1
|
Xu SB, Gao XK, Liang HD, Cong XX, Chen XQ, Zou WK, Tao JL, Pan ZY, Zhao J, Huang M, Bao Z, Zhou YT, Zheng LL. KPNA3 regulates histone locus body formation by modulating condensation and nuclear import of NPAT. J Cell Biol 2025; 224:e202401036. [PMID: 39621428 PMCID: PMC11613458 DOI: 10.1083/jcb.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 12/11/2024] Open
Abstract
The histone locus body (HLB) is a membraneless organelle that determines the transcription of replication-dependent histones. However, the mechanisms underlying the appropriate formation of the HLB in the nucleus but not in the cytoplasm remain unknown. HLB formation is dependent on the scaffold protein NPAT. We identify KPNA3 as a specific importin that drives the nuclear import of NPAT by binding to the nuclear localization signal (NLS) sequence. NPAT undergoes phase separation, which is inhibited by KPNA3-mediated impairment of self-association. In this, a C-terminal self-interaction facilitator (C-SIF) motif, proximal to the NLS, binds the middle 431-1,030 sequence to mediate the self-association of NPAT. Mechanistically, the anchoring of KPNA3 to the NPAT-NLS sterically blocks C-SIF motif-dependent NPAT self-association. This leads to the suppression of aberrant NPAT condensation in the cytoplasm. Collectively, our study reveals a previously unappreciated role of KPNA3 in modulating HLB formation and delineates a steric hindrance mechanism that prevents inappropriate cytoplasmic NPAT condensation.
Collapse
Affiliation(s)
- Shui Bo Xu
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Xiu Kui Gao
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hao Di Liang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xia Cong
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Qi Chen
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Kai Zou
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Li Tao
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhao Yuan Pan
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Zhao
- Department of Endocrinology, Hangzhou First People’s Hospital, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ting Zhou
- ZJU-UoE Institute, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ling Zheng
- Department of General Intensive Care Unit and Department of Biochemistry of the Second Affiliated Hospital, Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
- Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Song Y, Ren S, Wu S, Liu W, Hu C, Feng S, Chen X, Tu R, Gao F. Glucocorticoid promotes metastasis of colorectal cancer via co-regulation of glucocorticoid receptor and TET2. Int J Cancer 2024. [PMID: 39661335 DOI: 10.1002/ijc.35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Glucocorticoids (GCs), commonly used for anti-inflammatory and cancer treatments, have been linked to the promotion of cancer metastasis. Yet, the molecular mechanisms behind this potential remain poorly understood. Clarifying these mechanisms is crucial for a nuanced understanding and potential refinement of GC therapies in the context of cancer treatment. In HEK293T cells, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation sequencing (ChIP-seq) were used with antibodies of glucocorticoid receptor (GR) and ten-eleven translocation enzymes (TET) family proteins (TET1, TET2, TET3). Drug repositioning was performed through the Connectivity Map database, using common target genes of GR and TET2 in HEK293 and HCT116 cell lines and differentially expressed genes (DEGs) of colorectal cancer (CRC). Cell migration and invasion were tested in CRC cell lines with varying GR expression, that is, HCT116 and HT29 cell lines. Dexamethasone (Dex) treatment resulted in a significant difference in cell migration rates in two CRC cell lines with disparate GR expression levels. Co-IP and ChIP-seq analyses substantiated the interaction between GR and TET family proteins in HEK293T cells. Belinostat, the selected compound, was successfully validated for its potential to counteract the effects of GC-induced invasion in CRC cells in vitro. Transcriptomic analyses of Belinostat-treated HCT116 cells revealed down-regulation of target genes associated with cancer metastasis. This study provides valuable insights into the molecular mechanisms underlying GC-induced metastasis, introducing newly repositioned compounds that could serve as potential adjuvant therapy to GC treatment. Furthermore, it opens avenues for exploring novel drug candidates for CRC treatment.
Collapse
Affiliation(s)
- Yanwei Song
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shuqiang Ren
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shumei Wu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Chenghao Hu
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Siting Feng
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinyu Chen
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Tu
- E-GENE Co., Ltd, Shenzhen, China
| | - Fei Gao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Yang F, Zhu R, Zheng A, An R, Lu W, Liang Y. Effective protection of biological tissues from severe blunt force injury by engineered nanoscale liquid flow. Sci Rep 2024; 14:28947. [PMID: 39578545 PMCID: PMC11584685 DOI: 10.1038/s41598-024-80490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
Blunt force trauma (BFT), the injury of the body by forceful impacts such as falls, motor vehicle crashes and collisions, causes damage to bio-organs that can lead to life-threatening situations. To address the unmet need of bioprotection materials for BFT, we developed a novel, liquid nanofoam (LN)-based system. The LN system employs a unique mechanism of energy absorption, i.e. the external force-aided, nanoscale liquid flow. Under mechanical loading, the LN system effectively protected human cells from force-induced deformation and cell death. In addition to effective mitigation of the upregulation of stress and inflammatory genes, LN prevented blunt-force-induced damage of multiple vital organs including liver, kidney, heart, and lungs. To our knowledge, this is the first material of its kind that is biocompatible and capable of effectively protecting biotissues from BFT on molecular, cellular and tissue levels.
Collapse
Affiliation(s)
- Fuming Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Runqi Zhu
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Anqi Zheng
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Runsheng An
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Weiyi Lu
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
| | - Yun Liang
- Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
5
|
Falah G, Sharvit L, Atzmon G. CRISPR-Cas9 mediated d3GHR knockout in HEK293 cells: Revealing the longevity associated isoform stress resilience. Exp Gerontol 2024; 196:112586. [PMID: 39303817 DOI: 10.1016/j.exger.2024.112586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The Growth Hormone Receptor (GHR) gene encodes a protein that is essential for mediating the biological effects of growth hormone (GH). A series of molecular events are set off when GH binds to its receptor, resulting in a variety of physiological reactions linked to development, growth, and metabolism. Recently a particular genetic variation, within the GHR gene that is labeled as the "d3GHR," which lacks exon 3 was associated with longevity. This specific deletion isoform was connected to changes in the structure of the GHR protein, which may have an impact on the GHR's function. To test in vitro the advantage of the d3 carrier that may link to longevity, we employed the CRISPR/Cas9 technique to produce two isoforms: the homozygotes isoform (d3/d3) and the heterozygotes isoform (d3/fl) using HEK293 cell line. The CRISPR editing effectiveness was >85 %, indicating that we had successfully built the Cas9-gRNA complex that is appropriate for the GHR gene. The viability of the resulted isoform cells was examined under three environmental stressors that mimic some aging processes. In addition, we examined the GHR signaling pathway by selecting potential downstream genes in the GHR signaling cascade. The results show that heterozygotes cells demonstrated higher survival rates under UV radiation compared with the WT cells (87 % compared with 67 % for the WT cells when exposed to 2 min of UV radiation), and in fasting conditions, the d3GHR cells showed a 15 % greater viability than the WT cells. Moreover, the baseline expression levels (without intervention) of the IGF1 and JAK/STAT genes signaling pathways significantly declined in the homozygotes cells compared with the WT (p < 0.05). This noteworthy finding might offer a practical approach to test illness prevention and give the scientific community critical new insights on mechanism associated with lifespan.
Collapse
Affiliation(s)
- Ghadeer Falah
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Lital Sharvit
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Gil Atzmon
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel; Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
6
|
Assa G, Kalter N, Rosenberg M, Beck A, Markovich O, Gontmakher T, Hendel A, Yakhini Z. Quantifying allele-specific CRISPR editing activity with CRISPECTOR2.0. Nucleic Acids Res 2024; 52:e78. [PMID: 39077930 PMCID: PMC11381363 DOI: 10.1093/nar/gkae651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/24/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Off-target effects present a significant impediment to the safe and efficient use of CRISPR-Cas genome editing. Since off-target activity is influenced by the genomic sequence, the presence of sequence variants leads to varying on- and off-target profiles among different alleles or individuals. However, a reliable tool that quantifies genome editing activity in an allelic context is not available. Here, we introduce CRISPECTOR2.0, an extended version of our previously published software tool CRISPECTOR, with an allele-specific editing activity quantification option. CRISPECTOR2.0 enables reference-free, allele-aware, precise quantification of on- and off-target activity, by using de novo sample-specific single nucleotide variant (SNV) detection and statistical-based allele-calling algorithms. We demonstrate CRISPECTOR2.0 efficacy in analyzing samples containing multiple alleles and quantifying allele-specific editing activity, using data from diverse cell types, including primary human cells, plants, and an original extensive human cell line database. We identified instances where an SNV induced changes in the protospacer adjacent motif sequence, resulting in allele-specific editing. Intriguingly, differential allelic editing was also observed in regions carrying distal SNVs, hinting at the involvement of additional epigenetic factors. Our findings highlight the importance of allele-specific editing measurement as a milestone in the adaptation of efficient, accurate, and safe personalized genome editing.
