liu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chenchen Wang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Qing Xu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yonghao Pan
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Bingli Jiang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Litian Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yue Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Zhuangbo Tian
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Afairs, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
29
|
Su P, Sui C, Niu Y, Li J, Wang S, Sun F, Yan J, Guo S. Comparative transcriptomic analysis and functional characterization reveals that the class III peroxidase gene TaPRX-2A regulates drought stress tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1119162. [PMID: 36875561 PMCID: PMC9976582 DOI: 10.3389/fpls.2023.1119162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Drought is a major abiotic stress that reduces crop yields and quality worldwide. Although some genes involved in the response to drought stress have been identified, a more in-depth understanding of the mechanisms underlying wheat tolerance to drought is needed for the control of drought tolerance. Here, we evaluated the drought tolerance of 15 wheat cultivars and measured their physiological-biochemical parameters. Our data showed that the drought tolerance of the resistant wheat cultivars was significantly higher than that of drought-sensitive cultivars, which was associated with a greater antioxidant capacity of the former. Transcriptomic analysis revealed that different mechanisms of drought tolerance exist between the wheat cultivars Ziyou 5 and Liangxing 66. Transcriptomic analysis also revealed a large number of DEGs, including those involved in flavonoid biosynthesis, phytohormone signalling, phenolamides and antioxidants. qRT-PCR was performed, and the results showed that the expression levels of TaPRX-2A were significantly different among the various wheat cultivars under drought stress. Further study revealed that overexpression of TaPRX-2A enhanced tolerance to drought stress through the maintenance of increased antioxidase activities and reductions in ROS contents. Overexpression of TaPRX-2A also increased the expression levels of stress-related genes and ABA-related genes. Taken together, our findings show that flavonoids, phytohormones, phenolamides and antioxidants are involved in the plant response to drought stress and that TaPRX-2A is a positive regulator of this response. Our study provides insights into tolerance mechanisms and highlights the potential of TaPRX-2A overexpression in enhancing drought tolerance in crop improvement programmes.
Collapse
Affiliation(s)
- Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Chao Sui
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yufei Niu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jingyu Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shuhan Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Fanting Sun
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng, China
| |
Collapse
|
30
|
Shang H, Fang L, Qin L, Jiang H, Duan Z, Zhang H, Yang Z, Cheng G, Bao Y, Xu J, Yao W, Zhang M. Genome-wide identification of the class III peroxidase gene family of sugarcane and its expression profiles under stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1101665. [PMID: 36794222 PMCID: PMC9924293 DOI: 10.3389/fpls.2023.1101665] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Plant-specific Class III peroxidases (PRXs) play a crucial role in lignification, cell elongation, seed germination, and biotic and abiotic stresses. METHODS The class III peroxidase gene family in sugarcane were identified by bioinformatics methods and realtime fluorescence quantitative PCR. RESULTS Eighty-two PRX proteins were characterized with a conserved PRX domain as members of the class III PRX gene family in R570 STP. The ShPRX family genes were divided into six groups by the phylogenetic analysis of sugarcane, Saccharum spontaneum, sorghum, rice, and Arabidopsis thaliana. The analysis of promoter cis-acting elements revealed that most ShPRX family genes contained cis-acting regulatory elements involved in ABA, MeJA, light responsiveness, anaerobic induction, and drought inducibility. An evolutionary analysis indicated that ShPRXs was formed after Poaceae and Bromeliaceae diverged, and tandem duplication events played a critical role in the expansion of ShPRX genes of sugarcane. Purifying selection maintained the function of ShPRX proteins. SsPRX genes were differentially expressed in stems and leaves at different growth stages in S. spontaneum. However, ShPRX genes were differentially expressed in the SCMV-inoculated sugarcane plants. A qRT-PCR analysis showed that SCMV, Cd, and salt could specifically induce the expression of PRX genes of sugarcane. DISCUSSION These results help elucidate the structure, evolution, and functions of the class III PRX gene family in sugarcane and provide ideas for the phytoremediation of Cd-contaminated soil and breeding new sugarcane varieties resistant to sugarcane mosaic disease, salt, and Cd stresses.
