1
|
Hatamie A, He X, Ewing A, Rorsman P. From Insulin Measurement to Partial Exocytosis Model: Advances in Single Pancreatic Beta Cell Amperometry over Four Decades. ACS MEASUREMENT SCIENCE AU 2024; 4:629-637. [PMID: 39713028 PMCID: PMC11659994 DOI: 10.1021/acsmeasuresciau.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/24/2024]
Abstract
Single cell Amperometry (SCA) is a powerful, sensitive, high temporal resolution electrochemical technique used to quantify secreted molecular messengers from individual cells and vesicles. This technique has been extensively applied to study the process of exocytosis, and it has also been applied, albeit less frequently, to investigate insulin exocytosis from single pancreatic beta cells. Insufficient insulin release can lead to diabetes, a chronic lifestyle disorder that affects millions of people worldwide. This review aims to summarize and highlight electrochemical measurements of insulin via monitoring its secretion from beta cells by SCA with micro- and nanoelectrodes since the 1990s and to explain how and why serotonin is used as a proxy for monitoring insulin during exocytosis from single beta cells. Finally, we describe how the combination of SCA measurements with the intracellular vesicle impact electrochemical cytometry (IVIEC) technique has led to important findings regarding fractional release types in beta cells. These findings, reported recently, have opened a new window in the study of pore formation, exocytosis from single vesicles, and the mechanisms of insulin secretion. This sensitive cellular electroanalysis approach should help in the development of novel therapeutic strategies targeting diabetes in the future.
Collapse
Affiliation(s)
- Amir Hatamie
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Xiulan He
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Andrew Ewing
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
| | - Patrik Rorsman
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Oxford
Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, U.K.
| |
Collapse
|
2
|
Gui R, Ren Y, Wang Z, Li Y, Wu C, Li X, Li M, Li Y, Qian L, Xiong Y. Deciphering interleukin-18 in diabetes and its complications: Biological features, mechanisms, and therapeutic perspectives. Obes Rev 2024; 25:e13818. [PMID: 39191434 DOI: 10.1111/obr.13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Interleukin-18 (IL-18), a potent and multifunctional pro-inflammatory cytokine, plays a critical role in regulating β-cell failure, β-cell death, insulin resistance, and various complications of diabetes mellitus (DM). It exerts its effects by triggering various signaling pathways, enhancing the production of pro-inflammatory cytokines and nitric oxide (NO), as well as promoting immune cells infiltration and β-cells death. Abnormal alterations in IL-18 levels have been revealed to be strongly associated with the onset and development of DM and its complications. Targeting IL-18 may present a novel and promising approach for DM therapy. An increasing number of IL-18 inhibitors, including chemical and natural inhibitors, have been developed and have been shown to protect against DM and diabetic complications. This review provides a comprehensive understanding of the production, biological functions, action mode, and activated signaling pathways of IL-18. Next, we shed light on how IL-18 contributes to the pathogenesis of DM and its associated complications with links to its roles in the modulation of β-cell failure and death, insulin resistance in various tissues, and pancreatitis. Furthermore, the therapeutic potential of targeting IL-18 for the diagnosis and treatment of DM is also highlighted. We hope that this review will help us better understand the functions of IL-18 in the pathogenesis of DM and its complications, providing novel strategies for DM diagnosis and treatment.
Collapse
Affiliation(s)
- Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Chengsong Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Yujia Li
- Department of Traditional Chinese Medicine, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
- Scientific Research Center, Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Chen Y, Jiang Q, Xing X, Yuan T, Li P. Clinical research progress on β-cell dysfunction in T2DM development in the Chinese population. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09914-9. [PMID: 39382753 DOI: 10.1007/s11154-024-09914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of type-2 diabetes mellitus (T2DM) has increased over 10-fold in the past 40 years in China, which now has the largest T2DM population in the world. Insulin resistance and β-cell dysfunction are the typical features of T2DM. Although both factors play a role, decreased β-cell function and β-cell mass are the predominant factors for progression to T2DM. Considering the differences between Chinese T2DM patients and those of other ethnicities, it is important to characterize β-cell dysfunction in Chinese patients during T2DM progression. Herein, we reviewed the studies on the relationships between β-cell function and T2DM progression in the Chinese population and discussed the differences among individuals of varying ethnicities. Meanwhile, we summarized the risk factors and current treatments of T2DM in Chinese individuals and discussed their impacts on β-cell function with the hope of identifying a better T2DM therapy.
Collapse
Affiliation(s)
- Yibing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Xiaowei Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, 100050, China.
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Beijing, 100050, China.
| |
Collapse
|
4
|
Yi H, Gong D, Daddysman MK, Renn M, Scherer NF. Distinct Sub- to Superdiffuse Insulin Granule Transport Behaviors in β-Cells Are Strongly Affected by Granule Age. J Phys Chem B 2024; 128:6246-6256. [PMID: 38861346 DOI: 10.1021/acs.jpcb.4c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Intracellular transport is a complex process that is difficult to describe by a single general model for motion. Here, we study the transport of insulin containing vesicles, termed granules, in live MIN6 cells. We characterize how the observed heterogeneity is affected by different intracellular factors by constructing a MIN6 cell line by CRISPR-CAS9 that constitutively expresses mCherry fused to insulin and is thus packaged in granules. Confocal microscopy imaging and single particle tracking of the granule transport provide long trajectories of thousands of single granule trajectories for statistical analysis. Mean squared displacement (MSD), angle correlation distribution, and step size distribution analysis allowed identifying five distinct granule transport subpopulations, from nearly immobile and subdiffusive to run-pause and superdiffusive. The subdiffusive subpopulation recapitulates the subordinated random walk we reported earlier (Tabei, 2013; ref 18). We show that the transport characteristics of the five subpopulations have a strong dependence on the age of insulin granules. The five subpopulations also reflect the effect of local microtubule and actin networks on transport in different cellular regions. Our results provide robust metrics to clarify the heterogeneity of granule transport and demonstrate the roles of microtubule versus actin networks with granule age since initial packaging in the Golgi.
Collapse
Affiliation(s)
- Hannah Yi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Daozheng Gong
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
- Graduate Program in Biophysical Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew K Daddysman
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Martha Renn
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Norbert F Scherer
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Guo B, Li QY, Liu XJ, Luo GH, Wu YJ, Nie J. Diabetes mellitus and Alzheimer's disease: Vacuolar adenosine triphosphatase as a potential link. Eur J Neurosci 2024; 59:2577-2595. [PMID: 38419188 DOI: 10.1111/ejn.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and β-amyloid (Aβ). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aβ by affecting the production and degradation of Aβ. Therefore, v-ATPase may be the bridge between DM and AD.