Collapse
Affiliation(s)
- Guy Assa
- Arazi School of Computer Science, Reichman University, Herzliya 4610101, Israel
| | - Nechama Kalter
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michael Rosenberg
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Avigail Beck
- Arazi School of Computer Science, Reichman University, Herzliya 4610101, Israel
| | - Oshry Markovich
- Rahan Meristem (1998) Ltd. Kibbutz Rosh-Hanikra, Western Galilee 2282500, Israel
| | - Tanya Gontmakher
- Rahan Meristem (1998) Ltd. Kibbutz Rosh-Hanikra, Western Galilee 2282500, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Zohar Yakhini
- Arazi School of Computer Science, Reichman University, Herzliya 4610101, Israel
- The Henry & Marilyn Taub Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Andorfer P, Kahlig CI, Pakusic D, Pachlinger R, John C, Schrenk I, Eisenhut P, Lengler J, Innthaler B, Micutkova L, Kraus B, Brizzee C, Crawford J, Hernandez Bort JA. Cas-CLOVER-mediated knockout of STAT1: A novel approach to engineer packaging HEK-293 cell lines used for rAAV production. Biotechnol J 2024; 19:e2400415. [PMID: 39246130 DOI: 10.1002/biot.202400415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
In addressing the limitations of CRISPR-Cas9, including off-target effects and high licensing fees for commercial use, Cas-CLOVER, a dimeric gene editing tool activated by two guide RNAs, was recently developed. This study focused on implementing and evaluating Cas-CLOVER in HEK-293 cells used for recombinant adeno-associated virus (rAAV) production by targeting the signal transducer and activator of transcription 1 (STAT1) locus, which is crucial for cell growth regulation and might influence rAAV production yields. Cas-CLOVER demonstrated impressive efficiency in gene editing, achieving over 90% knockout (KO) success. Thirteen selected HEK-293 STAT1 KO sub-clones were subjected to extensive analytical characterization to assess their genomic stability, crucial for maintaining cell integrity and functionality. Additionally, rAAV9 productivity, Rep protein pattern profile, and potency, among others, were assessed. Clones showed significant variation in capsid and vector genome titers, with capsid titer reductions ranging from 15% to 98% and vector genome titers from 16% to 55%. Interestingly, the Cas-CLOVER-mediated STAT1 KO bulk cell population showed a better ratio of full to empty capsids. Our study also established a comprehensive analytical workflow to detect and evaluate the gene KOs generated by this innovative tool, providing a solid groundwork for future research in precise gene editing technologies.
Collapse
Affiliation(s)
- Peter Andorfer
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Carolin-Isabel Kahlig
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Doris Pakusic
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Robert Pachlinger
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Christiane John
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Irene Schrenk
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Peter Eisenhut
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Johannes Lengler
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Bernd Innthaler
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Lucia Micutkova
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | - Barbara Kraus
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
| | | | | | - Juan A Hernandez Bort
- Gene Therapy Process Development, Baxalta Innovations GmbH, a part of Takeda companies, Orth an der Donau, Austria
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Rafnsdottir S, Jang K, Halldorsdottir ST, Vinod M, Tomasdottir A, Möller K, Halldorsdottir K, Reynisdottir T, Atladottir LH, Allison KE, Ostacolo K, He J, Zhang L, Northington FJ, Magnusdottir E, Chavez-Valdez R, Anderson KJ, Bjornsson HT. SMYD5 is a regulator of the mild hypothermia response. Cell Rep 2024; 43:114554. [PMID: 39083378 PMCID: PMC11401508 DOI: 10.1016/j.celrep.2024.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
The mild hypothermia response (MHR) maintains organismal homeostasis during cold exposure and is thought to be critical for the neuroprotection documented with therapeutic hypothermia. To date, little is known about the transcriptional regulation of the MHR. We utilize a forward CRISPR-Cas9 mutagenesis screen to identify the histone lysine methyltransferase SMYD5 as a regulator of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia. This repression correlates with temperature-dependent levels of histone H3 lysine 26 trimethylation (H3K36me3) at the SP1 locus and globally, indicating that the mammalian MHR is regulated at the level of histone modifications. We have identified 37 additional SMYD5-regulated temperature-dependent genes, suggesting a broader MHR-related role for SMYD5. Our study provides an example of how histone modifications integrate environmental cues into the genetic circuitry of mammalian cells and provides insights that may yield therapeutic avenues for neuroprotection after catastrophic events.
Collapse
Affiliation(s)
- Salvor Rafnsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kijin Jang
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sara Tholl Halldorsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Meghna Vinod
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Arnhildur Tomasdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Katrin Möller
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Katrin Halldorsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tinna Reynisdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Laufey Halla Atladottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kevin Ostacolo
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Li Zhang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University, Baltimore, MD, USA
| | - Erna Magnusdottir
- Department of Biomedical Science and Department of Anatomy, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Neuroscience Intensive Care Nursery Program, Johns Hopkins University, Baltimore, MD, USA
| | - Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Hans Tomas Bjornsson
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA; Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland.
| |
Collapse
|
9
|
Rafnsdottir S, Jang K, Halldorsdottir ST, Vinod M, Tomasdottir A, Möller K, Halldorsdottir K, Reynisdottir T, Atladottir LH, Allison KE, Ostacolo K, He J, Zhang L, Northington FJ, Magnusdottir E, Chavez-Valdez R, Anderson KJ, Bjornsson HT. SMYD5 is a regulator of the mild hypothermia response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.11.540170. [PMID: 37333301 PMCID: PMC10274674 DOI: 10.1101/2023.05.11.540170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The mild hypothermia response (MHR) maintains organismal homeostasis during cold exposure and is thought to be critical for the neuroprotection documented with therapeutic hypothermia. To date, little is known about the transcriptional regulation of the MHR. We utilize a forward CRISPR-Cas9 mutagenesis screen to identify the histone lysine methyltransferase SMYD5 as a regulator of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia. This repression correlates with temperature-dependent levels of H3K36me3 at the SP1-locus and globally, indicating that the mammalian MHR is regulated at the level of histone modifications. We have identified 37 additional SMYD5 regulated temperature-dependent genes, suggesting a broader MHR-related role for SMYD5. Our study provides an example of how histone modifications integrate environmental cues into the genetic circuitry of mammalian cells and provides insights that may yield therapeutic avenues for neuroprotection after catastrophic events.
Collapse
Affiliation(s)
- Salvor Rafnsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Kijin Jang
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Sara Tholl Halldorsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Meghna Vinod
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Arnhildur Tomasdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Katrin Möller
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Katrin Halldorsdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Tinna Reynisdottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | - Laufey Halla Atladottir
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
| | | | - Kevin Ostacolo
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital; Reykjavik, Iceland
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University; MI, USA
| | - Li Zhang
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University; Baltimore, MD, USA
| | - Erna Magnusdottir
- Department of Biomedical Science and Department of Anatomy, Faculty of Medicine, University of Iceland; Reykjavík, Iceland
| | - Raul Chavez-Valdez
- Division of Neonatology, Department of Pediatrics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Neuroscience Intensive Care Nursery Program, Johns Hopkins University; Baltimore, MD, USA
| | - Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital; Reykjavik, Iceland
| | - Hans Tomas Bjornsson
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland; Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University; Baltimore, MD, USA
- Department of Genetics and Molecular Medicine, Landspitali University Hospital; Reykjavik, Iceland
- Lead contact
| |
Collapse
|
10
|
Chaumont L, Jouneau L, Huetz F, van Muilekom DR, Peruzzi M, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Unexpected regulatory functions of cyprinid Viperin on inflammation and metabolism. BMC Genomics 2024; 25:650. [PMID: 38951796 PMCID: PMC11218377 DOI: 10.1186/s12864-024-10566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Viperin, also known as radical S-adenosyl-methionine domain containing protein 2 (RSAD2), is an interferon-inducible protein that is involved in the innate immune response against a wide array of viruses. In mammals, Viperin exerts its antiviral function through enzymatic conversion of cytidine triphosphate (CTP) into its antiviral analog ddhCTP as well as through interactions with host proteins involved in innate immune signaling and in metabolic pathways exploited by viruses during their life cycle. However, how Viperin modulates the antiviral response in fish remains largely unknown. RESULTS For this purpose, we developed a fathead minnow (Pimephales promelas) clonal cell line in which the unique viperin gene has been knocked out by CRISPR/Cas9 genome-editing. In order to decipher the contribution of fish Viperin to the antiviral response and its regulatory role beyond the scope of the innate immune response, we performed a comparative RNA-seq analysis of viperin-/- and wildtype cell lines upon stimulation with recombinant fathead minnow type I interferon. CONCLUSIONS Our results revealed that Viperin does not exert positive feedback on the canonical type I IFN but acts as a negative regulator of the inflammatory response by downregulating specific pro-inflammatory genes and upregulating repressors of the NF-κB pathway. It also appeared to play a role in regulating metabolic processes, including one carbon metabolism, bone formation, extracellular matrix organization and cell adhesion.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, 75015, Paris, France
| | | | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350, Jouy-en-Josas, France.
| |
Collapse
|
11
|
Aventaggiato M, Arcangeli T, Vernucci E, Barreca F, Sansone L, Pellegrini L, Pontemezzo E, Valente S, Fioravanti R, Russo MA, Mai A, Tafani M. Pharmacological Activation of SIRT3 Modulates the Response of Cancer Cells to Acidic pH. Pharmaceuticals (Basel) 2024; 17:810. [PMID: 38931477 DOI: 10.3390/ph17060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer cells modulate their metabolism, creating an acidic microenvironment that, in turn, can favor tumor progression and chemotherapy resistance. Tumor cells adopt strategies to survive a drop in extracellular pH (pHe). In the present manuscript, we investigated the contribution of mitochondrial sirtuin 3 (SIRT3) to the adaptation and survival of cancer cells to a low pHe. SIRT3-overexpressing and silenced breast cancer cells MDA-MB-231 and human embryonic kidney HEK293 cells were grown in buffered and unbuffered media at pH 7.4 and 6.8 for different times. mRNA expression of SIRT3 and CAVB, was measured by RT-PCR. Protein expression of SIRT3, CAVB and autophagy proteins was estimated by western blot. SIRT3-CAVB interaction was determined by immunoprecipitation and proximity ligation assays (PLA). Induction of autophagy was studied by western blot and TEM. SIRT3 overexpression increases the survival of both cell lines. Moreover, we demonstrated that SIRT3 controls intracellular pH (pHi) through the regulation of mitochondrial carbonic anhydrase VB (CAVB). Interestingly, we obtained similar results by using MC2791, a new SIRT3 activator. Our results point to the possibility of modulating SIRT3 to decrease the response and resistance of tumor cells to the acidic microenvironment and ameliorate the effectiveness of anticancer therapy.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tania Arcangeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Luigi Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elena Pontemezzo
- European Hospital, New Fertility Group, Center for Reproductive Medicine, Via Portuense 700, 00149 Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Antonio Russo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
12
|
Hildebrandt ER, Hussain SA, Sieburg MA, Ravishankar R, Asad N, Gore S, Ito T, Hougland JL, Dore TM, Schmidt WK. Targeted genetic and small molecule disruption of N-Ras CaaX cleavage alters its localization and oncogenic potential. Bioorg Chem 2024; 147:107316. [PMID: 38583246 PMCID: PMC11098683 DOI: 10.1016/j.bioorg.2024.107316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.