Collapse
Affiliation(s)
- Heyang Shang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Linqi Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Lifang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hongtao Jiang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhenzhen Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangyuan Cheng
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- National Engineering Research Center for Sugarcane & Guangxi Key Laboratory of Sugarcane Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
31
|
Pang F, Niu J, Solanki MK, Nosheen S, Liu Z, Wang Z. PHD-finger family genes in wheat ( Triticum aestivum L.): Evolutionary conservatism, functional diversification, and active expression in abiotic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1016831. [PMID: 36578331 PMCID: PMC9791960 DOI: 10.3389/fpls.2022.1016831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Plant homeodomain (PHD) transcription factors (TFs) are a class of proteins with conserved Cys4-His-Cys3 domains that play important roles in plant growth and development and in response to abiotic stresses. Although characterization of PHDs has been performed in plants, little is known about their function in wheat (Triticum aestivum L.), especially under stress conditions. In the present study, 244 TaPHDs were identified in wheat using comparative genomics. We renamed them TaPHD1-244 based on their chromosomal distribution, and almost all PHD proteins were predicted to be located in the nucleus. According to the unrooted neighbor-joining phylogenetic tree, gene structure, and motif analyses, PHD genes were divided into four clades. A total of 149 TaPHD genes were assigned to arise from duplication events. Furthermore, 230 gene pairs came from wheat itself, and 119, 186, 168, 7, 2, and 6 gene pairs came from six other species (Hordeum vulgareto, Zea mays, Oryza sativa, Arabidopsis thaliana, Brassica rapa, and Gossypium raimondii, respectively). A total of 548 interacting protein branches were identified to be involved in the protein interaction network. Tissue-specific expression pattern analysis showed that TaPHDs were highly expressed in the stigma and ovary during flowering, suggesting that the TaPHD gene plays an active role in the reproductive growth of wheat. In addition, the qRT-PCR results further confirmed that these TaPHD genes are involved in the abiotic stress response of wheat. In conclusion, our study provides a theoretical basis for deciphering the molecular functions of TaPHDs, particularly in response to abiotic stress.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Yulin Normal University, Yulin, China
| | - Junqi Niu
- College of Agriculture, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Shaista Nosheen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zhaoliang Liu
- College of Agriculture, Yulin Normal University, Yulin, China
| | - Zhen Wang
- College of Agriculture, Yulin Normal University, Yulin, China
| |
Collapse
|
32
|
Kaznina NM, Batova YV, Repkina NS, Titov AF. Effect of Zinc Deficiency on Gene Expression and Antioxidant Enzyme Activity in Barley Plants at Optimal and Low Temperatures. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Li Y, Qin P, Sun A, Xiao W, Chen F, He Y, Yu K, Li Y, Zhang M, Guo X. Genome-wide identification, new classification, expression analysis and screening of drought & heat resistance related candidates in the RING zinc finger gene family of bread wheat (Triticum aestivum L.). BMC Genomics 2022; 23:696. [PMID: 36207690 PMCID: PMC9547421 DOI: 10.1186/s12864-022-08905-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Background RING (Really Interesting New Gene) zinc finger (RING-zf) proteins belong to an important subclass of zinc fingers superfamily, which play versatile roles during various developmental stages and in abiotic stress responses. Based on the conserved cysteine and histidine residues, the RING-zf domains are classified into RING-HC (C3HC4), RING-H2 (C3H2C3), RING-v, RING-D, RING-S/T, RING-G, and RING-C2. However, little is known about the function of the RING-zfs of wheat. Results In this study, 129 (93.5%) of 138 members were found in nucleus, indicating TaRING-zf were primarily engaged in the degradation of transcription factors and other nuclear-localized proteins. 138 TaRING-zf domains can be divided into four canonical or modified types (RING-H2, RING-HC, RING-D, and RING-M). The RING-M was newly identified in T. aestivum, and might represent the intermediate other states between RING-zf domain and other modified domains. The consensus sequence of the RING-M domain can be described as M-X2-R-X14-Cys-X1-H-X2-Cys-X2-Cys-X10-Cys-X2-Cys. Further interspecies collinearity analyses showed that TaRING-zfs were more closely related to the genes in Poaceae. According to the public transcriptome data, most of the TaRING-zfs were expressed at different 15 stages of plant growth, development, and some of them exhibited specific responses to drought/heat stress. Moreover, 4 RING-HC (TraesCS2A02G526800.1, TraesCS4A02G290600.1, TraesCS4B02G023600.1 and TraesCS4D02G021200.1) and 2 RING-H2 (TraesCS3A02G288900.1 and TraesCS4A02G174600.1) were significantly expressed at different development stages and under drought stress. These findings provide valuable reference data for further study of their physiological functions in wheat varieties. Conclusions Taken together, the characterization and classifications of the TaRING-zf family were extensively studied and some new features about it were revealed. This study could provide some valuable targets for further studies on their functions in growth and development, and abiotic stress responses in wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08905-x.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Pai Qin