Collapse
Affiliation(s)
- Bin Guo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qi-Ye Li
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xue-Jia Liu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guo-Hui Luo
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya-Juan Wu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Simon Machado R, Mathias K, Joaquim L, Willig de Quadros R, Petronilho F, Tezza Rezin G. From diabetic hyperglycemia to cerebrovascular Damage: A narrative review. Brain Res 2023; 1821:148611. [PMID: 37793604 DOI: 10.1016/j.brainres.2023.148611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a globally significant disease that can lead to systemic complications, particularly vascular damage, including cardiovascular and cerebrovascular diseases of relevance. The physiological changes resulting from the imbalance in blood glucose levels play a crucial role in initiating vascular endothelial damage. Elevated glucose levels can also penetrate the central nervous system, triggering diabetic encephalopathy characterized by oxidative damage to brain components and activation of alternative and neurotoxic pathways. This brain damage increases the risk of ischemic stroke, a leading cause of mortality worldwide and a major cause of disability among surviving patients. The aim of this review is to highlight important pathways related to hyperglycemic damage that extend to the brain and result in vascular dysfunction, ultimately leading to the occurrence of a stroke. Understanding how diabetes mellitus contributes to the development of ischemic stroke and its impact on patient outcomes is crucial for implementing therapeutic strategies that reduce the incidence of diabetes mellitus and its complications, ultimately decreasing morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaella Willig de Quadros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
7
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Wen L, Yang X, Wu Z, Fu S, Zhan Y, Chen Z, Bi D, Shen Y. The complement inhibitor CD59 is required for GABAergic synaptic transmission in the dentate gyrus. Cell Rep 2023; 42:112349. [PMID: 37027303 DOI: 10.1016/j.celrep.2023.112349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Complement-dependent microglia pruning of excitatory synapses has been widely reported in physiological and pathological conditions, with few reports concerning pruning of inhibitory synapses or direct regulation of synaptic transmission by complement components. Here, we report that loss of CD59, an important endogenous inhibitor of the complement system, leads to compromised spatial memory performance. Furthermore, CD59 deficiency impairs GABAergic synaptic transmission in the hippocampal dentate gyrus (DG). This depends on regulation of GABA release triggered by Ca2+ influx through voltage-gated calcium channels (VGCCs) rather than inhibitory synaptic pruning by microglia. Notably, CD59 colocalizes with inhibitory pre-synaptic terminals and regulates SNARE complex assembly. Together, these results demonstrate that the complement regulator CD59 plays an important role in normal hippocampal function.
Collapse
Affiliation(s)
- Lang Wen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoli Yang
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zujun Wu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shumei Fu
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yaxi Zhan
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zuolong Chen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215000, China
| | - Danlei Bi
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yong Shen
- Department of Neurology and Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disease Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
9
|
Functionally Significant Variants in Genes Associated with Abdominal Obesity: A Review. J Pers Med 2023; 13:jpm13030460. [PMID: 36983642 PMCID: PMC10056771 DOI: 10.3390/jpm13030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The high prevalence of obesity and of its associated diseases is a major problem worldwide. Genetic predisposition and the influence of environmental factors contribute to the development of obesity. Changes in the structure and functional activity of genes encoding adipocytokines are involved in the predisposition to weight gain and obesity. In this review, variants in genes associated with adipocyte function are examined, as are variants in genes associated with metabolic aberrations and the accompanying disorders in visceral obesity.
Collapse
|
10
|
Cook TW, Wilstermann AM, Mitchell JT, Arnold NE, Rajasekaran S, Bupp CP, Prokop JW. Understanding Insulin in the Age of Precision Medicine and Big Data: Under-Explored Nature of Genomics. Biomolecules 2023; 13:257. [PMID: 36830626 PMCID: PMC9953665 DOI: 10.3390/biom13020257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Insulin is amongst the human genome's most well-studied genes/proteins due to its connection to metabolic health. Within this article, we review literature and data to build a knowledge base of Insulin (INS) genetics that influence transcription, transcript processing, translation, hormone maturation, secretion, receptor binding, and metabolism while highlighting the future needs of insulin research. The INS gene region has 2076 unique variants from population genetics. Several variants are found near the transcriptional start site, enhancers, and following the INS transcripts that might influence the readthrough fusion transcript INS-IGF2. This INS-IGF2 transcript splice site was confirmed within hundreds of pancreatic RNAseq samples, lacks drift based on human genome sequencing, and has possible elevated expression due to viral regulation within the liver. Moreover, a rare, poorly characterized African population-enriched variant of INS-IGF2 results in a loss of the stop codon. INS transcript UTR variants rs689 and rs3842753, associated with type 1 diabetes, are found in many pancreatic RNAseq datasets with an elevation of the 3'UTR alternatively spliced INS transcript. Finally, by combining literature, evolutionary profiling, and structural biology, we map rare missense variants that influence preproinsulin translation, proinsulin processing, dimer/hexamer secretory storage, receptor activation, and C-peptide detection for quasi-insulin blood measurements.
Collapse
Affiliation(s)
- Taylor W. Cook
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jackson T. Mitchell
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas E. Arnold
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| | - Caleb P. Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Division of Medical Genetics, Corewell Health, Grand Rapids, MI 49503, USA
| | - Jeremy W. Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Office of Research, Corewell Health, Grand Rapids, MI 49503, USA
| |
Collapse
|
11
|
Lin Y, Pan J, Liu Y, Yang H, Wu G, Pan Y. Acanthopanax trifoliatus (L.) Merr polysaccharides ameliorates hyperglycemia by regulating hepatic glycogen metabolism in type 2 diabetic mice. Front Nutr 2023; 10:1111287. [PMID: 36845056 PMCID: PMC9948035 DOI: 10.3389/fnut.2023.1111287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Drug monotherapy was inadequate in controlling blood glucose levels and other comorbidities. An agent that selectively tunes multiple targets was regarded as a new therapeutic strategy for type 2 diabetes. Acanthopanax trifoliatus (L.) Merr polysaccharide (ATMP) is a bio-macromolecule isolated from Acanthopanax trifoliatus (L.) Merr and has therapeutic potential for diabetes management due to its anti-hyperglycemia activity. METHODS Type 2 diabetes mellitus was induced in mice using streptozotocin, and 40 and 80 mg/kg ATMP was administered daily via the intragastric route for 8 weeks. Food intake, water intake, and body weight were recorded. The fasting blood glucose (FBG), fasting insulin (FINS) and an oral glucose tolerance test (OGTT) were performed. Histological changes in the liver and pancreas were analyzed by H&E staining. The mRNA and the protein levels of key factors involved in glycogen synthesis, glycogenolysis, and gluconeogenesis were measured by quantitative real time PCR and Western blotting. RESULTS In this study, we found that ATMP could effectively improve glucose tolerance and alleviate insulin resistance by promoting insulin secretion and inhibiting glucagon secretion. In addition, ATMP decreases glycogen synthesis by inhibiting PI3K/Akt/GSK3β signaling, reduces glycogenolysis via suppressing cAMP/PKA signaling, and suppresses liver gluconeogenesis by activating AMPK signaling. CONCLUSION Together, ATMP has the potential to be developed as a new multitargets therapeutics for type 2 diabetes.
Collapse
Affiliation(s)
- Yuzi Lin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinghua Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiwen Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoyu Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Guoyu Wu, ✉
| | - Yufang Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, China
- Yufang Pan, ✉
| |
Collapse
|
12
|
Alqallaf A, Swan P, Docherty NG. Renal insulin resistance in type 2 diabetes mellitus and progression of chronic kidney disease: potential pathogenic mechanisms. Expert Rev Endocrinol Metab 2022; 17:523-532. [PMID: 36203374 DOI: 10.1080/17446651.2022.2131534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION A bidirectional association exists between insulin resistance (IR) and chronic kidney disease (CKD) in Type 2 Diabetes Mellitus (T2DM). Baseline measures of IR are predictive of CKD progression, and uremia in progressive CKD is itself, in turn, associated with a worsening of IR. Pre-clinical research reveals that intrinsic IR in glomerular podocytes and the renal tubule may serve as a pathogenic driver of CKD in T2DM. AREAS COVERED The present manuscript takes as its point of departure, the recently identified prognostic utility of severe insulin resistance as a predictor of CKD in T2DM. Findings from a series of studies describing the association of IR with pathological alterations in both established, and less commonly assessed dynamic measures of renal impairment are discussed. Drawing upon the pre-clinical mechanistic evidence base, the cellular and molecular basis of intrinsic renal IR as a promoter of CKD is considered. EXPERT OPINION Measurement of insulin sensitivity may add value to profiling of renal risk in T2DM. Rational selection of therapeutic strategies targeting the enhancement of insulin sensitivity merits special attention regarding the personalized management of CKD in insulin resistance predominant T2DM.
