1
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki YK, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. Circ J 2024; 88:1509-1595. [PMID: 37690816 DOI: 10.1253/circj.cj-22-0827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center
| | - Masaomi Chinushi
- School of Health Sciences, Niigata University School of Medicine
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Seiji Takatsuki
- Department of Cardiology, Keio University School of Medicine
| | - Kaoru Tanno
- Cardiology Division, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal Medicine, Fujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of Cardiology, Tokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yu-Ki Iwasaki
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Toshio Kinoshita
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, International University of Health and Welfare, Mita Hospital
| | - Nobuyuki Masaki
- Department of Intensive Care Medicine, National Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Hirotaka Yada
- Department of Cardiology, International University of Health and Welfare, Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Takeshi Kimura
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| |
Collapse
|
2
|
Hua C, Sun W, Zhang C, Tian X, Qin X, Dong J, Li X. Generation of a human induced pluripotent stem cell line ZZUNEUi030-A from a female patient carrying a heterozygous CALM2 (c.395 A > T) mutation. Stem Cell Res 2024; 81:103515. [PMID: 39137556 DOI: 10.1016/j.scr.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024] Open
Abstract
Calmodulin mutations can cause life-threatening long QT syndrome involving CALM1, CALM2, and CALM3. In this study, human induced pluripotent stem cells ZZUNEUi030-A were derived from a female patient with heterozygous CALM2 gene c. 395A → T by Sendai virus non-integrated reprogramming technology. The cell line showed a normal female karyotype (46, XX), expressed pluripotency markers, and had the ability to differentiate into three germ layers in vitro. ZZUNEUi030-A can be used as a cell disease model to study the pathogenesis of LQT caused by calmodulin mutations.
Collapse
Affiliation(s)
- Chongpei Hua
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Wenrui Sun
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Chunjin Zhang
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoxu Tian
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xintong Qin
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Jianzeng Dong
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Centre for Cardiovascular Diseases, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Xiaowei Li
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Takase B, Ikeda T, Shimizu W, Abe H, Aiba T, Chinushi M, Koba S, Kusano K, Niwano S, Takahashi N, Takatsuki S, Tanno K, Watanabe E, Yoshioka K, Amino M, Fujino T, Iwasaki Y, Kohno R, Kinoshita T, Kurita Y, Masaki N, Murata H, Shinohara T, Yada H, Yodogawa K, Kimura T, Kurita T, Nogami A, Sumitomo N. JCS/JHRS 2022 Guideline on Diagnosis and Risk Assessment of Arrhythmia. J Arrhythm 2024; 40:655-752. [PMID: 39139890 PMCID: PMC11317726 DOI: 10.1002/joa3.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
| | - Takanori Ikeda
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular MedicineNippon Medical School
| | - Haruhiko Abe
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and GeneticsNational Cerebral and Cardiovascular Center
| | | | - Shinji Koba
- Division of Cardiology, Department of MedicineShowa University School of Medicine
| | - Kengo Kusano
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular Center
| | - Shinichi Niwano
- Department of Cardiovascular MedicineKitasato University School of Medicine
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | | | - Kaoru Tanno
- Cardiovascular Center, Cardiology DivisionShowa University Koto‐Toyosu Hospital
| | - Eiichi Watanabe
- Division of Cardiology, Department of Internal MedicineFujita Health University Bantane Hospital
| | | | - Mari Amino
- Department of CardiologyTokai University School of Medicine
| | - Tadashi Fujino
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yu‐ki Iwasaki
- Department of Cardiovascular MedicineNippon Medical School
| | - Ritsuko Kohno
- Department of Heart Rhythm ManagementUniversity of Occupational and Environmental HealthJapan
| | - Toshio Kinoshita
- Department of Cardiovascular MedicineToho University Faculty of Medicine
| | - Yasuo Kurita
- Cardiovascular Center, Mita HospitalInternational University of Health and Welfare
| | - Nobuyuki Masaki
- Department of Intensive Care MedicineNational Defense Medical College
| | | | - Tetsuji Shinohara
- Department of Cardiology and Clinical Examination, Faculty of MedicineOita University
| | - Hirotaka Yada
- Department of CardiologyInternational University of Health and Welfare Mita Hospital
| | - Kenji Yodogawa
- Department of Cardiovascular MedicineNippon Medical School
| | - Takeshi Kimura
- Cardiovascular MedicineKyoto University Graduate School of Medicine
| | | | - Akihiko Nogami
- Department of Cardiology, Faculty of MedicineUniversity of Tsukuba
| | - Naokata Sumitomo
- Department of Pediatric CardiologySaitama Medical University International Medical Center
| | | |
Collapse
|
4
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
ZHANG YANG, QIN NANNAN, WANG XIJUN, LIANG RUI, LIU QUAN, GENG RUOYI, JIANG TIANXIAO, LIU YUNFEI, LI JINWEI. Glycogen metabolism-mediated intercellular communication in the tumor microenvironment influences liver cancer prognosis. Oncol Res 2024; 32:563-576. [PMID: 38361757 PMCID: PMC10865732 DOI: 10.32604/or.2023.029697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 02/17/2024] Open
Abstract
Glycogen metabolism plays a key role in the development of hepatocellular carcinoma (HCC), but the function of glycogen metabolism genes in the tumor microenvironment (TME) is still to be elucidated. Single-cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells, and 65 glycogen metabolism genes were analyzed by a nonnegative matrix factorization (NMF). The prognosis and immune response of new glycogen TME cell clusters were predicted by using HCC and immunotherapy cohorts from public databases. HCC single-cell analysis was divided into fibroblasts, NT T cells, macrophages, endothelial cells, and B cells, which were separately divided into new cell clusters by glycogen metabolism gene annotation. Pseudo-temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell clusters. Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell-related subtypes and different glycogen subtype cell clusters. SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism. In addition, TME cell clusters of glycogen metabolism were found to be enriched in expression in CAF subtypes, CD8 depleted, M1, and M2 types. Bulk-seq analysis showed the prognostic significance of glycogen metabolism-mediated TME cell clusters in HCC, while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade (ICB), especially for CAFs, T cells, and macrophages. In summary, our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell clusters.
Collapse
Affiliation(s)
- YANG ZHANG
- Graduate School, Kunming Medical University, Kunming, 650000, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650000, China
| | - NANNAN QIN
- Department of Gynecology Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - XIJUN WANG
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - RUI LIANG
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - QUAN LIU
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - RUOYI GENG
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - TIANXIAO JIANG
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - YUNFEI LIU
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - JINWEI LI
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610000, China
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| |
Collapse
|
6
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
7
|
Wong LC, Roses-Noguer F, Bueno A, Villabriga BB, Homfray T, Till J. Early-onset cardiac arrest, prolonged QT interval, and left ventricular hypertrophy: Phenotypic manifestations of a pathogenic de novo calmodulin variant. HeartRhythm Case Rep 2023; 9:858-862. [PMID: 38204837 PMCID: PMC10774527 DOI: 10.1016/j.hrcr.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Affiliation(s)
- Leonie C.H. Wong
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
| | - Ferran Roses-Noguer
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
- Department of Paediatric Cardiology, Vall d’Hebron University Hospital, Barcelona, Spain
- European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Andrea Bueno
- Department of Paediatric Cardiology, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Begoña Benito Villabriga
- Department of Cardiology, Vall d’Hebron University Hospital, Barcelona, Spain
- European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart)
| | - Tessa Homfray
- Department of Medical Genetics, Royal Brompton Hospital, London, United Kingdom
- Department of Medical Genetics, St George’s University of London, London, United Kingdom
| | - Jan Till
- Department of Paediatric Cardiology, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
8
|
He J, Ni Z, Li Z. CALM3 affects the prognosis of leukemia and hemorrhoids. Medicine (Baltimore) 2023; 102:e36027. [PMID: 37932969 PMCID: PMC10627675 DOI: 10.1097/md.0000000000036027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Leukemia is an abnormal proliferation of white blood cells in the bone marrow, resulting in a large accumulation of abnormal leukemia cells in the blood and bone marrow. Hemorrhoids are dilated and swollen veins in the rectum or anal area. However, the relationship between CALM3 and leukemia and hemorrhoids remains unclear. The hemorrhoids dataset GSE154650 and leukemia dataset GSE26294 were downloaded from GEO databases generated by GPL20301 and GPL571.The R package limma was used to screen differentially expressed genes (DEDs). Weighted gene co-expression network analysis (WGCNA) was performed. The construction and analysis of protein-protein interaction (PPI) network, functional enrichment analysis, Gene Set Enrichment Analysis (GSEA) and comparative toxicogenomics database (CTD) analysis were performed. TargetScan was used to screen miRNAs regulating central DEGs. It was verified by western blot basic cell assay. A total of 125 DEGs were co-identified. According to the GO analysis, they are mainly enriched in small molecule catabolic processes, skin development, and chemokine receptor binding. The KEGG analysis results show that the target cells are mainly enriched in the interaction of cytokines and cytokine receptors, as well as butyric acid metabolism. The GSEA analysis results indicate enrichment in small molecule catabolic processes, skin development, and chemokine receptor binding. Six core genes (CALM3, ACE2, PPARGC1A, XCR1, CFTR, PRKCA) were identified. We found that the core gene CALM3 is highly expressed in hemorrhoid samples, low in leukemia samples, and has low expression in normal samples, which may play a regulatory role in hemorrhoids and leukemia. Immunoinfiltration results showed a higher proportion of T_cells_CD4_memory_resting and a correlation with T_cells_CD8. WB experiment verified the result. CALM3 expression is low in leukemia, and the lower the expression is, the worse the prognosis is. CALM3 is highly expressed in hemorrhoids, and the higher the expression, the worse the prognosis.
