1
|
Wang Y, Zeng Y, Ren X, Qiu J, Pan J, Yang F. A probe-mediated fluorescent biosensor for MC-LR detection using exonuclease III as a signal amplifier. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1834-1839. [PMID: 39902730 DOI: 10.1039/d4ay02027h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Microcystin-lr (MC-LR) is one of the most toxic and ubiquitous microcystins (MCs) released by cyanobacteria. Exposure to MC-LR can cause multiple organ damage and even death of the organism. Therefore, creating highly sensitive and dependable methods for detecting trace MC-LR is crucial. Herein, we developed a novel fluorescence aptasensor aided by exonuclease III (Exo III) for the highly sensitive detection of MC-LR. In the presence of MC-LR, the affinity interaction between MC-LR and aptamer A was triggered, leading to the release of blocker B. This unbound blocker can initiate Exo III-mediated signal amplification to digest the probe H, thereby recovering the fluorescence signal for readout. The proposed Exo III-assisted sensing platform demonstrated remarkable sensitivity and selectivity, achieving a limit of detection (LOD) of 0.37 ng L-1. Furthermore, it is robust and has been effectively utilized on water samples, achieving acceptable recovery rates (95.04-107.01%). With excellent sensitivity, high selectivity, efficient signal amplification, and fluorescence readout, the proposed biosensor offered a new and reliable alternative for the detection of trace MC-LR in the environment and the early warning of algal toxins.
Collapse
Affiliation(s)
- Yuyan Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Ying Zeng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China
| | - Jiafeng Pan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Bian Y, Jiang D, Du X, Wang Y, Shan X, Wang W, Shiigi H, Chen Z. Portable self-powered electrochemical aptasensor for ultrasensitive and real-time detection of microcystin-RR based on hydrovoltaic-photothermal coupling effect. Biosens Bioelectron 2025; 267:116834. [PMID: 39368290 DOI: 10.1016/j.bios.2024.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Coupling different energy harvesting technologies to obtain an excellent output signal is essential for the development of high-performance self-powered electrochemical sensors. Herein, a novel hydrovoltaic-photothermal coupling self-powered electrochemical aptasensing platform was designed for sensitive detection of microcystin (MC-RR) with a digital multimeter as a direct visual readout strategy. The straightforward ultrasonic method was employed to synthesize polyaniline (PANI) and bismuth oxybromide (BiOBr) nanosheets, which were then integrated as active components in a hydrovoltaic device. The unique layer structure of two-dimensional (2D) nanomaterials BiOBr can create flexible interlayer spaces to accommodate various ions and water molecules, which was beneficial to construct evaporation-driven channels. Meanwhile, the exceptional photothermal characteristics of polyaniline could accelerate the water evaporation rate, consequently boosting the migration speed of charge carriers and increasing output signal. Moreover, a digital multimeter was connected to the constructed sensor for real-time displaying the output signal. With the assistance of aptamer, a novel self-powered electrochemical aptasensing platform was constructed for sensitive detection of MC-RR. Under optimum conditions, the output signal of the hydrovoltaic-photothermal coupling cell was linearly related to the logarithm of MC-RR concentration in the range of 1 fM to 1 nM with a detection limit of 0.31 fM (S/N = 3). Furthermore, this sensor also exhibited many advantages such as high selectivity, good repeatability and portability. Such novel strategy not only offers a completely new general approach to construct high-performance self-powered devices for the detection of MC-RR, but also provides a new strategy for advancing the miniaturization and field application of self-powered electrochemical sensors.