Collapse
Affiliation(s)
- Alrataj Alqallaf
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Swan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Li M, Feng F, Feng H, Hu P, Xue Y, Xu T, Song E. VAMP4 regulates insulin levels by targeting secretory granules to lysosomes. J Cell Biol 2022; 221:213439. [PMID: 36053215 PMCID: PMC9441717 DOI: 10.1083/jcb.202110164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Insulin levels are essential for the maintenance of glucose homeostasis, and deviations lead to pathoglycemia or diabetes. However, the metabolic mechanism controlling insulin quantity and quality is poorly understood. In pancreatic β cells, insulin homeostasis and release are tightly governed by insulin secretory granule (ISG) trafficking, but the required regulators and mechanisms are largely unknown. Here, we identified that VAMP4 controlled the insulin levels in response to glucose challenge. VAMP4 deficiency led to increased blood insulin levels and hyperresponsiveness to glucose. In β cells, VAMP4 is packaged into immature ISGs (iISGs) at trans-Golgi networks and subsequently resorted to clathrin-coated vesicles during granule maturation. VAMP4-positive iISGs and resorted vesicles then fuse with lysosomes facilitated by a SNARE complex consisting of VAMP4, STX7, STX8, and VTI1B, which ensures the breakdown of excess (pro)insulin and obsolete materials and thus maintenance of intracellular insulin homeostasis. Thus, VAMP4 is a key factor regulating the insulin levels and a potential target for the treatment of diabetes.
Collapse
Affiliation(s)
- Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Guangzhou Laboratory, Guangzhou, China,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Fengping Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengkai Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Xue
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,Guangzhou Laboratory, Guangzhou, China,Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Dr. Tao Xu:
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,Correspondence to Dr. Eli Song:
| |
Collapse
|
14
|
Li A, Zhang S, Loconte V, Liu Y, Ekman A, Thompson GJ, Sali A, Stevens RC, White K, Singla J, Sun L. An intensity-based post-processing tool for 3D instance segmentation of organelles in soft X-ray tomograms. PLoS One 2022; 17:e0269887. [PMID: 36048824 PMCID: PMC9436087 DOI: 10.1371/journal.pone.0269887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Investigating the 3D structures and rearrangements of organelles within a single cell is critical for better characterizing cellular function. Imaging approaches such as soft X-ray tomography have been widely applied to reveal a complex subcellular organization involving multiple inter-organelle interactions. However, 3D segmentation of organelle instances has been challenging despite its importance in organelle characterization. Here we propose an intensity-based post-processing tool to identify and separate organelle instances. Our tool separates sphere-like (insulin vesicle) and columnar-shaped organelle instances (mitochondrion) based on the intensity of raw tomograms, semantic segmentation masks, and organelle morphology. We validate our tool using synthetic tomograms of organelles and experimental tomograms of pancreatic β-cells to separate insulin vesicle and mitochondria instances. As compared to the commonly used connected regions labeling, watershed, and watershed + Gaussian filter methods, our tool results in improved accuracy in identifying organelles in the synthetic tomograms and an improved description of organelle structures in β-cell tomograms. In addition, under different experimental treatment conditions, significant changes in volumes and intensities of both insulin vesicle and mitochondrion are observed in our instance results, revealing their potential roles in maintaining normal β-cell function. Our tool is expected to be applicable for improving the instance segmentation of other images obtained from different cell types using multiple imaging modalities.
Collapse
Affiliation(s)
- Angdi Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuning Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Valentina Loconte
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Axel Ekman
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | | | - Andrej Sali
- California Institute for Quantitative Biosciences, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States of America
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America
| | - Kate White
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA, United States of America
- * E-mail: (KW); (JS); (LS)
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- * E-mail: (KW); (JS); (LS)
| | - Liping Sun
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail: (KW); (JS); (LS)
| |
Collapse
|
15
|
Luo X, Li RR, Li YQ, Yu HP, Yu HN, Jiang WG, Li YN. Reducing VEGFB expression regulates the balance of glucose and lipid metabolism in mice via VEGFR1. Mol Med Rep 2022; 26:285. [PMID: 35894135 PMCID: PMC9366154 DOI: 10.3892/mmr.2022.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, studies have demonstrated that vascular endothelial growth factor B (VEGFB) can affect the metabolism of fatty acids and glucose, and it is expected to become a target for the diagnosis and treatment of metabolic diseases such as obesity and diabetes. At present, the specific mechanism that VEGFB regulates lipid and glucose metabolism balance is not completely understood. The present study used systemic VEGFB gene-knockout mice to investigate the effects of downregulation of the VEGFB gene on lipid metabolism and insulin secretion, and to explore the mechanism of the VEGFB pathway involved in the regulation of glucose and lipid metabolism. The morphological changes in the liver and pancreas of mice after VEGFB gene deletion were observed under a light microscope and a scanning electron microscope, and the effects of VEGFB gene deletion on lipid metabolism and blood glucose balance were detected by a serological technique. The detection indexes included total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol. Simultaneously, fasting blood glucose, glycosylated hemoglobin A1c (HbA1c), fasting insulin and glucagon were measured. Insulin sensitivity was assessed by using the insulin tolerance tests and glucose tolerance tests, and function of β-cell islets was evaluated by using the insulin resistance index (HOMA-IR) and pancreatic β-cell secretion index (HOMA-β). Τhe protein expression changes of vascular endothelial growth factor receptor 1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2) in mouse islets were detected by western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) after the VEGFB gene was knocked down to analyze the mechanism of VEGFB that may be involved in glucose and lipid metabolism. It was observed that after VEGFB was knocked down, mouse hepatocytes exhibited steatosis and increased secretory vesicles in islet cells. The lipid metabolism indexes such as TG, TC and LDL increased significantly; however, the levels of FBS, postprandial blood glucose and HbA1c decreased, whereas the glucose tolerance increased. Serum insulin secretion increased and HOMA-IR decreased since VEGFB was knocked down. Western blotting and RT-qPCR results revealed that the expression levels of VEGFR1 and neuropilin-1 decreased after the VEGFB gene was knocked down, while the expression levels of VEGFA and VEGFR2 increased. The absence of VEGFB may be involved in the regulation of glucose and lipid metabolism in mice by activating the VEGFA/VEGFR2 signaling pathway. VEGFB is expected to become a new target for the treatment of metabolic diseases such as obesity and diabetes. At present, the mechanism of VEGFB involved in regulating lipid metabolism and glucose metabolism is not completely clear. It was identified that downregulating VEGFB improved lipid metabolism and insulin resistance. The role of VEGFB/VEGFR1 pathway and other family members in regulating glucose and lipid metabolism was detected, which provided a theoretical and experimental basis for VEGFB to affect the regulation of glucose and lipid metabolism balance.