Collapse
Affiliation(s)
- Jie He
- Department of Colorectal Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Zhijie Ni
- Department of Colorectal Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Zhongbo Li
- Department of Colorectal Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| |
Collapse
|
9
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
10
|
Gao J, Makiyama T, Yamamoto Y, Kobayashi T, Aoki H, Maurissen TL, Wuriyanghai Y, Kashiwa A, Imamura T, Aizawa T, Huang H, Kohjitani H, Nishikawa M, Chonabayashi K, Fukuyama M, Manabe H, Nakau K, Wada T, Kato K, Toyoda F, Yoshida Y, Makita N, Woltjen K, Ohno S, Kurebayashi N, Murayama T, Sakurai T, Horie M, Kimura T. Novel Calmodulin Variant p.E46K Associated With Severe Catecholaminergic Polymorphic Ventricular Tachycardia Produces Robust Arrhythmogenicity in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Arrhythm Electrophysiol 2023; 16:e011387. [PMID: 36866681 DOI: 10.1161/circep.122.011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.
Collapse
Affiliation(s)
- Jingshan Gao
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Community Medicine Supporting System (T. Makiyama), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuta Yamamoto
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Bioscience & Genetics (Y. Yamamoto, S.O.), National Cerebral & Cardiovascular Center, Suita, Japan
- Now with Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA (Y. Yamamoto)
| | - Takuya Kobayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Hisaaki Aoki
- Department of Pediatric Cardiology, Osaka Women's & Children's Hospital, Osaka, Japan (H.A.)
| | - Thomas L Maurissen
- Department of Life Science Frontiers (T.L.M., K.W.), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
- Now with Roche Pharma Research & Early Development, Immunology, Infectious Diseases & Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (T.L.M.)
| | - Yimin Wuriyanghai
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Now with Department of Internal medicine, Peking University Third Hospital, Beijing, China (Y.W.)
| | - Asami Kashiwa
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiko Imamura
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hai Huang
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Kohjitani
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Misato Nishikawa
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazuhisa Chonabayashi
- Department of Hematology & Oncology (K.C.), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Hiromi Manabe
- Department of Pediatrics, Asahikawa Kosei General Hospital (H.M.), Asahikawa Medical University, Asahikawa, Japan
| | - Kouichi Nakau
- Asahikawa, Japan and Department of Pediatrics (K.N.), Asahikawa Medical University, Asahikawa, Japan
| | - Tsutomu Wada
- Department of Pediatrics, Sapporo Medical University Hospital, Sapporo, Japan (T.W.)
| | - Koichi Kato
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Futoshi Toyoda
- Department of Physiology (F.T.), Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naomasa Makita
- Omics Research Center (N.M.), National Cerebral & Cardiovascular Center, Suita, Japan
- Now with Department of Cardiology, Sapporo Teishinkai Hospital, Sapporo, Japan (N.M.)
| | - Knut Woltjen
- Department of Life Science Frontiers (T.L.M., K.W.), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Seiko Ohno
- Department of Bioscience & Genetics (Y. Yamamoto, S.O.), National Cerebral & Cardiovascular Center, Suita, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Minoru Horie
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Now with Department of Cardiology, Hirakata Kohsai Hospital, Osaka, Japan (T. Kimura)
| |
Collapse
|
11
|
Zaffran S, Kraoua L, Jaouadi H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:3365. [PMID: 36834774 PMCID: PMC9963263 DOI: 10.3390/ijms24043365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Calcium (Ca2+) is the major mediator of cardiac contractile function. It plays a key role in regulating excitation-contraction coupling and modulating the systolic and diastolic phases. Defective handling of intracellular Ca2+ can cause different types of cardiac dysfunction. Thus, the remodeling of Ca2+ handling has been proposed to be a part of the pathological mechanism leading to electrical and structural heart diseases. Indeed, to ensure appropriate electrical cardiac conduction and contraction, Ca2+ levels are regulated by several Ca2+-related proteins. This review focuses on the genetic etiology of cardiac diseases related to calcium mishandling. We will approach the subject by focalizing on two clinical entities: catecholaminergic polymorphic ventricular tachycardia (CPVT) as a cardiac channelopathy and hypertrophic cardiomyopathy (HCM) as a primary cardiomyopathy. Further, this review will illustrate the fact that despite the genetic and allelic heterogeneity of cardiac defects, calcium-handling perturbations are the common pathophysiological mechanism. The newly identified calcium-related genes and the genetic overlap between the associated heart diseases are also discussed in this review.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| | - Lilia Kraoua
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis 1006, Tunisia
| | - Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille University, U1251 Marseille, France
| |
Collapse
|
12
|
Keefe JA, Moore OM, Ho KS, Wehrens XHT. Role of Ca 2+ in healthy and pathologic cardiac function: from normal excitation-contraction coupling to mutations that cause inherited arrhythmia. Arch Toxicol 2023; 97:73-92. [PMID: 36214829 PMCID: PMC10122835 DOI: 10.1007/s00204-022-03385-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023]
Abstract
Calcium (Ca2+) ions are a key second messenger involved in the rhythmic excitation and contraction of cardiomyocytes throughout the heart. Proper function of Ca2+-handling proteins is required for healthy cardiac function, whereas disruption in any of these can cause cardiac arrhythmias. This comprehensive review provides a broad overview of the roles of Ca2+-handling proteins and their regulators in healthy cardiac function and the mechanisms by which mutations in these proteins contribute to inherited arrhythmias. Major Ca2+ channels and Ca2+-sensitive regulatory proteins involved in cardiac excitation-contraction coupling are discussed, with special emphasis on the function of the RyR2 macromolecular complex. Inherited arrhythmia disorders including catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, Brugada syndrome, short QT syndrome, and arrhythmogenic right-ventricular cardiomyopathy are discussed with particular emphasis on subtypes caused by mutations in Ca2+-handling proteins.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin S Ho
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA. .,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Calmodulin variant E140G associated with long QT syndrome impairs CaMKIIδ autophosphorylation and L-type calcium channel inactivation. J Biol Chem 2023; 299:102777. [PMID: 36496072 PMCID: PMC9830374 DOI: 10.1016/j.jbc.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.
Collapse
|
14
|
McCoy MD, Ullah A, Lederer WJ, Jafri MS. Understanding Calmodulin Variants Affecting Calcium-Dependent Inactivation of L-Type Calcium Channels through Whole-Cell Simulation of the Cardiac Ventricular Myocyte. Biomolecules 2022; 13:72. [PMID: 36671457 PMCID: PMC9855640 DOI: 10.3390/biom13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mutations in the calcium-sensing protein calmodulin (CaM) have been linked to two cardiac arrhythmia diseases, Long QT Syndrome 14 (LQT14) and Catecholaminergic Polymorphic Ventricular Tachycardia Type 4 (CPVT4), with varying degrees of severity. Functional characterization of the CaM mutants most strongly associated with LQT14 show a clear disruption of the calcium-dependent inactivation (CDI) of the L-Type calcium channel (LCC). CPVT4 mutants on the other hand are associated with changes in their affinity to the ryanodine receptor. In clinical studies, some variants have been associated with both CPVT4 and LQT15. This study uses simulations in a model for excitation-contraction coupling in the rat ventricular myocytes to understand how LQT14 variant might give the functional phenotype similar to CPVT4. Changing the CaM-dependent transition rate by a factor of 0.75 corresponding to the D96V variant and by a factor of 0.90 corresponding to the F142L or N98S variants, in a physiologically based stochastic model of the LCC prolonger, the action potential duration changed by a small amount in a cardiac myocyte but did not disrupt CICR at 1, 2, and 4 Hz. Under beta-adrenergic simulation abnormal excitation-contraction coupling was observed above 2 Hz pacing for the mutant CaM. The same conditions applied under beta-adrenergic stimulation led to the rapid onset of arrhythmia in the mutant CaM simulations. Simulations with the LQT14 mutations under the conditions of rapid pacing with beta-adrenergic stimulation drives the cardiac myocyte toward an arrhythmic state known as Ca2+ overload. These simulations provide a mechanistic link to a disease state for LQT14-associated mutations in CaM to yield a CPVT4 phenotype. The results show that small changes to the CaM-regulated inactivation of LCC promote arrhythmia and underscore the significance of CDI in proper heart function.