Collapse
Affiliation(s)
- Emily R Hildebrandt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Shaneela A Hussain
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | | | - Rajani Ravishankar
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE
| | - Takahiro Ito
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Biology, Syracuse University, Syracuse, NY, USA; BioInspired Syracuse, Syracuse University, Syracuse, NY, USA
| | - Timothy M Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, UAE; Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Walter K Schmidt
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
14
|
Fedorowicz M, Halas A, Macias M, Sledziewska-Gojska E, Woodgate R, McIntyre J. E3 ubiquitin ligase RNF2 protects polymerase ι from destabilization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119743. [PMID: 38705361 PMCID: PMC11382163 DOI: 10.1016/j.bbamcr.2024.119743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Human DNA polymerase ι (Polι) belongs to the Y-family of specialized DNA polymerases engaged in the DNA damage tolerance pathway of translesion DNA synthesis that is crucial to the maintenance of genome integrity. The extreme infidelity of Polι and the fact that both its up- and down-regulation correlate with various cancers indicate that Polι expression and access to the replication fork should be strictly controlled. Here, we identify RNF2, an E3 ubiquitin ligase, as a new interacting partner of Polι that is responsible for Polι stabilization in vivo. Interestingly, while we report that RNF2 does not directly ubiquitinate Polι, inhibition of the E3 ubiquitin ligase activity of RNF2 affects the cellular level of Polι thereby protecting it from destabilization. Additionally, we indicate that this mechanism is more general, as DNA polymerase η, another Y-family polymerase and the closest paralogue of Polι, share similar features.
Collapse
Affiliation(s)
- Mikolaj Fedorowicz
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Halas
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Ewa Sledziewska-Gojska
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Justyna McIntyre
- Laboratory of Mutagenesis and DNA Damage Tolerance, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
15
|
Demirden SF, Kimiz-Gebologlu I, Oncel SS. Animal Cell Lines as Expression Platforms in Viral Vaccine Production: A Post Covid-19 Perspective. ACS OMEGA 2024; 9:16904-16926. [PMID: 38645343 PMCID: PMC11025085 DOI: 10.1021/acsomega.3c10484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Vaccines are considered the most effective tools for preventing diseases. In this sense, with the Covid-19 pandemic, the effects of which continue all over the world, humanity has once again remembered the importance of the vaccine. Also, with the various epidemic outbreaks that occurred previously, the development processes of effective vaccines against these viral pathogens have accelerated. By these efforts, many different new vaccine platforms have been approved for commercial use and have been introduced to the commercial landscape. In addition, innovations have been made in the production processes carried out with conventionally produced vaccine types to create a rapid response to prevent potential epidemics or pandemics. In this situation, various cell lines are being positioned at the center of the production processes of these new generation viral vaccines as expression platforms. Therefore, since the main goal is to produce a fast, safe, and effective vaccine to prevent the disease, in addition to existing expression systems, different cell lines that have not been used in vaccine production until now have been included in commercial production for the first time. In this review, first current viral vaccine types in clinical use today are described. Then, the reason for using cell lines, which are the expression platforms used in the production of these viral vaccines, and the general production processes of cell culture-based viral vaccines are mentioned. Also, selection parameters for animal cell lines as expression platforms in vaccine production are explained by considering bioprocess efficiency and current regulations. Finally, all different cell lines used in cell culture-based viral vaccine production and their properties are summarized, with an emphasis on the current and future status of cell cultures in industrial viral vaccine production.
Collapse
Affiliation(s)
| | | | - Suphi S. Oncel
- Ege University, Bioengineering Department, Izmir, 35100, Turkiye
| |
Collapse
|
16
|
Pichavaram P, Jablonowski CM, Fang J, Fleming AM, Gil HJ, Boghossian AS, Rees MG, Ronan MM, Roth JA, Morton CL, Zambetti GP, Davidoff AM, Yang J, Murphy AJ. Oncogenic Cells of Renal Embryonic Lineage Sensitive to the Small-Molecule Inhibitor QC6352 Display Depletion of KDM4 Levels and Disruption of Ribosome Biogenesis. Mol Cancer Ther 2024; 23:478-491. [PMID: 37988559 PMCID: PMC10987284 DOI: 10.1158/1535-7163.mct-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The histone lysine demethylases KDM4A-C are involved in physiologic processes including stem cell identity and self-renewal during development, DNA damage repair, and cell-cycle progression. KDM4A-C are overexpressed and associated with malignant cell behavior in multiple human cancers and are therefore potential therapeutic targets. Given the role of KDM4A-C in development and cancer, we aimed to test the potent, selective KDM4A-C inhibitor QC6352 on oncogenic cells of renal embryonic lineage. The anaplastic Wilms tumor cell line WiT49 and the tumor-forming human embryonic kidney cell line HEK293 demonstrated low nanomolar QC6352 sensitivity. The cytostatic response to QC6352 in WiT49 and HEK293 cells was marked by induction of DNA damage, a DNA repair-associated protein checkpoint response, S-phase cell-cycle arrest, profound reduction of ribosomal protein gene and rRNA transcription, and blockade of newly synthesized proteins. QC6352 caused reduction of KDM4A-C levels by a proteasome-associated mechanism. The cellular phenotype caused by QC6352 treatment of reduced migration, proliferation, tumor spheroid growth, DNA damage, and S-phase cell-cycle arrest was most closely mirrored by knockdown of KDM4A as determined by siRNA knockdown of KDM4A-C. QC6352 sensitivity correlated with high basal levels of ribosomal gene transcription in more than 900 human cancer cell lines. Targeting KDM4A may be of future therapeutic interest in oncogenic cells of embryonic renal lineage or cells with high basal expression of ribosomal protein genes.
Collapse
Affiliation(s)
| | | | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Fleming
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Hyea Jin Gil
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Matthew G. Rees
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Melissa M. Ronan
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Jennifer A. Roth
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Gerard P. Zambetti
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew J. Murphy
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Walczak-Nowicka ŁJ, Szopa A, Pitucha M, Serefko A, Pachuta-Stec A, Pawłowski K, Gawrońska-Grzywacz M, Lachowicz J, Herbet M. Newly synthesized derivatives with a thiosemicarbazide group reduce the viability of cancer cell lines. Acute toxicity assessment in Zebrafish (Danio rerio) early life stages. Toxicol In Vitro 2024; 95:105741. [PMID: 38030050 DOI: 10.1016/j.tiv.2023.105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Due to the variability and ability of tumor to mutate, as well as the heterogeneity of tumor tissue, such drugs are sought that would act selectively and multidirectionally on the cancer cell. Therefore, two newly synthesized semicarbazide structured substances were evaluated for anticancer properties in our study: 1a and 1b. In order to evaluate the cytotoxicity and selectivity of the tested compounds, MTT and Neutral Red uptake assay on cell lines (HEK293, LN229, 769-P, HepG2 and NCI-H1563) and cell cycle analysis were performed. Acute toxicity and cardiotoxicity were also evaluated in the zebrafish model. The tested compounds (1a, 1b) showed cytotoxic activity, with the greatest selectivity noted against the glioblastoma multiforme cell line (LN229). However, compound 1b showed stronger selective activity than 1a. Both of compounds were shown to significantly affect the M phase of the cell cycle. Whereas, the conducted toxicological examination of newly synthesized thiosemicarbazide derivates showed, that direct exposition of Danio rerio embryos to compound 1a, but not 1b, causes a concentration-dependent increase in developmental malformations, indicating possible teratogenic effects.
Collapse
Affiliation(s)
- Łucja Justyna Walczak-Nowicka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland.
| | - Aleksandra Szopa
- Department of Clinical Pharmacy an d Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy an d Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Anna Pachuta-Stec
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Kamil Pawłowski
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| | - Joanna Lachowicz
- Department of Clinical Pharmacy an d Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
18
|
Delgado CA, Poletto E, Vera LNP, Jacques CED, Vianna P, Reinhardt LS, Baldo G, Vargas CR. Effect of genistein and coenzyme Q10 in oxidative damage and mitochondrial membrane potential in an attenuated type II mucopolysaccharidosis cellular model. Cell Biochem Funct 2024; 42:e3932. [PMID: 38332678 DOI: 10.1002/cbf.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.
Collapse
Affiliation(s)
- Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Edina Poletto
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luisa Natalia Pimentel Vera
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Priscila Vianna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Guilherme Baldo
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
19
|
Lee HW, Choi JH, Seo D, Gavaachimed L, Choi J, Park S, Min NY, Lee DH, Bang HW, Ham SW, Kim JW, Lee SC, Rhee S, Seo SB, Lee KH. EGCG-induced selective death of cancer cells through autophagy-dependent regulation of the p62-mediated antioxidant survival pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119659. [PMID: 38216089 DOI: 10.1016/j.bbamcr.2024.119659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.