Collapse
Affiliation(s)
- Yuqing Bian
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| | - Xiaojiao Du
- Oakland International Associated Laboratory, School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, 213032, PR China
| | - Ying Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China; Analysis and Testing Center, NERC Biomass of Changzhou University, Jiangsu, 213032, PR China
| | - Hiroshi Shiigi
- Department of Applied Chemistry, Osaka Prefecture University, 1-1 Gakuen, Naka, Sakai, Osaka, 599-8531, Japan
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China.
| |
Collapse
|
3
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
4
|
Chuan H, Li B, Wang Z, Wang J, Xie P, Liu Y. Feedback of lake trophic status via MC-LR fluorescence technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115671. [PMID: 37951093 DOI: 10.1016/j.ecoenv.2023.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023]
Abstract
Eutrophication remains one of the most challenging environmental problems, and microcystin-leucine-arginine (MC-LR) produced in eutrophic waters would cause serious ecological risks. However, the traditional assessment methods of trophic status, such as water quality index (WQI) and trophic status index (TSI), could not directly reflect the existence or concentration of MC-LR in water. Moreover, traditional MC-LR detection methods are costly and time-consuming. Therefore, it remains a challenge to develop a method that can simply and quickly reflect the level of MC-LR. Herein, a novel probe with specific response to MC-LR was proposed to assess the distribution characteristics of MC-LR in water bodies. By combining the response signal of the probe with the filtered water sample and the water quality parameters, a more accurate assessment tool for MC-LR was obtained. This probe can specifically respond to MC-LR in aqueous solution, and its fluorescence signal is enhanced with the increase of MC-LR concentration. More importantly, the fluorescent signal of the probe showed a significant positive correlation with MC-LR concentration in water samples. This visualization tool has practical application potential for the preliminary assessment of MC-LR in eutrophic waters.
Collapse
Affiliation(s)
- Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Jie Wang
- Yunnan Water Science Research Institute, Kunming 650500, Yunnan, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
5
|
Pinchart PE, Leruste A, Pasqualini V, Mastroleo F. Microcystins and Cyanobacterial Contaminants in the French Small-Scale Productions of Spirulina ( Limnospira sp.). Toxins (Basel) 2023; 15:354. [PMID: 37368655 DOI: 10.3390/toxins15060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Spirulina is consumed worldwide, in the form of food or dietary supplements, for its nutritional value and health potential. However, these products may contain cyanotoxins, including hepatotoxic microcystins (MCs), produced by cyanobacterial contaminants. The French spirulina market has the particularity of being supplied half-locally by approximately 180 small-scale spirulina production farms. Data about this particular production and possible contaminations with other cyanobacteria and MCs are scarce. Thus, we collected the results of MC analyses and total cyanobacteria counts, carried out between 2013 and 2021, from 95 French spirulina producers who agreed to share their data. These data consisted of MC concentrations determined with an enzyme-linked immunosorbent assay (ELISA) using 623 dry spirulina samples and 105 samples of spirulina cultures. In addition, potentially unsafe samples of dry spirulina were further investigated through mass spectrometry, as duplicate analysis. We confirmed that the situation of the French spirulina production stayed within the safe regulatory level in terms of MC levels. On the other hand, the inventory of cyanobacterial contaminants, based on 539 count results, included 14 taxa. We present their prevalence, interannual evolution and geographical distribution. We also suggested improvements in cultivation practices to limit their propagation.