- College of Biology, Hunan University, Changsha, 410082, China
| | - Aolong Sun
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yang He
- College of Biology, Hunan University, Changsha, 410082, China
| | - Keyao Yu
- College of Biology, Hunan University, Changsha, 410082, China
| | - You Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Meng Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
34
|
Huang J, Hai Z, Wang R, Yu Y, Chen X, Liang W, Wang H. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968418. [PMID: 36035708 PMCID: PMC9412230 DOI: 10.3389/fpls.2022.968418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Cucumber is an important vegetable in China, and its yield and cultivation area are among the largest in the world. Excessive temperatures lead to high-temperature disorder in cucumber. Heat shock protein 20 (HSP20), an essential protein in the process of plant growth and development, is a universal protective protein with stress resistance. HSP20 plays crucial roles in plants under stress. In this study, we characterized the HSP20 gene family in cucumber by studying chromosome location, gene duplication, phylogenetic relationships, gene structure, conserved motifs, protein-protein interaction (PPI) network, and cis-regulatory elements. A total of 30 CsHSP20 genes were identified, distributed across 6 chromosomes, and classified into 11 distinct subgroups based on conserved motif composition, gene structure analyses, and phylogenetic relationships. According to the synteny analysis, cucumber had a closer relationship with Arabidopsis and soybean than with rice and maize. Collinearity analysis revealed that gene duplication, including tandem and segmental duplication, occurred as a result of positive selection and purifying selection. Promoter analysis showed that the putative promoters of CsHSP20 genes contained growth, stress, and hormone cis-elements, which were combined with protein-protein interaction networks to reveal their potential function mechanism. We further analyzed the gene expression of CsHSP20 genes under high stress and found that the majority of the CsHSP20 genes were upregulated, suggesting that these genes played a positive role in the heat stress-mediated pathway at the seedling stage. These results provide comprehensive information on the CsHSP20 gene family in cucumber and lay a solid foundation for elucidating the biological functions of CsHSP20. This study also provides valuable information on the regulation mechanism of the CsHSP20 gene family in the high-temperature resistance of cucumber.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
35
|
Zoclanclounon YAB, Rostás M, Chung NJ, Mo Y, Karlovsky P, Dossa K. Characterization of Peroxidase and Laccase Gene Families and In Silico Identification of Potential Genes Involved in Upstream Steps of Lignan Formation in Sesame. Life (Basel) 2022; 12:1200. [PMID: 36013379 PMCID: PMC9410177 DOI: 10.3390/life12081200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.
Collapse
Affiliation(s)
- Yedomon Ange Bovys Zoclanclounon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael Rostás
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Nam-Jin Chung
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Youngjun Mo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| | - Komivi Dossa
- Molecular Phytopathology and Mycotoxin Research, Grisebachstrasse 6, Georg-August-University Goettingen, D-37077 Goettingen, Germany
| |
Collapse
|
36
|
Hou X, Lu Z, Hong K, Song K, Gu H, Hu W, Yao Q. The class III peroxidase gene family is involved in ascorbic acid induced delay of internal browning in pineapple. FRONTIERS IN PLANT SCIENCE 2022; 13:953623. [PMID: 35991401 PMCID: PMC9382127 DOI: 10.3389/fpls.2022.953623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 06/02/2023]
Abstract
Excessive production of reactive oxygen species (ROS) leads to potential toxicity in an organism. Class III peroxidases (PRXs) play an important role in maintaining ROS homeostasis in plants. Internal browning (IB) limits industrial development of pineapple, which is the third most important fruit trade in the world. IB is mainly caused by ROS, and the mechanism underlying IB is still unknown from the perspective of ROS. Here, we soaked pineapples in ascorbic acid after harvest and before storage to decrease excessive ROS and polyphenol oxidase (PPO) activity, ultimately restraining the spread and deterioration of IB. Using phylogenetic analysis; we identified 78 pineapple PRX genes (AcPRXs) and divided them into five subgroups. Gene structure analysis indicated that the exon numbers ranged from 2 to 14, and conserved motif analysis verified that all of the AcPRXs identified here have standard peroxidase domains. Analysis of duplication events suggested that tandem and segmental duplication events may have played equal and important roles in expanding the AcPRX family. Comprehensive transcriptomic analysis uncovered that AcPRXs may play an important role in negatively regulating the occurrence of IB. In summary, we found that ROS scavenging delayed IB occurrence. The results of characterized AcPRX family revealed that AcPRXs family responded to growth and development, and negatively regulated to IB occurrence in storage stage. This research provides potential target genes for future in-depth analysis of the molecular mechanisms underlying IB and contributes to develop IB-resistant pineapple varieties.