Collapse
Affiliation(s)
- Matthew D. McCoy
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - W. Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - M. Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| |
Collapse
|
15
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
16
|
Kato K, Isbell HM, Fressart V, Denjoy I, Debbiche A, Itoh H, Poinsot J, George AL, Coulombe A, Shea MA, Guicheney P. Novel CALM3 Variant Causing Calmodulinopathy With Variable Expressivity in a 4-Generation Family. Circ Arrhythm Electrophysiol 2022; 15:e010572. [PMID: 35225649 DOI: 10.1161/circep.121.010572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CaM (calmodulin), encoded by 3 separate genes (CALM1, CALM2, and CALM3), is a multifunctional Ca2+-binding protein involved in many signal transduction events including ion channel regulation. CaM variants may present with early-onset long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia, or sudden cardiac death. Most reported variants occurred de novo. We identified a novel CALM3 variant, p.Asn138Lys (N138K), in a 4-generation family segregating with LQTS. The aim of this study was to elucidate its pathogenicity and to compare it with that of p.D130G-CaM-a variant associated with a severe LQTS phenotype. METHODS We performed whole exome sequencing for a large, 4-generation family affected by LQTS. To assess the effect of the detected CALM3 variant, the intrinsic Ca2+-binding affinity was measured by stoichiometric Ca2+ titrations and equilibrium titrations. L-type Ca2+ and slow delayed rectifier potassium currents (ICaL and IKs) were recorded by whole-cell patch-clamp. Cav1.2 and Kv7.1 membrane expression were determined by optical fluorescence assays. RESULTS We identified 14 p.N138K-CaM carriers in a family where 2 sudden deaths occurred in children. Several members were only mildly affected compared with CaM-LQTS patients to date described in literature. The intrinsic Ca2+-binding affinity of the CaM C-terminal domain was 10-fold lower for p.N138K-CaM compared with wild-type-CaM. ICaL inactivation was slowed in cells expressing p.N138K-CaM but less than in p.D130G-CaM cells. Unexpectedly, a larger IKs current density was observed in cells expressing p.N138K-CaM, but not for p.D130G-CaM, compared with wild-type-CaM. CONCLUSIONS The p.N138K CALM3 variant impairs Ca2+-binding affinity of CaM and ICaL inactivation but potentiates IKs. The variably expressed phenotype of this variant compared with previously published de novo LQTS-CaM variants is likely explained by a milder impairment of ICaL inactivation combined with IKs augmentation.
Collapse
Affiliation(s)
- Koichi Kato
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.).,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.K.)
| | - Holly M Isbell
- Department of Biochemistry, Carver College of Medicine, University of Iowa (H.M.I., M.A.S.)
| | - Véronique Fressart
- AP-HP, Pitié-Salpêtrière Hospital, Functional Unit of Cardiogenetics and Myogenetics, Paris, France (V.F.)
| | - Isabelle Denjoy
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.).,Cardiology Department, Referring Center for Heritable or Rare Cardiac Diseases, AP-HP, Bichat Hospital, HUPNVS, Referring Center for Rare Cardiac Diseases, Sorbonne University, Paris, France (I.D.)
| | - Amal Debbiche
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital, Japan (H.I.)
| | - Jacques Poinsot
- Unité de cardio-pediatrie, service de medecine pediatrique, Centre Hospitalier Universitaire de Tours, Tours, France (J.P.)
| | - Alfred L George
- Department of Pharmacology Northwestern University Feinberg School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (A.L.G.)
| | - Alain Coulombe
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| | - Madeline A Shea
- Department of Biochemistry, Carver College of Medicine, University of Iowa (H.M.I., M.A.S.)
| | - Pascale Guicheney
- Sorbonne Université, Inserm, Research Unit on Cardiovascular and Metabolic Diseases, UMRS-1166, Paris, France (K.K., V.F., I.D., A.D., A.C., P.G.)
| |
Collapse
|
17
|
Wei P, Long D, Tan Y, Xing W, Li X, Yang K, Liu H. Integrated Pharmacogenetics Analysis of the Three Fangjis Decoctions for Treating Arrhythmias Based on Molecular Network Patterns. Front Cardiovasc Med 2022; 8:726694. [PMID: 35004871 PMCID: PMC8739471 DOI: 10.3389/fcvm.2021.726694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Aim: To explore the diverse target distribution and variable mechanisms of different fangjis prescriptions when treating arrhythmias based on the systems pharmacology. Methods: The active ingredients and their corresponding targets were acquired from the three fangjis [Zhigancao Tang (ZT), Guizhigancao Longgumuli Tang (GLT), and Huanglian E'jiao Tang (HET)] and the arrhythmia-related genes were identified based on comprehensive database screening. Networks were constructed between the fangjis and arrhythmia and used to define arrhythmia modules. Common and differential gene targets were identified within the arrhythmia network modules and the cover rate (CR) matrix was applied to compare the contributions of the fangjis to the network and modules. Comparative pharmacogenetics analyses were then conducted to define the arrhythmia-related signaling pathways regulated by the fangjis prescriptions. Finally, the divergence and convergence points of the arrhythmia pathways were deciphered based on databases and the published literature. Results: A total of 187, 105, and 68 active ingredients and 1,139, 1,195, and 811 corresponding gene targets of the three fangjis were obtained and 102 arrhythmia-related genes were acquired. An arrhythmia network was constructed and subdivided into 4 modules. For the target distribution analysis, 65.4% of genes were regulated by the three fangjis within the arrhythmia network. ZT and GLT were more similar to each other, mainly regulated by module two, whereas HET was divided among all the modules. From the perspective of signal transduction, calcium-related pathways [calcium, cyclic guanosine 3′,5′-monophosphate (cGMP)-PKG, and cyclic adenosine 3′,5′-monophosphate (cAMP)] and endocrine system-related pathways (oxytocin signaling pathway and renin secretion pathways) were associated with all the three fangjis prescriptions. Nevertheless, heterogeneity existed between the biological processes and pathway distribution among the three prescriptions. GLT and HET were particularly inclined toward the conditions involving abnormal hormone secretion, whereas ZT tended toward renin-angiotensin-aldosterone system (RAAS) disorders. However, calcium signaling-related pathways prominently feature in the pharmacological activities of the decoctions. Experimental validation indicated that ZT, GLT, and HET significantly shortened the duration of ventricular arrhythmia (VA) and downregulated the expression of CALM2 and interleukin-6 (IL-6) messenger RNAs (mRNAs); GLT and HET downregulated the expression of CALM1 and NOS3 mRNAs; HET downregulated the expression of CRP mRNA. Conclusion: Comparing the various distributions of the three fangjis, pathways provide evidence with respect to precise applications toward individualized arrhythmia treatments.
Collapse
Affiliation(s)
- Penglu Wei
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Dehuai Long
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yupei Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xing
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiang Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kuo Yang
- School of Computer and Information Technology, Institute of Medical Intelligence, Beijing Jiaotong University, Beijing, China
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Martínez-Barrios E, Cesar S, Cruzalegui J, Hernandez C, Arbelo E, Fiol V, Brugada J, Brugada R, Campuzano O, Sarquella-Brugada G. Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines 2022; 10:106. [PMID: 35052786 PMCID: PMC8773373 DOI: 10.3390/biomedicines10010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - José Cruzalegui
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Clara Hernandez
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
19
|
Lin DJ, Lee WS, Chien YC, Chen TY, Yang KT. The link between abnormalities of calcium handling proteins and catecholaminergic polymorphic ventricular tachycardia. Tzu Chi Med J 2021; 33:323-331. [PMID: 34760626 PMCID: PMC8532576 DOI: 10.4103/tcmj.tcmj_288_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT), a rare autosomal dominant or recessive disease, usually results in syncope or sudden cardiac death. Most CPVT patients do not show abnormal cardiac structure and electrocardiogram features and symptoms, usually onset during adrenergically mediated physiological conditions. CPVT tends to occur at a younger age and is not easy to be diagnosed and managed. The main cause of CPVT is associated with mishandling Ca2+ in cardiomyocytes. Intracellular Ca2+ is strictly controlled by a protein located in the sarcoplasm reticulum (SR), such as ryanodine receptor, histidine-rich Ca2+-binding protein, triadin, and junctin. Mutation in these proteins results in misfolding or malfunction of these proteins, thereby affecting their Ca2+-binding affinity, and subsequently disturbs Ca2+ homeostasis during excitation–contraction coupling (E-C coupling). Furthermore, transient disturbance of Ca2+ homeostasis increases membrane potential and causes Ca2+ store overload-induced Ca2+ release, which in turn leads to delayed after depolarization and arrhythmia. Previous studies have focused on the interaction between ryanodine receptors and protein kinase or phosphatase in the cytosol. However, recent studies showed the regulation signaling for ryanodine receptor not only from the cytosol but also within the SR. The changing of Ca2+ concentration is critical for protein interaction inside the SR which changes protein conformation to regulate the open probability of ryanodine receptors. Thus, it influences the threshold of Ca2+ released from the SR, making it easier to release Ca2+ during E-C coupling. In this review, we briefly discuss how Ca2+ handling protein variations affect the Ca2+ handling in CPVT.