Collapse
Affiliation(s)
- Pierre-Etienne Pinchart
- UMR 6134 SPE, Université de Corse Pasquale Paoli (UCPP), 20250 Corte, France
- Fédération des Spiruliniers de France (FSF), 34800 Clermont-l'Hérault, France
| | - Amandine Leruste
- Fédération des Spiruliniers de France (FSF), 34800 Clermont-l'Hérault, France
| | - Vanina Pasqualini
- UMR 6134 SPE, Université de Corse Pasquale Paoli (UCPP), 20250 Corte, France
| | - Felice Mastroleo
- Microbiology Unit, Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, 2400 Mol, Belgium
| |
Collapse
|
6
|
Rhoades J, Fotiadou S, Paschalidou G, Papadimitriou T, Ordóñez AÁ, Kormas K, Vardaka E, Likotrafiti E. Microbiota and Cyanotoxin Content of Retail Spirulina Supplements and Spirulina Supplemented Foods. Microorganisms 2023; 11:1175. [PMID: 37317149 DOI: 10.3390/microorganisms11051175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
Cyanobacterial biomass such as spirulina (Arthrospira spp.) is widely available as a food supplement and can also be added to foods as a nutritionally beneficial ingredient. Spirulina is often produced in open ponds, which are vulnerable to contamination by various microorganisms, including some toxin-producing cyanobacteria. This study examined the microbial population of commercially available spirulina products including for the presence of cyanobacterial toxins. Five products (two supplements, three foods) were examined. The microbial populations were determined by culture methods, followed by identification of isolates using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), and by 16S rRNA amplicon sequencing of the products themselves and of the total growth on the enumeration plates. Toxin analysis was carried out by enzyme-linked immunosorbent assay (ELISA). Several potentially pathogenic bacteria were detected in the products, including Bacillus cereus and Klebsiella pneumoniae. Microcystin toxins were detected in all the products at levels that could lead to consumers exceeding their recommended daily limits. Substantial differences were observed in the identifications obtained using amplicon sequencing and MALDI-TOF, particularly between closely related Bacillus spp. The study showed that there are microbiological safety issues associated with commercial spirulina products that should be addressed, and these are most likely associated with the normal means of production in open ponds.
Collapse
Affiliation(s)
- Jonathan Rhoades
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Stamatia Fotiadou
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Georgia Paschalidou
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| | - Theodoti Papadimitriou
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
| | | | - Konstantinos Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
- Agricultural Development Institiute, University Research and Innovation Centre "IASON", Argonafton & Filellinon, 38221 Volos, Greece
| | - Elisabeth Vardaka
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Eleni Likotrafiti
- Laboratory of Food Microbiology, Department of Food Science and Technology, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
7
|
Aparicio-Muriana MDM, Lara FJ, Olmo-Iruela MD, García-Campaña AM. Determination of Multiclass Cyanotoxins in Blue-Green Algae (BGA) Dietary Supplements Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry. Toxins (Basel) 2023; 15:toxins15020127. [PMID: 36828442 PMCID: PMC9960112 DOI: 10.3390/toxins15020127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
In recent years, the consumption of blue-green algae (BGA) dietary supplements is increasing because of their health benefits. However, cyanobacteria can produce cyanotoxins, which present serious health risks. In this work we propose hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry (HILIC-MS/MS) to determine cyanotoxins in BGA dietary supplements. Target toxins, including microcystin-leucine-arginine (MC-LR) and microcystin-arginine-arginine (MC-RR), nodularin, anatoxin-a and three non-protein amino acids, β-N-methylamino-L-alanine (BMAA), 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG), were separated using a SeQuant ZIC-HILIC column. Cyanotoxin extraction was based on solid-liquid extraction (SLE) followed by a tandem-solid phase extraction (SPE) procedure using Strata-X and mixed-mode cation-exchange (MCX) cartridges. The method was validated for BGA dietary supplements obtaining quantification limits from 60 to 300 µg·kg-1. Nine different commercial supplements were analyzed, and DAB, AEG, and MCs were found in some samples, highlighting the relevance of monitoring these substances as precaution measures for the safe consumption of these products.