Collapse
Affiliation(s)
- Xu Luo
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Rong-Rong Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yu-Qi Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Han-Pu Yu
- Clinical Medicine, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hai-Ning Yu
- Department of Stomatology Medicine, School of Oral Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wen-Guo Jiang
- Department of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ya-Na Li
- Department of Pathophysiology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
16
|
Pae EK, Chung MK, Harper RM. Intermittent Hypoxia Interferes with Autocrine Effects of GABA on Insulin Secretion in Postnatal Rodents—Implications for Pediatric Obstructive Sleep Apnea. CHILDREN 2022; 9:children9091305. [PMID: 36138614 PMCID: PMC9497165 DOI: 10.3390/children9091305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Gamma-amino butyric acid (GABA) is well known to help elevate pancreatic β cell vitality and insulin levels in blood. GABA works via a coupling with GABA receptors; thus, the concentration of GABAA receptors on the plasma membrane of β cells appears to be critical for insulin regulation. Various medical conditions, such as pediatric and adult obstructive sleep apnea (OSA), show high levels of Type 2 diabetes; such patients also are exposed to intermittent hypoxia (IH), which modifies the GABA levels. To evaluate the potential therapeutic roles of GABA for diabetic patients with OSA, we studied the interactions of IH with GABA and GABAA receptors in young rats. Using rat pups and primary pancreatic islets, we evaluated the roles of GABA in insulin secretion. We show that GABA effectively increased the insulin secretion of pancreatic islets under normal ambient oxygen levels, as well as in culture medium with a glucose level of 2 mM. GABA also increased islet insulin secretion conditioned under IH in a 16 mM glucose medium. When islets were IH-treated, insulin secretion decreased due to lower intracellular chloride levels in accordance with the increased KCC2 levels. The results show that IH challenges down-regulate the GABAA receptor levels in pancreatic islets, which decreases GABA–GABAA receptor coupling action, as well as membrane depolarization for insulin secretion. The findings have the potential to suggest novel interventions for insulin regulation during IH of disordered breathing, including OSA.
Collapse
Affiliation(s)
- Eung-Kwon Pae
- School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Ronald M. Harper
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense-Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022; 61:e202116217. [PMID: 35129861 PMCID: PMC9306628 DOI: 10.1002/anie.202116217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 01/09/2023]
Abstract
We report the discovery that in the presence of chaotropic anions (SCN- ) the opening of nanometer biological vesicles at an electrified interface often becomes a two-step process (around 30 % doublet peaks). We have then used this to independently count molecules in each subvesicular compartment, the halo and protein dense-core, and the fraction of catecholamine binding to the dense-core is 68 %. Moreover, we differentiated two distinct populations of large dense-core vesicles (LDCVs) and quantified their content, which might correspond to immature (43 %) and mature (30 %) LDCVs, to reveal differences in their biogenesis. We speculate this is caused by an increase in the electrostatic attraction between protonated catecholamine and the negatively charged dense-core following adsorption of SCN- .
Collapse
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
19
|
He X, Ewing AG. Simultaneous Counting of Molecules in the Halo and Dense‐Core of Nanovesicles by Regulating Dynamics of Vesicle Opening. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiulan He
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
20
|
Budnik B, Straubhaar J, Neveu J, Shvartsman D. In‐depth analysis of proteomic and genomic fluctuations during the time course of human embryonic stem cells directed differentiation into beta cells. Proteomics 2022; 22:e2100265. [DOI: 10.1002/pmic.202100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL) FAS Division of Science Harvard University 52 Oxford Street Cambridge MA 02138 USA
| | - Juerg Straubhaar
- Informatics and Scientific Applications Group FAS Center for Systems Biology Harvard University 38 Oxford Street Cambridge MA 02138 USA
| | - John Neveu
- Mass Spectrometry and Proteomics Resource Laboratory (MSPRL) FAS Division of Science Harvard University 52 Oxford Street Cambridge MA 02138 USA
| | - Dmitry Shvartsman
- Department of Stem Cell and Regenerative Biology Harvard Stem Cell Institute Harvard University 7 Divinity Avenue Cambridge MA 02138 USA
- Present address: Cellaria Inc. 9 Audubon Road Wakefield MA 01880 USA
| |
Collapse
|
21
|
Rabiei M, Kalhor N, Farhadi A, Ramezanpour S, Tahamtani Y, Azarnia M. Synthetic Small Molecules to Induce Insulin Secretion and Pancreatic Beta Cell Specific Gene Expression. Cells Tissues Organs 2022:000522154. [DOI: 10.1159/000522154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Despite various efficient pharmaceuticals which are already used to manage diabetes, new drugs are needed to preserve and restore the function of pancreatic β-cells (pβCs) including cell specific gene expression and insulin production and secretion. Newly developed small molecules (SMs) with potential anti-diabetic activity need to be preliminary tested. Mice insulinoma MIN6 cells (MIN6) can be utilized as an in vitro screening model. These cells have pancreatic β-cells characteristics and can secrete insulin in response to glucose level changes. As well, β-cell-specific gene expression pattern of these cells is similar to that of mouse pancreatic islet cells. It is possible to use this cell line as a research tool to study the function of the pancreatic β-cells. To date, approximately 60 genes have been identified which, are effective in the pβCs embryonic development and insulin production and secretion during puberty, including pancreas/duodenum homeobox protein 1 (Pdx1), neuronal differentiation 1 (Neurod1), neurogenin3 (Ngn3), and insulin-1 precursor (Ins1). In this study, a family of new SMs that are structurally similar to glinides was synthesized through three different synthetic methods and categorized into three categories (C1-C3). Then, these novel SMs were characterized by testing their effects on cell viability, pβCs-specific gene expression, and insulin secretion of MIN6 in four different concentrations and three time points. According to our results, SMs of C1 (1j, 1k, and 1l) and two SMs of C3 (1f, 1I), at 200 μM concentration, were able to increase the expression levels of Pdx1, Neurod1, Ngn3, and Ins1 as well as the insulin secretion after 24 hours. However, C2 (1a, 1b, 1c and 1d) did not show significant bio-activity of MIN6 cells. These investigated molecules can provide a tool for exploring pseudo-islet functionality in MIN6 cells or provide a possible basis for future therapeutic interventions for diabetes.
Collapse
|
22
|
Zhao YF. Free fatty acid receptors in the endocrine regulation of glucose metabolism: Insight from gastrointestinal-pancreatic-adipose interactions. Front Endocrinol (Lausanne) 2022; 13:956277. [PMID: 36246919 PMCID: PMC9554507 DOI: 10.3389/fendo.2022.956277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Glucose metabolism is primarily controlled by pancreatic hormones, with the coordinated assistance of the hormones from gastrointestine and adipose tissue. Studies have unfolded a sophisticated hormonal gastrointestinal-pancreatic-adipose interaction network, which essentially maintains glucose homeostasis in response to the changes in substrates and nutrients. Free fatty acids (FFAs) are the important substrates that are involved in glucose metabolism. FFAs are able to activate the G-protein coupled membrane receptors including GPR40, GPR120, GPR41 and GPR43, which are specifically expressed in pancreatic islet cells, enteroendocrine cells as well as adipocytes. The activation of FFA receptors regulates the secretion of hormones from pancreas, gastrointestine and adipose tissue to influence glucose metabolism. This review presents the effects of the FFA receptors on glucose metabolism via the hormonal gastrointestinal-pancreatic-adipose interactions and the underlying intracellular mechanisms. Furthermore, the development of therapeutic drugs targeting FFA receptors for the treatment of abnormal glucose metabolism such as type 2 diabetes mellitus is summarized.
