1
|
Guntaka S, Alston MR, Gruber D, Azari BM. Isolated ventricular noncompaction in a patient with a sarcomeric gene mutation: A case report. HeartRhythm Case Rep 2024; 10:456-459. [PMID: 39129736 PMCID: PMC11312041 DOI: 10.1016/j.hrcr.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Affiliation(s)
- Saimanoj Guntaka
- Department of Medicine, North Shore University Hospital, Manhasset, New York
| | - Michael R. Alston
- Department of Cardiology, North Shore University Hospital, Manhasset, New York
| | - Dorota Gruber
- Department of Cardiology, North Shore University Hospital, Manhasset, New York
| | - Bani M. Azari
- Department of Cardiology, North Shore University Hospital, Manhasset, New York
| |
Collapse
|
2
|
Ntaios G, Baumgartner H, Doehner W, Donal E, Edvardsen T, Healey JS, Iung B, Kamel H, Kasner SE, Korompoki E, Navi BB, Pristipino C, Saba L, Schnabel RB, Svennberg E, Lip GYH. Embolic strokes of undetermined source: a clinical consensus statement of the ESC Council on Stroke, the European Association of Cardiovascular Imaging and the European Heart Rhythm Association of the ESC. Eur Heart J 2024; 45:1701-1715. [PMID: 38685132 PMCID: PMC11107123 DOI: 10.1093/eurheartj/ehae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
One in six ischaemic stroke patients has an embolic stroke of undetermined source (ESUS), defined as a stroke with unclear aetiology despite recommended diagnostic evaluation. The overall cardiovascular risk of ESUS is high and it is important to optimize strategies to prevent recurrent stroke and other cardiovascular events. The aim of clinicians when confronted with a patient not only with ESUS but also with any other medical condition of unclear aetiology is to identify the actual cause amongst a list of potential differential diagnoses, in order to optimize secondary prevention. However, specifically in ESUS, this may be challenging as multiple potential thromboembolic sources frequently coexist. Also, it can be delusively reassuring because despite the implementation of specific treatments for the individual pathology presumed to be the actual thromboembolic source, patients can still be vulnerable to stroke and other cardiovascular events caused by other pathologies already identified during the index diagnostic evaluation but whose thromboembolic potential was underestimated. Therefore, rather than trying to presume which particular mechanism is the actual embolic source in an ESUS patient, it is important to assess the overall thromboembolic risk of the patient through synthesis of the individual risks linked to all pathologies present, regardless if presumed causally associated or not. In this paper, a multi-disciplinary panel of clinicians/researchers from various backgrounds of expertise and specialties (cardiology, internal medicine, neurology, radiology and vascular surgery) proposes a comprehensive multi-dimensional assessment of the overall thromboembolic risk in ESUS patients through the composition of individual risks associated with all prevalent pathologies.
Collapse
Affiliation(s)
- George Ntaios
- Department of Internal Medicine, School of Health Sciences, University of Thessaly, Larissa University Hospital, Larissa 41132, Greece
| | - Helmut Baumgartner
- Department of Cardiology III: Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Muenster, Germany
| | - Wolfram Doehner
- Department of Cardiology (Campus Virchow), Center of Stroke Research Berlin, German Centre for Cardiovascular Research (DZHK) partner site Berlin, Berlin Institute of Health-Center for Regenerative Therapies, Deutsches Herzzentrum der Charité, Charité, Berlin, Germany
| | - Erwan Donal
- Service de Cardiologie et CIC-IT 1414, CHU Rennes, Rennes, France
| | - Thor Edvardsen
- Department of Cardiology, Faculty of Medicine, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Jeff S Healey
- Cardiology Division, McMaster University, Hamilton, Canada
| | - Bernard Iung
- Bichat Hospital, APHP and Université Paris-Cité, INSERM LVTS U1148, Paris, France
| | - Hooman Kamel
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Scott E Kasner
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eleni Korompoki
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Babak B Navi
- Clinical and Translational Neuroscience Unit, Feil Family Brain and Mind Research Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christian Pristipino
- Interventional and Intensive Cardiology Unit, San Filippo Neri Hospital, ASL Roma 1, Rome, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari—Polo di Monserrato, Cagliari, Italy
| | - Renate B Schnabel
- Department of Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Germany
| | - Emma Svennberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Mesquita T, Cingolani E. Targeting arrhythmogenic macrophages: lessons learned from arrhythmogenic cardiomyopathy. J Clin Invest 2024; 134:e180482. [PMID: 38747296 PMCID: PMC11093592 DOI: 10.1172/jci180482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.
Collapse
|
4
|
Gray MP, Fatkin D, Ingles J, Robertson EN, Figtree GA. Genetic testing in cardiovascular disease. Med J Aust 2024; 220:428-434. [PMID: 38571440 DOI: 10.5694/mja2.52278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally and is responsible for an estimated one-third of deaths as well as significant morbidity and health care utilisation. Technological and bioinformatic advances have facilitated the discovery of pathogenic germline variants for some specific CVDs, including familial hypercholesterolaemia, cardiomyopathies and arrhythmic syndromes. Use of these genetic tests for earlier disease identification is increasing due, in part, to decreasing costs, Medicare rebates, and consumer comfort with genetic testing. However, CVDs that occur more commonly, including coronary artery disease and atrial fibrillation, do not display monogenic inheritance patterns. Genetically, these diseases have generally been associated with many genetic variants each with a small effect size. This complexity can be expressed mathematically as a polygenic risk score. Genetic testing kits that provide polygenic risk scoring are becoming increasingly available directly to private-paying consumers outside the traditional clinical setting. An improved understanding of the evidence of genetics in CVD will offer clinicians new opportunities for individualised risk prediction and preventive therapy.
Collapse
Affiliation(s)
- Michael P Gray
- University of Sydney, Sydney, NSW
- Kolling Institute, Sydney, NSW
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Sydney, NSW
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, NSW
| | | | - Gemma A Figtree
- University of Sydney, Sydney, NSW
- Kolling Institute, Sydney, NSW
- Royal North Shore Hospital, Sydney, NSW
| |
Collapse
|
5
|
Galizia MS, Attili AK, Truesdell WR, Smith ED, Helms AS, Sulaiman AMA, Madamanchi C, Agarwal PP. Imaging Features of Arrhythmogenic Cardiomyopathies. Radiographics 2024; 44:e230154. [PMID: 38512728 PMCID: PMC10995833 DOI: 10.1148/rg.230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 03/23/2024]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by replacement of ventricular myocardium with fibrofatty tissue, predisposing the patient to ventricular arrhythmias and/or sudden cardiac death. Most cases of ACM are associated with pathogenic variants in genes that encode desmosomal proteins, an important cell-to-cell adhesion complex present in both the heart and skin tissue. Although ACM was first described as a disease predominantly of the right ventricle, it is now acknowledged that it can also primarily involve the left ventricle or both ventricles. The original right-dominant phenotype is traditionally diagnosed using the 2010 task force criteria, a multifactorial algorithm divided into major and minor criteria consisting of structural criteria based on two-dimensional echocardiographic, cardiac MRI, or right ventricular angiographic findings; tissue characterization based on endomyocardial biopsy results; repolarization and depolarization abnormalities based on electrocardiographic findings; arrhythmic features; and family history. Shortfalls in the task force criteria due to the modern understanding of the disease have led to development of the Padua criteria, which include updated criteria for diagnosis of the right-dominant phenotype and new criteria for diagnosis of the left-predominant and biventricular phenotypes. In addition to incorporating cardiac MRI findings of ventricular dilatation, systolic dysfunction, and regional wall motion abnormalities, the new Padua criteria emphasize late gadolinium enhancement at cardiac MRI as a key feature in diagnosis and imaging-based tissue characterization. Conditions to consider in the differential diagnosis of the right-dominant phenotype include various other causes of right ventricular dilatation such as left-to-right shunts and variants of normal right ventricular anatomy that can be misinterpreted as abnormalities. The left-dominant phenotype can mimic myocarditis at imaging and clinical examination. Additional considerations for the differential diagnosis of ACM, particularly for the left-dominant phenotype, include sarcoidosis and dilated cardiomyopathy. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Mauricio S. Galizia
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - Anil K. Attili
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - William R. Truesdell
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - Eric D. Smith
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - Adam S. Helms
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - Abdulbaset M. A. Sulaiman
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - Chaitanya Madamanchi
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| | - Prachi P. Agarwal
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and
Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S.,
A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E
Medical Center Dr, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Lenarczyk R, Zeppenfeld K, Tfelt-Hansen J, Heinzel FR, Deneke T, Ene E, Meyer C, Wilde A, Arbelo E, Jędrzejczyk-Patej E, Sabbag A, Stühlinger M, di Biase L, Vaseghi M, Ziv O, Bautista-Vargas WF, Kumar S, Namboodiri N, Henz BD, Montero-Cabezas J, Dagres N. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 2024; 26:euae049. [PMID: 38584423 PMCID: PMC10999775 DOI: 10.1093/europace/euae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.