Collapse
|
8
|
Li P, Fu H, Bai Z, Feng X, Qi J, Song X, Hu X, Chen L. A dummy molecularly imprinted ratiometric fluorescence nanosensor for the sensitive detection of guanidyl-microcystins in environmental water. Analyst 2023; 148:573-582. [PMID: 36594361 DOI: 10.1039/d2an01928k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An effective strategy is proposed to construct a highly sensitive ratiometric fluorescence sensing platform for microcystins (MCs) based on a dummy molecularly imprinted polymer using metformin as a template. The imprinted nanohybrids of carbon dots (CDs) combined with fluorescein isothiocyanate (FITC) are synthesized (CDs-FITC-SiO2@MIP), in which the CDs and FITC serve as assisted response signals and reference enhancement signals, respectively. Metformin can be used as a dummy template for MCs due to its partially similar molecular fragments to MCs that can form a specific recognition site cavity. MCs can simultaneously induce an obvious fluorescence quenching effect for the CDs and a reference fluorescence enhancement for FITC-SiO2, enabling ratiometric fluorescence detection of MCs. Thus, CDs-FITC-SiO2@MIP used as a signal probe has favorable sensitivity, stability, and selectivity. More importantly, a good linear relationship between the fluorescence intensity ratio (I620/450) and the concentration of MCs in the range of 0.5-500 μg L-1 is obtained with a LOD of 0.013 μg L-1 and 0.022 μg L-1 for MC-RR and MC-LR, respectively, under the optimum conditions. This method has great application potential in water quality monitoring by using CDs-FITC-SiO2@MIP as a promising candidate for monitoring MCs in complex systems.
Collapse
Affiliation(s)
- Ping Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Zhenyu Bai
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Xiaoyang Feng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xingliang Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Xueping Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
9
|
Żymańczyk-Duda E, Samson SO, Brzezińska-Rodak M, Klimek-Ochab M. Versatile Applications of Cyanobacteria in Biotechnology. Microorganisms 2022; 10:microorganisms10122318. [PMID: 36557571 PMCID: PMC9785398 DOI: 10.3390/microorganisms10122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are blue-green Gram-negative and photosynthetic bacteria which are seen as one of the most morphologically numerous groups of prokaryotes. Because of their ability to fix gaseous nitrogen and carbon dioxide to organic materials, they are known to play important roles in the universal nutrient cycle. Cyanobacteria has emerged as one of the promising resources to combat the issues of global warming, disease outbreaks, nutrition insecurity, energy crises as well as persistent daily human population increases. Cyanobacteria possess significant levels of macro and micronutrient substances which facilitate the versatile popularity to be utilized as human food and protein supplements in many countries such as Asia. Cyanobacteria has been employed as a complementary dietary constituent of feed for poultry and as vitamin and protein supplement in aquatic lives. They are effectively used to deal with numerous tasks in various fields of biotechnology, such as agricultural (including aquaculture), industrial (food and dairy products), environmental (pollution control), biofuel (bioenergy) and pharmaceutical biotechnology (such as antimicrobial, anti-inflammatory, immunosuppressant, anticoagulant and antitumor); recently, the growing interest of applying them as biocatalysts has been observed as well. Cyanobacteria are known to generate a numerous variety of bioactive compounds. However, the versatile potential applications of cyanobacteria in biotechnology could be their significant growth rate and survival in severe environmental conditions due to their distinct and unique metabolic pathways as well as active defensive mechanisms. In this review, we elaborated on the versatile cyanobacteria applications in different areas of biotechnology. We also emphasized the factors that could impede the implementation to cyanobacteria applications in biotechnology and the execution of strategies to enhance their effective applications.
Collapse
|
10
|
LC-MS/MS Validation and Quantification of Cyanotoxins in Algal Food Supplements from the Belgium Market and Their Molecular Origins. Toxins (Basel) 2022; 14:toxins14080513. [PMID: 36006175 PMCID: PMC9415669 DOI: 10.3390/toxins14080513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Food supplements are gaining popularity worldwide. However, harmful natural compounds can contaminate these products. In the case of algae-based products, the presence of toxin-producing cyanobacteria may cause health risks. However, data about the prevalence of algal food supplements on the Belgian market and possible contaminations with cyanotoxins are scarce. Therefore, we optimized and validated a method based on Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry to quantify eight microcystin congeners and nodularin in algal food supplements. Our analytical method was successfully validated and applied on 35 food supplement samples. Nine out of these samples contained microcystin congeners, of which three exceeded 1 µg g−1, a previously proposed guideline value. Additionally, the mcyE gene was amplified and sequenced in ten products to identify the taxon responsible for the toxin production. For seven out of these ten samples, the mcyE gene could be amplified and associated to Microcystis sp. EFSA and posology consumption data for algal-based food supplements were both combined with our toxin prevalence data to establish different toxin exposure scenarios to assess health risks and propose new guideline values.