Collapse
|
23
|
Chen Z, Wen J. Elevated triglyceride-glucose (TyG) index predicts impaired islet β-cell function: A hospital-based cross-sectional study. Front Endocrinol (Lausanne) 2022; 13:973655. [PMID: 36246870 PMCID: PMC9563389 DOI: 10.3389/fendo.2022.973655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To explore the relationship between the TyG index and the insulin secretion function of pancreatic β-cells, and to determine the possibility of the TyG index in predicting β-cell dysfunction and the development of diabetes. METHODS A cross-sectional study was performed among 914 participants who took their annual health checkups at the Third Xiangya Hospital. The early- and late-phase pancreatic β-cell secretion was assessed based on the results of the oral glucose tolerance test (OGTT). In addition to anthropometric parameters and laboratory parameters, information about health-related habits and disease histories was obtained from the National Physical Examination Questionnaire. Partial correlation analysis was used to study the relationship between the TyG index and pancreatic β-cell function. The receiver operating characteristic (ROC) curve was used to calculate the cut-off points of the TyG index in predicting β-cell dysfunction. According to the OGTT results and medical history, the participants were categorized into three groups: the normal glucose tolerance group (NGT, n=276), the impaired glucose regulation group (IGT, n=323), and the diabetes group (DM, n=315). The correlation between the TyG index and β-cell function among the three groups and the association between the TyG index and glucose metabolic conditions were further explored. RESULTS The TyG index was negatively correlated with the indexes that reflect the early and late secretory function of β-cells, not only in the NGT group but also in the IGT and DM group. The minimum cut-off values for the TyG index to identify the risk of early- and late-phase β-cell dysfunction are 9.08 and 9.2 respectively. The TyG indexes of the IGT and DM group were higher than that of the NGT group, and with the growth of the TyG index, the risk of prediabetes and diabetes increased significantly. CONCLUSION Increased TyG index is associated with impaired β-cell function regardless of the glucose metabolic conditions. The TyG index is an alternative indicator for predicting β-cell dysfunction.
Collapse
Affiliation(s)
- Zi Chen
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wen
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jie Wen,
| |
Collapse
|
24
|
Bonnet-Serrano F, Jaoude MA, Laguillier C, Gobeaux C, Bouzerara A, Mosnier-Pudar H, Guibourdenche J. Pattern of C-peptide response to oral glucose tolerance test: interest and cut-off values. ANNALES D'ENDOCRINOLOGIE 2022; 83:95-102. [DOI: 10.1016/j.ando.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
|
25
|
Mesto N, Movassat J, Tourrel-Cuzin C. P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity as a promising novel therapeutic approach for the treatment of type 2 diabetes? Front Endocrinol (Lausanne) 2022; 13:1099152. [PMID: 37065173 PMCID: PMC10099247 DOI: 10.3389/fendo.2022.1099152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetes Mellitus is a metabolic disorder characterized by a chronic hyperglycemia due to an impaired insulin secretion and a decreased in peripheral insulin sensitivity. This disease is a major public health problem due to it sharp prevalence. Therefore, it is crucial to readapt therapeutic approaches for the treatment of this pathology. One of the strategies would be through P2-type purinergic receptors pathway via ATP binding. In addition to its well-known role as an intracellular energy intermediary in numerous biochemical and physiological processes, ATP is also an important extracellular signaling molecule. ATP mediates its effects by binding and activating two classes of P2 purinoreceptors: P2X receptors that are ligand-gated ion channel receptors, existing in seven isoforms (P2X 1 to 7) and P2Y receptors that are G-protein coupled receptors, existing in eight isoforms (P2Y 1/2/4/6/11/12/13/14). These receptors are ubiquitously distributed and involved in numerous physiological processes in several tissues. The concept of purinergic signaling, originally formulated by Geoffrey Burnstock (1929-2020), was also found to mediate various responses in the pancreas. Several studies have shown that P2 receptors are expressed in the endocrine pancreas, notably in β cells, where ATP could modulate their function but also their plasticity and thus play a physiological role in stimulating insulin secretion to face some metabolic demands. In this review, we provide a historical perspective and summarize current knowledge on P2-type purinergic signaling in the regulation of pancreatic β-cell functional plasticity, which would be a promising novel therapeutic approach for the treatment of type 2 diabetes.
Collapse
|
26
|
Zein-Based Nanoparticles as Oral Carriers for Insulin Delivery. Pharmaceutics 2021; 14:pharmaceutics14010039. [PMID: 35056935 PMCID: PMC8779360 DOI: 10.3390/pharmaceutics14010039] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Zein, the major storage protein from corn, has a GRAS (Generally Regarded as Safe) status and may be easily transformed into nanoparticles, offering significant payloads for protein materials without affecting their stability. In this work, the capability of bare zein nanoparticles (mucoadhesive) and nanoparticles coated with poly(ethylene glycol) (mucus-permeating) was evaluated as oral carriers of insulin (I-NP and I-NP-PEG, respectively). Both nanocarriers displayed sizes of around 270 nm, insulin payloads close to 80 µg/mg and did not induce cytotoxic effects in Caco-2 and HT29-MTX cell lines. In Caenorhabditis elegans, where insulin decreases fat storage, I-NP-PEG induced a higher reduction in the fat content than I-NP and slightly lower than the control (Orlistat). In diabetic rats, nanoparticles induced a potent hypoglycemic effect and achieved an oral bioavailability of 4.2% for I-NP and 10.2% for I-NP-PEG. This superior effect observed for I-NP-PEG would be related to their capability to diffuse through the mucus layer and reach the surface of enterocytes (where insulin would be released), whereas the mucoadhesive I-NP would remain trapped in the mucus, far away from the absorptive epithelium. In summary, PEG-coated zein nanoparticles may be an interesting device for the effective delivery of proteins through the oral route.
Collapse
|
27
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
28
|
Asadpour F, Zhang XW, Mazloum-Ardakani M, Mirzaei M, Majdi S, Ewing AG. Vesicular release dynamics are altered by the interaction between the chemical cargo and vesicle membrane lipids. Chem Sci 2021; 12:10273-10278. [PMID: 34447531 PMCID: PMC8336585 DOI: 10.1039/d1sc02247d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023] Open
Abstract
The release of the cargo from soft vesicles, an essential process for chemical delivery, is mediated by multiple factors. Among them, the regulation by the interaction between the chemical cargo species and the vesicular membrane, widely existing in all vesicles, has not been investigated to date. Yet, these interactions hold the potential to complicate the release process. We used liposomes loaded with different monoamines, dopamine (DA) and serotonin (5-HT), to simulate vesicular release and to monitor the dynamics of chemical release from isolated vesicles during vesicle impact electrochemical cytometry (VIEC). The release of DA from liposomes presents a longer release time compared to 5-HT. Modelling the release time showed that DA filled vesicles had a higher percentage of events where the time for the peak fall was better fit to a double exponential (DblExp) decay function, suggesting multiple kinetic steps in the release. By fitting to a desorption-release model, where the transmitters adsorbed to the vesicle membrane, the dissociation rates of DA and 5-HT from the liposome membrane were estimated. DA has a lower desorption rate constant, which leads to slower DA release than that observed for 5-HT, whereas there is little difference in pore size. The alteration of vesicular release dynamics due to the interaction between the chemical cargo and vesicle membrane lipids provides an important mechanism to regulate vesicular release in chemical and physiological processes. It is highly possible that this introduces a fundamental chemical regulation difference between transmitters during exocytosis.
Collapse
Affiliation(s)
- Farzaneh Asadpour
- Department of Chemistry and Molecular Biology, University of Gothenburg 41296 Gothenburg Sweden .,Department of Chemistry, Faculty of Science, Yazd University Yazd 89195-741 Iran
| | - Xin-Wei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg 41296 Gothenburg Sweden
| | | | - Meysam Mirzaei
- Department of Materials Science and Engineering, School of Engineering, Shiraz University Shiraz Iran
| | - Soodabeh Majdi
- Department of Chemistry and Molecular Biology, University of Gothenburg 41296 Gothenburg Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg 41296 Gothenburg Sweden
| |
Collapse
|
29
|
Synthesis, In-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase). Bioorg Chem 2021; 112:104957. [PMID: 34020240 DOI: 10.1016/j.bioorg.2021.104957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.