Collapse
Affiliation(s)
- Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiwei Lu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Keqian Hong
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kanghua Song
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hui Gu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
37
|
Chen Y, Feng J, Qu Y, Zhang J, Zhang L, Liang D, Yang Y, Huang J. Genome-wide identification and functional analysis of class III peroxidases in Gossypium hirsutum. PeerJ 2022; 10:e13635. [PMID: 35795174 PMCID: PMC9252181 DOI: 10.7717/peerj.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Class III peroxidase (PRX) genes play essential roles in various processes, such as auxin catabolism, removal of H2O2, crosslinking cell wall components, and response to biotic and abiotic stresses. In this study, we identified 166, 78 and 89 PRX genes from G. hirsutum, G. arboretum and G. raimondii, respectively. These PRX genes were classified into seven subfamilies based on phylogenetic tree analysis and the classification of PRX genes in Arabidopsis. Segmental duplication and purifying selection were the major factors driving the evolution of GhPRXs. GO and KEGG enrichment analysis revealed that GhPRX genes were mainly associated with responding to oxidative stresses, peroxidase activities and phenylpropanoid biosynthesis pathways. Transcriptome data analysis showed that GhPRX genes expression were significantly different in microspore development between the sterility line-JinA and the maintainer line MB177. We confirmed the up-regulation of GhPRX107 and down-regulation of GhPRX128 in the sterile line compared to its maintainer line using qRT-PCR, suggesting their roles in pollen fertility. In addition, silencing GhPRX107 in cotton showed a significant decrease of the reactive oxygen species (ROS) levels of microsporocyte stage anthers compared to control. Overexpressing GhPRX107 in Arabidopsis significantly increased the ROS levels of anthers compared to wild type. In conclusion, we identified GhPRX107 as a determinant of ROS levels in anther. This work sets a foundation for PRX studies in pollen development.
Collapse
|
38
|
Cheng L, Ma L, Meng L, Shang H, Cao P, Jin J. Genome-Wide Identification and Analysis of the Class III Peroxidase Gene Family in Tobacco (Nicotiana tabacum). Front Genet 2022; 13:916867. [PMID: 35769995 PMCID: PMC9234461 DOI: 10.3389/fgene.2022.916867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Class III peroxidases (PODs) are plant-specific enzymes that play significant roles in plant physiological processes and stress responses. However, a comprehensive analysis of the POD gene family in tobacco has not yet been conducted. In this study, 210 non-redundant POD gene members (NtPODs) were identified in tobacco (Nicotiana tabacum) and distributed unevenly throughout 24 tobacco chromosomes. Phylogenetic analysis clustered these genes into six subgroups (I-VI). Gene structure and motif analyses showed the structural and functional diversity among the subgroups. Segmental duplication and purifying selection were the main factors affecting NtPOD gene evolution. Our analyses also suggested that NtPODs might be regulated by miRNAs and cis-acting regulatory elements of transcription factors that are involved in various biological processes. In addition, the expression patterns in different tissues and under various stress treatments were investigated. The results showed that the majority of NtPODs had tissue-specific expression patterns and may be involved in many biotic and abiotic responses. qRT-PCR analyses of different tissues and stress treatments were performed to verify transcriptome patterns. Expression of a green fluorescent protein-NtPOD fusion confirmed the plasma membrane localization of NtPOD121 and NtPOD4. Furthermore, 3D structures provided evidences of membrane-bound peroxidase. These findings provide useful information to better understand the evolution of the NtPOD gene family and lay the foundation for further studies on POD gene function in tobacco.
Collapse
Affiliation(s)
- Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- *Correspondence: Jingjing Jin, ; Peijian Cao,
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- *Correspondence: Jingjing Jin, ; Peijian Cao,
| |
Collapse
|
39
|
Tissue-specific enhancement of OsRNS1 with root-preferred expression is required for the increase of crop yield. J Adv Res 2022; 42:69-81. [PMID: 35609869 PMCID: PMC9788951 DOI: 10.1016/j.jare.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice. OBJECTIVES This study aimed to verify the usefulness of a new rice root-preferred promoter to optimize the function of a target gene with root-preferred expression in rice. METHODS osrns1 mutant had defects in root development based on T-DNA insertional mutant screening and CRISPR technology. To optimize the function of OsRNS1, we generated OsRNS1-overexpression plants under two different promoters: a whole-plant expression promoter and a novel root-preferred expression promoter. Root growth, yield-related agronomic traits, RNA-seq, and reactive oxygen species (ROS) accumulation were analyzed for comparison. RESULTS OsRNS1 was found to be involved in root development through T-DNA insertional mutant analysis and gene editing mutant analysis. To understand the gain of function of OsRNS1, pUbi1::OsRNS1 was generated for the whole-plant expression, and both root growth defects and overall growth defects were found. To overcome this problem, a root-preferential overexpression line using Os1-CysPrxB promoter (Per) was generated and showed an increase in root length, plant height, and grain yield compared to wild-type (WT). RNA-seq analysis revealed that the response to oxidative stress-related genes was significantly up-regulated in both overexpression lines but was more obvious in pPer::OsRNS1. Furthermore, ROS levels in the roots were drastically decreased in pPer::OsRNS1 but were increased in the osrns1 mutants compared to WT. CONCLUSION The results demonstrated that the use of a root-preferred promoter effectively optimizes the function of OsRNS1 and is a useful strategy for improving root-related agronomic traits as well as ROS regulation.