Collapse
Affiliation(s)
- Ho Woon Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Jee-Hye Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Dongbeom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Lkhagvasuren Gavaachimed
- Department of Science of Cultural Properties, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Jaesung Choi
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sehwan Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Na Young Min
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, Seoul, Republic of Korea
| | - Hyo-Weon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Wook Ham
- Department of Chemistry, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Kwang-Ho Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea; Department of Science of Cultural Properties, Graduate School, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Kraszewska I, Sarad K, Andrysiak K, Kopacz A, Schmidt L, Krüger M, Dulak J, Jaźwa-Kusior A. Casein kinase 2 activity is a host restriction factor for AAV transduction. Mol Ther 2024; 32:84-102. [PMID: 37952087 PMCID: PMC10787142 DOI: 10.1016/j.ymthe.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
So far, the mechanisms that impede AAV transduction, especially in the human heart, are poorly understood, hampering the introduction of new, effective gene therapy strategies. Therefore, the aim of this study was to identify and overcome the main cellular barriers to successful transduction in the heart, using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs), iPSC-derived cardiac fibroblasts (iPSC-CFs), and primary endothelial cells to model vector-host interactions. Through phosphoproteome analysis we established that casein kinase 2 (CK2) signaling is one of the most significantly affected pathways upon AAV exposure. Transient inhibition of CK2 activity substantially enhanced the transduction rate of AAV2, AAV6, and AAV9 in all tested cell types. In particular, CK2 inhibition improved the trafficking of AAVs through the cytoplasm, impaired DNA damage response through destabilization of MRE11, and altered the RNA processing pathways, which were also highly responsive to AAV transduction. Also, it augmented transgene expression in already transduced iPSC-CFs, which retain AAV genomes in a functional, but probably silent form. In summary, the present study provides new insights into the current understanding of the host-AAV vector interaction, identifying CK2 activity as a key barrier to efficient transduction and transgene expression, which may translate to improving the outcome of AAV-based therapies in the future.
Collapse
Affiliation(s)
- Izabela Kraszewska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Katarzyna Sarad
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Luisa Schmidt
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Jaźwa-Kusior
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
21
|
Yamano-Adachi N, Hata H, Nakanishi Y, Omasa T. Effects of genome instability of parental CHO cell clones on chromosome number distribution and recombinant protein production in parent-derived subclones. J Biosci Bioeng 2024; 137:54-63. [PMID: 37981489 DOI: 10.1016/j.jbiosc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chinese hamster ovary (CHO) cells are the de facto standard host cells for biopharmaceuticals, and there is great interest in developing methods for constructing stable production cell lines. In this study, clones with a wide chromosome number distribution were selected from isolated antibody-producing strains, and subclones obtained from these clones were evaluated. The transgene copy number varied between the subclones. Even among subclones with similar copy numbers of antibody genes and maintained insertion sites, clones with different productivity were generated. Although the chromosome number distribution differed between these subclones, there was no correlation between the variability in chromosome number after cloning (genome instability) and productivity. Most of the subclones obtained from a parental strain with a wide chromosome number had the same wide chromosome number distribution as the parental strain. Less frequently, cells with less variation (remaining in one distribution) in chromosome number were isolated from cells with a wide chromosome number distribution, from which subclones with less variation in chromosome number were obtained when subcloning was performed again. These results imply that the characteristics of clones with chromosomal instability are inherited by subclones, and thus provide a better understanding of cell line stability/instability.
Collapse
Affiliation(s)
- Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hirofumi Hata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Nakanishi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Tsai JF, Wu TS, Huang YT, Lin WJ, Yu FY, Liu BH. Exposure to Mycotoxin Citrinin Promotes Carcinogenic Potential of Human Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19054-19065. [PMID: 37988173 DOI: 10.1021/acs.jafc.3c05218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Mycotoxin citrinin (CTN), commonly found in food and health supplements, may induce chromosomal instability. In this study, human renal proximal tubule epithelial cells (hRPTECs) that were exposed to CTN (10 and 20 μM) over 3 days exhibited numerical chromosomal aberrations. Short-term (3 days) and long-term (30 days) exposures to CTN significantly promoted mitotic spindle abnormalities, wound healing, cell migration, and anchorage-independent growth in human embryonic kidney 293 (HEK293) cells. Short-term exposure to 10 and 20 μM CTN increased the number of migrated cells on day 10 by 1.7 and 1.9 times, respectively. The number of anchorage-independent colonies increased from 2.2 ± 1.3 to 7.8 ± 0.6 after short-term exposure to 20 μM CTN and from 2.0 ± 1.0 to 12.0 ± 1.2 after long-term exposure. The transcriptomic profiles of CTN-treated HEK293 were subjected to over-representative analysis (ORA), gene set enrichment analysis (GSEA), and Ingenuity pathway analysis (IPA). Short-term exposure to CTN promoted the RTK/KRAS/RAF/MAPK cascade, while long-term exposure altered the extracellular matrix organization. Both short- and long-term CTN exposure activated cancer and cell cycle-related signaling pathways. These results demonstrate the carcinogenic potential of CTN in human cells and provide valuable insights into the cancer risk associated with CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Wan-Ju Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402306, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402306, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
23
|
Bai Y, Zhang S, Dong H, Liu Y, Liu C, Zhang X. Advanced Techniques for Detecting Protein Misfolding and Aggregation in Cellular Environments. Chem Rev 2023; 123:12254-12311. [PMID: 37874548 DOI: 10.1021/acs.chemrev.3c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Protein misfolding and aggregation, a key contributor to the progression of numerous neurodegenerative diseases, results in functional deficiencies and the creation of harmful intermediates. Detailed visualization of this misfolding process is of paramount importance for improving our understanding of disease mechanisms and for the development of potential therapeutic strategies. While in vitro studies using purified proteins have been instrumental in delivering significant insights into protein misfolding, the behavior of these proteins in the complex milieu of living cells often diverges significantly from such simplified environments. Biomedical imaging performed in cell provides cellular-level information with high physiological and pathological relevance, often surpassing the depth of information attainable through in vitro methods. This review highlights a variety of methodologies used to scrutinize protein misfolding within biological systems. This includes optical-based methods, strategies leaning on mass spectrometry, in-cell nuclear magnetic resonance, and cryo-electron microscopy. Recent advancements in these techniques have notably deepened our understanding of protein misfolding processes and the features of the resulting misfolded species within living cells. The progression in these fields promises to catalyze further breakthroughs in our comprehension of neurodegenerative disease mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yulong Bai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Dong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
24
|
Moore ER, Maridas DE, Gamer L, Chen G, Burton K, Rosen V. A periosteum-derived cell line to study the role of BMP/TGFβ signaling in periosteal cell behavior and function. Front Physiol 2023; 14:1221152. [PMID: 37799511 PMCID: PMC10547901 DOI: 10.3389/fphys.2023.1221152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
The periosteum is a thin tissue surrounding each skeletal element that contains stem and progenitor cells involved in bone development, postnatal appositional bone growth, load-induced bone formation, and fracture repair. BMP and TGFβ signaling are important for periosteal activity and periosteal cell behavior, but thorough examination of the influence of these pathways on specific cell populations resident in the periosteum is lacking due to limitations associated with primary periosteal cell isolations and in vitro experiments. Here we describe the generation of a novel periosteum-derived clonal cell (PDC) line from postnatal day 14 mice and use it to examine periosteal cell behavior in vitro. PDCs exhibit key characteristics of periosteal cells observed during skeletal development, maintenance, and bone repair. Specifically, PDCs express established periosteal markers, can be expanded in culture, demonstrate the ability to differentiate into chondrocytes, osteoblasts, and adipocytes, and exhibit an osteogenic response to physical stimulation. PDCs also engage in BMP and/or TGFβ signaling when treated with the activating ligands BMP2 and TGFβ-1, and in response to mechanical stimulation via fluid shear. We believe that this PDC line will be useful for large-scale, long-term experiments that were not feasible when using primary periosteal cells. Anticipated future uses include advancing our understanding of the signaling interactions that occur during appositional bone growth and fracture repair and developing drug screening platforms to discover novel growth and fracture healing factors.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | | | | | | | | | | |
Collapse
|
25
|
Daglish SCD, Fennell EMJ, Graves LM. Targeting Mitochondrial DNA Transcription by POLRMT Inhibition or Depletion as a Potential Strategy for Cancer Treatment. Biomedicines 2023; 11:1598. [PMID: 37371693 PMCID: PMC10295849 DOI: 10.3390/biomedicines11061598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.