Collapse
Affiliation(s)
- Radosław Lenarczyk
- Medical University of Silesia, Division of Medical Sciences, Department of Cardiology and Electrotherapy, Silesian Center for Heart Diseases, Skłodowskiej-Curie 9, 41-800 Zabrze, Poland
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- The Department of Forensic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frank R Heinzel
- Cardiology, Angiology, Intensive Care, Städtisches Klinikum Dresden Campus Friedrichstadt, Dresden, Germany
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
- Clinic for Electrophysiology, Klinikum Nuernberg, University Hospital of the Paracelsus Medical University, Nuernberg, Germany
| | - Elena Ene
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, Bad Neustadt an der Saale, Germany
| | - Christian Meyer
- Division of Cardiology/Angiology/Intensive Care, EVK Düsseldorf, Teaching Hospital University of Düsseldorf, Düsseldorf, Germany
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and arrhythmias, Amsterdam, the Netherlands
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ewa Jędrzejczyk-Patej
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Markus Stühlinger
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Luigi di Biase
- Albert Einstein College of Medicine at Montefiore Hospital, New York, NY, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Ohad Ziv
- Case Western Reserve University, Cleveland, OH, USA
- The MetroHealth System Campus, Cleveland, OH, USA
| | | | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Sydney, Australia
| | | | - Benhur Davi Henz
- Instituto Brasilia de Arritmias-Hospital do Coração do Brasil-Rede Dor São Luiz, Brasilia, Brazil
| | - Jose Montero-Cabezas
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
7
|
Ruberg FL, Maurer MS. Cardiac Amyloidosis Due to Transthyretin Protein: A Review. JAMA 2024; 331:778-791. [PMID: 38441582 PMCID: PMC11167454 DOI: 10.1001/jama.2024.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Importance Systemic amyloidosis from transthyretin (ATTR) protein is the most common type of amyloidosis that causes cardiomyopathy. Observations Transthyretin (TTR) protein transports thyroxine (thyroid hormone) and retinol (vitamin A) and is synthesized predominantly by the liver. When the TTR protein misfolds, it can form amyloid fibrils that deposit in the heart causing heart failure, heart conduction block, or arrhythmia such as atrial fibrillation. The biological processes by which amyloid fibrils form are incompletely understood but are associated with aging and, in some patients, affected by inherited variants in the TTR genetic sequence. ATTR amyloidosis results from misfolded TTR protein deposition. ATTR can occur in association with normal TTR genetic sequence (wild-type ATTR) or with abnormal TTR genetic sequence (variant ATTR). Wild-type ATTR primarily manifests as cardiomyopathy while ATTR due to a genetic variant manifests as cardiomyopathy and/or polyneuropathy. Approximately 50 000 to 150 000 people in the US have heart failure due to ATTR amyloidosis. Without treatment, heart failure due to ATTR amyloidosis is associated with a median survival of approximately 5 years. More than 130 different inherited genetic variants in TTR exist. The most common genetic variant is Val122Ile (pV142I), an allele with an origin in West African countries, that is present in 3.4% of African American individuals in the US or approximately 1.5 million persons. The diagnosis can be made using serum free light chain assay and immunofixation electrophoresis to exclude light chain amyloidosis combined with cardiac nuclear scintigraphy to detect radiotracer uptake in a pattern consistent with amyloidosis. Loop diuretics, such as furosemide, torsemide, and bumetanide, are the primary treatment for fluid overload and symptomatic relief of patients with ATTR heart failure. An ATTR-directed therapy that inhibited misfolding of the TTR protein (tafamidis, a protein stabilizer), compared with placebo, reduced mortality from 42.9% to 29.5%, reduced hospitalizations from 0.7/year to 0.48/year, and was most effective when administered early in disease course. Conclusions and Relevance ATTR amyloidosis causes cardiomyopathy in up to approximately 150 000 people in the US and tafamidis is the only currently approved therapy. Tafamidis slowed progression of ATTR amyloidosis and improved survival and prevented hospitalization, compared with placebo, in people with ATTR-associated cardiomyopathy.
Collapse
Affiliation(s)
- Frederick L Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts
- Amyloidosis Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Mathew S Maurer
- Cardiac Amyloidosis Program, Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, and NewYork-Presbyterian Hospital, New York
| |
Collapse
|
8
|
Kontorovich AR. Precision Phenotyping in Arrhythmogenic Cardiomyopathy: What's in a Name? J Am Coll Cardiol 2024; 83:808-810. [PMID: 38383095 DOI: 10.1016/j.jacc.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Amy R Kontorovich
- Fuster Heart Hospital and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
9
|
Corrado D, Anastasakis A, Basso C, Bauce B, Blomström-Lundqvist C, Bucciarelli-Ducci C, Cipriani A, De Asmundis C, Gandjbakhch E, Jiménez-Jáimez J, Kharlap M, McKenna WJ, Monserrat L, Moon J, Pantazis A, Pelliccia A, Perazzolo Marra M, Pillichou K, Schulz-Menger J, Jurcut R, Seferovic P, Sharma S, Tfelt-Hansen J, Thiene G, Wichter T, Wilde A, Zorzi A. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol 2024; 395:131447. [PMID: 37844667 DOI: 10.1016/j.ijcard.2023.131447] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late‑gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy.
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carina Blomström-Lundqvist
- Department of Cardiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis, Brussel - Vrije Universiteit Brussel, Belgium
| | - Estelle Gandjbakhch
- Sorbonne Universitè, APHP, Centre de Référence des Maladies Cardiaques héréditaires Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Maria Kharlap
- Department of cardiac arrhythmias, National Centre for Therapy and Preventive Medicine, Moscow, Petroverigsky, Russia
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Lorenzo Monserrat
- Cardiovascular Genetics, Medical Department, Dilemma Solutions SL, A Coruña, Spain
| | - James Moon
- CMR Service, Barts Heart Centre, University College London, United Kingdom
| | - Antonis Pantazis
- Inherited Cardiovascular Conditions services, The Royal Brompton and Harefield Hospitals, London, United Kingdom
| | | | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Kalliopi Pillichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Jeanette Schulz-Menger
- Charité, Universitätsmedizin Berlin, Campus Buch - ECRC and Helios Clinics, DZHK Partnersite Berlin, Germany
| | - Ruxandra Jurcut
- Expert Center for Rare Genetic Cardiovascular Diseases, Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", UMF "Carol Davila", Bucharest, Romania
| | - Petar Seferovic
- University of Belgrade, Faculty of Medicine and Heart Failure Center, Belgrade University Medical Center, Belgrade
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, United Kingdom
| | - Jacob Tfelt-Hansen
- Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gaetano Thiene
- University of Padua Medical School, ARCA Associazione Ricerche Cardiopatie Aritmiche ETS, Padova, Italy
| | - Thomas Wichter
- Dept. of Internal Medicine / Cardiology, Heart Center Osnabrück - Bad Rothenfelde, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Amsterdam, the Netherlands
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| |
Collapse
|
10
|
Wasef M, Guha K. A novel combination of filamin C mutation and cardiorespiratory sarcoidosis in a patient with left ventricular systolic dysfunction. BMJ Case Rep 2024; 17:e257482. [PMID: 38167413 PMCID: PMC10773316 DOI: 10.1136/bcr-2023-257482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Cardiac sarcoidosis is an unpredictable, rare and potentially lethal condition whereby patients are exposed to sudden cardiac death. However, despite sophisticated imaging techniques and the need for careful multidisciplinary team assessment and management, the contribution from genetic mutations is uncertain. Hence, the case describes a novel observation of a patient who possessed both a filamin C mutation and cardiac sarcoidosis. The case highlights the need for detailed dedicated investigation and highlights the need for the consideration of genetic screening within patients with cardiac sarcoidosis.
Collapse
Affiliation(s)
- Mohammad Wasef
- Cardiology, Portsmouth Hospitals University Hospital NHS Trust, Portsmouth, Hampshire, UK
| | - Kaushik Guha
- Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, Hampshire, UK
| |
Collapse
|
11
|
Lorca R, Pascual I, Fernandez M, Alvarez-Velasco R, Colunga S, Muñiz M, Izquierdo M, Fernandez Y, Esteban E, Gomez J, Avanzas P, Lopez-Fernandez T. Concealed Inherited Cardiomyopathies Detected in Cardio-Oncology Screening. J Clin Med 2023; 13:2. [PMID: 38202009 PMCID: PMC10780282 DOI: 10.3390/jcm13010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Basal cardiovascular risk assessment in cardio-oncology is essential. Integrating clinical information, ECG and transthoracic echocardiogram can identify concealed inherited cardiomyopathies (ICMPs) with potential added risk of cardiotoxicity. We aimed to evaluate the impact of our Cardio-Oncology Unit design in detecting concealed ICMPs. METHODS We carried out a retrospective study of all consecutive breast cancer patients referred to the Cardio-Oncology Unit for cardiac evaluation (2020-2022). ICMPs diagnosis was provided according to ESC guidelines and underwent genetic testing. ICMPs prevalence in this cohort was compared to the highest and lowest frequency reported in the general population. RESULTS Among 591 breast cancer patients, we identified eight patients with ICMPs: one arrhythmogenic cardiomyopathy (ACM), three familial non-ischemic dilated cardiomyopathy (DCM), three hypertrophic cardiomyopathy (HCM) and one left ventricular non-compaction cardiomyopathy (LVNC), which has now been reclassified as non-dilated left ventricular cardiomyopathy. The number of ICMPs identified was within the expected range (neither overdiagnosed nor overlooked): ACM 0.0017 vs. 0.0002-0.001 (p 0.01-0.593); DCM 0.0051 vs. 0.002-0.0051 (p 0.094-0.676); HCM 0.005 vs. 0.0002-0.002 (p < 0.001-0.099); LVCN 0.0017 vs. 0.00014-0.013 (p 0.011-0.015). Genetic testing identified a pathogenic FLNC variant and two pathogenic TTN variants. CONCLUSION Opportunistic screening of ICMPs during basal cardiovascular risk assessment can identify high-risk cancer patients who benefit from personalized medicine and enables extension of prevention strategies to all available relatives at concealed high cardiovascular risk.
Collapse
Affiliation(s)
- Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (I.P.); (M.F.); (R.A.-V.); (S.C.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Biología Funcional. Área de Fisiología, Universidad de Oviedo, 33003 Oviedo, Spain
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Isaac Pascual
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (I.P.); (M.F.); (R.A.-V.); (S.C.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain;
| | - Maria Fernandez
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (I.P.); (M.F.); (R.A.-V.); (S.C.); (P.A.)
| | - Rut Alvarez-Velasco
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (I.P.); (M.F.); (R.A.-V.); (S.C.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Santiago Colunga
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (I.P.); (M.F.); (R.A.-V.); (S.C.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Maria Muñiz
- Oncología Médica, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (M.M.); (M.I.); (Y.F.)
| | - Marta Izquierdo
- Oncología Médica, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (M.M.); (M.I.); (Y.F.)
| | - Yolanda Fernandez
- Oncología Médica, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (M.M.); (M.I.); (Y.F.)
| | - Emilio Esteban
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain;
- Oncología Médica, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (M.M.); (M.I.); (Y.F.)