Collapse
Affiliation(s)
- Ding-Jyun Lin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Tsung-Yu Chen
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
20
|
Zhu M, Liu Y, Song Y, Zhang S, Hang C, Wu F, Lin X, Huang Z, Lan F, Xu M. The Role of METTL3-Mediated N6-Methyladenosine (m6A) of JPH2 mRNA in Cyclophosphamide-Induced Cardiotoxicity. Front Cardiovasc Med 2021; 8:763469. [PMID: 34820430 PMCID: PMC8606687 DOI: 10.3389/fcvm.2021.763469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 01/05/2023] Open
Abstract
Cyclophosphamide (CYP)-induced cardiotoxicity is a common side effect of cancer treatment. Although it has received significant attention, the related mechanisms of CYP-induced cardiotoxicity remain largely unknown. In this study, we used cell and animal models to investigate the effect of CYP on cardiomyocytes. Our data demonstrated that CYP-induced a prolonged cardiac QT interval and electromechanical coupling time courses accompanied by JPH2 downregulation. Moreover, N6-methyladenosine (m6A) methylation sequencing and RNA sequencing suggested that CYP induced cardiotoxicity by dysregulating calcium signaling. Importantly, our results demonstrated that CYP induced an increase in the m6A level of JPH2 mRNA by upregulating methyltransferases METTL3, leading to the reduction of JPH2 expression levels, as well as increased field potential duration and action potential duration in cardiomyocytes. Our results revealed a novel mechanism for m6A methylation-dependent regulation of JPH2, which provides new strategies for the treatment and prevention of CYP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Min Zhu
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangong Liu
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Yuanxiu Song
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Shiqin Zhang
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Chengwen Hang
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Fujian Wu
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xianjuan Lin
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
| | - Zenghui Huang
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Feng Lan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
21
|
Tsai WC, Chen PS, Rubart M. Calmodulinopathy in inherited arrhythmia syndromes. Tzu Chi Med J 2021; 33:339-344. [PMID: 34760628 PMCID: PMC8532581 DOI: 10.4103/tcmj.tcmj_182_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 11/04/2022] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular calcium sensor that controls and regulates key cellular functions. In all vertebrates, three CaM genes located on separate chromosomes encode an identical 149 amino acid protein, implying an extraordinarily high level of evolutionary importance and suggesting that CaM mutations would be possibly fatal. Inherited arrhythmia syndromes comprise a spectrum of primary electrical disorders caused by mutations in genes encoding ion channels or associated proteins leading to various cardiac arrhythmias, unexplained syncope, and sudden cardiac death. CaM mutations have emerged as an independent entity among inherited arrhythmia syndromes, referred to as calmodulinopathies. The most common clinical presentation associated with calmodulinopathy is congenital long QT syndrome, followed by catecholaminergic polymorphic ventricular tachycardia, both of which significantly increase the possibility of repeated syncope, lethal arrhythmic events, and sudden cardiac death, especially in young individuals. Here, we aim to give an overview of biochemical and structural characteristics of CaM and progress toward updating current known CaM mutations and associated clinical phenotypes. We also review the possible mechanisms underlying calmodulinopathy, based on several key in vitro studies. We expect that further experimental studies are needed to explore the complexity of calmodulinopathy.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- Department of Cardiology, Cardiovascular Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Peng-Sheng Chen
- Department of Cardiology, Cedar-Sinai Medical Center, Los Angeles, CA, USA
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- Krannert Institute of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
22
|
Ledford HA, Park S, Muir D, Woltz RL, Ren L, Nguyen PT, Sirish P, Wang W, Sihn CR, George AL, Knollmann BC, Yamoah EN, Yarov-Yarovoy V, Zhang XD, Chiamvimonvat N. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. J Gen Physiol 2021; 152:211546. [PMID: 33211795 PMCID: PMC7681919 DOI: 10.1085/jgp.202012667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell–derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.
Collapse
Affiliation(s)
- Hannah A Ledford
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Duncan Muir
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Lu Ren
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Phuong T Nguyen
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| |
Collapse
|
23
|
Huang J, Huang S, Li J, Li M, Gong L, Li T, Gu L. CALM1 rs3179089 polymorphism might contribute to coronary artery disease susceptibility in Chinese male: a case-control study. Genes Genomics 2021; 44:415-423. [PMID: 34338988 DOI: 10.1007/s13258-021-01144-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Calmodulin 1 (CALM1) mutations are involved in the development of coronary artery disease (CAD). However, the relationship of CALM1 rs3179089 polymorphism with CAD is unknown. OBJECTIVE This study aimed to identify the relationship of CALM1 rs3179089 polymorphism with CAD susceptibility, CALM1 expression, blood pressure, blood glucose, blood coagulation and serum lipid levels of CAD patients. METHODS 550 CAD patients and 550 control subjects were genotyped for CALM1 using Sequenom MassARRAY technology. CALM1 expression level was measured by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS CALM1 mRNA expression was higher in CAD patients than that in control subjects (P < 0.001). CAD patients with CC genotype had higher CALM1 mRNA expression level than control subjects with CC genotype (P = 0.006). Genotypic frequency of rs3179089 was different between male patients of CAD and control subjects (P = 0.045). Rs3179089 polymorphism was related to CAD risk of males in recessive model (P = 0.039). Moreover, rs3179089 polymorphism was associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), and D-Dimer (D-D) level of patients with CAD in recessive model (P = 0.013 for SBP; P = 0.034 for DBP; P = 0.004 for FPG; P = 0.046 for D-D). In addition, rs3179089 polymorphism was correlated with low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) serum levels of patients with CAD in both addictive (P = 0.025 for LDL-C; P = 0.001 for TC) and recessive models (P = 0.001 for LDL-C; P = 0.001 for TC). CONCLUSION CALM1 expression is associated with development of CAD. CALM1 rs3179089 polymorphism affects CAD susceptibility in males, and blood pressure, blood glucose, blood coagulation and serum lipid of CAD patients.
Collapse
Affiliation(s)
- Jingyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.,Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,University at Buffalo, The State University of New York, Buffalo, NY, 14228, USA.,Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China
| | - Siyun Huang
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Jinhong Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Minhua Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lin Gong
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Tongshun Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China. .,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| |
Collapse
|
24
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Beckmann BM, Scheiper-Welling S, Wilde AAM, Kääb S, Schulze-Bahr E, Kauferstein S. Clinical utility gene card for: Long-QT syndrome. Eur J Hum Genet 2021; 29:1825-1832. [PMID: 34031550 PMCID: PMC8633377 DOI: 10.1038/s41431-021-00904-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/25/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Britt M Beckmann
- Department of Legal Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany. .,Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.
| | | | - Arthur A M Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu), Amsterdam, The Netherlands.,Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partnersite Munich, Munich, Germany
| | - Eric Schulze-Bahr
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; http://guardheart.ern-net.eu), Amsterdam, The Netherlands.,Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Silke Kauferstein
- Department of Legal Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
27
|
Abstract
Long QT syndrome (LQTS) is a cardiovascular disorder characterized by an abnormality in cardiac repolarization leading to a prolonged QT interval and T-wave irregularities on the surface electrocardiogram. It is commonly associated with syncope, seizures, susceptibility to torsades de pointes, and risk for sudden death. LQTS is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. The availability of therapy for this lethal disease emphasizes the importance of early and accurate diagnosis. Additionally, understanding of the molecular mechanisms underlying LQTS could help to optimize genotype-specific treatments to prevent deaths in LQTS patients. In this review, we briefly summarize current knowledge regarding molecular underpinning of LQTS, in particular focusing on LQT1, LQT2, and LQT3, and discuss novel strategies to study ion channel dysfunction and drug-specific therapies in LQT1, LQT2, and LQT3 syndromes.
Collapse
Affiliation(s)
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
28
|
Etheridge SP, Niu MC. Calmodulinopathies: throwing back the veil on the newest life-threatening genetic arrhythmia syndrome. Curr Opin Cardiol 2021; 36:61-66. [PMID: 33027101 DOI: 10.1097/hco.0000000000000808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides a basic understanding of the calmodulin gene and its role in calcium homeostasis. We outline the functional effects and clinical expression of CALM mutations and review disease expression and management. RECENT FINDINGS Calmodulinopathies are rare life-threatening arrhythmia syndromes affecting young individuals. They are caused by mutations in any of the three genes (CALM 1-3) that encode calmodulin (CaM), a ubiquitously expressed Ca signaling protein with multiple targets that in the heart, modulates several ion channels. Patients express varied phenotypes: long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, sudden death, idiopathic ventricular fibrillation, hypertrophic cardiomyopathy, or mixed disease. This is severe disease. Over half of 2019 International Calmodulin Registry patients experienced recurrent cardiac events despite management strategies that included: monotherapy and combination therapy with beta blockers, sodium channel blockers, other antiarrhythmics, sympathetic denervation, and pacing. Induced pluripotent stem cell-derived cardiomyocytes from patients harboring CALM mutations have provided a platform for better understanding pathogenic mechanisms and avenues for therapy. SUMMARY Calmodulinopathies are among the more novel inherited arrhythmia syndromes. These are rare but highly lethal diseases with diverse clinical expressions. The practicing electrophysiologist should be aware these conditions, how to recognize them clinically, and understand the challenges in management.
Collapse
Affiliation(s)
- Susan P Etheridge
- University of Utah and Primary Children's Hospital, Salt Lake City, Utah, USA
| | | |
Collapse
|
29
|
Andrews C, Xu Y, Kirberger M, Yang JJ. Structural Aspects and Prediction of Calmodulin-Binding Proteins. Int J Mol Sci 2020; 22:ijms22010308. [PMID: 33396740 PMCID: PMC7795363 DOI: 10.3390/ijms22010308] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a critical second messenger involved in numerous biological activities through extensive interactions with proteins and peptides. CaM’s ability to adapt to binding targets with different structures is related to the flexible central helix separating the N- and C-terminal lobes, which allows for conformational changes between extended and collapsed forms of the protein. CaM-binding targets are most often identified using prediction algorithms that utilize sequence and structural data to predict regions of peptides and proteins that can interact with CaM. In this review, we provide an overview of different CaM-binding proteins, the motifs through which they interact with CaM, and shared properties that make them good binding partners for CaM. Additionally, we discuss the historical and current methods for predicting CaM binding, and the similarities and differences between these methods and their relative success at prediction. As new CaM-binding proteins are identified and classified, we will gain a broader understanding of the biological processes regulated through changes in Ca2+ concentration through interactions with CaM.
Collapse
Affiliation(s)
- Corey Andrews
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Yiting Xu
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
| | - Michael Kirberger
- Chemistry Division, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (C.A.); (Y.X.)