Collapse
Affiliation(s)
| | | | - Lee M. Graves
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.C.D.D.); (E.M.J.F.)
| |
Collapse
|
26
|
Seidel S, Maschke RW, Mozaffari F, Eibl-Schindler R, Eibl D. Improvement of HEK293 Cell Growth by Adapting Hydrodynamic Stress and Predicting Cell Aggregate Size Distribution. Bioengineering (Basel) 2023; 10:bioengineering10040478. [PMID: 37106665 PMCID: PMC10135925 DOI: 10.3390/bioengineering10040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
HEK293 is a widely used cell line in the fields of research and industry. It is assumed that these cells are sensitive to hydrodynamic stress. The aim of this research was to use particle image velocimetry validated computational fluid dynamics (CFD) to determine the hydrodynamic stress in both shake flasks, with and without baffles, and in stirred Minifors 2 bioreactors to evaluate its effect on the growth and aggregate size distribution of HEK293 suspension cells. The HEK FreeStyleTM 293-F cell line was cultivated in batch mode at different specific power inputs (from 63 W m-3 to 451 W m-3), whereby ≈60 W m-3 corresponds to the upper limit, which is what has been typically described in published experiments. In addition to the specific growth rate and maximum viable cell density VCDmax, the cell size distribution over time and cluster size distribution were investigated. The VCDmax of (5.77±0.02)·106cellsmL-1 was reached at a specific power input of 233 W m-3 and was 23.8% higher than the value obtained at 63 W m-3 and 7.2% higher than the value obtained at 451 W m-3. No significant change in the cell size distribution could be measured in the investigated range. It was shown that the cell cluster size distribution follows a strict geometric distribution whose free parameter p is linearly dependent on the mean Kolmogorov length scale. Based on the performed experiments, it has been shown that by using CFD-characterised bioreactors, the VCDmax can be increased and the cell aggregate rate can be precisely controlled.
Collapse
Affiliation(s)
- Stefan Seidel
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Rüdiger W Maschke
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Fruhar Mozaffari
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Regine Eibl-Schindler
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Dieter Eibl
- Institute of Chemistry and Biotechnology, School of Life Sciences and Facility Management, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| |
Collapse
|
27
|
Moreno-Sánchez R, Robledo-Cadena DX, Pacheco-Velázquez SC, Vargas Navarro JL, Padilla-Flores JA, Rodríguez-Enríquez S. Estimation of energy pathway fluxes in cancer cells - Beyond the Warburg effect. Arch Biochem Biophys 2023; 739:109559. [PMID: 36906097 DOI: 10.1016/j.abb.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Glycolytic and respiratory fluxes were analyzed in cancer and non-cancer cells. The steady-state fluxes in energy metabolism were used to estimate the contributions of aerobic glycolytic and oxidative phosphorylation (OxPhos) pathways to the cellular ATP supply. The rate of lactate production - corrected for the fraction generated by glutaminolysis - is proposed as the appropriate way to estimate glycolytic flux. In general, the glycolytic rates estimated for cancer cells are higher than those found in non-cancer cells, as originally observed by Otto Warburg. The rate of basal or endogenous cellular O2 consumption corrected for non-ATP synthesizing O2 consumption, measured after inhibition by oligomycin (a specific, potent and permeable ATP synthase inhibitor), has been proposed as the appropriate way to estimate mitochondrial ATP synthesis-linked O2 flux or net OxPhos flux in living cells. Detecting non-negligible oligomycin-sensitive O2 consumption rates in cancer cells has revealed that the mitochondrial function is not impaired, as claimed by the Warburg effect. Furthermore, when calculating the relative contributions to cellular ATP supply, under a variety of environmental conditions and for different types of cancer cells, it was found that OxPhos pathway was the main ATP provider over glycolysis. Hence, OxPhos pathway targeting can be successfully used to block in cancer cells ATP-dependent processes such as migration. These observations may guide the re-design of novel targeted therapies.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico.
| | | | | | - Jorge Luis Vargas Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico
| | - Joaquín Alberto Padilla-Flores
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Biología, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, 14080, Mexico; Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Carrera de Medicina, Laboratorio de Control Metabólico, Los Reyes Ixtacala, Hab. Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, 54090, Mexico.
| |
Collapse
|
28
|
Capanema NSV, Mansur AAP, Carvalho IC, Carvalho SM, Mansur HS. Bioengineered Water-Responsive Carboxymethyl Cellulose/Poly(vinyl alcohol) Hydrogel Hybrids for Wound Dressing and Skin Tissue Engineering Applications. Gels 2023; 9:166. [PMID: 36826336 PMCID: PMC9956280 DOI: 10.3390/gels9020166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The burden of chronic wounds is growing due to the increasing incidence of trauma, aging, and diabetes, resulting in therapeutic problems and increased medical costs. Thus, this study reports the synthesis and comprehensive characterization of water-responsive hybrid hydrogels based on carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) using citric acid (CA) as the chemical crosslinking agent, with tunable physicochemical properties suitable to be applied as a wound dressing for soft tissue engineering applications. They were produced through an eco-friendly process under mild conditions. The hydrogels were designed and produced with flexible swelling degree properties through the selection of CMC molecular mass (Mw = 250 and 700 kDa) and degree of functionalization (DS = 0.81), degree of hydrolysis of PVA (DH > 99%, Mw = 84-150 kDa) associated with synthesis parameters, CMC/PVA ratio and extension of chemical crosslinking (CA/CMC:PVA ratio), for building engineered hybrid networks. The results demonstrated that highly absorbent hydrogels were produced with swelling degrees ranging from 100% to 5000%, and gel fraction from 40% to 80%, which significantly depended on the concentration of CA crosslinker and the presence of PVA as the CMC-based network modifier. The characterizations indicated that the crosslinking mechanism was mostly associated with the chemical reaction of CA carboxylic groups with hydroxyl groups of CMC and PVA polymers forming ester bonds, rendering a hybrid polymeric network. These hybrid hydrogels also presented hydrophilicity, permeability, and structural features dependent on the degree of crosslinking and composition. The hydrogels were cytocompatible with in vitro cell viability responses of over 90% towards model cell lines. Hence, it is envisioned that this research provides a simple strategy for producing biocompatible hydrogels with tailored properties as wound dressings for assisting chronic wound healing and skin tissue engineering applications.
Collapse
Affiliation(s)
- Nádia Sueli Vieira Capanema
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Alexandra Ancelmo Piscitelli Mansur
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Isadora Cota Carvalho
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Engenharia Agrícola, Universidade Federal de Lavras, UFLA, Lavras 37203-202, MG, Brazil
- Centro Universitário de Lavras, UNILAVRAS, Lavras 37203-593, MG, Brazil
| | - Sandhra Maria Carvalho
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| | - Herman Sander Mansur
- Center of Nanoscience, Nanotechnology and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627–Escola de Engenharia, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
29
|
Wang CG, Peiris MN, Meyer AN, Nelson KN, Donoghue DJ. Oncogenic driver FGFR3-TACC3 requires five coiled-coil heptads for activation and disulfide bond formation for stability. Oncotarget 2023; 14:133-145. [PMID: 36780330 PMCID: PMC9924825 DOI: 10.18632/oncotarget.28359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
FGFR3-TACC3 represents an oncogenic fusion protein frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Various exon breakpoints of FGFR3-TACC3 have been identified in cancers; these were analyzed to determine the minimum contribution of TACC3 for activation of the FGFR3-TACC3 fusion protein. While TACC3 exons 11 and 12 are dispensable for activity, our results show that FGFR3-TACC3 requires exons 13-16 for biological activity. A detailed analysis of exon 13, which consists of 8 heptads forming a coiled coil, further defined the minimal region for biological activity as consisting of 5 heptads from exon 13, in addition to exons 14-16. These conclusions were supported by transformation assays of biological activity, examination of MAPK pathway activation, analysis of disulfide-bonded FGFR3-TACC3, and by examination of the Endoglycosidase H-resistant portion of FGFR3-TACC3. These results demonstrate that clinically identified FGFR3-TACC3 fusion proteins differ in their biological activity, depending upon the specific breakpoint. This study further suggests the TACC3 dimerization domain of FGFR3-TACC3 as a novel target in treating FGFR translocation driven cancers.
Collapse
Affiliation(s)
- Clark G. Wang
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA,2Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Malalage N. Peiris
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - April N. Meyer
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Katelyn N. Nelson
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel J. Donoghue
- 1Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA,3Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA,Correspondence to:Daniel J. Donoghue, email:
| |
Collapse
|
30
|
Wijewantha N, Sane S, Eikanger M, Antony RM, Potts RA, Lang L, Rezvani K, Sereda G. Enhancing Anti-Tumorigenic Efficacy of Eugenol in Human Colon Cancer Cells Using Enzyme-Responsive Nanoparticles. Cancers (Basel) 2023; 15:cancers15041145. [PMID: 36831488 PMCID: PMC9953800 DOI: 10.3390/cancers15041145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
This study is focused on the selective delivery and release of the plant-based anticancer compound eugenol (EUG) in colorectal cancer cells (CRC). EUG is an apoptotic and anti-growth compound in diverse malignant tumors, including CRC. However, EUG's rapid metabolization, excretion, and side effects on normal cells at higher dosages are major limitations of its therapeutic potential. To address this problem, we developed a "smart" enzyme-responsive nanoparticle (eNP) loaded with EUG that exposes tumors to a high level of the drug while keeping its concentration low among healthy cells. We demonstrated that EUG induces apoptosis in CRC cells irrespective of their grades in a dose- and time-dependent manner. EUG significantly decreases cancer cell migration, invasion, and the population of colon cancer stem cells, which are key players in tumor metastasis and drug resistance. The "smart" eNPs-EUG show a high affinity to cancer cells with rapid internalization with no affinity toward normal colon epithelial cells. NPs-EUG enhanced the therapeutic efficacy of EUG measured by a cell viability assay and showed no toxicity effect on normal cells. The development of eNPs-EUG is a promising strategy for innovative anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Nisitha Wijewantha
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Sanam Sane
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan Eikanger
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Ryan M. Antony
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rashaun A. Potts
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Lydia Lang
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| | - Grigoriy Sereda
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
- Correspondence: (K.R.); (G.S.)
| |
Collapse
|
31
|
Hydroxychloroquine Enhances Cytotoxic Properties of Extracellular Vesicles and Extracellular Vesicle-Mimetic Nanovesicles Loaded with Chemotherapeutics. Pharmaceutics 2023; 15:pharmaceutics15020534. [PMID: 36839856 PMCID: PMC9962585 DOI: 10.3390/pharmaceutics15020534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Because of their high biocompatibility, biological barrier negotiation, and functionalization properties, biological nanoparticles have been actively investigated for many medical applications. Biological nanoparticles, including natural extracellular vesicles (EVs) and synthetic extracellular vesicle-mimetic nanovesicles (EMNVs), represent novel drug delivery vehicles that can accommodate different payloads. In this study, we investigated the physical, biological, and delivery properties of EVs and EMNVs and analyzed their ability to deliver the chemotherapeutic drug doxorubicin. EMNVs and EVs exhibit similar properties, but EMNVs are more effectively internalized, while EVs show higher intracellular doxorubicin release activity. In addition, these nanotherapeutics were investigated in combination with the FDA-approved drug hydroxychloroquine (HCQ). We demonstrate that HCQ-induced lysosome destabilization and could significantly increase nanoparticle internalization, doxorubicin release, and cytotoxicity. Altogether, these data demonstrate that, from the delivery standpoint in vitro, the internalization of EMNVs and EVs and their payload release were slightly different and both nanotherapeutics had comparable cytotoxic performance. However, the synthesis of EMNVs was significantly faster and cost-effective. In addition, we highlight the benefits of combining biological nanoparticles with the lysosome-destabilizing agent HCQ that increased both the internalization and the cytotoxic properties of the particles.