Collapse
|
11
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|
12
|
Abstract
Sensing Microcystin-LR (MC-LR) is an important issue for environmental monitoring, as the MC-LR is a common toxic pollutant found in freshwater bodies. The demand for sensitive detection method of MC-LR at low concentrations can be addressed by metasurface-based sensors, which are feasible and highly efficient. Here, we demonstrate an all-dielectric metasurface for sensing MC-LR. Its working principle is based on quasi-bound states in the continuum mode (QBIC), and it manifests a high-quality factor and high sensitivity. The dielectric metasurface can detect a small change in the refractive index of the surrounding environment with a quality factor of ~170 and a sensitivity of ~788 nm/RIU. MC-LR can be specifically identified in mixed water with a concentration limit of as low as 0.002 μg/L by a specific recognition technique for combined antigen and antibody. Furthermore, the demonstrated detection of MC-LR can be extended to the identification and monitoring of other analytes, such as viruses, and the designed dielectric metasurface can serve as a monitor platform with high sensitivity and high specific recognition capability.
Collapse
|
13
|
Massey IY, Wu P, Wei J, Luo J, Ding P, Wei H, Yang F. A Mini-Review on Detection Methods of Microcystins. Toxins (Basel) 2020; 12:E641. [PMID: 33020400 PMCID: PMC7601875 DOI: 10.3390/toxins12100641] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) produce microcystins (MCs) which are associated with animal and human hepatotoxicity. Over 270 variants of MC exist. MCs have been continually studied due of their toxic consequences. Monitoring water quality to assess the presence of MCs is of utmost importance although it is often difficult because CyanoHABs may generate multiple MC variants, and their low concentration in water. To effectively manage and control these toxins and prevent their health risks, sensitive, fast, and reliable methods capable of detecting MCs are required. This paper aims to review the three main analytical methods used to detect MCs ranging from biological (mouse bioassay), biochemical (protein phosphatase inhibition assay and enzyme linked immunosorbent assay), and chemical (high performance liquid chromatography, liquid chromatography-mass spectrometry, high performance capillary electrophoresis, and gas chromatography), as well as the newly emerging biosensor methods. In addition, the current state of these methods regarding their novel development and usage, as well as merits and limitations are presented. Finally, this paper also provides recommendations and future research directions towards method application and improvement.
Collapse
Affiliation(s)
- Isaac Yaw Massey
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jia Wei
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Jiayou Luo
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
| | - Haiyan Wei
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (I.Y.M.); (P.W.); (J.W.); (J.L.); (P.D.)
- School of Public Health, University of South China, Hengyang 421001, China
| |
Collapse
|
14
|
Are Cyanotoxins the Only Toxic Compound Potentially Present in Microalgae Supplements? Results from a Study of Ecological and Non-Ecological Products. Toxins (Basel) 2020; 12:toxins12090552. [PMID: 32872271 PMCID: PMC7551278 DOI: 10.3390/toxins12090552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Food supplements with microalgae are becoming increasingly abundant and can be easily found anywhere. The most popular products are based on cyanophytes, such as Aphanizomenon flos-aquae, Arthrospira platensis and Limnospira maxima, or on chlorophytes, such as Chlorella or Haematoccus. Although they are all advertised as being very beneficial for health, these products might be harmful because they may contain cyanotoxins and other contaminants, and no information on production methods or strain origins is usually provided. While legislation on the presence of microcystins in waters for different uses is clear, toxicological analyses are not compulsory for food supplements, nor for analyzing anatoxins. Given the potential risk of eating contaminated food, cyanotoxins, heavy metals and the presence of other contaminant organisms were analyzed in 10 microalgae food supplements. Microcystin-LR and anatoxin-a were detected in three analyzed products, and in both cyanophyte- and chlorophyte-based products. The light microscope study revealed the presence of different potentially harmful microbial contaminants. The ICP (OES) analyses detected high concentrations of some heavy metals, especially Pb. The results emphasize the need to promote the better control of food products containing microalgae, and to develop standard methodologies to analyze cyanotoxins and potential toxic compounds to protect consumer health.