Collapse
|
40
|
Identification of the Wheat (Triticum aestivum) IQD Gene Family and an Expression Analysis of Candidate Genes Associated with Seed Dormancy and Germination. Int J Mol Sci 2022; 23:ijms23084093. [PMID: 35456910 PMCID: PMC9025732 DOI: 10.3390/ijms23084093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The IQ67 Domain (IQD) gene family plays important roles in plant developmental processes and stress responses. Although IQDs have been characterized in model plants, little is known about their functions in wheat (Triticum aestivum), especially their roles in the regulation of seed dormancy and germination. Here, we identified 73 members of the IQD gene family from the wheat genome and phylogenetically separated them into six major groups. Gene structure and conserved domain analyses suggested that most members of each group had similar structures. A chromosome positional analysis showed that TaIQDs were unevenly located on 18 wheat chromosomes. A synteny analysis indicated that segmental duplications played significant roles in TaIQD expansion, and that the IQD gene family underwent strong purifying selection during evolution. Furthermore, a large number of hormone, light, and abiotic stress response elements were discovered in the promoters of TaIQDs, implying their functional diversity. Microarray data for 50 TaIQDs showed different expression levels in 13 wheat tissues. Transcriptome data and a quantitative real-time PCR analysis of wheat varieties with contrasting seed dormancy and germination phenotypes further revealed that seven genes (TaIQD4/-28/-32/-58/-64/-69/-71) likely participated in seed dormancy and germination through the abscisic acid-signaling pathway. The study results provide valuable information for cloning and a functional investigation of candidate genes controlling wheat seed dormancy and germination; consequently, they increase our understanding of the complex regulatory networks affecting these two traits.
Collapse
|
41
|
Zeng M, He S, Hao J, Zhao Y, Zheng C. iTRAQ-based proteomic analysis of heteromorphic leaves reveals eco-adaptability of Populus euphratica Oliv. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153644. [PMID: 35219031 DOI: 10.1016/j.jplph.2022.153644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Heterophylly is regard as adaptation to different environments in plant, and Populus euphratica is an important heterophyllous woody plant. However, information on its molecular mechanism in eco-adaptability remains obscure. RESULTS In this research, proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) technology in lanceolate, ovate, and dentate broad-ovate leaves from adult P. euphratica trees, respectively. Besides, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and peroxidase activity in these heteromorphic leaves were investigated. A total number of 2,689 proteins were detected in the heteromorphic leaves, of which 56, 73, and 222 differential abundance proteins (DAPs) were determined in ovate/lanceolate, dentate broad-ovate/lanceolate, and dentate broad-ovate/ovate comparison groups. Bioinformatics analysis suggested these altered proteins related to photosynthesis, stress tolerance, respiration and primary metabolism accumulated in dentate broad-ovate and ovate leaves, which were consistent with the results of physiological parameters and Real-time Quantitative PCR experiments. CONCLUSION This research demonstrated the mechanism of the differential abundance proteins in providing an optimal strategy of resource utilization and survival for P. euphratica, that could offer clues for further investigations into eco-adaptability of heterophyllous woody plants.
Collapse
Affiliation(s)
- Ming Zeng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China; Guangdong Academy of Forestry, Guangzhou, 510520, China.
| | - Shuhang He
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, No. 56 Xinjian Nan Lu, Taiyuan, 030001, China.
| | - Yuanyuan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| |
Collapse
|
42
|
Ai Q, Pan W, Zeng Y, Li Y, Cui L. CCCH Zinc finger genes in Barley: genome-wide identification, evolution, expression and haplotype analysis. BMC PLANT BIOLOGY 2022; 22:117. [PMID: 35291942 PMCID: PMC8922935 DOI: 10.1186/s12870-022-03500-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND CCCH transcription factors are important zinc finger transcription factors involved in the response to biotic and abiotic stress and physiological and developmental processes. Barley (Hordeum vulgare) is an agriculturally important cereal crop with multiple uses, such as brewing production, animal feed, and human food. The identification and assessment of new functional genes are important for the molecular breeding of barley. RESULTS In this study, a total of 53 protein-encoding CCCH genes unevenly dispersed on seven different chromosomes were identified in barley. Phylogenetic analysis categorized the barley CCCH genes (HvC3Hs) into eleven subfamilies according to their distinct features, and this classification was supported by intron-exon structure and conserved motif analysis. Both segmental and tandem duplication contributed to the expansion of CCCH gene family in barley. Genetic variation of HvC3Hs was characterized using publicly available exome-capture sequencing datasets. Clear genetic divergence was observed between wild and landrace barley populations in HvC3H genes. For most HvC3Hs, nucleotide diversity and the number of haplotype polymorphisms decreased during barley domestication. Furthermore, the HvC3H genes displayed distinct expression profiles for different developmental processes and in response to various types of stresses. The HvC3H1, HvC3H2 and HvC3H13 of arginine-rich tandem CCCH zinc finger (RR-TZF) genes were significantly induced by multiple types of abiotic stress and/or phytohormone treatment, which might make them as excellent targets for the molecular breeding of barley. CONCLUSIONS Overall, our study provides a comprehensive characterization of barley CCCH transcription factors, their diversity, and their biological functions.