- Correspondence: ; Tel.: +1-4044135520
| |
Collapse
|
30
|
McCoy MD, Hamre J, Klimov DK, Jafri MS. Predicting Genetic Variation Severity Using Machine Learning to Interpret Molecular Simulations. Biophys J 2020; 120:189-204. [PMID: 33333034 DOI: 10.1016/j.bpj.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Distinct missense mutations in a specific gene have been associated with different diseases as well as differing severity of a disease. Current computational methods predict the potential pathogenicity of a missense variant but fail to differentiate between separate disease or severity phenotypes. We have developed a method to overcome this limitation by applying machine learning to features extracted from molecular dynamics simulations, creating a way to predict the effect of novel genetic variants in causing a disease, drug resistance, or another specific trait. As an example, we have applied this novel approach to variants in calmodulin associated with two distinct arrhythmias as well as two different neurodegenerative diseases caused by variants in amyloid-β peptide. The new method successfully predicts the specific disease caused by a gene variant and ranks its severity with more accuracy than existing methods. We call this method molecular dynamics phenotype prediction model.
Collapse
Affiliation(s)
- Matthew D McCoy
- Innovation Center for Biomedical Informatics, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington DC; School of Systems Biology, George Mason University, Manassas, Virginia.
| | - John Hamre
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - Dmitri K Klimov
- School of Systems Biology, George Mason University, Manassas, Virginia
| | - M Saleet Jafri
- School of Systems Biology, George Mason University, Manassas, Virginia; Krasnow Institute for Advanced Study, Interdisciplinary Program in Neuroscience, School of Systems Biology, George Mason University, Fairfax, Virginia.
| |
Collapse
|
31
|
Tsai WC, Guo S, Olaopa MA, Field LJ, Yang J, Shen C, Chang CP, Chen PS, Rubart M. Complex Arrhythmia Syndrome in a Knock-In Mouse Model Carrier of the N98S Calm1 Mutation. Circulation 2020; 142:1937-1955. [PMID: 32929985 PMCID: PMC7867118 DOI: 10.1161/circulationaha.120.046450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calmodulin mutations are associated with arrhythmia syndromes in humans. Exome sequencing previously identified a de novo mutation in CALM1 resulting in a p.N98S substitution in a patient with sinus bradycardia and stress-induced bidirectional ventricular ectopy. The objectives of the present study were to determine if mice carrying the N98S mutation knocked into Calm1 replicate the human arrhythmia phenotype and to examine arrhythmia mechanisms. METHODS Mouse lines heterozygous for the Calm1N98S allele (Calm1N98S/+) were generated using CRISPR/Cas9 technology. Adult mutant mice and their wildtype littermates (Calm1+/+) underwent electrocardiographic monitoring. Ventricular de- and repolarization was assessed in isolated hearts using optical voltage mapping. Action potentials and whole-cell currents and [Ca2+]i, as well, were measured in single ventricular myocytes using the patch-clamp technique and fluorescence microscopy, respectively. The microelectrode technique was used for in situ membrane voltage monitoring of ventricular conduction fibers. RESULTS Two biologically independent knock-in mouse lines heterozygous for the Calm1N98S allele were generated. Calm1N98S/+ mice of either sex and line exhibited sinus bradycardia, QTc interval prolongation, and catecholaminergic bidirectional ventricular tachycardia. Male mutant mice also showed QRS widening. Pharmacological blockade and activation of β-adrenergic receptors rescued and exacerbated, respectively, the long-QT phenotype of Calm1N98S/+ mice. Optical and electric assessment of membrane potential in isolated hearts and single left ventricular myocytes, respectively, revealed β-adrenergically induced delay of repolarization. β-Adrenergic stimulation increased peak density, slowed inactivation, and left-shifted the activation curve of ICa.L significantly more in Calm1N98S/+ versus Calm1+/+ ventricular myocytes, increasing late ICa.L in the former. Rapidly paced Calm1N98S/+ ventricular myocytes showed increased propensity to delayed afterdepolarization-induced triggered activity, whereas in situ His-Purkinje fibers exhibited increased susceptibility for pause-dependent early afterdepolarizations. Epicardial mapping of Calm1N98S/+ hearts showed that both reentry and focal mechanisms contribute to arrhythmogenesis. CONCLUSIONS Heterozygosity for the Calm1N98S mutation is causative of an arrhythmia syndrome characterized by sinus bradycardia, QRS widening, adrenergically mediated QTc interval prolongation, and bidirectional ventricular tachycardia. β-Adrenergically induced ICa.L dysregulation contributes to the long-QT phenotype. Pause-dependent early afterdepolarizations and tachycardia-induced delayed afterdepolarizations originating in the His-Purkinje network and ventricular myocytes, respectively, constitute potential sources of arrhythmia in Calm1N98S/+ hearts.
Collapse
Affiliation(s)
- Wen-Chin Tsai
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cardiology, Cardiovascular Research Center, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shuai Guo
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Michael A. Olaopa
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Loren J. Field
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jin Yang
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Changyu Shen
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ching-Pin Chang
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peng-Sheng Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Rubart
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Crotti L, Spazzolini C, Tester DJ, Ghidoni A, Baruteau AE, Beckmann BM, Behr ER, Bennett JS, Bezzina CR, Bhuiyan ZA, Celiker A, Cerrone M, Dagradi F, De Ferrari GM, Etheridge SP, Fatah M, Garcia-Pavia P, Al-Ghamdi S, Hamilton RM, Al-Hassnan ZN, Horie M, Jimenez-Jaimez J, Kanter RJ, Kaski JP, Kotta MC, Lahrouchi N, Makita N, Norrish G, Odland HH, Ohno S, Papagiannis J, Parati G, Sekarski N, Tveten K, Vatta M, Webster G, Wilde AAM, Wojciak J, George AL, Ackerman MJ, Schwartz PJ. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J 2020; 40:2964-2975. [PMID: 31170290 DOI: 10.1093/eurheartj/ehz311] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Calmodulinopathies are rare life-threatening arrhythmia syndromes which affect mostly young individuals and are, caused by mutations in any of the three genes (CALM 1-3) that encode identical calmodulin proteins. We established the International Calmodulinopathy Registry (ICalmR) to understand the natural history, clinical features, and response to therapy of patients with a CALM-mediated arrhythmia syndrome. METHODS AND RESULTS A dedicated Case Report File was created to collect demographic, clinical, and genetic information. ICalmR has enrolled 74 subjects, with a variant in the CALM1 (n = 36), CALM2 (n = 23), or CALM3 (n = 15) genes. Sixty-four (86.5%) were symptomatic and the 10-year cumulative mortality was 27%. The two prevalent phenotypes are long QT syndrome (LQTS; CALM-LQTS, n = 36, 49%) and catecholaminergic polymorphic ventricular tachycardia (CPVT; CALM-CPVT, n = 21, 28%). CALM-LQTS patients have extremely prolonged QTc intervals (594 ± 73 ms), high prevalence (78%) of life-threatening arrhythmias with median age at onset of 1.5 years [interquartile range (IQR) 0.1-5.5 years] and poor response to therapies. Most electrocardiograms (ECGs) show late onset peaked T waves. All CALM-CPVT patients were symptomatic with median age of onset of 6.0 years (IQR 3.0-8.5 years). Basal ECG frequently shows prominent U waves. Other CALM-related phenotypes are idiopathic ventricular fibrillation (IVF, n = 7), sudden unexplained death (SUD, n = 4), overlapping features of CPVT/LQTS (n = 3), and predominant neurological phenotype (n = 1). Cardiac structural abnormalities and neurological features were present in 18 and 13 patients, respectively. CONCLUSION Calmodulinopathies are largely characterized by adrenergically-induced life-threatening arrhythmias. Available therapies are disquietingly insufficient, especially in CALM-LQTS. Combination therapy with drugs, sympathectomy, and devices should be considered.