| | - Juan Gomez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; (I.P.); (M.F.); (R.A.-V.); (S.C.); (P.A.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain;
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Teresa Lopez-Fernandez
- Cardiología, Hospital Universitario la Paz, IdiPAZ Research Institute, 28046 Madrid, Spain;
| |
Collapse
|
12
|
Calò L, Crescenzi C, Martino A, Casella M, Romeo F, Cappelletto C, Bressi E, Panattoni G, Stolfo D, Targetti M, Toso E, Musumeci MB, Tini G, Ciabatti M, Stefanini M, Silvetti E, Stazi A, Danza ML, Rebecchi M, Canestrelli S, Fedele E, Lanzillo C, Fusco A, Sangiuolo FC, Oliviero G, Radesich C, Perotto M, Pieroni M, Golia P, Mango R, Gasperetti A, Autore C, Merlo M, de Ruvo E, Russo AD, Olivotto I, Sinagra G, Gaita F. The Diagnostic Value of the 12-Lead ECG in Arrhythmogenic Left Ventricular Cardiomyopathy: Novel ECG Signs. JACC Clin Electrophysiol 2023; 9:2615-2627. [PMID: 37768253 DOI: 10.1016/j.jacep.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Electrocardiographic (ECG) findings in arrhythmogenic left ventricular cardiomyopathy (ALVC) are limited to small case series. OBJECTIVES This study aimed to analyze the ECG characteristics of ALVC patients and to correlate ECG with cardiac magnetic resonance and genotype data. METHODS We reviewed data of 54 consecutive ALVC patients (32 men, age 39 ± 15 years) and compared them with 84 healthy controls with normal cardiac magnetic resonance. RESULTS T-wave inversion was often noted (57.4%), particularly in the inferior and lateral leads. Low QRS voltages in limb leads were observed in 22.2% of patients. The following novel ECG findings were identified: left posterior fascicular block (LPFB) (20.4%), pathological Q waves (33.3%), and a prominent R-wave in V1 with a R/S ratio ≥0.5 (24.1%). The QRS voltages were lower in ALVC compared with controls, particularly in lead I and II. At receiver-operating characteristic analysis, the sum of the R-wave in I to II ≤8 mm (AUC: 0.909; P < 0.0001) and S-wave in V1 plus R-wave in V6 ≤12 mm (AUC: 0.784; P < 0.0001) effectively discriminated ALVC patients from controls. It is noteworthy that 4 of the 8 patients with an apparently normal ECG were recognized by these new signs. Transmural late gadolinium enhancement was associated to LPFB, a R/S ratio ≥0.5 in V1, and inferolateral T-wave inversion, and a ringlike pattern correlated to fragmented QRS, SV1+RV6 ≤12 mm, low QRS voltage, and desmoplakin alterations. CONCLUSIONS Pathological Q waves, LPFB, and a prominent R-wave in V1 were common ECG signs in ALVC. An R-wave sum in I to II ≤8 mm and SV1+RV6 ≤12 mm were specific findings for ALVC phenotypes compared with controls.
Collapse
Affiliation(s)
- Leonardo Calò
- Division of Cardiology, Policlinico Casilino, Rome, Italy.
| | | | | | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Cardiology Hospital Ospedali Riuniti, Ancona, Italy
| | - Fabiana Romeo
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Chiara Cappelletto
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Edoardo Bressi
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | - Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Mattia Targetti
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Elisabetta Toso
- Division of Cardiology, Department of Medical Sciences, AOU Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Maria Beatrice Musumeci
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Giacomo Tini
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | | | | | - Elisa Silvetti
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | | | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | - Elisa Fedele
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | | | - Armando Fusco
- Division of Radiology, Policlinico Casilino, Rome, Italy
| | | | - Giada Oliviero
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Cinzia Radesich
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Maria Perotto
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | | | - Paolo Golia
- Division of Cardiology, Policlinico Casilino, Rome, Italy
| | - Ruggiero Mango
- Cardiology Unit, Department of Emergency and Critical Care, Policlinico Tor Vergata, Rome, Italy
| | | | - Camillo Autore
- Cardiology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | | | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Cardiology Hospital Ospedali Riuniti, Ancona, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Cardiology Unit, Meyer University Children Hospital IRCCS, University of Florence, Florence, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina, University of Trieste, Trieste, Italy
| | - Fiorenzo Gaita
- Division of Cardiology, Department of Medical Sciences, AOU Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| |
Collapse
|
13
|
Jacobs J, Van Aelst L, Breckpot J, Corveleyn A, Kuiperi C, Dupont M, Heggermont W, De Vadder K, Willems R, Van Cleemput J, Bogaert JG, Robyns T. Tools to differentiate between Filamin C and Titin truncating variant carriers: value of MRI. Eur J Hum Genet 2023; 31:1323-1332. [PMID: 37032351 PMCID: PMC10620392 DOI: 10.1038/s41431-023-01357-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
Whereas truncating variants of the giant protein Titin (TTNtv) are the main cause of familial dilated cardiomyopathy (DCM), recently Filamin C truncating variants (FLNCtv) were identified as a cause of arrhythmogenic cardiomyopathy (ACM). Our aim was to characterize and compare clinical and MRI features of TTNtv and FLNCtv in the Belgian population. In index patients referred for genetic testing of ACM/DCM, FLNCtv and TTNtv were found in 17 (3.6%) and 33 (12.3%) subjects, respectively. Further family cascade screening yielded 24 and 19 additional truncating variant carriers in FLNC and TTN, respectively. The main phenotype was ACM in FLNCtv carriers whereas TTNtv carriers showed either an ACM or DCM phenotype. Non-sustained Ventricular Tachycardia was frequent in both populations. MRI data, available in 28/40 FLNCtv and 32/52 TTNtv patients, showed lower Left Ventricular (LV) ejection fraction and lower LV strain in TTNtv patients (p < 0.01). Conversely, both the frequency (68% vs 22%) and extent of non-ischemic myocardial late gadolinium enhancement (LGE) was significantly higher in FLNCtv patients (p < 0.01). Hereby, ring-like LGE was found in 16/19 (84%) FLNCtv versus 1/7 (14%) of TTNtv patients (p < 0.01). In conclusion, a large number of FLNCtv and TTNtv patients present with an ACM phenotype but can be separated by cardiac MRI. Whereas FLNCtv patients often have extensive myocardial fibrosis, typically following a ring-like pattern, LV dysfunction without or limited replacement fibrosis is the common TTNtv phenotype.
Collapse
Affiliation(s)
- Johanna Jacobs
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - Lucas Van Aelst
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| | | | | | - Cuno Kuiperi
- Center for Human Genetics, UZ Leuven, 3000, Leuven, Belgium
| | - Matthias Dupont
- Department of Cardiology, Ziekenhuis Oost-Limburg (ZOL), 3600, Genk, Belgium
| | - Ward Heggermont
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiology, Onze-Lieve-Vrouwziekenhuis Aalst, 9300, Aalst, Belgium
| | | | - Rik Willems
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Johan Van Cleemput
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Jan G Bogaert
- Department of Radiology, UZ Leuven, 3000, Leuven, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium
| | - Tomas Robyns
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Diseases, University Hospitals Leuven, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Brito D, Albrecht FC, de Arenaza DP, Bart N, Better N, Carvajal-Juarez I, Conceição I, Damy T, Dorbala S, Fidalgo JC, Garcia-Pavia P, Ge J, Gillmore JD, Grzybowski J, Obici L, Piñero D, Rapezzi C, Ueda M, Pinto FJ. World Heart Federation Consensus on Transthyretin Amyloidosis Cardiomyopathy (ATTR-CM). Glob Heart 2023; 18:59. [PMID: 37901600 PMCID: PMC10607607 DOI: 10.5334/gh.1262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 10/31/2023] Open
Abstract
Transthyretin amyloid cardiomyopathy (ATTR-CM) is a progressive and fatal condition that requires early diagnosis, management, and specific treatment. The availability of new disease-modifying therapies has made successful treatment a reality. Transthyretin amyloid cardiomyopathy can be either age-related (wild-type form) or caused by mutations in the TTR gene (genetic, hereditary forms). It is a systemic disease, and while the genetic forms may exhibit a variety of symptoms, a predominant cardiac phenotype is often present. This document aims to provide an overview of ATTR-CM amyloidosis focusing on cardiac involvement, which is the most critical factor for prognosis. It will discuss the available tools for early diagnosis and patient management, given that specific treatments are more effective in the early stages of the disease, and will highlight the importance of a multidisciplinary approach and of specialized amyloidosis centres. To accomplish these goals, the World Heart Federation assembled a panel of 18 expert clinicians specialized in TTR amyloidosis from 13 countries, along with a representative from the Amyloidosis Alliance, a patient advocacy group. This document is based on a review of published literature, expert opinions, registries data, patients' perspectives, treatment options, and ongoing developments, as well as the progress made possible via the existence of centres of excellence. From the patients' perspective, increasing disease awareness is crucial to achieving an early and accurate diagnosis. Patients also seek to receive care at specialized amyloidosis centres and be fully informed about their treatment and prognosis.
Collapse
Affiliation(s)
- Dulce Brito
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Fabiano Castro Albrecht
- Dante Pazzanese Institute of Cardiology – Cardiac Amyloidosis Center Dante Pazzanese Institute, São Paulo, Brazil
| | | | - Nicole Bart
- St Vincent’s Hospital, Victor Chang Cardiac Research Institute, University of New South Wales, Sydney, Australia
| | - Nathan Better
- Cabrini Health, Malvern, Royal Melbourne Hospital, Parkville, Monash University and University of Melbourne, Victoria, Australia
| | | | - Isabel Conceição
- Department of Neurosciences and Mental Health, CHULN – Hospital de Santa Maria, Portugal
- Centro de Estudos Egas Moniz Faculdade de Medicina da Universidade de Lisboa Portugal, Portugal
| | - Thibaud Damy
- Department of Cardiology, DHU A-TVB, CHU Henri Mondor, AP-HP, INSERM U955 and UPEC, Créteil, France
- Referral Centre for Cardiac Amyloidosis, GRC Amyloid Research Institute, Reseau amylose, Créteil, France. Filière CARDIOGEN
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Cardiac Amyloidosis Program, Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- CV imaging program, Cardiovascular Division and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Julian D. Gillmore
- National Amyloidosis Centre, University College London, Royal Free Campus, United Kingdom
| | - Jacek Grzybowski
- Department of Cardiomyopathy, National Institute of Cardiology, Warsaw, Poland
| | - Laura Obici
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Claudio Rapezzi
- Cardiovascular Institute, University of Ferrara, Ferrara, Italy
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Fausto J. Pinto
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte, CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Neves R, Tseng AS, Garmany R, Fink AL, McLeod CJ, Cooper LT, MacIntyre CJ, Homb AC, Rosenbaum AN, Bois JP, Abou Ezzeddine OF, Siontis KC, Pereira NL, Ackerman MJ, Giudicessi JR. Cardiac fludeoxyglucose-18 positron emission tomography in genotype-positive arrhythmogenic cardiomyopathy. Int J Cardiol 2023; 389:131173. [PMID: 37423567 DOI: 10.1016/j.ijcard.2023.131173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Myocardial inflammation contributes to the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a clinically and genetically heterogenous disorder. Due to phenotypic overlap, some patients with genetic ACM may be evaluated for an underlying inflammatory cardiomyopathy. However, the cardiac fludeoxyglucose (FDG) positron emission tomography (PET) findings in ACM patients have not been elucidated. METHODS All genotype-positive patients in the Mayo Clinic ACM registry (n = 323) who received a cardiac FDG PET were included in this study. Pertinent data were extracted from the medical record. RESULTS Collectively, 12/323 (4%; 67% female) genotype-positive ACM patients received a cardiac PET FDG scan as part of their clinical evaluation (median age at scan 49 ± 13 years). Amongst these patients, pathogenic/likely pathogenic variants were detected in LMNA (n = 7), DSP (n = 3), FLNC (n = 1) and PLN (n = 1). Of note, 6/12 (50%) had abnormal myocardial FDG uptake, including diffuse (entire myocardium) uptake in 2/6 (33%), focal (1-2 segments) uptake in 2/6 (33%) and patchy (3+ segments) in 2/6 (33%). Median myocardial standardized uptake value ratio was 2.1. Interestingly, LMNA-positive patients accounted for 3 out of 6 (50%) positive studies (diffuse uptake in 2 and focal uptake in 1). CONCLUSION Abnormal myocardial FDG uptake is common in genetic ACM patients undergoing cardiac FDG PET. This study further supports the role of myocardial inflammation in ACM. Further investigation is needed to determine role of FDG PET in diagnosis and management of ACM and investigate the role of inflammation in ACM.