Collapse
|
32
|
Park S, Chin-Hun Kuo J, Reesink HL, Paszek MJ. Recombinant mucin biotechnology and engineering. Adv Drug Deliv Rev 2023; 193:114618. [PMID: 36375719 PMCID: PMC10253230 DOI: 10.1016/j.addr.2022.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Mucins represent a largely untapped class of polymeric building block for biomaterials, therapeutics, and other biotechnology. Because the mucin polymer backbone is genetically encoded, sequence-specific mucins with defined physical and biochemical properties can be fabricated using recombinant technologies. The pendent O-glycans of mucins are increasingly implicated in immunomodulation, suppression of pathogen virulence, and other biochemical activities. Recent advances in engineered cell production systems are enabling the scalable synthesis of recombinant mucins with precisely tuned glycan side chains, offering exciting possibilities to tune the biological functionality of mucin-based products. New metabolic and chemoenzymatic strategies enable further tuning and functionalization of mucin O-glycans, opening new possibilities to expand the chemical diversity and functionality of mucin building blocks. In this review, we discuss these advances, and the opportunities for engineered mucins in biomedical applications ranging from in vitro models to therapeutics.
Collapse
Affiliation(s)
- Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
33
|
Jacques CED, Lopes FF, Poletto E, Vera LNP, Vianna P, Reinhardt LS, Baldo G, Vargas CR. Evaluation of oxidative stress and mitochondrial function in a type II mucopolysaccharidosis cellular model: in vitro effects of genistein and coenzyme Q10. Metab Brain Dis 2023; 38:519-529. [PMID: 36029429 DOI: 10.1007/s11011-022-01062-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
Mucopolysaccharidosis type II (MPS II or Hunter Syndrome) is a lysosomal disease caused by deficient degradation of glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate due to the deficiency of the enzyme iduronate-2-sulfatase. The main treatment for MPS II is the administration of the recombinant form of the enzyme, in a process known as enzyme replacement therapy (ERT). Oxidative damage can contribute to the pathophysiology of MPS II and treatment with ERT can reduce the effects of oxidative stress. For a better understanding of pathophysiology of MPS II, we evaluated biomarkers of mitochondrial dysfunction, DNA (Deoxyribonucleic acid) damage, antioxidant defenses, reactive species production and lysosomal size in IDS-deficient HEK 293 cells and investigate the in vitro effect of genistein and coenzyme Q10 (CoQ) on these biomarkers. An increase in the production of reactive species was demonstrated, as well as an increase in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, an increase in lysosomal volume and oxidative damage to DNA were verified. There was no evidence of a change in mitochondrial function in this cell model. In the HEK 293 (human embryonic kidney 293) knockout (KO) HP10 cell model we found that genistein at concentrations of 25 and 50 μm decreased in vitro the production of reactive species and the activity of the SOD enzyme, showing an antioxidant protective effect. Still, in these cells we verified that the coenzyme Q10 in the concentrations of 5 and 10 μm decreased in vitro the activity of the SOD enzyme and in the concentration of 10 μm decreased in vitro the DNA damage, also demonstrating antioxidant protection. In conclusion, MPS II knockout cells demonstrated oxidative stress and DNA damage and genistein, as well as coenzyme Q10, have been shown to have an important protective effect in vitro against these oxidative damages.
Collapse
Affiliation(s)
- Carlos Eduardo Diaz Jacques
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Edina Poletto
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luisa Natalia Pimentel Vera
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Priscila Vianna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Steffens Reinhardt
- Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Guilherme Baldo
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica do Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
34
|
Functional Assessment of a New PBX1 Variant in a 46,XY Fetus with Severe Syndromic Difference of Sexual Development through CRISPR-Cas9 Gene Editing. Genes (Basel) 2023; 14:genes14020273. [PMID: 36833200 PMCID: PMC9956894 DOI: 10.3390/genes14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Sexual development is a complex process relying on numerous genes. Disruptions in some of these genes are known to cause differences of sexual development (DSDs). Advances in genome sequencing allowed the discovery of new genes implicated in sexual development, such as PBX1. We present here a fetus with a new PBX1 NM_002585.3: c.320G>A,p.(Arg107Gln) variant, presenting with severe DSD along with renal and lung malformations. Using CRISPR-Cas9 gene editing on HEK293T cells, we generated a KD cell line for PBX1. The KD cell line showed reduced proliferation and adhesion properties compared with HEK293T cells. HEK293T and KD cells were then transfected plasmids coding either PBX1 WT or PBX1-320G>A (mutant). WT or mutant PBX1 overexpression rescued cell proliferation in both cell lines. RNA-seq analyses showed less than 30 differentially expressed genes, in ectopic mutant-PBX1-expressing cells compared with WT-PBX1. Among them, U2AF1, encoding a splicing factor subunit, is an interesting candidate. Overall, mutant PBX1 seems to have modest effects compared with WT PBX1 in our model. However, the recurrence of PBX1 Arg107 substitution in patients with closely related phenotypes calls for its impact in human diseases. Further functional studies are needed to explore its effects on cellular metabolism.
Collapse
|
35
|
Altrichter Y, Bou-Dib P, Kuznia C, Seitz O. Towards a templated reaction that translates RNA in cells into a proaptotic peptide-PNA conjugate. J Pept Sci 2023:e3477. [PMID: 36606596 DOI: 10.1002/psc.3477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nucleic acid-templated chemistry opens the intriguing prospect of triggering the synthesis of drugs only in diseased cells. Herein, we explore the feasibility of using RNA-templated chemical reactions for the activation of a known Smac peptidomimetic compound (SMC), which has proapoptotic activity. Two peptide nucleic acid (PNA) conjugates were used to enable conditional activation of a masked SMC by reduction of an azide either by Staudinger reduction or catalytic photoreduction using a ruthenium complex. The latter provided ~135 nM SMC-PNA on as little as 10 nM (0.01 eq.) template. For the evaluation of the templated azido-SMC reduction system in cellulo, a stable HEK 293 cell line was generated, which overexpressed a truncated, non-functional form of the XIAP mRNA target. We furthermore describe the development of electroporation protocols that enable a robust delivery of PNA conjugates into HEK 293 cells. The action of the reactive PNA conjugates was evaluated by viability and flow cytometric apoptosis assays. In addition, electroporated probes were re-isolated and analyzed by ultra-high performance liquid chromatography (UPLC). Unfortunately, the ruthenium-PNA conjugate proved phototoxic, and treatment of cells with PNA-linked reducing agent and the azido-masked SMC conjugate did not result in a greater viability loss than treatment with scrambled sequence controls. Intracellular product formation was not detectable. A control experiment in total cellular RNA isolate indicated that the templated reaction can in principle proceed in a complex system. The results of this first-of-its-kind study reveal the numerous hurdles that must be overcome if RNA molecules are to trigger the synthesis of pro-apoptotic drugs inside cells.