Collapse
Affiliation(s)
- Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Carla Spazzolini
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Alice Ghidoni
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Alban-Elouen Baruteau
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,L'Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France.,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Britt-Maria Beckmann
- Department of Medicine I, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Elijah R Behr
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | | | - Connie R Bezzina
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Zahurul A Bhuiyan
- Unité de Recherche Cardiogénétique, Service de Médecine Génétique, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alpay Celiker
- Department of Pediatric Cardiology, Koc University School of Medicine, Istanbul, Turkey
| | - Marina Cerrone
- Cardiovascular Genetics Program, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Federica Dagradi
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Gaetano M De Ferrari
- Division of Cardiology, "Città della Salute e della Scienza di Torino" Hospital, Department of Medical Sciences, University of Turin, Italy.,PhD Program in Translational Medicine, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Susan P Etheridge
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT, USA
| | - Meena Fatah
- The Labatt Family Heart Centre and Pediatrics (Cardiology), The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Pablo Garcia-Pavia
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, CIBERCV, Madrid, Spain.,University Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Saleh Al-Ghamdi
- Cardiac Sciences Department, Section of Pediatric Cardiology, King Abdulaziz Cardiac Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Robert M Hamilton
- The Labatt Family Heart Centre and Pediatrics (Cardiology), The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Zuhair N Al-Hassnan
- Cardiovascular Genetic Program, Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Juan Jimenez-Jaimez
- Cardiology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | | | - Juan P Kaski
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Maria-Christina Kotta
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Najim Lahrouchi
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute and Omics Research Center, Osaka, Japan
| | - Gabrielle Norrish
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Hans H Odland
- Department of Pediatric Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - John Papagiannis
- Division of Cardiology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Nicole Sekarski
- Paediatric Cardiology Unit, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Matteo Vatta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Invitae Corporation, San Francisco, CA, USA
| | - Gregory Webster
- Division of Cardiology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Arthur A M Wilde
- Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.,Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Julianne Wojciak
- Department of Genomic Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.,Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| |
Collapse
|
33
|
Saljic A, Muthukumarasamy KM, la Cour JM, Boddum K, Grunnet M, Berchtold MW, Jespersen T. Impact of arrhythmogenic calmodulin variants on small conductance Ca 2+ -activated K + (SK3) channels. Physiol Rep 2020; 7:e14210. [PMID: 31587513 PMCID: PMC6778599 DOI: 10.14814/phy2.14210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+‐sensing protein regulating many important cellular processes. Several CaM‐associated variants have been identified in a small group of patients with cardiac arrhythmias. The mechanism remains largely unknown, even though a number of ion channels, including the ryanodine receptors and the L‐type calcium channels have been shown to be functionally affected by the presence of mutant CaM. CaM is constitutively bound to the SK channel, which underlies the calcium‐gated ISK contributing to cardiac repolarization. The CaM binding to SK channels is essential for gating, correct assembly, and membrane expression. To elucidate the effect of nine different arrhythmogenic CaM variants on SK3 channel function, HEK293 cells stably expressing SK3 were transiently co‐transfected with CaMWT or variant and whole‐cell patch‐clamp recordings were performed with a calculated free Ca2+ concentration of 400 nmol/L. MDCK cells were transiently transfected with SK3 and/or CaMWT or variant to address SK3 and CaM localization by immunocytochemistry. The LQTS‐associated variants CaMD96V, CaMD130G, and CaMF142L reduced ISK,Ca compared with CaMWT (P < 0.01, P < 0.001, and P < 0.05, respectively). The CPVT associated variant CaMN54I also reduced the ISK,Ca (P < 0.05), which was linked to an accumulation of SK3/CaMN54I channel complexes in intracellular compartments (P < 0.05). The CPVT associated variants, CaMA103V and CaMD132E only revealed a tendency toward reduced current, while the variants CaMF90L and CaMN98S, causing LQTS syndrome, did not have any impact on ISK,Ca. In conclusion, we found that the arrhythmogenic CaM variants CaMN54I, CaMD96V, CaMD130G, and CaMF142L significantly down‐regulate the SK3 channel current, but with distinct mechanism.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Marstrand la Cour
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Werner Berchtold
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Ohno S, Ozawa J, Fukuyama M, Makiyama T, Horie M. An NGS-based genotyping in LQTS; minor genes are no longer minor. J Hum Genet 2020; 65:1083-1091. [PMID: 32681117 DOI: 10.1038/s10038-020-0805-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Mutations in KCNQ1, KCNH2, and SCN5A are the major cause of long QT syndrome (LQTS). More than 90% of the genotyped patients have been reported to carry mutations in any of these three genes. Thanks to increasing popularity of next generation sequencer (NGS), novel CACNA1C mutations have been identified among LQTS patients without extra-cardiac phenotypes. We aimed to clarify the frequency of genotypes in LQTS patients in the era of NGS. The study comprised 160 congenital LQTS patients (71 males) registered from November 2015 to September 2018. Inclusion criteria was QTc > 460 ms and Schwartz score ≥ 3. We performed genetic analysis using target gene method by NGS and confirmed the mutations by Sanger method. The median age for genetic screening was 13 (0-68) years. Sixteen patients suffered cardiac arrest, 47 syncope, and 97 were asymptomatic. We identified genetic mutations in 111 (69.4%) patients including 6 CACNA1C (5.4% of the genotyped patients) with 4 asymptomatic patients. Five (3.1%) patients carried double mutations; three out of them with RYR2 and KCNQ1 or KCNH2. In conclusion, CACNA1C screening would be recommended even if the patient is asymptomatic to elucidate the genetic background of the LQTS patients.
Collapse
Affiliation(s)
- Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan. .,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan. .,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Junichi Ozawa
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan.,Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
35
|
Nyegaard M, Overgaard MT. The International Calmodulinopathy Registry: recording the diverse phenotypic spectrum of un-CALM hearts. Eur Heart J 2020; 40:2976-2978. [PMID: 31280324 PMCID: PMC6748712 DOI: 10.1093/eurheartj/ehz463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
36
|
Su J, Gao Q, Yu L, Sun X, Feng R, Shao D, Yuan Y, Zhu Z, Sun X, Kameyama M, Hao L. The LQT-associated calmodulin mutant E141G induces disturbed Ca 2+-dependent binding and a flickering gating mode of the Ca V1.2 channel. Am J Physiol Cell Physiol 2020; 318:C991-C1004. [PMID: 32186935 DOI: 10.1152/ajpcell.00019.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71-59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China.,Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuanxuan Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Yuan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhengnan Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
37
|
Sharma N, Cortez D, Disori K, Imundo JR, Beck M. A Review of Long QT Syndrome: Everything a Hospitalist Should Know. Hosp Pediatr 2020; 10:369-375. [PMID: 32144177 DOI: 10.1542/hpeds.2019-0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this article, we will review various aspects of long QT syndrome (LQTS) necessary for hospitalists who care for children, adolescents, and young adults who have known LQTS and also review presenting features that should make one consider LQTS as a cause of hospitalization. Pediatric hospitalists care for patients who have suffered near-drowning, unexplained motor vehicular accidents, brief resolved unexpected events, sudden infant death syndrome, recurrent miscarriages, syncope, or seizures. These common conditions can be clinical clues in patients harboring 1 of 16 LQTS genetic mutations. LQTS is commonly caused by a channelopathy that can cause sudden cardiac death. Over the years, guidelines on management and recommendations for sports participation have evolved with our understanding of the disease and the burden of arrhythmias manifested in the pediatric age group. This review will include the genetic causes of LQTS, clinical features, and important historical information to obtain when these presentations are encountered. We will review medical and surgical treatments available to patients with LQTS and long-term care recommendations and prognosis for those diagnosed with LQTS.
Collapse
Affiliation(s)
| | - Daniel Cortez
- Division of Adult Electrophysiology, Department of Cardiology, Penn State Medical Center, Hershey, Pennsylvania; and.,Department of Cardiology, University of Lund, Lund, Sweden
| | - Kristin Disori
- Pediatric Hospital Medicine, Department of Pediatrics, Penn State Children's Hospital, Hershey, Pennsylvania
| | | | - Michael Beck
- Pediatric Hospital Medicine, Department of Pediatrics, Penn State Children's Hospital, Hershey, Pennsylvania;
| |
Collapse
|
38
|
Calmodulin Mutations Associated with Heart Arrhythmia: A Status Report. Int J Mol Sci 2020; 21:ijms21041418. [PMID: 32093079 PMCID: PMC7073091 DOI: 10.3390/ijms21041418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular Ca2+ sensing protein that modifies gating of numerous ion channels. CaM has an extraordinarily high level of evolutionary conservation, which led to the fundamental assumption that mutation would be lethal. However, in 2012, complete exome sequencing of infants suffering from recurrent cardiac arrest revealed de novo mutations in the three human CALM genes. The correlation between mutations and pathophysiology suggests defects in CaM-dependent ion channel functions. Here, we review the current state of the field for all reported CaM mutations associated with cardiac arrhythmias, including knowledge of their biochemical and structural characteristics, and progress towards understanding how these mutations affect cardiac ion channel function.
Collapse
|
39
|
Wang K, Brohus M, Holt C, Overgaard MT, Wimmer R, Van Petegem F. Arrhythmia mutations in calmodulin can disrupt cooperativity of Ca 2+ binding and cause misfolding. J Physiol 2020; 598:1169-1186. [PMID: 32012279 DOI: 10.1113/jp279307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in the calmodulin protein (CaM) are associated with arrhythmia syndromes. This study focuses on understanding the structural characteristics of CaM disease mutants and their interactions with the voltage-gated calcium channel CaV 1.2. Arrhythmia mutations in CaM can lead to loss of Ca2+ binding, uncoupling of Ca2+ binding cooperativity, misfolding of the EF-hands and altered affinity for the calcium channel. These results help us to understand how different CaM mutants have distinct effects on structure and interactions with protein targets to cause disease. ABSTRACT Calmodulinopathies are life-threatening arrhythmia syndromes that arise from mutations in calmodulin (CaM), a calcium sensing protein whose sequence is completely conserved across all vertebrates. These mutations have been shown to interfere with the function of cardiac ion channels, including the voltage-gated Ca2+ channel CaV 1.2 and the ryanodine receptor (RyR2), in a mutation-specific manner. The ability of different CaM disease mutations to discriminate between these channels has been enigmatic. We present crystal structures of several C-terminal lobe mutants and an N-terminal lobe mutant in complex with the CaV 1.2 IQ domain, in conjunction with binding assays and complementary structural biology techniques. One mutation (D130G) causes a pathological conformation, with complete separation of EF-hands within the C-lobe and loss of Ca2+ binding in EF-hand 4. Another variant (Q136P) has severely reduced affinity for the IQ domain, and shows changes in the CD spectra under Ca2+ -saturating conditions when unbound to the IQ domain. Ca2+ binding to a pair of EF-hands normally proceeds with very high cooperativity, but we found that N98S CaM can adopt different conformations with either one or two Ca2+ ions bound to the C-lobe, possibly disrupting the cooperativity. An N-lobe variant (N54I), which causes severe stress-induced arrhythmia, does not show any major changes in complex with the IQ domain, providing a structural basis for why this mutant does not affect function of CaV 1.2. These findings show that different CaM mutants have distinct effects on both the CaM structure and interactions with protein targets, and act via distinct pathological mechanisms to cause disease.