Collapse
|
15
|
Miller TR, Xiong A, Deeds JR, Stutts WL, Samdal IA, Løvberg KE, Miles CO. Microcystin Toxins at Potentially Hazardous Levels in Algal Dietary Supplements Revealed by a Combination of Bioassay, Immunoassay, and Mass Spectrometric Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8016-8025. [PMID: 32597644 DOI: 10.1021/acs.jafc.0c02024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microcystins (MCs) are hepatotoxic heptapeptides produced by cyanobacteria and are potent inhibitors of protein phosphatases in eukaryotic cells. Algae for dietary supplements are harvested from outdoor environments and can be contaminated with MCs. Monitoring of MCs in these products is necessary but is complicated by their structural diversity (>250 congeners). We used a combination of protein phosphatase inhibition assay (PPIA), ELISA, LC-MS/MS, and nontargeted LC-high-resolution MS (LC-HRMS) with thiol derivatization to characterize the total MCs in 18 algal dietary supplements. LC-MS/MS revealed that some products contained >40 times the maximum acceptable concentration (MAC) of 1 μg/g MCs, but ELISA and PPIA showed up to 50-60 times the MAC. LC-HRMS identified all congeners targeted by LC-MS/MS plus MC-(H4)YR contributing up to 18% of total MCs, along with numerous minor MCs. Recommended dosages of the products greater than the MAC would result in 2.6-75 times the tolerable daily intake, presenting a risk to consumers. This study confirms the need for monitoring these products and presents strategies to fully describe the total MC pool in environmental samples and algal products.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Ame Xiong
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jonathan R Deeds
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740-3835, United States
| | - Whitney L Stutts
- United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740-3835, United States
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Kjersti E Løvberg
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council, 1411 Oxford Street, Halifax B3H 3Z1, NS, Canada
| |
Collapse
|
16
|
Kumar P, Rautela A, Kesari V, Szlag D, Westrick J, Kumar S. Recent developments in the methods of quantitative analysis of microcystins. J Biochem Mol Toxicol 2020; 34:e22582. [PMID: 32662914 DOI: 10.1002/jbt.22582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022]
Abstract
Cyanotoxins are produced by the toxic cyanobacterial species present in algal blooms formed in water bodies due to nutrient over-enrichment by human influences and natural environmental conditions. Extensive studies are available on the most widely encountered cyanotoxins, microcystins (MCs) in fresh and brackish water bodies. MC contaminated water poses severe risks to human health, environmental sustainability, and aquatic life. Therefore, commonly occurring MCs should be monitored. Occasionally, detection and quantification of these toxins are difficult due to the unavailability of pure standards. Enzymatic, immunological assays, and analytical techniques like protein phosphatase inhibition assay, enzyme-linked immunosorbent assay, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and biosensors are used for their detection and quantification. There is no single method for the detection of all the different types of MCs; therefore, various techniques are often combined to yield reliable results. Biosensor development offered a problem-solving approach in the detection of MCs due to their high accuracy, sensitivity, rapid response, and portability. In this review, an endeavor has been made to uncover emerging techniques used for the detection and quantification of the MCs.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akhil Rautela
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| | - Vigya Kesari
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - David Szlag
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrument Center, Wayne State University, Detroit, Michigan
| | - Sanjay Kumar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
17
|