Collapse
|
30
|
Isolation and Proteomics of the Insulin Secretory Granule. Metabolites 2021; 11:metabo11050288. [PMID: 33946444 PMCID: PMC8147143 DOI: 10.3390/metabo11050288] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.
Collapse
|
31
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021; 60:7593-7596. [PMID: 33340209 PMCID: PMC8049002 DOI: 10.1002/anie.202015902] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/23/2022]
Abstract
Recent work has shown that chemical release during the fundamental cellular process of exocytosis in model cell lines is not all-or-none. We tested this theory for vesicular release from single pancreatic beta cells. The vesicles in these cells release insulin, but also serotonin, which is detectible with amperometric methods. Traditionally, it is assumed that exocytosis in beta cells is all-or-none. Here, we use a multidisciplinary approach involving nanoscale amperometric chemical methods to explore the chemical nature of insulin exocytosis. We amperometrically quantified the number of serotonin molecules stored inside of individual nanoscale vesicles (39 317±1611) in the cell cytoplasm before exocytosis and the number of serotonin molecules released from single cells (13 310±1127) for each stimulated exocytosis event. Thus, beta cells release only one-third of their granule content, clearly supporting partial release in this system. We discuss these observations in the context of type-2 diabetes.
Collapse
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Lin Ren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska AcademyUniversity of GothenburgMedicinaregatan 11–1341390GothenburgSweden
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordChurchill HospitalOxfordOX3 7LJUK
| | - Andrew Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
32
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
33
|
Hatamie A, Ren L, Dou H, Gandasi NR, Rorsman P, Ewing A. Nanoscale Amperometry Reveals that Only a Fraction of Vesicular Serotonin Content is Released During Exocytosis from Beta Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Hatamie
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Lin Ren
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Haiqiang Dou
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Nikhil R. Gandasi
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
| | - Patrik Rorsman
- Department of Physiology, Sahlgrenska Academy University of Gothenburg Medicinaregatan 11–13 41390 Gothenburg Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism University of Oxford Churchill Hospital Oxford OX3 7LJ UK
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
34
|
Mannering SI, Bhattacharjee P. Insulin's other life: an autoantigen in type 1 diabetes. Immunol Cell Biol 2021; 99:448-460. [PMID: 33524197 DOI: 10.1111/imcb.12442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
One hundred years ago, Frederick Banting, John Macleod, Charles Best and James Collip, and their collaborators, discovered insulin. This discovery paved the way to saving countless lives and ushered in the "Insulin Era." Since the discovery of insulin, we have made enormous strides in understanding its role in metabolism and diabetes. Insulin has played a dramatic role in the treatment of people with diabetes; particularly type 1 diabetes (T1D). Insulin replacement is a life-saving therapy for people with T1D and some with type 2 diabetes. T1D is an autoimmune disease caused by the T-cell-mediated destruction of the pancreatic insulin-producing beta cells that leads to a primary insulin deficiency. It has become increasingly clear that insulin, and its precursors preproinsulin (PPI) and proinsulin (PI), can play another role-not as a hormone but as an autoantigen in T1D. Here we review the role played by the products of the INS gene as autoantigens in people with T1D. From many elegant animal studies, it is clear that T-cell responses to insulin, PPI and PI are essential for T1D to develop. Here we review the evidence that autoimmune responses to insulin and PPI arise in people with T1D and discuss the recently described neoepitopes derived from the products of the insulin gene. Finally, we look forward to new approaches to deliver epitopes derived from PPI, PI and insulin that may allow immune tolerance to pancreatic beta cells to be restored in people with, or at risk of, T1D.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.,Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Pushpak Bhattacharjee
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| |
Collapse
|
35
|
Li H, Zhang J, Fu Y, Zhang Y, Zhang C, Sun X, Wu F, He J. Antidiabetic compounds 8a, 8b, 8k, and 9h enhance insulin secretion: activity and mechanism. Endocrine 2021; 71:365-377. [PMID: 33219494 DOI: 10.1007/s12020-020-02537-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE This study primarily investigated the effects of hypoglycemic compounds (Imeglimin derivatives) on insulin secretion in type 2 diabetes mellitus (T2DM), and further explored the possible mechanism underlying these effects. METHODS Firstly, Metformin was used as the initiating compound to synthesize three sets of derivatives which contained Imeglimin structure core. At the cellular level, we screened compounds with better effect on the activity of insulin receptor tyrosine protein kinase (IFcTPK) after the islet β cells were treated with the compounds of different concentrations. The insulin secretion was assessed using radioimmunoassay and the cytotoxicity to islet β cells was evaluated by means of MTT assay following treatment with the compounds. The Ca2+-related mechanism by which these compounds promote insulin secretion was elucidated with whole cell recordings from current-clamp mode. RESULTS Totally, 48 synthesized compounds were generated, wherein 10 compounds could increase the activity of IFcTPK in HIT-T15 cells better among these compounds. The modified Imeglimin, especially in the structure of hydrophilic hydroxyl or piperidine rings, could improve the activity of the compound to promote insulin secretion. Furthermore, the compounds 8a, 8b, 8k, and 9h revealed high insulin secretion-promoting activity. These compounds enhanced insulin secretion in islet β cells by repressing the ATP-sensitive K(+) and voltage-gated K+ pathway. CONCLUSIONS Our findings indicate that the hypoglycemic compounds 8a, 8b, 8k, and 9h confer better promotive effect on insulin secretion, which provides a reference for the development of drugs with better hypoglycemic activity.
Collapse
Affiliation(s)
- Hui Li
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China
| | - Jian Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China
| | - Yongli Fu
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China
| | - Yixin Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China
| | - Chunhui Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China
| | - Xiaozhu Sun
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China
| | - Fang Wu
- Department of Hepatology, The Seventh Hospital of Qiqihar, Qiqihar, 161000, PR China
| | - Jing He
- Department of Endocrinology, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, PR China.
| |
Collapse
|
36
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
37
|
Brawerman G, Thompson PJ. Beta Cell Therapies for Preventing Type 1 Diabetes: From Bench to Bedside. Biomolecules 2020; 10:E1681. [PMID: 33339173 PMCID: PMC7765619 DOI: 10.3390/biom10121681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease characterized by insulin deficiency, generally resulting from progressive autoimmune-mediated destruction of pancreatic beta cells. While the phenomenon of beta cell autoimmunity continues to be an active area of investigation, recent evidence suggests that beta cell stress responses are also important contributors to disease onset. Here we review the pathways driving different kinds of beta cell dysfunction and their respective therapeutic targets in the prevention of T1D. We discuss opportunities and important open questions around the effectiveness of beta cell therapies and challenges for clinical utility. We further evaluate ways in which beta cell drug therapy could be combined with immunotherapy for preventing T1D in light of our growing appreciation of disease heterogeneity and patient endotypes. Ultimately, the emergence of pharmacologic beta cell therapies for T1D have armed us with new tools and closing the knowledge gaps in T1D etiology will be essential for maximizing the potential of these approaches.