Collapse
Affiliation(s)
- Kaiqian Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Christian Holt
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| |
Collapse
|
40
|
Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, Feilotter H, Amenta S, Mazza D, Bikker H, Sturm AC, Garcia J, Ackerman MJ, Hershberger RE, Perez MV, Zareba W, Ware JS, Wilde AAM, Gollob MH. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation 2020; 141:418-428. [PMID: 31983240 PMCID: PMC7017940 DOI: 10.1161/circulationaha.119.043132] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Long QT syndrome (LQTS) is the first described and most common inherited arrhythmia. Over the last 25 years, multiple genes have been reported to cause this condition and are routinely tested in patients. Because of dramatic changes in our understanding of human genetic variation, reappraisal of reported genetic causes for LQTS is required. Methods: Utilizing an evidence-based framework, 3 gene curation teams blinded to each other’s work scored the level of evidence for 17 genes reported to cause LQTS. A Clinical Domain Channelopathy Working Group provided a final classification of these genes for causation of LQTS after assessment of the evidence scored by the independent curation teams. Results: Of 17 genes reported as being causative for LQTS, 9 (AKAP9, ANK2, CAV3, KCNE1, KCNE2, KCNJ2, KCNJ5, SCN4B, SNTA1) were classified as having limited or disputed evidence as LQTS-causative genes. Only 3 genes (KCNQ1, KCNH2, SCN5A) were curated as definitive genes for typical LQTS. Another 4 genes (CALM1, CALM2, CALM3, TRDN) were found to have strong or definitive evidence for causality in LQTS with atypical features, including neonatal atrioventricular block. The remaining gene (CACNA1C) had moderate level evidence for causing LQTS. Conclusions: More than half of the genes reported as causing LQTS have limited or disputed evidence to support their disease causation. Genetic variants in these genes should not be used for clinical decision-making, unless accompanied by new and sufficient genetic evidence. The findings of insufficient evidence to support gene-disease associations may extend to other disciplines of medicine and warrants a contemporary evidence-based evaluation for previously reported disease-causing genes to ensure their appropriate use in precision medicine.
Collapse
Affiliation(s)
- Arnon Adler
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.)
| | - Valeria Novelli
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Ahmad S Amin
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.S.A., A.A.M.W.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Emanuela Abiusi
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Melanie Care
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.)
| | - Eline A Nannenberg
- Department of Clinical Genetics (E.A.N., H.B.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada (H.F.)
| | - Simona Amenta
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Daniela Mazza
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Hennie Bikker
- Department of Clinical Genetics (E.A.N., H.B.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Amy C Sturm
- Geisinger Genomic Medicine Institute, Danville, PA (A.C.S.)
| | - John Garcia
- Invitae Corporation, San Francisco, CA (J.G.)
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Rochester, MN (M.J.A.)
| | - Raymond E Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, Ohio State University, Columbus (R.E.H.)
| | - Marco V Perez
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA (M.V.P.)
| | - Wojciech Zareba
- Cardiology Unit of the Department of Medicine, University of Rochester Medical Center, NY (W.Z.)
| | - James S Ware
- National Heart and Lung Institute and Medical Research Council London Institute of Medical Sciences, Imperial College London, UK (J.S.W.).,Royal Brompton and Harefield Hospitals National Health Service Trust, London, UK (J.S.W.)
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.S.A., A.A.M.W.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands.,Columbia University Irving Medical Center, New York (A.A.M.W.)
| | - Michael H Gollob
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.).,Department of Physiology, University of Toronto, and The Toronto General Hospital Research Institute, University Health Network, University of Toronto, Canada (M.H.G.)
| |
Collapse
|
41
|
Søndergaard MT, Liu Y, Guo W, Wei J, Wang R, Brohus M, Overgaard MT, Chen SRW. Role of cardiac ryanodine receptor calmodulin-binding domains in mediating the action of arrhythmogenic calmodulin N-domain mutation N54I. FEBS J 2019; 287:2256-2280. [PMID: 31763755 DOI: 10.1111/febs.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
Abstract
The Ca2+ -sensing protein calmodulin (CaM) inhibits cardiac ryanodine receptor (RyR2)-mediated Ca2+ release. CaM mutations associated with arrhythmias and sudden cardiac death have been shown to diminish CaM-dependent inhibition of RyR2, but the underlying mechanisms are not well understood. Nearly all arrhythmogenic CaM mutations identified are located in the C-domain of CaM and exert marked effects on Ca2+ binding to CaM and on the CaM C-domain interaction with the CaM-binding domain 2 (CaMBD2) in RyR2. Interestingly, the arrhythmogenic N-domain mutation CaM-N54I has little or no effect on Ca2+ binding to CaM or the CaM C-domain-RyR2 CaMBD2 interaction, unlike all CaM C-domain mutations. This suggests that CaM-N54I may diminish CaM-dependent RyR2 inhibition by affecting CaM N-domain interactions with RyR2 CaMBDs other than CaMBD2. To explore this possibility, we assessed the effects of deleting each of the four known CaMBDs in RyR2 (CaMBD1a, -1b, -2, or -3) on the CaM-dependent inhibition of RyR2-mediated Ca2+ release in HEK293 cells. We found that removing CaMBD1a, CaMBD1b, or CaMBD3 did not alter the effects of CaM-N54I or CaM-WT on RyR2 inhibition. On the other hand, deleting RyR2-CaMBD2 abolished the effects of both CaM-N54I and CaM-WT. Our results support that CaM-N54I causes aberrant RyR2 regulation via an uncharacterized CaMBD or less likely CaMBD2, and that RyR2 CaMBD2 is required for the actions of both N- and C-domain CaM mutations. Moreover, our results show that CaMBD1a is central to RyR2 regulation, but CaMBD1a, CaMBD1b, and CaMBD3 are not required for CaM-dependent inhibition of RyR2 in HEK293 cells.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| |
Collapse
|
42
|
Fujita S, Nakagawa R, Futatani T, Igarashi N, Fuchigami T, Saito S, Ohno S, Horie M, Hatasaki K. Long QT syndrome with a de novo CALM2 mutation in a 4-year-old boy. Pediatr Int 2019; 61:852-858. [PMID: 31283864 DOI: 10.1111/ped.13959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Human calmodulin (CALM) gene mutation has been reported to be related to inherited arrhythmia syndromes, but the genotype-phenotype relationship remains unclear. METHODS AND RESULTS We report here a 4-year-old boy who had cardiac arrest while playing in a kindergarten playground. Cardiopulmonary resuscitation was initiated immediately. Eleven minutes after the cardiac arrest, ambulance crews arrived and an automated external defibrillator was attached. His heart rhythm, which was ventricular fibrillation (VF), was returned to sinus rhythm after only one shock delivery. The boy was brought to hospital by air ambulance. During transfer, electrocardiogram (ECG) showed transient VF. On arrival, chest radiograph showed a cardiothoracic ratio of 55% without pulmonary congestion. A 12-lead ECG showed a normal sinus rhythm, biphasic T wave, and prolongation of the corrected QT interval. On ECG, VF was preceded by torsade de pointes or frequent polymorphic premature ventricular contractions (PVC). Echocardiography showed a normal heart structure with decreased cardiac function. On the second day of hospitalization, ECG showed remarkable QT prolongation, T-wave alternans, and frequent PVC. Thereafter, propranolol was started. The ECG showed rapid improvement of QT prolongation and T-wave abnormality. Genetic test indicated a CALM2 mutation, and he was diagnosed with long QT syndrome-15 (LQT15). CONCLUSIONS CALM mutations cause long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT) and idiopathic VF. This patient with a CALM2 p.N98S mutation had both phenotypes of LQTS and CPVT.