Collapse
Affiliation(s)
- Qi Ai
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045 Jiangxi China
- Key Laboratory for Crop Gene Resources and Germplasm Enhancement, MOA, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
43
|
Yang Z, Du H, Sun J, Xing X, Kong Y, Li W, Li X, Zhang C. A Nodule-Localized Small Heat Shock Protein GmHSP17.1 Confers Nodule Development and Nitrogen Fixation in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:838718. [PMID: 35356122 PMCID: PMC8959767 DOI: 10.3389/fpls.2022.838718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous proteins present in all organisms. The sHSPs are not only upregulated under heat shock as well as other stresses but also are expressed in unstressed cells, indicating quite diverse functions of sHSPs. However, there is little known about the role of sHSPs in nodulation and nitrogen fixation in soybean. In this study, we cloned a candidate protein of sHSP, GmHSP17.1, from proteome of nodule and analyzed its function in soybean nodulation. We found that GmHSP17.1 was a cytosolic protein and preferentially expressed during nodule development. An overexpression of GmHSP17.1 in composite transgenic plants showed increases in nodule number, fresh weight, nodule size, area of infection cells, and nitrogenase activity, and subsequently promoted the content of nitrogen and growth of soybean plants. While GmHSP17.1 RNA interference (RNAi) lines showed significantly impaired nodule development and nitrogen fixation efficiency. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS), GmRIP1 was identified as the first potential target of GmHSP17.1, and was shown to be specifically expressed in soybean nodules. The interaction between GmHSP17.1 and GmRIP1 was further confirmed by yeast-two hybrid (Y2H), bimolecular fluorescence complementation (BiFC) in vivo and pull-down assay in vitro. Furthermore, peroxidase activity was markedly increased in GmHSP17.1 overexpressed nodules and decreased in RNAi lines. As a result, the reactive oxygen species (ROS) content greatly decreased in GmHSP17.1 overexpression lines and increased in suppression lines. Taken together, we conclude that GmHSP17.1 plays an important role in soybean nodulation through interacting with GmRIP1. Our results provide foundation for studying the mechanism of nitrogen fixation and for the genetics improvement of legume plants.
Collapse
Affiliation(s)
- Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jingyi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
44
|
Aleem M, Aleem S, Sharif I, Wu Z, Aleem M, Tahir A, Atif RM, Cheema HMN, Shakeel A, Lei S, Yu D, Wang H, Kaushik P, Alyemeni MN, Bhat JA, Ahmad P. Characterization of SOD and GPX Gene Families in the Soybeans in Response to Drought and Salinity Stresses. Antioxidants (Basel) 2022; 11:antiox11030460. [PMID: 35326109 PMCID: PMC8944523 DOI: 10.3390/antiox11030460] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/31/2022] Open
Abstract
Plant stresses causing accumulation of reactive oxidative species (ROS) are scavenged by effective antioxidant defense systems. Therefore, the present study performed genome-wide identification of superoxide dismutase (SOD) and glutathione peroxidase (GPX) gene families in cultivated and wild soybeans, and 11 other legume species. We identified a total of 101 and 95 genes of SOD and GPX, respectively, across thirteen legume species. The highest numbers of SODs and GPXs were identified in cultivated (Glycine max) and wild (Glycine soja). A comparative phylogenetic study revealed highest homology among the SODs and GPXs of cultivated and wild soybeans relative to other legumes. The exon/intron structure, motif and synteny blocks were conserved in both soybean species. According to Ka/Ks, purifying the selection played the major evolutionary role in these gene families, and segmental duplication are major driving force for SODs and GPXs expansion. In addition, the qRT-PCR analysis of the G. max and G. soja SOD and GPX genes revealed significant differential expression of these genes in response to oxidative, drought and salinity stresses in root tissue. In conclusion, our study provides new insights for the evolution of SOD and GPX gene families in legumes, and provides resources for further functional characterization of these genes for multiple stresses.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Saba Aleem
- Barani Agricultural Research Station, Fatehjang 43350, Pakistan;
| | - Iram Sharif
- Cotton Research Station, Ayub Agricultural Research Institute, Faisalabad 38040, Pakistan;
| | - Zhiyi Wu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Maida Aleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Ammara Tahir
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Rana Muhammad Atif
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Hafiza Masooma Naseer Cheema
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; (H.M.N.C.); (A.S.)
| | - Amir Shakeel
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; (H.M.N.C.); (A.S.)
| | - Sun Lei
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
| | - Deyue Yu
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Hui Wang
- National Center for Soybean Improvement, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (M.A.); (Z.W.); (A.T.); (S.L.)