Collapse
Affiliation(s)
- Raquel Neves
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA
| | - Andrew S Tseng
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Ramin Garmany
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Angela L Fink
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Andrew C Homb
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - John P Bois
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN, USA
| | - John R Giudicessi
- Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Johnson N, Ginks M, Ferreira VM, Kardos A. Myocarditis as a trigger for the expression of biventricular arrhythmogenic cardiomyopathy in desmosomal gene mutation. Echocardiography 2023; 40:1122-1126. [PMID: 37563622 DOI: 10.1111/echo.15665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Arrhythmogenic-cardiomyopathy (ACM) is an inherited heart disease with right, left, or biventricular (BVACM) involvement based on EKG, imaging, family history, and genetic testing. We present a 64-year-old woman with prior myocarditis and diagnosis of BVACM 29 years later. We propose myocarditis as a promoter of gene expression of plakophilin-2 mutation.
Collapse
Affiliation(s)
- Nicholas Johnson
- Department of Cardiology & Translational Cardiovascular Research Group, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK
| | - Matthew Ginks
- Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Vanessa M Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, England, UK
| | - Attila Kardos
- Department of Cardiology & Translational Cardiovascular Research Group, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK
- Faculty of Medicine and Health Sciences, University of Buckingham, Buckingham, UK
| |
Collapse
|
17
|
Tini G, Graziosi M, Musumeci B, Targetti M, Russo D, Parisi V, Argirò A, Ditaranto R, Leone O, Autore C, Olivotto I, Biagini E. Diagnostic delay in arrhythmogenic cardiomyopathy. Eur J Prev Cardiol 2023; 30:1315-1322. [PMID: 36848329 DOI: 10.1093/eurjpc/zwad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
AIMS Diagnosis of arrhythmogenic cardiomyopathy (ACM) may be challenging, as it comprises diverse phenotypes (right dominant, biventricular, and left dominant), and each may overlap with other clinical entities. The issue of differential diagnosis with conditions mimicking ACM has been previously highlighted; however, a systematic analysis of ACM diagnostic delay, and of its clinical implications, is lacking. METHODS AND RESULTS Data of all ACM patients from three Italian Cardiomyopathy Referral Centres were reviewed to assess the time from first medical contact to definitive ACM diagnosis; a significant diagnostic delay was defined as a time to ACM diagnosis ≥2 years. Baseline characteristics and clinical course of patients with and without diagnostic delay were compared. Of 174 ACM patients, 31% experienced diagnostic delay, with a median time to diagnosis of 8 years (20% in right-dominant ACM, 33% in left-dominant ACM, and 39% in biventricular). Patients with diagnostic delay, when compared with those without, more frequently exhibited an ACM phenotype with left ventricular (LV) involvement (74 vs. 57%, P = 0.04) and a specific genetic background (none had plakophilin-2 variants). The most common initial (mis)diagnoses were dilated cardiomyopathy (51%), myocarditis (21%), and idiopathic ventricular arrhythmia (9%). At follow-up, all-cause mortality was greater in those with diagnostic delay (P = 0.03). CONCLUSION Diagnostic delay is common in patients with ACM, particularly in the presence of LV involvement, and is associated with greater mortality at follow-up. Clinical suspicion and increasing use of tissue characterization by cardiac magnetic resonance in specific clinical settings are of key importance for the timely identification of ACM.
Collapse
Affiliation(s)
- Giacomo Tini
- Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Maddalena Graziosi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Beatrice Musumeci
- Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Mattia Targetti
- Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla 3, 50134, Florence, Italy
| | - Domitilla Russo
- Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Vanda Parisi
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Alessia Argirò
- Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla 3, 50134, Florence, Italy
| | - Raffaello Ditaranto
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Ornella Leone
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| | - Camillo Autore
- San Raffaele Cassino (FR), Via Gaetano di Biasio 1, 03043 Cassino, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Largo Giovanni Alessandro Brambilla 3, 50134, Florence, Italy
| | - Elena Biagini
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti 9, 40138, Bologna, Italy
| |
Collapse
|
18
|
Brown EE, Murray B. A Practical Guide to Genetic Testing in Inherited Heart Disease. Card Electrophysiol Clin 2023; 15:241-247. [PMID: 37558295 DOI: 10.1016/j.ccep.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Genetic testing has increasingly been shown to provide critical information regarding the treatment and management of patients with hereditary cardiomyopathies and arrhythmias and is available for a wide variety of conditions. It can provide information regarding arrhythmia risk, lifestyle recommendations, such as exercise avoidance, pharmaceutical therapies, and prognosis. Beyond the proband, genetic testing can be a valuable tool for cascade screening in the family. Genetic testing should be accompanied with genetic counseling, as genetic tests should be accompanied by expert interpretation, support in cascade family evaluation, and psychosocial considerations. Overall, it should be routinely implemented in arrhythmia and cardiomyopathy clinics.
Collapse
Affiliation(s)
- Emily E Brown
- Division of Cardiology, Johns Hopkins University, 600 North Wolfe Street, Blalock 572, Baltimore, MD 21287, USA.
| | - Brittney Murray
- Division of Cardiology, Johns Hopkins University, 600 North Wolfe Street, Blalock 572, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
20
|
Heidenreich PA, Haddad F, Parikh VN. A Precision Approach to Family Screening in ARVC. J Am Coll Cardiol 2023; 82:226-227. [PMID: 37438008 DOI: 10.1016/j.jacc.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 07/14/2023]
Affiliation(s)
- Paul A Heidenreich
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA; VA Palo Alto Health Care System, Palo Alto, California, USA.
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Victoria N Parikh
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA; Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Papadopoulou E, Bouzarelou D, Tsaousis G, Papathanasiou A, Vogiatzi G, Vlachopoulos C, Miliou A, Papachristou P, Prappa E, Servos G, Ritsatos K, Seretis A, Frogoudaki A, Nasioulas G. Application of next generation sequencing in cardiology: current and future precision medicine implications. Front Cardiovasc Med 2023; 10:1202381. [PMID: 37424920 PMCID: PMC10327645 DOI: 10.3389/fcvm.2023.1202381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Inherited cardiovascular diseases are highly heterogeneous conditions with multiple genetic loci involved. The application of advanced molecular tools, such as Next Generation Sequencing, has facilitated the genetic analysis of these disorders. Accurate analysis and variant identification are required to maximize the quality of the sequencing data. Therefore, the application of NGS for clinical purposes should be limited to laboratories with a high level of technological expertise and resources. In addition, appropriate gene selection and variant interpretation can result in the highest possible diagnostic yield. Implementation of genetics in cardiology is imperative for the accurate diagnosis, prognosis and management of several inherited disorders and could eventually lead to the realization of precision medicine in this field. However, genetic testing should also be accompanied by an appropriate genetic counseling procedure that clarifies the significance of the genetic analysis results for the proband and his family. In this regard, a multidisciplinary collaboration among physicians, geneticists, and bioinformaticians is imperative. In the present review, we address the current state of knowledge regarding genetic analysis strategies employed in the field of cardiogenetics. Variant interpretation and reporting guidelines are explored. Additionally, gene selection procedures are accessed, with a particular emphasis on information concerning gene-disease associations collected from international alliances such as the Gene Curation Coalition (GenCC). In this context, a novel approach to gene categorization is proposed. Moreover, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, focusing on cardiology-related genes. Finally, the most recent information on genetic analysis's clinical utility is reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Georgia Vogiatzi
- Third Department of Cardiology, Sotiria Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- Unit of Inherited Cardiac Conditions and Sports Cardiology, First Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Miliou
- Unit of Inherited Cardiac Conditions and Sports Cardiology, First Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Efstathia Prappa
- Second Department of Cardiology, Arrhythmia Unit, Evangelismos General Hospital of Athens, Athens, Greece
| | - Georgios Servos
- Pediatric Cardiology Unit, “P. & A. Kyriakou” Children’s Hospital, Athens, Greece
| | - Konstantinos Ritsatos
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Aristeidis Seretis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Alexandra Frogoudaki
- Second Department of Cardiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
22
|
Castiglione V, Aimo A, Todiere G, Barison A, Fabiani I, Panichella G, Genovesi D, Bonino L, Clemente A, Cademartiri F, Giannoni A, Passino C, Emdin M, Vergaro G. Role of Imaging in Cardiomyopathies. Card Fail Rev 2023; 9:e08. [PMID: 37427006 PMCID: PMC10326670 DOI: 10.15420/cfr.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 07/11/2023] Open
Abstract
Imaging has a central role in the diagnosis, classification, and clinical management of cardiomyopathies. While echocardiography is the first-line technique, given its wide availability and safety, advanced imaging, including cardiovascular magnetic resonance (CMR), nuclear medicine and CT, is increasingly needed to refine the diagnosis or guide therapeutic decision-making. In selected cases, such as in transthyretin-related cardiac amyloidosis or in arrhythmogenic cardiomyopathy, the demonstration of histological features of the disease can be avoided when typical findings are observed at bone-tracer scintigraphy or CMR, respectively. Findings from imaging techniques should always be integrated with data from the clinical, electrocardiographic, biomarker, genetic and functional evaluation to pursue an individualised approach to patients with cardiomyopathy.