Collapse
Affiliation(s)
- Shuhei Fujita
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Ryo Nakagawa
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Takeshi Futatani
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Noboru Igarashi
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Takamasa Fuchigami
- Department of Emergency, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Shinsuke Saito
- Department of Emergency, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Seiko Ohno
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Minoru Horie
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kiyoshi Hatasaki
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| |
Collapse
|
43
|
Wren LM, Jiménez-Jáimez J, Al-Ghamdi S, Al-Aama JY, Bdeir A, Al-Hassnan ZN, Kuan JL, Foo RY, Potet F, Johnson CN, Aziz MC, Carvill GL, Kaski JP, Crotti L, Perin F, Monserrat L, Burridge PW, Schwartz PJ, Chazin WJ, Bhuiyan ZA, George AL. Genetic Mosaicism in Calmodulinopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:375-385. [PMID: 31454269 DOI: 10.1161/circgen.119.002581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND CaM (calmodulin) mutations are associated with congenital arrhythmia susceptibility (calmodulinopathy) and are most often de novo. In this report, we sought to broaden the genotype-phenotype spectrum of calmodulinopathies with 2 novel calmodulin mutations and to investigate mosaicism in 2 affected families. METHODS CaM mutations were identified in 4 independent cases by DNA sequencing. Biochemical and electrophysiological studies were performed to determine functional consequences of each mutation. RESULTS Genetic studies identified 2 novel CaM variants (CALM3-E141K in 2 cases; CALM1-E141V) and one previously reported CaM pathogenic variant (CALM3-D130G) among 4 probands with shared clinical features of prolonged QTc interval (range 505-725 ms) and documented ventricular arrhythmia. A fatal outcome occurred for 2 of the cases. The parents of all probands were asymptomatic with normal QTc duration. However, 2 of the families had multiple affected offspring or multiple occurrences of intrauterine fetal demise. The mother from the family with recurrent intrauterine fetal demise exhibited the CALM3-E141K mutant allele in 25% of next-generation sequencing reads indicating somatic mosaicism, whereas CALM3-D130G was present in 6% of captured molecules of the paternal DNA sample, also indicating mosaicism. Two novel mutations (E141K and E141V) impaired Ca2+ binding affinity to the C-domain of CaM. Human-induced pluripotent stem cell-derived cardiomyocytes overexpressing mutant or wild-type CaM showed that both mutants impaired Ca2+-dependent inactivation of L-type Ca2+ channels and prolonged action potential duration. CONCLUSIONS We report 2 families with somatic mosaicism associated with arrhythmogenic calmodulinopathy, and demonstrate dysregulation of L-type Ca2+ channels by 2 novel CaM mutations affecting the same residue. Parental mosaicism should be suspected in families with unexplained fetal arrhythmia or fetal demise combined with a documented CaM mutation.
Collapse
Affiliation(s)
- Lisa M Wren
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Juan Jiménez-Jáimez
- Cardiology Department (J.J.-J.), Virgen de las Nieves Hospital, Granada, Spain
| | - Saleh Al-Ghamdi
- Cardiac Sciences Department, Section of Pediatric Cardiology, King Abdulaziz Cardiac Center, Ministry of National Guard Health Affairs, Riyadh (S.A.-G.)
| | - Jumana Y Al-Aama
- Department of Genetic Medicine, Faculty of Medicine (J.Y.A.-A.), King Abdulaziz University, Jeddah.,Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders (J.Y.A.-A., A.B.), King Abdulaziz University, Jeddah
| | - Amnah Bdeir
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders (J.Y.A.-A., A.B.), King Abdulaziz University, Jeddah
| | - Zuhair N Al-Hassnan
- The Cardiovascular Genetics Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia (Z.N.A.-H.)
| | - Jyn L Kuan
- Department of Cardiology, National University Heart Center and Cardiovascular Research Institute, National University of Singapore (J.L.K., R.Y.F.)
| | - Roger Y Foo
- Department of Cardiology, National University Heart Center and Cardiovascular Research Institute, National University of Singapore (J.L.K., R.Y.F.)
| | - Franck Potet
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher N Johnson
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., W.J.C.)
| | - Miriam C Aziz
- Department of Neurology (M.C.A., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gemma L Carvill
- Department of Neurology (M.C.A., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Juan-Pablo Kaski
- Institute of Cardiovascular Science, University College London, United Kingdom (J.-P.K.)
| | - Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca (L.C.).,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.).,Cardiology Department, Health in Code SL, A Coruña, Spain (L.M.)
| | - Francesca Perin
- Pediatric Cardiology Division (F.P.), Virgen de las Nieves Hospital, Granada, Spain
| | | | - Paul W Burridge
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.)
| | - Walter J Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., W.J.C.)
| | - Zahurul A Bhuiyan
- Unité de Recherche Cardiogénétique, Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland (Z.A.B.)
| | - Alfred L George
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
44
|
The Taiwan Heart Registries: Its Influence on Cardiovascular Patient Care. J Am Coll Cardiol 2019; 71:1273-1283. [PMID: 29544612 DOI: 10.1016/j.jacc.2018.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
Abstract
Taiwanese heart registries for the main cardiovascular diseases have been conducted in the past 10 years, with the goal of examining the quality of cardiovascular patient care, which cannot be guaranteed by the universal Taiwan National Health Insurance. The results show suboptimal adherence to guideline recommendations. Door-to-balloon time and dual antiplatelet therapy use in acute coronary syndrome, standard medications for management of heart failure, low-density lipoprotein cholesterol levels in dyslipidemia, anticoagulant agent use in atrial fibrillation, and the understanding of sudden arrhythmia death syndrome were all found to be inadequate. However, all were improved, either by changing National Health Insurance policy or through continuous education for physicians and patients. Thus, specific cardiovascular disease registries could help examine the status of real-world practice, find inadequacies in guideline implementation and understanding of rare diseases, facilitate lobbying to policy makers and education for physicians and patients, and influence and improve cardiovascular patient care.
Collapse
|
45
|
Søndergaard MT, Liu Y, Brohus M, Guo W, Nani A, Carvajal C, Fill M, Overgaard MT, Chen SRW. Diminished inhibition and facilitated activation of RyR2-mediated Ca 2+ release is a common defect of arrhythmogenic calmodulin mutations. FEBS J 2019; 286:4554-4578. [PMID: 31230402 DOI: 10.1111/febs.14969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
A number of calmodulin (CaM) mutations cause severe cardiac arrhythmias, but their arrhythmogenic mechanisms are unclear. While some of the arrhythmogenic CaM mutations have been shown to impair CaM-dependent inhibition of intracellular Ca2+ release through the ryanodine receptor type 2 (RyR2), the impact of a majority of these mutations on RyR2 function is unknown. Here, we investigated the effect of 14 arrhythmogenic CaM mutations on the CaM-dependent RyR2 inhibition. We found that all the arrhythmogenic CaM mutations tested diminished CaM-dependent inhibition of RyR2-mediated Ca2+ release and increased store-overload induced Ca2+ release (SOICR) in HEK293 cells. Moreover, all the arrhythmogenic CaM mutations tested either failed to inhibit or even promoted RyR2-mediated Ca2+ release in permeabilized HEK293 cells with elevated cytosolic Ca2+ , which was markedly different from the inhibitory action of CaM wild-type. The CaM mutations also altered the Ca2+ -dependency of CaM binding to the RyR2 CaM-binding domain. These results demonstrate that diminished inhibition, and even facilitated activation, of RyR2-mediated Ca2+ release is a common defect of arrhythmogenic CaM mutations.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Alma Nani
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Catherine Carvajal
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.,Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
46
|
Guerri G, Krasi G, Precone V, Paolacci S, Chiurazzi P, Arrigoni L, Cortese B, Dautaj A, Bertelli M. Cardiac conduction defects. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:20-29. [PMID: 31577249 PMCID: PMC7233635 DOI: 10.23750/abm.v90i10-s.8751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 11/11/2022]
Abstract
Defects in cardiac electric impulse formation or conduction can lead to an irregular beat (arrhythmia) that can cause sudden death without any apparent cause or after stress. In the following sections, we describe the genetic disorders associated with primary cardiac conduction defects, primarily caused by mutations in ion channel genes. Primary indicates that these disorders are not caused by drugs and are not secondary to other disorders like cardiomyopathies (described in the next section).
Collapse
Affiliation(s)
- Giulia Guerri
- Authors have equally contributed to this work, MAGI’s Lab, Rovereto (TN), Italy
| | - Geraldo Krasi
- Authors have equally contributed to this work, MAGI Balkans, Tirana, Albania
| | | | - Stefano Paolacci
- MAGI’s Lab, Rovereto (TN), Italy,Correspondence: Stefano Paolacci Via delle Maioliche 57/D 38068 Rovereto (TN), Italy E-mail:
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy, UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli”, Rome, Italy
| | - Luca Arrigoni
- Section of Cardiovascular Diseases, Department of Clinical and Surgical Specialities, Radiological Sciences and Public Health, University and Spedali Civili Hospital of Brescia, Italy
| | | | | | | |
Collapse
|
47
|
Crotti L, Ghidoni A, Dagradi F. Genetics of Adult and Fetal Forms of Long QT Syndrome. GENETIC CAUSES OF CARDIAC DISEASE 2019. [DOI: 10.1007/978-3-030-27371-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
|
49
|
|
50
|
Badone B, Ronchi C, Kotta MC, Sala L, Ghidoni A, Crotti L, Zaza A. Calmodulinopathy: Functional Effects of CALM Mutations and Their Relationship With Clinical Phenotypes. Front Cardiovasc Med 2018; 5:176. [PMID: 30619883 PMCID: PMC6297375 DOI: 10.3389/fcvm.2018.00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
In spite of the widespread role of calmodulin (CaM) in cellular signaling, CaM mutations lead specifically to cardiac manifestations, characterized by remarkable electrical instability and a high incidence of sudden death at young age. Penetrance of the mutations is surprisingly high, thus postulating a high degree of functional dominance. According to the clinical patterns, arrhythmogenesis in CaM mutations can be attributed, in the majority of cases, to either prolonged repolarization (as in long-QT syndrome, LQTS phenotype), or to instability of the intracellular Ca2+ store (as in catecholamine-induced tachycardias, CPVT phenotype). This review discusses how mutations affect CaM signaling function and how this may relate to the distinct arrhythmia phenotypes/mechanisms observed in patients; this involves mechanistic interpretation of negative dominance and mutation-specific CaM-target interactions. Knowledge of the mechanisms involved may allow critical approach to clinical manifestations and aid in the development of therapeutic strategies for "calmodulinopathies," a recently identified nosological entity.
Collapse
Affiliation(s)
- Beatrice Badone
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Carlotta Ronchi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Maria-Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luca Sala
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|