Collapse
Affiliation(s)
- Yannic Altrichter
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Peter Bou-Dib
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Christina Kuznia
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
36
|
Jackson KK, Marcus RK. Rapid isolation and quantification of extracellular vesicles from suspension-adapted human embryonic kidney cells using capillary-channeled polymer fiber spin-down tips. Electrophoresis 2023; 44:190-202. [PMID: 35973415 PMCID: PMC10087738 DOI: 10.1002/elps.202200149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
Exosomes, a subset of extracellular vesicles (EVs, 30-200-nm diameter), serve as biomolecular snapshots of their cell of origin and vehicles for intercellular communication, playing roles in biological processes, including homeostasis maintenance and immune modulation. The large-scale processing of exosomes for use as therapeutic vectors has been proposed, but these applications are limited by impure, low-yield recoveries from cell culture milieu (CCM). Current isolation methods are also limited by tedious and laborious workflows, especially toward an isolation of EVs from CCM for therapeutic applications. Employed is a rapid (<10 min) EV isolation method on a capillary-channeled polymer fiber spin-down tip format. EVs are isolated from the CCM of suspension-adapted human embryonic kidney cells (HEK293), one of the candidate cell lines for commercial EV production. This batch solid-phase extraction technique allows 1012 EVs to be obtained from only 100-µl aliquots of milieu, processed using a benchtop centrifuge. The tip-isolated EVs were characterized using transmission electron microscopy, multi-angle light scattering, absorbance quantification, an enzyme-linked immunosorbent assay to tetraspanin marker proteins, and a protein purity assay. It is believed that the demonstrated approach has immediate relevance in research and analytical laboratories, with opportunities for production-level scale-up projected.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
37
|
Binda O, Juillard F, Ducassou JN, Kleijwegt C, Paris G, Didillon A, Baklouti F, Corpet A, Couté Y, Côté J, Lomonte P. SMA-linked SMN mutants prevent phase separation properties and SMN interactions with FMRP family members. Life Sci Alliance 2022; 6:6/1/e202201429. [PMID: 36375840 PMCID: PMC9684302 DOI: 10.26508/lsa.202201429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Although recent advances in gene therapy provide hope for spinal muscular atrophy (SMA) patients, the pathology remains the leading genetic cause of infant mortality. SMA is a monogenic pathology that originates from the loss of the SMN1 gene in most cases or mutations in rare cases. Interestingly, several SMN1 mutations occur within the TUDOR methylarginine reader domain of SMN. We hypothesized that in SMN1 mutant cases, SMA may emerge from aberrant protein-protein interactions between SMN and key neuronal factors. Using a BioID proteomic approach, we have identified and validated a number of SMN-interacting proteins, including fragile X mental retardation protein (FMRP) family members (FMRFM). Importantly, SMA-linked SMNTUDOR mutant forms (SMNST) failed to interact with FMRFM In agreement with the recent work, we define biochemically that SMN forms droplets in vitro and these droplets are stabilized by RNA, suggesting that SMN could be involved in the formation of membraneless organelles, such as Cajal nuclear bodies. Finally, we found that SMN and FMRP co-fractionate with polysomes, in an RNA-dependent manner, suggesting a potential role in localized translation in motor neurons.
Collapse
Affiliation(s)
- Olivier Binda
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France .,University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Franceline Juillard
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Julia Novion Ducassou
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Constance Kleijwegt
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France,Université de Montpellier, CNRS UMR 9002, Institut de Génétique Humaine, Montpellier, France
| | - Geneviève Paris
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Andréanne Didillon
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Faouzi Baklouti
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Armelle Corpet
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Jocelyn Côté
- University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Patrick Lomonte
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, LabEx DEV2CAN, Institut NeuroMyoGène-Pathophysiology and Genetics of Neuron and Muscle, Team Chromatin Dynamics, Nuclear Domains, Virus, Lyon, France
| |
Collapse
|
38
|
Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells 2022; 11:cells11203235. [PMID: 36291103 PMCID: PMC9599997 DOI: 10.3390/cells11203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems. The power of cell models is further enhanced when combined with gene technologies, which allows the examination of even more subtle changes within the structure of the genome and permits testing of proteins in a native environment. The list and possibilities of these recently emerging technologies are truly colossal, which requires a rethink of a number of approaches for obtaining experimental cell models. In this review, we analyze the possibilities and limitations of promising gene technologies for obtaining cell models, and also give recommendations on the development and creation of relevant models. In our opinion, this review will be useful for novice cell biologists, as it provides some reference points in the rapidly growing universe of gene and cell technologies.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
- Correspondence:
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|
39
|
Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, Juárez-Aguilar E. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem 2022; 478:1117-1128. [PMID: 36222986 DOI: 10.1007/s11010-022-04583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022]
Abstract
In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.
Collapse
Affiliation(s)
- E M Olascoaga-Caso
- PhD Health Sciences Program. Universidad Veracruzana, Xalapa, Veracruz, Mexico.,Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - E Tamariz-Domínguez
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico
| | - J C Rodríguez-Alba
- Flow Cytometry Unity, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Médicos y odontólogos s/n, Unidad del Bosque, 91010, Xalapa, Veracruz, Mexico
| | - E Juárez-Aguilar
- Cell Culture Laboratory, Department of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis Castelazo-Ayala S/N, Industrial-Animas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
40
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
41
|
Chen S, Zhang S, Zhu R. Computer-Vision-Based Dielectrophoresis Mobility Tracking for Characterization of Single-Cell Biophysical Properties. Anal Chem 2022; 94:14331-14339. [PMID: 36190245 DOI: 10.1021/acs.analchem.2c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast and precise measurements of live single-cell biophysical properties is significant in disease diagnosis, cytopathologic analysis, etc. Existing methods still suffer from unsatisfied measurement accuracy and low efficiency. We propose a computer vision method to track cell dielectrophoretic movements on a microchip, enabling efficient and accurate measurement of biophysical parameters of live single cells, including cell radius, cytoplasm conductivity, and cell-specific membrane capacitance, and in situ extraction of cell texture features. We propose a prediction-iteration method to optimize the cell parameter measurement, achieving high accuracy (less than 0.79% error) and high efficiency (less than 30 s). We further propose a hierarchical classifier based on a support vector machine and implement cell classification using acquired cell physical parameters and texture features, achieving high classification accuracies for identifying cell lines from different tissues, tumor and normal cells, different tumor cells, different leukemia cells, and tumor cells with different malignancies. The method is label-free and biocompatible, allowing further live cell studies on a chip, e.g., cell therapy, cell differentiation, etc.
Collapse
Affiliation(s)
- Shengjie Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Shengsen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing100084, China
| |
Collapse
|
42
|
Ali A, Ohashi M, Casco A, Djavadian R, Eichelberg M, Kenney SC, Johannsen E. Rta is the principal activator of Epstein-Barr virus epithelial lytic transcription. PLoS Pathog 2022; 18:e1010886. [PMID: 36174106 PMCID: PMC9553042 DOI: 10.1371/journal.ppat.1010886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/11/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
The transition from latent Epstein-Barr virus (EBV) infection to lytic viral replication is mediated by the viral transcription factors Rta and Zta. Although both are required for virion production, dissecting the specific roles played by Rta and Zta is challenging because they induce each other's expression. To circumvent this, we constructed an EBV mutant deleted for the genes encoding Rta and Zta (BRLF1 and BZLF1, respectively) in the Akata strain BACmid. This mutant, termed EBVΔRZ, was used to infect several epithelial cell lines, including telomerase-immortalized normal oral keratinocytes, a highly physiologic model of EBV epithelial cell infection. Using RNA-seq, we determined the gene expression induced by each viral transactivator. Surprisingly, Zta alone only induced expression of the lytic origin transcripts BHLF1 and LF3. In contrast, Rta activated the majority of EBV early gene transcripts. As expected, Zta and Rta were both required for expression of late gene transcripts. Zta also cooperated with Rta to enhance a subset of early gene transcripts (Rtasynergy transcripts) that Zta was unable to activate when expressed alone. Interestingly, Rta and Zta each cooperatively enhanced the other's binding to EBV early gene promoters, but this effect was not restricted to promoters where synergy was observed. We demonstrate that Zta did not affect Rtasynergy transcript stability, but increased Rtasynergy gene transcription despite having no effect on their transcription when expressed alone. Our results suggest that, at least in epithelial cells, Rta is the dominant transactivator and that Zta functions primarily to support DNA replication and co-activate a subset of early promoters with Rta. This closely parallels the arrangement in KSHV where ORF50 (Rta homolog) is the principal activator of lytic transcription and K8 (Zta homolog) is required for DNA replication at oriLyt.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- National Center for Research, Khartoum, Sudan
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Reza Djavadian
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Mark Eichelberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin, Madison Wisconsin, United States of America
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Ben-Zichri S, Rajendran S, Bhunia SK, Jelinek R. Resveratrol Carbon Dots Disrupt Mitochondrial Function in Cancer Cells. Bioconjug Chem 2022; 33:1663-1671. [PMID: 36065131 DOI: 10.1021/acs.bioconjchem.2c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resveratrol, a natural polyphenol, exhibits beneficial health properties and has been touted as a potential anti-tumor agent. Here, we demonstrate potent anti-cancer effects of carbon dots (C-dots) synthesized from resveratrol. The mild synthesis conditions retained resveratrol functional moieties upon the carbon dots' (C-dots) surface, an important requisite for achieving specificity toward cancer cells and biological activities. Indeed, the disruptive effects of the resveratrol-C-dot were more pronounced in several cancer cell types compared to normal cells, underscoring targeting capabilities of the C-dots, a pertinent issue for the development of cancer therapeutics. In particular, we observed impairment of mitochondrial functionalities, including intracellular calcium release, inhibition of cytochrome-C oxidase enzyme activity, and mitochondrial membrane perturbation. Furthermore, the resveratrol C-dots were more potent than either resveratrol molecules alone, known anti-cancer polyphenolic agents such as curcumin and triphenylphosphonium, or C-dots prepared from different carbonaceous precursors. This study suggests that resveratrol-synthesized C-dots may have promising therapeutic potential as anti-cancer agents.
Collapse
Affiliation(s)
- Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Sathish Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| |
Collapse
|
44
|
Luis E, Lara Figueroa CO, Durán Pastén ML, Azorín Vega EP. Role of gamma radiation on functional expression of the voltage-gated potassium channel Kv10.1 and its importance in the radiobiological response. Appl Radiat Isot 2022; 187:110331. [DOI: 10.1016/j.apradiso.2022.110331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
|
45
|
Lunasin as a Promising Plant-Derived Peptide for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179548. [PMID: 36076946 PMCID: PMC9455814 DOI: 10.3390/ijms23179548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer has become one of the main public health problems worldwide, demanding the development of new therapeutic agents that can help reduce mortality. Lunasin is a soybean peptide that has emerged as an attractive option because its preventive and therapeutic actions against cancer. In this review, we evaluated available research on lunasin’s structure and mechanism of action, which should be useful for the development of lunasin-based therapeutic products. We described data on its primary, secondary, tertiary, and possible quaternary structure, susceptibility to post-translational modifications, and structural stability. These characteristics are important for understanding drug activity and characterizing lunasin products. We also provided an overview of research on lunasin pharmacokinetics and safety. Studies examining lunasin’s mechanisms of action against cancer were reviewed, highlighting reported activities, and known molecular partners. Finally, we briefly discussed commercially available lunasin products and potential combination therapeutics.