Metcalf JS, Dunlop RA, Banack SA, Souza NR, Cox PA. Cyanotoxin Analysis and Amino Acid Profiles of Cyanobacterial Food Items from Chad. Neurotox Res 2020; 39:72-80. [PMID: 32654083 PMCID: PMC7904724 DOI: 10.1007/s12640-020-00240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/12/2022]
Abstract
In some parts of the world, cyanobacteria are used as a food in the human diet, due to their ready availability. Lake Chad, has long been a traditional site for the collection of Arthrospira fusiformis which is dried and processed at the lake into thin wafers called Dihé for later consumption or is transported to market for sale. However, Dihé purchased from markets in Chad has not been analyzed for known cyanobacterial toxins or assessed for total amino acid content. Since BMAA in traditional foodstuffs of the indigenous Chamorro people of Guam causes neurodegenerative illness, it is important that Dihé from Chad be analyzed for this neurotoxin. BMAA and its isomer AEG were not detected in our analyses, but a further isomer DAB was detected as both a free and bound amino acid, with an increase in the free concentration after acid hydrolysis of this fraction. Microcystins were present in 6 samples at up to 20 μg/g according to UPLC-PDA, although their presence could not be confirmed using PCR for known microcystin synthetic genes. Amino acid analysis of the cyanobacterial material from Chad showed the presence of large amounts of canonical amino acids, suggesting that this may supplement indigenous people on low protein diets, although regular monitoring of the foodstuffs for the presence of cyanotoxins should be performed.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA.
| | - R A Dunlop
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - S A Banack
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - N R Souza
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - P A Cox
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
18
|
Burdick SM, Hewitt DA, Martin BA, Schenk L, Rounds SA. Effects of harmful algal blooms and associated water-quality on endangered Lost River and shortnose suckers. HARMFUL ALGAE 2020; 97:101847. [PMID: 32732045 DOI: 10.1016/j.hal.2020.101847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic eutrophication contributes to harmful blooms of cyanobacteria in freshwater ecosystems worldwide. In Upper Klamath Lake, Oregon, massive blooms of Aphanizomenon flos-aquae and smaller blooms of other cyanobacteria are associated with cyanotoxins, hypoxia, high pH, high concentrations of ammonia, and potentially hypercapnia. Recovery of the endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris in Upper Klamath Lake is obstructed by low survival in the juvenile life stage. Water quality associated with the harmful algal blooms and their decomposition (crashes) is often singled out as the primary cause of juvenile sucker mortality. We investigated this general hypothesis with a review of relevant literature and data from decades of monitoring in Upper Klamath Lake. Microcystins, hepatotoxins produced by some cyanobacteria, are unlikely to be directly lethal to suckers; potential effects of other cyanotoxins that are present in the lake warrant investigation. Dissolved-oxygen saturation declined following bloom crashes, but was infrequently low enough for long enough in Upper Klamath Lake to cause direct sucker mortality. Hypercapnia could potentially reach lethal concentrations in the fall and winter, but did not appear to be associated with the summer algal blooms. pH was highest during peaks in cyanobacteria growth, but infrequently reached directly lethal levels (> 10.3). However, pH frequently reached an observed sub-lethal effect level for juvenile suckers (10.0). Un-ionized ammonia rarely exceeded even the lowest effect level measured for suckers. Rather than act as a direct cause of large-scale mortality, the available evidence suggests that water quality associated with massive blooms of cyanobacteria in Upper Klamath Lake contributes to chronic stress for juvenile suckers and may increase mortality due to other factors.