Collapse
Affiliation(s)
- Gabriel Brawerman
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Peter J. Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
38
|
Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J. Functionalized Oxoindolin Hydrazine Carbothioamide Derivatives as Highly Potent Inhibitors of Nucleoside Triphosphate Diphosphohydrolases. Front Pharmacol 2020; 11:585876. [PMID: 33328992 PMCID: PMC7734281 DOI: 10.3389/fphar.2020.585876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolases (NTPDases) are ectoenzymes that play an important role in the hydrolysis of nucleoside triphosphate and diphosphate to nucleoside monophosphate. NTPDase1, -2, -3 and -8 are the membrane bound members of this enzyme family that are responsible for regulating the levels of nucleotides in extracellular environment. However, the pathophysiological functions of these enzymes are not fully understood due to lack of potent and selective NTPDase inhibitors. Herein, a series of oxoindolin hydrazine carbothioamide derivatives is synthesized and screened for NTPDase inhibitory activity. Four compounds were identified as selective inhibitors of h-NTPDase1 having IC50 values in lower micromolar range, these include compounds 8b (IC50 = 0.29 ± 0.02 µM), 8e (IC50 = 0.15 ± 0.009 µM), 8f (IC50 = 0.24 ± 0.01 µM) and 8l (IC50 = 0.30 ± 0.03 µM). Similarly, compound 8k (IC50 = 0.16 ± 0.01 µM) was found to be a selective h-NTPDase2 inhibitor. In case of h-NTPDase3, most potent inhibitors were compounds 8c (IC50 = 0.19 ± 0.02 µM) and 8m (IC50 = 0.38 ± 0.03 µM). Since NTPDase3 has been reported to be associated with the regulation of insulin secretion, we evaluated our synthesized NTPDase3 inhibitors for their ability to stimulate insulin secretion in isolated mice islets. Promising results were obtained showing that compound 8m potently stimulated insulin secretion without affecting the NTPDase3 gene expression. Molecular docking studies of the most potent compounds were also carried out to rationalize binding site interactions. Hence, these compounds are useful tools to study the role of NTPDase3 in insulin secretion.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdul Hameed
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| |
Collapse
|
39
|
Nair GG, Tzanakakis ES, Hebrok M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 2020; 16:506-518. [PMID: 32587391 PMCID: PMC9188823 DOI: 10.1038/s41574-020-0375-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus, which affects more than 463 million people globally, is caused by the autoimmune ablation or functional loss of insulin-producing β-cells, and prevalence is projected to continue rising over the next decades. Generating β-cells to mitigate the aberrant glucose homeostasis manifested in the disease has remained elusive. Substantial advances have been made in producing mature β-cells from human pluripotent stem cells that respond appropriately to dynamic changes in glucose concentrations in vitro and rapidly function in vivo following transplantation in mice. Other potential avenues to produce functional β-cells include: transdifferentiation of closely related cell types (for example, other pancreatic islet cells such as α-cells, or other cells derived from endoderm); the engineering of non-β-cells that are capable of modulating blood sugar; and the construction of synthetic 'cells' or particles mimicking functional aspects of β-cells. This Review focuses on the current status of generating β-cells via these diverse routes, highlighting the unique advantages and challenges of each approach. Given the remarkable progress in this field, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.
Collapse
Affiliation(s)
- Gopika G Nair
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel S Tzanakakis
- Chemical and Biological Engineering, Tufts University, Medford, MA, USA
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
40
|
Júnior ASS, Aidar FJ, Santos JLD, Estevam CDS, Dos Santos JDM, de Oliveira E Silva AM, Lima FB, De Araújo SS, Marçal AC. Effects of resistance training and turmeric supplementation on reactive species marker stress in diabetic rats. BMC Sports Sci Med Rehabil 2020; 12:45. [PMID: 32774865 PMCID: PMC7409633 DOI: 10.1186/s13102-020-00194-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Background Type 1 diabetes mellitus (T1DM) is a metabolic disease characterized by hyperglycemia and excessive generation of reactive oxygen species caused by autoimmune destruction of beta-cells in the pancreas. Among the antioxidant compounds, Curcuma longa (CL) has potential antioxidant effects and may improve hyperglycemia in uncontrolled T1DM/TD1, as well as prevent its complications (higher costs for the maintenance of health per patient, functional disability, cardiovascular disease, and metabolic damage). In addition to the use of compounds to attenuate the effects triggered by diabetes, physical exercise is also essential for glycemic control and the maintenance of skeletal muscles. Our objective is to evaluate the effects of CL supplementation associated with moderate- to high-intensity resistance training on the parameters of body weight recovery, glycemic control, reactive species markers, and tissue damage in rats with T1DM/TD1. Methods Forty male 3-month-old Wistar rats (200–250 g) with alloxan-induced T1DM were divided into 4 groups (n = 7–10): sedentary diabetics (DC); diabetic rats that underwent a 4-week resistance training protocol (TD); CL-supplemented diabetic rats (200 mg/kg body weight, 3x a week) (SD); and supplemented diabetic rats under the same conditions as above and submitted to training (TSD). Body weight, blood glucose, and the following biochemical markers were analyzed: lipid profile, aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid, creatine kinase (CK), lactate dehydrogenase (LDH), and thiobarbituric acid reactive substances (TBARS). Results Compared to the DC group, the TD group showed body weight gain (↑7.99%, p = 0.0153) and attenuated glycemia (↓23.14%, p = 0.0008) and total cholesterol (↓31.72%, p ≤ 0.0041) associated with diminished reactive species markers in pancreatic (↓45.53%, p < 0.0001) and cardiac tissues (↓51.85%, p < 0.0001). In addition, compared to DC, TSD promoted body weight recovery (↑15.44%, p ≤ 0.0001); attenuated glycemia (↓42.40%, p ≤ 0.0001), triglycerides (↓39.96%, p ≤ 0.001), and total cholesterol (↓28.61%, p ≤ 0.05); and attenuated the reactive species markers in the serum (↓26.92%, p ≤ 0.01), pancreas (↓46.22%, p ≤ 0.0001), cardiac (↓55.33%, p ≤ 0.001), and skeletal muscle (↓42.27%, p ≤ 0.001) tissues caused by T1DM. Conclusion Resistance training associated (and/or not) with the use of Curcuma longa attenuated weight loss, the hypoglycemic and hypolipidemic effects, reactive species markers, and T1DM-induced tissue injury.
Collapse
Affiliation(s)
| | - Felipe José Aidar
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil.,Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Jymmys Lopes Dos Santos
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil.,Department of Physiology, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Charles Dos Santos Estevam
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports - GEPEPS, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | | | | | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, Brazil
| | - Silvan Silva De Araújo
- Department of Physical Education, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| | - Anderson Carlos Marçal
- Department of Morphology, Universidade Federal de Sergipe, São Cristóvão, Sergipe Brazil
| |
Collapse
|
41
|
Carter SD, Hampton CM, Langlois R, Melero R, Farino ZJ, Calderon MJ, Li W, Wallace CT, Tran NH, Grassucci RA, Siegmund SE, Pemberton J, Morgenstern TJ, Eisenman L, Aguilar JI, Greenberg NL, Levy ES, Yi E, Mitchell WG, Rice WJ, Wigge C, Pilli J, George EW, Aslanoglou D, Courel M, Freyberg RJ, Javitch JA, Wills ZP, Area-Gomez E, Shiva S, Bartolini F, Volchuk A, Murray SA, Aridor M, Fish KN, Walter P, Balla T, Fass D, Wolf SG, Watkins SC, Carazo JM, Jensen GJ, Frank J, Freyberg Z. Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. SCIENCE ADVANCES 2020; 6:eaay9572. [PMID: 32270040 PMCID: PMC7112762 DOI: 10.1126/sciadv.aay9572] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 05/21/2023]
Abstract
The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.