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
| | - Javaid Akhter Bhat
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 12546, Saudi Arabia;
- Correspondence: (D.Y.); (H.W.); (J.A.B.); (P.A.)
| |
Collapse
|
45
|
Yang R, Yang Z, Peng Z, He F, Shi L, Dong Y, Ren M, Zhang Q, Geng G, Zhang S. Integrated transcriptomic and proteomic analysis of Tritipyrum provides insights into the molecular basis of salt tolerance. PeerJ 2022; 9:e12683. [PMID: 35036157 PMCID: PMC8710252 DOI: 10.7717/peerj.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Soil salinity is a major environmental stress that restricts crop growth and yield. Methods Here, crucial proteins and biological pathways were investigated under salt-stress and recovery conditions in Tritipyrum ‘Y1805’ using the data-independent acquisition proteomics techniques to explore its salt-tolerance mechanism. Results In total, 44 and 102 differentially expressed proteins (DEPs) were identified in ‘Y1805’ under salt-stress and recovery conditions, respectively. A proteome-transcriptome-associated analysis revealed that the expression patterns of 13 and 25 DEPs were the same under salt-stress and recovery conditions, respectively. ‘Response to stimulus’, ‘antioxidant activity’, ‘carbohydrate metabolism’, ‘amino acid metabolism’, ‘signal transduction’, ‘transport and catabolism’ and ‘biosynthesis of other secondary metabolites’ were present under both conditions in ‘Y1805’. In addition, ‘energy metabolism’ and ‘lipid metabolism’ were recovery-specific pathways, while ‘antioxidant activity’, and ‘molecular function regulator’ under salt-stress conditions, and ‘virion’ and ‘virion part’ during recovery, were ‘Y1805’-specific compared with the salt-sensitive wheat ‘Chinese Spring’. ‘Y1805’ contained eight specific DEPs related to salt-stress responses. The strong salt tolerance of ‘Y1805’ could be attributed to the strengthened cell walls, reactive oxygen species scavenging, osmoregulation, phytohormone regulation, transient growth arrest, enhanced respiration, transcriptional regulation and error information processing. These data will facilitate an understanding of the molecular mechanisms of salt tolerance and aid in the breeding of salt-tolerant wheat.
Collapse
Affiliation(s)
- Rui Yang
- Guizhou University, Guiyang, China
| | | | - Ze Peng
- Guizhou University, Guiyang, China
| | - Fang He
- Guizhou University, Guiyang, China
| | - Luxi Shi
- Guizhou University, Guiyang, China
| | | | - Mingjian Ren
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | | | | | - Suqin Zhang
- Guizhou University, Guiyang, China.,Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| |
Collapse
|
46
|
Genome-Wide Identification and Analysis of Cell Cycle Genes in Birch. FORESTS 2022. [DOI: 10.3390/f13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This study identified the cell cycle genes in birch that likely play important roles during the plant’s growth and development. This analysis provides a basis for understanding the regulatory mechanism of various cell cycles in Betula pendula Roth. Background and Objectives: The cell cycle factors not only influence cell cycles progression together, but also regulate accretion, division, and differentiation of cells, and then regulate growth and development of the plant. In this study, we identified the putative cell cycle genes in the B. pendula genome, based on the annotated cell cycle genes in Arabidopsis thaliana (L.) Heynh. It can be used as a basis for further functional research. Materials and Methods: RNA-seq technology was used to determine the transcription abundance of all cell cycle genes in xylem, roots, leaves, and floral tissues. Results: We identified 59 cell cycle gene models in the genome of B. pendula, with 17 highly expression genes among them. These genes were BpCDKA.1, BpCDKB1.1, BpCDKB2.1, BpCKS1.2, BpCYCB1.1, BpCYCB1.2, BpCYCB2.1, BpCYCD3.1, BpCYCD3.5, BpDEL1, BpDpa2, BpE2Fa, BpE2Fb, BpKRP1, BpKRP2, BpRb1, and BpWEE1. Conclusions: By combining phylogenetic analysis and tissue-specific expression data, we identified 17 core cell cycle genes in the Betulapendula genome.