Collapse
|
46
|
Kim SH, Basili T, Dopeso H, Cruz Paula AD, Bi R, Bhaloo SI, Pareja F, Li Q, da Silva EM, Zhu Y, Hoang T, Selenica P, Murali R, Chan E, Wu M, Derakhshan F, Maroldi A, Hanlon E, Ferreira CG, Lapa e Silva JR, Abu-Rustum NR, Zamarin D, Chandarlapaty S, Matrai C, Yoon JY, Reis-Filho JS, Park KJ, Weigelt B. Recurrent WWTR1 S89W mutations and Hippo pathway deregulation in clear cell carcinomas of the cervix. J Pathol 2022; 257:635-649. [PMID: 35411948 PMCID: PMC9881397 DOI: 10.1002/path.5910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/12/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Abstract
Clear cell carcinoma (CCC) of the cervix (cCCC) is a rare and aggressive type of human papillomavirus (HPV)-negative cervical cancer with limited effective treatment options for recurrent or metastatic disease. Historically, CCCs of the lower genital tract were associated with in utero diethylstilbestrol exposure; however, the genetic landscape of sporadic cCCCs remains unknown. Here we sought to define the molecular underpinning of cCCCs. Using a combination of whole-exome, targeted capture, and RNA-sequencing, we identified pathogenic genetic alterations in the Hippo signaling pathway in 50% (10/20) of cCCCs, including recurrent WWTR1 S89W somatic mutations in 40% (4/10) of the cases harboring mutations in the Hippo pathway. Irrespective of the presence or absence of Hippo pathway genetic alterations, however, all primary cCCCs analyzed in this study (n = 20) harbored features of Hippo pathway deregulation at the transcriptomic and protein levels. In vitro functional analysis revealed that expression of the WWTR1 S89W mutation leads to reduced binding of TAZ to 14-3-3, promoting constitutive nuclear translocation of TAZ and Hippo pathway repression. WWTR1 S89W expression was found to lead to acquisition of oncogenic behavior, including increased proliferation, migration, and colony formation in vitro as well as increased tumorigenesis in vivo, which could be reversed by targeted inhibition of the TAZ/YAP1 complex with verteporfin. Finally, xenografts expressing WWTR1 S89W displayed a shift in tumor phenotype, becoming more infiltrative as well as less differentiated, and were found to be composed of cells with conspicuous cytoplasmic clearing as compared to controls. Our results demonstrate that Hippo pathway alterations are likely drivers of cCCCs and likely contribute to the clear cell phenotype. Therapies targeting this pathway may constitute a new class of treatment for these rare, aggressive tumors. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sarah H. Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thais Basili
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Bi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, PR China
| | - Shirin Issa Bhaloo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edaise M. da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingjie Zhu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy Hoang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle Wu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Maroldi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Etta Hanlon
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos Gil Ferreira
- Oncoclinicas Institute for Research and Education, Sao Paulo, Brazil,Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nadeem R. Abu-Rustum
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cathleen Matrai
- Department of Pathology, Weill Cornell Medical Center, New York, NY, USA
| | - Ju-Yoon Yoon
- Department of Pathology, St Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kay J. Park
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Correspondence to: KJ Park or B Weigelt, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. or:
| | - Britta Weigelt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Correspondence to: KJ Park or B Weigelt, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. or:
| |
Collapse
|
47
|
Huynh MB, Rebergue N, Merrick H, Gomez-Henao W, Jospin E, Biard DSF, Papy-Garcia D. HS3ST2 expression induces the cell autonomous aggregation of tau. Sci Rep 2022; 12:10850. [PMID: 35760982 PMCID: PMC9237029 DOI: 10.1038/s41598-022-13486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Heparan sulfates have long been known to intracellularly accumulate in Alzheimer's disease neurons, where they colocalize with neurofibrillary tangles made of abnormally phosphorylated and aggregated tau protein. However, the reasons and consequences of the heparan sulfates accumulation in the Alzheimer's cells are not yet well understood. Previously, we showed that the neural heparan sulfate 3-O-sulfotransferase HS3ST2 is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tauopathy. Using cell models of tauopathy we showed that intracellular 3-O-sulfatated heparan sulfates interact with tau inducing its abnormal phosphorylation. However, it is unknown whether HS3ST2 expression induces the intracellular aggregation of tau in cells. Here, by using replicative pEBV plasmids, we engineered HEK293 cells to stably express HS3ST2 together with human tau carrying or not the P301S mutation. We show that HS3ST2 gain of function induces the cell autonomous aggregation of tau not only in cells expressing tauP301S, but also in cells expressing the wild type tau. Our engineered cells mimicked both the HS intracellular accumulation observed in neurons of Alzheimer's disease and the tau aggregation characteristic of tauopathy development and evolution. These results give evidence that the neural HS3ST2 plays a critical role in the cell autonomous self-aggregation of tau.
Collapse
Affiliation(s)
- M B Huynh
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - N Rebergue
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - H Merrick
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - W Gomez-Henao
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
- Departamento de Bioquímica, Laboratorio Internacional Gly-CRRET-UNAM, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Jospin
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - D S F Biard
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
- CEA, Institut de Biologie François Jacob (IBFJ), SEPIA, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - D Papy-Garcia
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France.
| |
Collapse
|
48
|
Namous H, Braz CU, Wang Y, Khatib H. The Activation of Protamine 1 Using Epigenome Editing Decreases the Proliferation of Tumorigenic Cells. Front Genome Ed 2022; 4:844904. [PMID: 35783678 PMCID: PMC9244402 DOI: 10.3389/fgeed.2022.844904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methyltransferases (DNMT) and histone deacetylases (HDAC) inhibitors are used as cancer epigenome drugs. However, these epigenetic drugs lack targeting specificity and could risk inducing genome instability and the expression of oncogenes. Therefore, there is a need to develop new therapeutic strategies where specific cancer genes can be targeted for silencing or activation. The CRISPR/dCas9 system represents a promising, powerful therapeutic tool because of its simplicity and specificity. Protamine 1 (PRM1) is exclusively expressed in sperm and has a vital role in the tight packaging of DNA, thus inducing transcriptional silencing in sperm cells. We hypothesized that the activation of the PRM1 gene in tumorigenic cells would lead to DNA condensation and reduce the proliferation of these cells. To test our hypothesis, we transfected human embryonic kidney cells 293T with a dCas9-P300 plasmid that adds acetyl groups to the promoter region of PRM1 via specific gRNAs plasmids. RNA-Seq analysis of transfected cells revealed high specificity of targeted gene activation. PRM1 expression resulted in a significant decrease in cell proliferation as measured by the BrdU ELISA assay. To confirm that the activation of PRM1 was due to acetyl groups deposited to H3K27, a ChIP-qPCR was performed. The acetylation of the PRM1 promoter region targeted by dCas9-p300 in transfected cells was higher than that of the control cells. Interestingly, the targeted promoter region for acetylation showed reduced DNA methylation. These findings demonstrate the efficacy of epigenome editing in activating PRM1 in non-expressing tumorigenic cells, which could be used as a promising therapeutic strategy in cancer treatment.
Collapse
|
49
|
Thwarting of Lphn3 Functions in Cell Motility and Signaling by Cancer-Related GAIN Domain Somatic Mutations. Cells 2022; 11:cells11121913. [PMID: 35741042 PMCID: PMC9221416 DOI: 10.3390/cells11121913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer progression relies on cellular transition states accompanied by changes in the functionality of adhesion molecules. The gene for adhesion G protein-coupled receptor latrophilin-3 (aGPCR Lphn3 or ADGRL3) is targeted by tumor-specific somatic mutations predominantly affecting the conserved GAIN domain where most aGPCRs are cleaved. However, it is unclear how these GAIN domain-altering mutations impact Lphn3 function. Here, we studied Lphn3 cancer-related mutations as a proxy for revealing unknown GAIN domain functions. We found that while intra-GAIN cleavage efficiency was unaltered, most mutations produced a ligand-specific impairment of Lphn3 intercellular adhesion profile paralleled by an increase in cell-matrix actin-dependent contact structures for cells expressing the select S810L mutation. Aberrant remodeling of the intermediate filament vimentin, which was found to coincide with Lphn3-induced modification of nuclear morphology, had less impact on the nuclei of S810L expressing cells. Notoriously, receptor signaling through G13 protein was deficient for all variants bearing non-homologous amino acid substitutions, including the S810L variant. Analysis of cell migration paradigms revealed a non-cell-autonomous impairment in collective cell migration indistinctly of Lphn3 or its cancer-related variants expression, while cell-autonomous motility was potentiated in the presence of Lphn3, but this effect was abolished in S810L GAIN mutant-expressing cells. These data identify the GAIN domain as an important regulator of Lphn3-dependent cell motility, thus furthering our understanding of cellular and molecular events linking Lphn3 genetic somatic mutations to cancer-relevant pathogenesis mechanisms.
Collapse
|
50
|
Development of Turmeric Oil—Loaded Chitosan/Alginate Nanocapsules for Cytotoxicity Enhancement against Breast Cancer. Polymers (Basel) 2022; 14:polym14091835. [PMID: 35567007 PMCID: PMC9101660 DOI: 10.3390/polym14091835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.
Collapse
|