Collapse
Affiliation(s)
- Stephen D. Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cheri M. Hampton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Robert Langlois
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Roberto Melero
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael J. Calderon
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Callen T. Wallace
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ngoc Han Tran
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert A. Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Stephanie E. Siegmund
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Travis J. Morgenstern
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Leanna Eisenman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jenny I. Aguilar
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Nili L. Greenberg
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Elana S. Levy
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Edward Yi
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - William G. Mitchell
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | | | | | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily W. George
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Despoina Aslanoglou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Maïté Courel
- CNRS-UMR7622, Institut de Biologie Paris-Seine, Université Pierre & Marie Curie, 75252 Paris, France
| | - Robin J. Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Estela Area-Gomez
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Allen Volchuk
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sandra A. Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Meir Aridor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N. Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter Walter
- HHMI, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - José María Carazo
- Biocomputing Unit, Centro Nacional de Biotecnología–CSIC, Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Grant J. Jensen
- HHMI, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
42
|
The Metabolic Syndrome: Emerging Novel Insights Regarding the Relationship between the Homeostasis Model Assessment of Insulin Resistance and other Key Predictive Markers in Young Adults of Western Algeria. Nutrients 2020; 12:nu12030727. [PMID: 32164195 PMCID: PMC7146633 DOI: 10.3390/nu12030727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Several biological markers have been identified as risk factors for cardiovascular disease and are associated with increased risk of metabolic syndrome (MetS). This study provides a factual information on promising biomarkers that are associated with MetS and can aid in early detection and management of MetS in young adults of Western Algeria. We studied a total of one hundred subjects aged between thirty and forty years with MetS, in which anthropometric measurements, insulin resistance, C peptide and HbA1c, lipid profile, circulating adipokines and glucagon-like peptide-1 were measured by suitable methods, in comparison to two groups of control. MetS is closely linked to altered glucose homeostasis, the plasma insulin/glucose ratio; i.e., the insulinogenic index helps to estimate the level of insulin secretion and also for assessing β-cell function. The correlation between homeostasis model assessment insulin resistance index (HOMA-IR) and HbA1c, body mass index or plasma triglycerides yielded positive and significant values. Biomarkers with a known and predictable association with MetS can provide a means to detect those at risk and intervene as needed. This could significantly decrease the burden complications impose on patients and the healthcare system.
Collapse
|
43
|
Herrmann M, Engelke K, Ebert R, Müller-Deubert S, Rudert M, Ziouti F, Jundt F, Felsenberg D, Jakob F. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020; 10:biom10030432. [PMID: 32164381 PMCID: PMC7175139 DOI: 10.3390/biom10030432] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Marietta Herrmann
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, IZKF Research Group Tissue regeneration in musculoskeletal diseases, University Hospital Würzburg, University of Wuerzburg, 97070 Würzburg, Germany;
| | - Klaus Engelke
- Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
| | - Regina Ebert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Sigrid Müller-Deubert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
| | - Maximilian Rudert
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
| | - Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; (F.Z.); (F.J.)
| | - Dieter Felsenberg
- Privatpraxis für Muskel- und Knochenkrankheiten, 12163 Berlin Germany;
| | - Franz Jakob
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, IGZ, 97076 Würzburg, Germany; (R.E.)
- Orthopedic Department, Bernhard-Heine-Center for Locomotion Research, University of Würzburg, 97074 Würzburg, Germany;
- Correspondence:
| |
Collapse
|
44
|
Zhang XW, Hatamie A, Ewing AG. Simultaneous Quantification of Vesicle Size and Catecholamine Content by Resistive Pulses in Nanopores and Vesicle Impact Electrochemical Cytometry. J Am Chem Soc 2020; 142:4093-4097. [PMID: 32069039 PMCID: PMC7108759 DOI: 10.1021/jacs.9b13221] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We have developed the means to simultaneously
measure the physical
size and count catecholamine molecules in individual nanometer transmitter
vesicles. This is done by combining resistive pulse (RP) measurements
in a nanopore pipet and vesicle impact electrochemical cytometry (VIEC)
at an electrode as the vesicle exits the nanopore. Analysis of freshly
isolated bovine adrenal vesicles shows that the size and internal
catecholamine concentration of vesicles varies with the occurrence
of a dense core inside the vesicles. These results might benefit the
understanding about the vesicles maturation, especially involving
the “sorting by retention” process and concentration
increase of intravesicular catecholamine. The methodology is applicable
to understanding soft nanoparticle collisions on electrodes, vesicles
in exocytosis and phagocytosis, intracellular vesicle transport, and
analysis of electroactive drugs in exosomes.
Collapse
Affiliation(s)
- Xin-Wei Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
45
|
Hendler-Neumark A, Bisker G. Fluorescent Single-Walled Carbon Nanotubes for Protein Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5403. [PMID: 31817932 PMCID: PMC6960995 DOI: 10.3390/s19245403] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Nanosensors have a central role in recent approaches to molecular recognition in applications like imaging, drug delivery systems, and phototherapy. Fluorescent nanoparticles are particularly attractive for such tasks owing to their emission signal that can serve as optical reporter for location or environmental properties. Single-walled carbon nanotubes (SWCNTs) fluoresce in the near-infrared part of the spectrum, where biological samples are relatively transparent, and they do not photobleach or blink. These unique optical properties and their biocompatibility make SWCNTs attractive for a variety of biomedical applications. Here, we review recent advancements in protein recognition using SWCNTs functionalized with either natural recognition moieties or synthetic heteropolymers. We emphasize the benefits of the versatile applicability of the SWCNT sensors in different systems ranging from single-molecule level to in-vivo sensing in whole animal models. Finally, we discuss challenges, opportunities, and future perspectives.
Collapse
Affiliation(s)
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
46
|
Hays CL, Grassmeyer JJ, Wen X, Janz R, Heidelberger R, Thoreson WB. Simultaneous Release of Multiple Vesicles from Rods Involves Synaptic Ribbons and Syntaxin 3B. Biophys J 2019; 118:967-979. [PMID: 31653448 DOI: 10.1016/j.bpj.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 02/05/2023] Open
Abstract
First proposed as a specialized mode of release at sensory neurons possessing ribbon synapses, multivesicular release has since been described throughout the central nervous system. Many aspects of multivesicular release remain poorly understood. We explored mechanisms underlying simultaneous multivesicular release at ribbon synapses in salamander retinal rod photoreceptors. We assessed spontaneous release presynaptically by recording glutamate transporter anion currents (IA(glu)) in rods. Spontaneous IA(glu) events were correlated in amplitude and kinetics with simultaneously measured miniature excitatory postsynaptic currents in horizontal cells. Both measures indicated that a significant fraction of events is multiquantal, with an analysis of IA(glu) revealing that multivesicular release constitutes ∼30% of spontaneous release events. IA(glu) charge transfer increased linearly with event amplitude showing that larger events involve greater glutamate release. The kinetics of large and small IA(glu) events were identical as were rise times of large and small miniature excitatory postsynaptic currents, indicating that the release of multiple vesicles during large events is highly synchronized. Effects of exogenous Ca2+ buffers suggested that multiquantal, but not uniquantal, release occurs preferentially near Ca2+ channels clustered beneath synaptic ribbons. Photoinactivation of ribbons reduced the frequency of spontaneous multiquantal events without affecting uniquantal release frequency, showing that spontaneous multiquantal release requires functional ribbons. Although both occur at ribbon-style active zones, the absence of cross-depletion indicates that evoked and spontaneous multiquantal release from ribbons involve different vesicle pools. Introducing an inhibitory peptide into rods to interfere with the SNARE protein, syntaxin 3B, selectively reduced multiquantal event frequency. These results support the hypothesis that simultaneous multiquantal release from rods arises from homotypic fusion among neighboring vesicles on ribbons and involves syntaxin 3B.
Collapse
Affiliation(s)
- Cassandra L Hays
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Justin J Grassmeyer
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Roger Janz
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; The University of Texas MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; The University of Texas MD Anderson Cancer Center University of Texas Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
47
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|