Collapse
|
47
|
Yang T, Zhang P, Pan J, Amanullah S, Luan F, Han W, Liu H, Wang X. Genome-Wide Analysis of the Peroxidase Gene Family and Verification of Lignin Synthesis-Related Genes in Watermelon. Int J Mol Sci 2022; 23:ijms23020642. [PMID: 35054827 PMCID: PMC8775647 DOI: 10.3390/ijms23020642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Watermelon (Citrullus lanatus) is an important horticultural crop worldwide, but peel cracking caused by peel hardness severely decreases its quality. Lignification is one of the important functions of class III peroxidase (PRX), and its accumulation in the plant cell wall leads to cell thickening and wood hardening. For in-depth physiological and genetical understanding, we studied the relationship between peel hardness and lignin accumulation and the role of PRXs affecting peel lignin biosynthesis using genome-wide bioinformatics analysis. The obtained results showed that lignin accumulation gradually increased to form the peel stone cell structure, and tissue lignification led to peel hardness. A total of 79 ClPRXs (class III) were identified using bioinformatics analysis, which were widely distributed on 11 chromosomes. The constructed phylogenetics indicated that ClPRXs were divided into seven groups and eleven subclasses, and gene members of each group had highly conserved intron structures. Repeated pattern analysis showed that deletion and replication events occurred during the process of ClPRX amplification. However, in the whole-protein sequence alignment analysis, high homology was not observed, although all contained four conserved functional sites. Repeated pattern analysis showed that deletion and replication events occurred during ClPRXs' amplification process. The prediction of the promoter cis-acting element and qRT-PCR analysis in four tissues (leaf, petiole, stem, and peel) showed different expression patterns for tissue specificity, abiotic stress, and hormone response by providing a genetic basis of the ClPRX gene family involved in a variety of physiological processes in plants. To our knowledge, we for the first time report the key roles of two ClPRXs in watermelon peel lignin synthesis. In conclusion, the extensive data collected in this study can be used for additional functional analysis of ClPRXs in watermelon growth and development and hormone and abiotic stress response.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Pengyu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Jiahui Pan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Feishi Luan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Wenhao Han
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Hongyu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (H.L.); (X.W.)
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Harbin 150030, China; (T.Y.); (P.Z.); (J.P.); (S.A.); (F.L.); (W.H.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin 150030, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
48
|
Mathé C, Dunand C. Automatic Prediction and Annotation: There Are Strong Biases for Multigenic Families. Front Genet 2021; 12:697477. [PMID: 34603370 PMCID: PMC8481831 DOI: 10.3389/fgene.2021.697477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Catherine Mathé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
49
|
Meng G, Fan W, Rasmussen SK. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:245-256. [PMID: 34385003 DOI: 10.1016/j.plaphy.2021.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Plant class III peroxidases (CIII Prxs) are involved in numerous essential plant life processes, such as plant development and differentiation, lignification and seed germination, and defence against pathogens. However, there is limited information about the structure-function relationships of Prxs in carrots. This study identified 75 carrot peroxidases (DcPrxs) and classified them into seven subgroups based on phylogenetic analysis. Gene structure analysis revealed that these DcPrxs had between one and eight introns, while conserved motif analysis showed a typical motif composition and arrangement for CIII Prx. In addition, eighteen tandem duplication events, but only eight segmental duplications, were identified among these DcPrxs, indicating that tandem duplication was the main contributor to the expansion of this gene family. Histochemical analyses showed that lignin was mainly localised in the cell walls of xylem, and Prx activity was determined in the epidermal region of taproots. The xylem always showed higher lignin concentration and lower Prx activity compared to the phloem in the taproots of both carrot cultivars. Combining these observations with RNA sequencing, some Prx genes were identified as candidate genes related to lignification and pigmentation. Three peroxidases (DcPrx30, DcPrx32, DcPrx62) were upregulated in the phloem of both genotypes. Carrot taproots are an attractive resource for natural food colourants and this study elucidated genome-wide insights of Prx for the first time, developing hypotheses concerning their involvement with lignin and anthocyanin in purple carrots. The findings provide an essential foundation for further studies of Prx genes in carrot, especially on pigmentation and lignification mechanisms.
Collapse
Affiliation(s)
- Geng Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren K Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
50
|
Blaschek L, Pesquet E. Phenoloxidases in Plants-How Structural Diversity Enables Functional Specificity. FRONTIERS IN PLANT SCIENCE 2021; 12:754601. [PMID: 34659324 PMCID: PMC8517187 DOI: 10.3389/fpls.2021.754601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
Abstract
The metabolism of polyphenolic polymers is essential to the development and response to environmental changes of organisms from all kingdoms of life, but shows particular diversity in plants. In contrast to other biopolymers, whose polymerisation is catalysed by homologous gene families, polyphenolic metabolism depends on phenoloxidases, a group of heterogeneous oxidases that share little beyond the eponymous common substrate. In this review, we provide an overview of the differences and similarities between phenoloxidases in their protein structure, reaction mechanism, substrate specificity, and functional roles. Using the example of laccases (LACs), we also performed a meta-analysis of enzyme kinetics, a comprehensive phylogenetic analysis and machine-learning based protein structure modelling to link functions, evolution, and structures in this group of phenoloxidases. With these approaches, we generated a framework to explain the reported functional differences between paralogs, while also hinting at the likely diversity of yet undescribed LAC functions. Altogether, this review provides a basis to better understand the functional overlaps and specificities between and within the three major families of phenoloxidases, their evolutionary trajectories, and their importance for plant primary and secondary metabolism.
Collapse
|