Collapse
Affiliation(s)
- Vincenzo Castiglione
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Alberto Aimo
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Giancarlo Todiere
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Andrea Barison
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Iacopo Fabiani
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Giorgia Panichella
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Dario Genovesi
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Lucrezia Bonino
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Alberto Clemente
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Filippo Cademartiri
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Alberto Giannoni
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Claudio Passino
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Michele Emdin
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Giuseppe Vergaro
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| |
Collapse
|
23
|
Katyal A, Li COY, Franciosi S, Sanatani S. The safety of sports in children with inherited arrhythmia substrates. Front Pediatr 2023; 11:1151286. [PMID: 37124180 PMCID: PMC10132466 DOI: 10.3389/fped.2023.1151286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Sudden cardiac death (SCD) is a rare and devastating event in children and remains a leading cause of death in young athletes. Channelopathies and cardiomyopathies, in particular long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), hypertrophic cardiomyopathy (HCM), and arrhythmogenic cardiomyopathy (ACM) are associated with exercise-related SCD. Implantable cardioverter-defibrillators (ICDs) are often placed for secondary prevention for athletes with cardiomyopathy or channelopathy. There remains concern regarding the safety of return to participation with an ICD in place. Guidelines have historically recommended that patients with inherited heart rhythm disorders be restricted from competitive sports participation. Increasing evidence suggests a lower risk of exercise-related cardiac events in young athletes with inherited heart rhythm disorders. In this review, we highlight current knowledge, evolving guidelines, and present a multidisciplinary approach involving shared decision-making and appropriate planning for safe sports participation of children with inherited heart rhythm disorders.
Collapse
Affiliation(s)
| | | | | | - Shubhayan Sanatani
- British Columbia Children’s Hospital Heart Center, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Rootwelt-Norberg C, Christensen AH, Skjølsvik ET, Chivulescu M, Vissing CR, Bundgaard H, Aabel EW, Bogsrud MP, Hasselberg NE, Lie ØH, Haugaa KH. Timing of cardioverter-defibrillator implantation in patients with cardiac laminopathies-External validation of the LMNA-risk ventricular tachyarrhythmia calculator. Heart Rhythm 2023; 20:423-429. [PMID: 36494026 DOI: 10.1016/j.hrthm.2022.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND LMNA genotype-positive patients have high risk of experiencing life-threatening ventricular tachyarrhythmias (VTAs). The LMNA-risk VTA calculator published in 2019 has not been externally validated. OBJECTIVE The purpose of this study was to validate the LMNA-risk VTA calculator. METHODS We included LMNA genotype-positive patients without previous VTAs from 2 large Scandinavian centers. Patients underwent electrocardiography, 24-hour Holter monitoring, and echocardiographic examinations at baseline and repeatedly during follow-up. Validation of the LMNA-risk VTA calculator was performed using Harrell's C-statistic derived from multivariable Cox regression analysis. RESULTS We included 118 patients (age 37 years [IQR 27-49 years]; 39 [33%] probands; 65 [55%] women; 100 [85%] with non-missense LMNA variants). Twenty-three patients (19%) experienced VTA during 6.1 years (interquartile range 3.0-9.1 years) follow-up, resulting in 3.0% (95% confidence interval 2.0%-4.5%) yearly incidence rate. Atrioventricular block and reduced left ventricular ejection fraction were independent predictors of VTAs, while nonsustained ventricular tachycardia, male sex, and non-missense LMNA variants were not. The LMNA-risk VTA calculator showed 83% sensitivity and 26% specificity for identifying patients with VTAs during the coming 5 years, and a Harrell's C-statistic of 0.85, when applying ≥7% predicted 5-year VTA risk as threshold. The sensitivity increased to 100% when reevaluating risk at the time of last consultation before VTA. The calculator overestimated arrhythmic risk in patients with mild and moderate phenotype, particularly in men. CONCLUSION Validation of the LMNA-risk VTA calculator showed high sensitivity for subsequent VTAs, but overestimated arrhythmic risk when using ≥7% predicted 5-year risk as threshold. Frequent reevaluation of risk was necessary to maintain the sensitivity of the model.
Collapse
Affiliation(s)
- Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alex Hørby Christensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark; Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen, Denmark
| | - Eystein T Skjølsvik
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christoffer R Vissing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark
| | - Eivind W Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Nina E Hasselberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina H Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden; Cardiovascular Division, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Mohananey A, Tseng AS, Julakanti RR, Gonzalez-Bonilla HM, Kruisselbrink T, Prochnow C, Rodman S, Lin G, Redfield MM, Rosenbaum AN, Pereira NL. An intervention strategy to improve genetic testing for dilated cardiomyopathy in a heart failure clinic. Genet Med 2023; 25:100341. [PMID: 36472615 DOI: 10.1016/j.gim.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Despite its clinical implications in screening and therapy, genetic testing in dilated cardiomyopathy (DCM) is underused. This study evaluated implementing a practice intervention in a heart failure clinic to automate and streamline the process of genetic testing. METHODS Eligible patients with DCM were compared for frequency of pretest genetic education and testing during pre- and postintervention periods. The intervention comprised automated prescheduling of a cardiovascular genomics e-consult that served as a placeholder for downstream, pretest education, testing, and post-test review of genetic results. RESULTS Patients with DCM were more likely to undergo pretest genetic education after intervention than before intervention (33.5% vs 14.8%, P < .0001). Similarly, patients with DCM were more likely to undergo genetic testing after intervention than before intervention (27.3% vs 13.0%, P = .0006). The number of patients who were diagnosed to have likely pathogenic or pathogenic genetic variants were 2 of 21 (9.5%) and 6 of 53 (11.1%) before and after intervention, respectively, and variants were present in the following genes: FLNC, TTN, DES, LMNA, PLN, and TNNT2. CONCLUSION An intervention strategy in a heart failure clinic to increase the rates of pretest genetic education and testing in eligible patients with DCM was feasible and efficacious and may have important implications for the management of DCM.
Collapse
Affiliation(s)
- Akanksha Mohananey
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Andrew S Tseng
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Raghav R Julakanti
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | | | - Teresa Kruisselbrink
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Carri Prochnow
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Sandra Rodman
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Grace Lin
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Margaret M Redfield
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN.
| |
Collapse
|
26
|
Petersen SE, Jensen B, Aung N, Friedrich MG, McMahon CJ, Mohiddin SA, Pignatelli RH, Ricci F, Anderson RH, Bluemke DA. Excessive Trabeculation of the Left Ventricle: JACC: Cardiovascular Imaging Expert Panel Paper. JACC Cardiovasc Imaging 2023; 16:408-425. [PMID: 36764891 PMCID: PMC9988693 DOI: 10.1016/j.jcmg.2022.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023]
Abstract
Excessive trabeculation, often referred to as "noncompacted" myocardium, has been described at all ages, from the fetus to the adult. Current evidence for myocardial development, however, does not support the formation of compact myocardium from noncompacted myocardium, nor the arrest of this process to result in so-called noncompaction. Excessive trabeculation is frequently observed by imaging studies in healthy individuals, as well as in association with pregnancy, athletic activity, and with cardiac diseases of inherited, acquired, developmental, or congenital origins. Adults with incidentally noted excessive trabeculation frequently require no further follow-up based on trabecular pattern alone. Patients with cardiomyopathy and excessive trabeculation are managed by cardiovascular symptoms rather than the trabecular pattern. To date, the prognostic role of excessive trabeculation in adults has not been shown to be independent of other myocardial disease. In neonates and children with excessive trabeculation and normal or abnormal function, clinical caution seems warranted because of the reported association with genetic and neuromuscular disorders. This report summarizes the evidence concerning the etiology, pathophysiology, and clinical relevance of excessive trabeculation. Gaps in current knowledge of the clinical relevance of excessive trabeculation are indicated, with priorities suggested for future research and improved diagnosis in adults and children.
Collapse
Affiliation(s)
- Steffen E Petersen
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom.
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nay Aung
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom
| | - Matthias G Friedrich
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Saidi A Mohiddin
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, United Kingdom
| | - Ricardo H Pignatelli
- Department of Pediatric Cardiology, Texas Children's Hospital, Houston, Texas, USA
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging, and Clinical Sciences, "G.d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - David A Bluemke
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Madnawat H, Atallah I, Ahmad A, Harjai K. Biventricular Noncompaction Cardiomyopathy in a Patient Presenting With a New Cerebrovascular Event. Am J Cardiol 2023; 190:110-112. [PMID: 36621285 DOI: 10.1016/j.amjcard.2022.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 01/07/2023]
Abstract
Noncompaction (NC) cardiomyopathy (NCCM) is a rare, genetically heterogeneous cardiomyopathy (CM) caused by failure to compact the intertrabecular recesses of the myocardium. This condition usually affects the apical segment of the left ventricle, yet there are noted basal segment, biventricular, and right ventricular predominant cases. NCCM is largely diagnosed in the pediatric population; however, there is increasing recognition in older patients with heart failure and stroke and patients with arrhythmias. Treatment focuses on symptomatic management of heart failure, anticoagulation, and implantable cardiac defibrillators.
Collapse
Affiliation(s)
- Himani Madnawat
- Divisions of Cardiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Issam Atallah
- Divisions of Cardiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri.
| | - Ali Ahmad
- Divisions of Cardiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kishore Harjai
- Divisions of Cardiology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Chen Z, Song Y, Chen L, Ma X, Dai Y, Zhao S, Chen K, Zhang S. Radial and Circumferential CMR-Based RV Strain Predicts Low R Wave Amplitude after ICD Implantation in Patients with Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:886. [PMID: 36769534 PMCID: PMC9917584 DOI: 10.3390/jcm12030886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Inadequate R wave amplitude (RWA) after implantable cardiac defibrillator (ICD) implantation in patients with arrhythmogenic cardiomyopathy (ACM) was suspected to relate to right ventricle impairment. However, little data-based evidence was provided to quantify the association. We retrospectively enrolled ACM patients receiving CMR examinations before transvenous ICD implantation from Fuwai Hospital. The RWA was obtained within 24 h and at 2-6-month follow-up after the operation. Structural, functional, as well as tissue characterization of the left ventricle (LV) and right ventricle (RV), were analyzed in relation to RWA. Among the 87 ACM patients (median RWA: 8.0 mV), 19 (21.8%) patients were found with low initial RWA (<5 mV) despite attempts in multiple positions. RV end diastolic diameter (RVEDD), (r = -0.44), RV ejection fraction (RVEF, r = 0.43), RV end diastolic volume index (RVEDVi, r = -0.49), RV end systolic volume index (RVESVi, r = -0.53), RV global circumferential (RVGCS, r = -0.64), and radial strain (RVGRS, r = 0.61, all p < 0.001) rather than LV metrics correlated strongly with initial RWA. RVGCS, RVESVi, and RVGRS were decent predictors of low RWA (areas under the curve AUC: 0.814, 0.769, 0.757, respectively) early after implantation and during 2-6-month follow-up. To summarize, low RWA of ICD lead in ACM patients was associated with RV abnormalities. The RVGCS, RVGRS, and RVESVi can be valuable predictors for identifying low RWA prior to ICD implantation.