Collapse
Affiliation(s)
- Summer M Burdick
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2795 Anderson Ave. Suite 106, Klamath Falls, OR 97603 USA.
| | - David A Hewitt
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2795 Anderson Ave. Suite 106, Klamath Falls, OR 97603 USA.
| | - Barbara A Martin
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2795 Anderson Ave. Suite 106, Klamath Falls, OR 97603 USA.
| | - Liam Schenk
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 63095 Deschutes Market Rd., Bend, OR 97701 USA.
| | - Stewart A Rounds
- U.S. Geological Survey, Western Fisheries Research Center and Oregon Water Science Center USA; 2130 SW 5th Ave, Portland, OR 97201 USA.
| |
Collapse
|
19
|
Santillo MF. Trends using biological target-based assays for drug detection in complex sample matrices. Anal Bioanal Chem 2020; 412:3975-3982. [PMID: 32372275 DOI: 10.1007/s00216-020-02681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
In vivo, drug molecules interact with their biological targets (e.g., enzymes, receptors, ion channels, transporters), thereby eliciting therapeutic effects. Assays that measure the interaction between drugs and bio-targets may be used as drug biosensors, which are capable of broadly detecting entire drug classes without prior knowledge of their chemical structure. This Trends article covers recent developments in bio-target-based screening assays for detecting drugs associated with the following areas: illicit products marketed as dietary supplements, food-producing animals, and bodily fluids. General challenges and considerations associated with using bio-target assays are also presented. Finally, future applications of these assays for drug detection are suggested based upon current needs.
Collapse
Affiliation(s)
- Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration (FDA), 8301 Muirkirk Rd, Laurel, MD, 20708, USA.
| |
Collapse
|
20
|
Abstract
Continual increases in the human population and growing concerns related to the energy crisis, food security, disease outbreaks, global warming, and other environmental issues require a sustainable solution from nature. One of the promising resources is cyanobacteria, also known as blue-green algae. They require simple ingredients to grow and possess a relatively simple genome. Cyanobacteria are known to produce a wide variety of bioactive compounds. In addition, cyanobacteria’s remarkable growth rate enables its potential use in a wide range of applications in the fields of bioenergy, biotechnology, natural products, medicine, agriculture, and the environment. In this review, we have summarized the potential applications of cyanobacteria in different areas of science and development, especially related to their use in producing biofuels and other valuable co-products. We have also discussed the challenges that hinder such development at an industrial level and ways to overcome such obstacles.
Collapse
|
21
|
Giménez-Campillo C, Pastor-Belda M, Campillo N, Arroyo-Manzanares N, Hernández-Córdoba M, Viñas P. Determination of Cyanotoxins and Phycotoxins in Seawater and Algae-Based Food Supplements Using Ionic Liquids and Liquid Chromatography with Time-Of-Flight Mass Spectrometry. Toxins (Basel) 2019; 11:E610. [PMID: 31652586 PMCID: PMC6832300 DOI: 10.3390/toxins11100610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022] Open
Abstract
An analytical procedure is proposed for determining three cyanotoxins (microcystin RR, microcystin LR, and nodularin) and two phycotoxins (domoic and okadaic acids) in seawater and algae-based food supplements. The toxins were first isolated by a salting out liquid extraction procedure. Since the concentration expected in the samples was very low, a dispersive liquid-liquid microextraction procedure was included for preconcentration. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (80 mg) was used as green extractant solvent and acetonitrile as disperser solvent (0.5 mL) for a 10 mL sample volume at pH 1.5, following the principles of green analytical chemistry. Liquid chromatography with electrospray ionization and quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) was used. The selectivity of the detection system, based on accurate mass measurements, allowed the toxins to be unequivocally identified. Mass spectra for quadrupole time of flight-mass spectrometry (Q-TOF-MS) and Q-TOF-MS/MS were recorded in the positive ion mode and quantification was based on the protonated molecule. Retention times ranged between 6.2 and 17.9 min using a mobile phase composed by a mixture of methanol and formic acid (0.1%). None of the target toxins were detected in any of the seawater samples analyzed, above their corresponding detection limits. However, microcystin LR was detected in the blue green alga sample.
Collapse
Affiliation(s)
- Claudia Giménez-Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Marta Pastor-Belda
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Manuel Hernández-Córdoba
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| |
Collapse
|