Collapse
Affiliation(s)
- Zhongli Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Yanyan Song
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Xuan Ma
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Keping Chen
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
29
|
Laredo M, Tovia-Brodie O, Milman A, Michowitz Y, Roudijk RW, Peretto G, Badenco N, Te Riele ASJM, Sala S, Duthoit G, Arbelo E, Ninni S, Gasperetti A, van Tintelen JP, Paglino G, Waintraub X, Andorin A, Peichl P, Bosman LP, Calo L, Giustetto C, Radinovic A, Jorda P, Casado-Arroyo R, Zorio E, Bermúdez-Jiménez FJ, Behr ER, Havranek S, Tfelt-Hansen J, Sacher F, Hermida JS, Nof E, Casella M, Kautzner J, Lacroix D, Brugada J, Duru F, Bella PD, Gandjbakhch E, Hauer R, Belhassen B. Electrocardiographic findings in patients with arrhythmogenic cardiomyopathy and right bundle branch block ventricular tachycardia. Europace 2023; 25:1025-1034. [PMID: 36635857 PMCID: PMC10062349 DOI: 10.1093/europace/euac267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/02/2022] [Indexed: 01/14/2023] Open
Abstract
AIMS Little is known about patients with right bundle branch block (RBBB)-ventricular tachycardia (VT) and arrhythmogenic cardiomyopathy (ACM). Our aims were: (i) to describe electrocardiogram (ECG) characteristics of sinus rhythm (SR) and VT; (ii) to correlate SR with RBBB-VT ECGs; and (iii) to compare VT ECGs with electro-anatomic mapping (EAM) data. METHODS AND RESULTS From the European Survey on ACM, 70 patients with spontaneous RBBB-VT were included. Putative left ventricular (LV) sites of origin (SOOs) were estimated with a VT-axis-derived methodology and confirmed by EAM data when available. Overall, 49 (70%) patients met definite Task Force Criteria. Low QRS voltage predominated in lateral leads (n = 37, 55%), but QRS fragmentation was more frequent in inferior leads (n = 15, 23%). T-wave inversion (TWI) was equally frequent in inferior (n = 28, 42%) and lateral (n = 27, 40%) leads. TWI in inferior leads was associated with reduced LV ejection fraction (LVEF; 46 ± 10 vs. 53 ± 8, P = 0.02). Regarding SOOs, the inferior wall harboured 31 (46%) SOOs, followed by the lateral wall (n = 17, 25%), the anterior wall (n = 15, 22%), and the septum (n = 4, 6%). EAM data were available for 16 patients and showed good concordance with the putative SOOs. In all patients with superior-axis RBBB-VT who underwent endo-epicardial VT activation mapping, VT originated from the LV. CONCLUSIONS In patients with ACM and RBBB-VT, RBBB-VTs originated mainly from the inferior and lateral LV walls. SR depolarization and repolarization abnormalities were frequent and associated with underlying variants.
Collapse
Affiliation(s)
- Mikael Laredo
- Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, and Sorbonne Université, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | - Oholi Tovia-Brodie
- Department of Cardiology, Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Anat Milman
- Leviev Heart Institute, Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Michowitz
- Department of Cardiology, Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rob W Roudijk
- Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Nicolas Badenco
- Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, and Sorbonne Université, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | - Anneline S J M Te Riele
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Simone Sala
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guillaume Duthoit
- Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, and Sorbonne Université, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | - Elena Arbelo
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, and IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sandro Ninni
- Université de Lille et Institut Cœur-Poumon, CHRU Lille, Lille, France
| | - Alessio Gasperetti
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - J Peter van Tintelen
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | | | - Xavier Waintraub
- Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, and Sorbonne Université, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | | | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Laurens P Bosman
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Leonardo Calo
- Division of Cardiology, Policlinico Casilino, Roma, Italy
| | - Carla Giustetto
- Division of Cardiology, University of Torino, Department of Medical Sciences, Città della Salute e della Scienza Hospital, Torino, Italy
| | | | - Paloma Jorda
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, and IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Casado-Arroyo
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Esther Zorio
- Cardiology Department at Hospital Universitario y Politecnico La Fe and Research Group on Inherited Heart Diseases, Sudden Death and Mechanisms of Disease (CaFaMuSMe) from the Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain.,Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | | | - Elijah R Behr
- Cardiovascular Sciences and Cardiology Clinical Academic Group St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Stepan Havranek
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, and Section of genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederic Sacher
- Hôpital Cardiologique du Haut-Lévêque & Université Bordeaux, LIRYC Institute, Bordeaux, France
| | | | - Eyal Nof
- Leviev Heart Institute, Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, Department of Clinical, Special and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Dominique Lacroix
- Université de Lille et Institut Cœur-Poumon, CHRU Lille, Lille, France
| | - Josep Brugada
- Arrhythmia Section, Cardiology Department, Hospital Clínic, Universitat de Barcelona, and IDIBAPS, Institut d'Investigació August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | | | - Estelle Gandjbakhch
- Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, and Sorbonne Université, 47-83 boulevard de l'Hôpital, 75013, Paris, France
| | - Richard Hauer
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Bernard Belhassen
- Heart Institute, Hadassah University Hospital, Jerusalem and Sackler School of Medicine, Tel-Aviv University, Kyriat Hadassah, PO Box 12000, 91120, Jerusalem, Israel
| |
Collapse
|
30
|
Reactivation of PPAR α alleviates myocardial lipid accumulation and cardiac dysfunction by improving fatty acid β-oxidation in Dsg2-deficient arrhythmogenic cardiomyopathy. Acta Pharm Sin B 2023; 13:192-203. [PMID: 36815030 PMCID: PMC9939300 DOI: 10.1016/j.apsb.2022.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM), a fatal heart disease characterized by fibroadipocytic replacement of cardiac myocytes, accounts for 20% of sudden cardiac death and lacks effective treatment. It is often caused by mutations in desmosome proteins, with Desmoglein-2 (DSG2) mutations as a common etiology. However, the mechanism underlying the accumulation of fibrofatty in ACM remains unknown, which impedes the development of curative treatment. Here we investigated the fat accumulation and the underlying mechanism in a mouse model of ACM induced by cardiac-specific knockout of Dsg2 (CS-Dsg2 -/-). Heart failure and cardiac lipid accumulation were observed in CS-Dsg2 -/- mice. We demonstrated that these phenotypes were caused by decline of fatty acid (FA) β-oxidation resulted from impaired mammalian target of rapamycin (mTOR) signaling. Rapamycin worsened while overexpression of mTOR and 4EBP1 rescued the FA β-oxidation pathway in CS-Dsg2 -/- mice. Reactivation of PPARα by fenofibrate or AAV9-Pparα significantly alleviated the lipid accumulation and restored cardiac function. Our results suggest that impaired mTOR-4EBP1-PPARα-dependent FA β-oxidation contributes to myocardial lipid accumulation in ACM and PPARα may be a potential target for curative treatment of ACM.
Collapse
|
31
|
Meyer S, Lauridsen H, Pedersen K, Andersson SA, van Ooij P, Willems T, Berger RMF, Ebels T, Jensen B. Opportunities and short-comings of the axolotl salamander heart as a model system of human single ventricle and excessive trabeculation. Sci Rep 2022; 12:20491. [PMID: 36443330 PMCID: PMC9705478 DOI: 10.1038/s41598-022-24442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Few experimental model systems are available for the rare congenital heart diseases of double inlet left ventricle (DILV), a subgroup of univentricular hearts, and excessive trabeculation (ET), or noncompaction. Here, we explore the heart of the axolotl salamander (Ambystoma mexicanum, Shaw 1789) as model system of these diseases. Using micro-echocardiography, we assessed the form and function of the heart of the axolotl, an amphibian, and compared this to human DILV (n = 3). The main finding was that both in the axolotl and DILV, blood flows of disparate oxygen saturation can stay separated in a single ventricle. In the axolotl there is a solitary ventricular inlet and outlet, whereas in DILV there are two separate inlets and outlets. Axolotls had a lower resting heart rate compared to DILV (22 vs. 72 beats per minute), lower ejection fraction (47 vs. 58%), and their oxygen consumption at rest was higher than peak oxygen consumption in DILV (30 vs. 17 ml min-1 kg-1). Concerning the ventricular myocardial organization, histology showed trabeculations in ET (n = 5) are much closer to the normal human setting than to the axolotl setting. We conclude that the axolotl heart resembles some aspects of DILV and ET albeit substantial species differences exist.
Collapse
Affiliation(s)
- Sophie Meyer
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Kathrine Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Tineke Willems
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Tjark Ebels
- Center for Congenital Heart Diseases, Department of Cardiothoracic Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Rootwelt-Norberg C, Skjølsvik ET, Chivulescu M, Bogsrud MP, Ribe MP, Aabel EW, Beitnes JO, Brekke PH, Håland TF, Hasselberg NE, Lie ØH, Haugaa KH. Disease progression rate is a strong predictor of ventricular arrhythmias in patients with cardiac laminopathies: a primary prevention cohort study. Europace 2022; 25:634-642. [PMID: 36352512 PMCID: PMC9934994 DOI: 10.1093/europace/euac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
AIMS Cardiac disease progression prior to first ventricular arrhythmia (VA) in LMNA genotype-positive patients is not described. METHODS AND RESULTS We performed a primary prevention cohort study, including consecutive LMNA genotype-positive patients from our centre. Patients underwent repeated clinical, electrocardiographic, and echocardiographic examinations. Electrocardiographic and echocardiographic disease progression as a predictor of first-time VA was evaluated by generalized estimation equation analyses. Threshold values at transition to an arrhythmic phenotype were assessed by threshold regression analyses. We included 94 LMNA genotype-positive patients without previous VA (age 38 ± 15 years, 32% probands, 53% females). Nineteen (20%) patients experienced VA during 4.6 (interquartile range 2.1-7.3) years follow up, at mean age 50 ± 11 years. We analysed 536 echocardiographic and 261 electrocardiogram examinations. Individual patient disease progression was associated with VA [left ventricular ejection fraction (LVEF) odds ratio (OR) 1.4, 95% confidence interval (CI) 1.2-1.6 per 5% reduction, left ventricular end-diastolic volume index (LVEDVi) OR 1.2 (95% CI 1.1-1.3) per 5 mL/m2 increase, PR interval OR 1.2 (95% CI 1.1-1.4) per 10 ms increase]. Threshold values for transition to an arrhythmic phenotype were LVEF 44%, LVEDVi 77 mL/m2, and PR interval 280 ms. CONCLUSIONS Incidence of first-time VA was 20% during 4.6 years follow up in LMNA genotype-positive patients. Individual patient disease progression by ECG and echocardiography were strong predictors of VA, indicating that disease progression rate may have additional value to absolute measurements when considering primary preventive ICD. Threshold values of LVEF <44%, LVEDVi >77 mL/m2, and PR interval >280 ms indicated transition to a more arrhythmogenic phenotype.
Collapse
Affiliation(s)
- Christine Rootwelt-Norberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eystein T Skjølsvik
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Ullevål, Norway
| | - Margareth P Ribe
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind W Aabel
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan Otto Beitnes
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål H Brekke
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trine F Håland
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nina E Hasselberg
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Øyvind H Lie
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristina H Haugaa
- Corresponding author. Tel: +47 92833646; fax: +47 23073530. E-mail address:
| |
Collapse
|
33
|
Gasperetti A, Carrick RT, Costa S, Compagnucci P, Bosman LP, Chivulescu M, Tichnell C, Murray B, Tandri H, Tadros R, Rivard L, van den Berg MP, Zeppenfeld K, Wilde AA, Pompilio G, Carbucicchio C, Dello Russo A, Casella M, Svensson A, Brunckhorst CB, van Tintelen JP, Platonov PG, Haugaa KH, Duru F, te Riele AS, Khairy P, Tondo C, Calkins H, James CA, Saguner AM, Cadrin-Tourigny J. Programmed Ventricular Stimulation as an Additional Primary Prevention Risk Stratification Tool in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Study. Circulation 2022; 146:1434-1443. [PMID: 36205131 PMCID: PMC9640278 DOI: 10.1161/circulationaha.122.060866] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND A novel risk calculator based on clinical characteristics and noninvasive tests that predicts the onset of clinical sustained ventricular arrhythmias (VA) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been proposed and validated by recent studies. It remains unknown whether programmed ventricular stimulation (PVS) provides additional prognostic value. METHODS All patients with a definite ARVC diagnosis, no history of sustained VAs at diagnosis, and PVS performed at baseline were extracted from 6 international ARVC registries. The calculator-predicted risk for sustained VA (sustained or implantable cardioverter defibrillator treated ventricular tachycardia [VT] or fibrillation, [aborted] sudden cardiac arrest) was assessed in all patients. Independent and combined performance of the risk calculator and PVS on sustained VA were assessed during a 5-year follow-up period. RESULTS Two hundred eighty-eight patients (41.0±14.5 years, 55.9% male, right ventricular ejection fraction 42.5±11.1%) were enrolled. At PVS, 137 (47.6%) patients had inducible ventricular tachycardia. During a median of 5.31 [2.89-10.17] years of follow-up, 83 (60.6%) patients with a positive PVS and 37 (24.5%) with a negative PVS experienced sustained VA (P<0.001). Inducible ventricular tachycardia predicted clinical sustained VA during the 5-year follow-up and remained an independent predictor after accounting for the calculator-predicted risk (HR, 2.52 [1.58-4.02]; P<0.001). Compared with ARVC risk calculator predictions in isolation (C-statistic 0.72), addition of PVS inducibility showed improved prediction of VA events (C-statistic 0.75; log-likelihood ratio for nested models, P<0.001). PVS inducibility had a 76% [67-84] sensitivity and 68% [61-74] specificity, corresponding to log-likelihood ratios of 2.3 and 0.36 for inducible (likelihood ratio+) and noninducible (likelihood ratio-) patients, respectively. In patients with a ARVC risk calculator-predicted risk of clinical VA events <25% during 5 years (ie, low/intermediate subgroup), PVS had a 92.6% negative predictive value. CONCLUSIONS PVS significantly improved risk stratification above and beyond the calculator-predicted risk of VA in a primary prevention cohort of patients with ARVC, mainly for patients considered to be at low and intermediate risk by the clinical risk calculator.
Collapse
Affiliation(s)
- Alessio Gasperetti
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Richard T. Carrick
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Sarah Costa
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - Paolo Compagnucci
- Cardiology and Arrhythmology Clinic, University Hospital Umberto-I-Salesi-Lancisi, Ancona, Italy (P.C., A.D.R., M. Casella)
| | - Laurens P. Bosman
- Department of Cardiology (L.P.B., A.S.J.M.t.R.), University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Monica Chivulescu
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway and University of Oslo (M. Chivulescu, K.H.H.)
| | - Crystal Tichnell
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Brittney Murray
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Harikrishna Tandri
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Rafik Tadros
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| | - Lena Rivard
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| | - Maarten P. van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen‚ The Netherlands (M.P.v.d.B.)
| | - Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, The Netherlands (K.Z.)
| | - Arthur A.M. Wilde
- Amsterdam UMC location University of Amsterdam‚ Department of Cardiology‚ Amsterdam‚ The Netherlands (A.A.M.W.)
| | | | - Corrado Carbucicchio
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Department of Clinical Electrophisiology and Cardiac Pacing, Milan, Italy (C.C., C. Tondo)
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital Umberto-I-Salesi-Lancisi, Ancona, Italy (P.C., A.D.R., M. Casella)
| | - Michela Casella
- Cardiology and Arrhythmology Clinic, University Hospital Umberto-I-Salesi-Lancisi, Ancona, Italy (P.C., A.D.R., M. Casella)
| | - Anneli Svensson
- Department of Cardiology and Department of Health‚ Medicine and Caring Sciences‚ Linköping University‚ Sweden (A.S.)
| | - Corinna B. Brunckhorst
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - J. Peter van Tintelen
- Department of Genetics (J.P.v.T.), University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Pyotr G. Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Sweden (P.G.P.)
| | - Kristina H. Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway and University of Oslo (M. Chivulescu, K.H.H.)
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - Anneline S.J.M. te Riele
- Department of Cardiology (L.P.B., A.S.J.M.t.R.), University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Paul Khairy
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| | - Claudio Tondo
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Department of Clinical Electrophisiology and Cardiac Pacing, Milan, Italy (C.C., C. Tondo).,Department Biomedical, Surgical and Dental Sciences, University of Milan, Italy (C. Tondo)
| | - Hugh Calkins
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Cynthia A. James
- Department of Medicine, Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD (A.G., R.T.C., C. Tichnell, B.M., H.T., H.C., C.A.J.)
| | - Ardan M. Saguner
- Department of Cardiology, University Heart Center Zurich, University Hospital Zurich‚ Switzerland (S.C., C.B.B., F.D., A.M.S.)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center and Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Canada (R.T., L.R., P.K., J.C.-T.)
| |
Collapse
|
34
|
Zeppenfeld K, Tfelt-Hansen J, de Riva M, Winkel BG, Behr ER, Blom NA, Charron P, Corrado D, Dagres N, de Chillou C, Eckardt L, Friede T, Haugaa KH, Hocini M, Lambiase PD, Marijon E, Merino JL, Peichl P, Priori SG, Reichlin T, Schulz-Menger J, Sticherling C, Tzeis S, Verstrael A, Volterrani M. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022; 43:3997-4126. [PMID: 36017572 DOI: 10.1093/eurheartj/ehac262] [Citation(s) in RCA: 933] [Impact Index Per Article: 466.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Pérez-Hernández M, van Opbergen CJM, Bagwan N, Vissing CR, Marrón-Liñares GM, Zhang M, Torres Vega E, Sorrentino A, Drici L, Sulek K, Zhai R, Hansen FB, Christensen AH, Boesgaard S, Gustafsson F, Rossing K, Small EM, Davies MJ, Rothenberg E, Sato PY, Cerrone M, Jensen THL, Qvortrup K, Bundgaard H, Delmar M, Lundby A. Loss of Nuclear Envelope Integrity and Increased Oxidant Production Cause DNA Damage in Adult Hearts Deficient in PKP2: A Molecular Substrate of ARVC. Circulation 2022; 146:851-867. [PMID: 35959657 PMCID: PMC9474627 DOI: 10.1161/circulationaha.122.060454] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the PKP2 gene, which encodes the PKP2 protein (plakophilin-2). METHODS We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with PKP2 mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of Pkp2 studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes. RESULTS Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of Pkp2 also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O2.- and H2O2), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release H2O2 into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function. CONCLUSIONS Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O2.- and H2O2). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Chantal J M van Opbergen
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Navratan Bagwan
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Christoffer Rasmus Vissing
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Grecia M Marrón-Liñares
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Mingliang Zhang
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Estefania Torres Vega
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Lylia Drici
- The Novo Nordisk Foundation Center for Protein Research (L.D., K.S.), University of Copenhagen, Denmark
| | - Karolina Sulek
- The Novo Nordisk Foundation Center for Protein Research (L.D., K.S.), University of Copenhagen, Denmark
| | - Ruxu Zhai
- College of Medicine, Drexel University, Philadelphia, PA (R.Z., P.Y.S.)
| | - Finn B Hansen
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Alex H Christensen
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
- Department of Cardiology, Copenhagen University Hospital-Herlev-Gentofte Hospital, Denmark (A.H.C.)
| | - Søren Boesgaard
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
- College of Medicine, Drexel University, Philadelphia, PA (R.Z., P.Y.S.)
| | - Finn Gustafsson
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Kasper Rossing
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Eric M Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, NY (E.M.S.)
| | - Michael J Davies
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Eli Rothenberg
- Division of Pharmacology, NYU School of Medicine, New York (E.R.)
| | - Priscila Y Sato
- College of Medicine, Drexel University, Philadelphia, PA (R.Z., P.Y.S.)
| | - Marina Cerrone
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Thomas Hartvig Lindkær Jensen
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Klaus Qvortrup
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| | - Henning Bundgaard
- Faculty of Health and Medical Sciences, and Department of Clinical Medicine (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.), University of Copenhagen, Denmark
- Department of Cardiology, The Heart Centre, Rigshospitalet, Copenhagen, Denmark (C.R.V., A.H.C., S.B., F.G., K.R., T.H.L.J., H.B.)
| | - Mario Delmar
- The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.)
| | - Alicia Lundby
- Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark
| |
Collapse
|
36
|
Brown EE, Martin SS, Blumenthal RS, Arvanitis M. AHA scientific statement highlights the utility of genetic testing for young cardiology patients. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 21:100146. [PMID: 38559749 PMCID: PMC10978388 DOI: 10.1016/j.ahjo.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/14/2022] [Accepted: 05/19/2022] [Indexed: 04/04/2024]
|
37
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
38
|
Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, Johnson B, Morales A, Regalado E, Rojahn S, Vatta M, Nussbaum RL, McNally EM. Assessment of the Diagnostic Yield of Combined Cardiomyopathy and Arrhythmia Genetic Testing. JAMA Cardiol 2022; 7:966-974. [PMID: 35947370 PMCID: PMC9366660 DOI: 10.1001/jamacardio.2022.2455] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Genetic testing can guide management of both cardiomyopathies and arrhythmias, but cost, yield, and uncertain results can be barriers to its use. It is unknown whether combined disease testing can improve diagnostic yield and clinical utility for patients with a suspected genetic cardiomyopathy or arrhythmia. Objective To evaluate the diagnostic yield and clinical management implications of combined cardiomyopathy and arrhythmia genetic testing through a no-charge, sponsored program for patients with a suspected genetic cardiomyopathy or arrhythmia. Design, Setting, and Participants This cohort study involved a retrospective review of DNA sequencing results for cardiomyopathy- and arrhythmia-associated genes. The study included 4782 patients with a suspected genetic cardiomyopathy or arrhythmia who were referred for genetic testing by 1203 clinicians; all patients participated in a no-charge, sponsored genetic testing program for cases of suspected genetic cardiomyopathy and arrhythmia at a single testing site from July 12, 2019, through July 9, 2020. Main Outcomes and Measures Positive gene findings from combined cardiomyopathy and arrhythmia testing were compared with findings from smaller subtype-specific gene panels and clinician-provided diagnoses. Results Among 4782 patients (mean [SD] age, 40.5 [21.3] years; 2551 male [53.3%]) who received genetic testing, 39 patients (0.8%) were Ashkenazi Jewish, 113 (2.4%) were Asian, 571 (11.9%) were Black or African American, 375 (7.8%) were Hispanic, 2866 (59.9%) were White, 240 (5.0%) were of multiple races and/or ethnicities, 138 (2.9%) were of other races and/or ethnicities, and 440 (9.2%) were of unknown race and/or ethnicity. A positive result (molecular diagnosis) was confirmed in 954 of 4782 patients (19.9%). Of those, 630 patients with positive results (66.0%) had the potential to inform clinical management associated with adverse clinical outcomes, increased arrhythmia risk, or targeted therapies. Combined cardiomyopathy and arrhythmia gene panel testing identified clinically relevant variants for 1 in 5 patients suspected of having a genetic cardiomyopathy or arrhythmia. If only patients with a high suspicion of genetic cardiomyopathy or arrhythmia had been tested, at least 137 positive results (14.4%) would have been missed. If testing had been restricted to panels associated with the clinician-provided diagnostic indications, 75 of 689 positive results (10.9%) would have been missed; 27 of 75 findings (36.0%) gained through combined testing involved a cardiomyopathy indication with an arrhythmia genetic finding or vice versa. Cascade testing of family members yielded 402 of 958 positive results (42.0%). Overall, 2446 of 4782 patients (51.2%) had only variants of uncertain significance. Patients referred for arrhythmogenic cardiomyopathy had the lowest rate of variants of uncertain significance (81 of 176 patients [46.0%]), and patients referred for catecholaminergic polymorphic ventricular tachycardia had the highest rate (48 of 76 patients [63.2%]). Conclusions and Relevance In this study, comprehensive genetic testing for cardiomyopathies and arrhythmias revealed diagnoses that would have been missed by disease-specific testing. In addition, comprehensive testing provided diagnostic and prognostic information that could have potentially changed management and monitoring strategies for patients and their family members. These results suggest that this improved diagnostic yield may outweigh the burden of uncertain results.
Collapse
Affiliation(s)
- Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Allison L Cirino
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts.,Institute of Health Professions, Massachusetts General Hospital, Boston
| | | | | | - John Garcia
- Invitae Corporation, San Francisco, California
| | | | | | - Ana Morales
- Invitae Corporation, San Francisco, California
| | | | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
39
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
40
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
41
|
Comparison of and Frequency of Morality, Left Ventricular Assist Device Implantation, Ventricular Arrhythmias, and Heart Transplantation in Patients With Familial Versus Nonfamilial Idiopathic Dilated Cardiomyopathy. Am J Cardiol 2022; 179:83-89. [DOI: 10.1016/j.amjcard.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022]
|
42
|
Rosamilia MB, Lu IM, Landstrom AP. Pathogenicity Assignment of Variants in Genes Associated With Cardiac Channelopathies Evolve Toward Diagnostic Uncertainty. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003491. [PMID: 35543671 DOI: 10.1161/circgen.121.003491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Accurately determining variant pathogenicity is critical in the diagnosis of cardiac channelopathies; however, it remains unknown how variant pathogenicity status changes over time. Our aim is to use a comprehensive analysis of ClinVar to understand the mutability of variant evaluation in channelopathy-associated genes to inform clinical decision-making around variant calling. METHODS We identified 10 genes (RYR2, CASQ2, KCNQ1, KCNH2, SCN5A, CACNA1C, CALM1, CALM2, CALM3, TRDN) strongly associated with cardiac channelopathies, as well as 3 comparison gene sets (disputed long QT syndrome, sudden unexpected death in epilepsy, and all ClinVar). We comprehensively analyzed variant pathogenicity calls over time using the ClinVar database with Rstudio. Analyses focused on the frequency and directionality of clinically meaningful changes in disease association, defined as a change from one of the following three categories to another: likely benign/benign, conflicting evidence of pathogenicity/variant of uncertain significance, and likely pathogenic/pathogenic. RESULTS In total, among channelopathy-associated genes, there were 9975 variants in ClinVar and 8.4% had a clinically meaningful change in disease association at least once over the past 10 years, as opposed to 4.9% of all ClinVar variants. The 3 channelopathy-associated genes with the most variants undergoing a clinically significant change were KCNQ1 (20.9%), SCN5A (11.2%), and KCNH2 (10.1%). Ten of the 12 included genes had variant evaluations that trended toward diagnostic uncertainty over time. Specifically, channelopathy-associated gene variants with either pathogenic/likely pathogenic or benign/likely benign assignments were 5.6× and 2×, respectively, as likely to be reevaluated to conflicting/variant of uncertain significance compared to the converse. CONCLUSIONS Over the past 10 years, 8.4% of variants in channelopathy-associated genes have changed pathogenicity status with a decline in overall diagnostic certainty. Ongoing clinical and genetic variant follow-up is needed to account for presence of clinically meaningful change in variant pathogenicity assignment over time.
Collapse
Affiliation(s)
- Michael B Rosamilia
- Division of Pediatric Cardiology, Department of Pediatrics (M.B.R., I.M.L., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Isa M Lu
- Division of Pediatric Cardiology, Department of Pediatrics (M.B.R., I.M.L., A.P.L.), Duke University School of Medicine, Durham, NC
| | - Andrew P Landstrom
- Division of Pediatric Cardiology, Department of Pediatrics (M.B.R., I.M.L., A.P.L.), Duke University School of Medicine, Durham, NC.,Department of Cell Biology (A.P.L.), Duke University School of Medicine, Durham, NC
| |
Collapse
|
43
|
Smith E, Thompson PD, Burke-Martindale C, Weissler-Snir A. Establishment of a Dedicated Inherited Cardiomyopathy Clinic: From Challenges to Improved Patients' Outcome. J Am Heart Assoc 2022; 11:e024501. [PMID: 35470680 PMCID: PMC9238612 DOI: 10.1161/jaha.121.024501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Inherited cardiomyopathies (ICs) are relatively rare. General cardiologists have little experience in diagnosing and managing these conditions. International societies have recognized the need for dedicated IC clinics. However, only few reports on such clinics are available. Methods and Results Clinical data of patients referred to our clinic during its first 2 years for a personal or family history of (possible) IC were analyzed. A total of 207 patients from 196 families were seen; 13% of probands had their diagnosis changed. Diagnosis was most commonly altered in patients referred for possible arrhythmogenic dominant right ventricular cardiomyopathy (62.5%). A total of 90% of probands had genetic testing, of whom 27.3% harbored a likely pathogenic or pathogenic variant. Of patients with confirmed hypertrophic cardiomyopathy, 31 (28.7%) were treated for left ventricular outflow tract obstruction, including septal reduction in 13. Patients with either hypertrophic cardiomyopathy or left ventricular noncompaction and a history of atrial fibrillation were started on oral anticoagulation. Oral anticoagulation was also discussed with all patients with hypertrophic cardiomyopathy and apical aneurysm. Patients with a definite diagnosis of arrhythmogenic dominant right ventricular cardiomyopathy were started on β‐blockers and given restrictive exercise prescriptions. A total of 17 patients with hypertrophic cardiomyopathy and 5 patients with likely pathogenic or likely variants in arrhythmogenic genes received primary prevention implantable cardioverter‐defibrillators. No implantable cardioverter‐defibrillators were warranted for arrhythmogenic dominant right ventricular cardiomyopathy. A total of 76 family members from 24 families had cascade screening, 32 of whom carried the familial variant. A total of 21 members from 13 gene‐elusive families were evaluated by clinical screening, 3 of whom had positive screening. Conclusions Specialized IC clinics may improve diagnosis, management, and outcomes of patients with (possible) IC and their family members.
Collapse
Affiliation(s)
- Emily Smith
- Hartford HealthCare, Heart and Vascular Institute Hartford CT
| | - Paul D Thompson
- Hartford HealthCare, Heart and Vascular Institute Hartford CT.,Department of Medicine University of Connecticut Farmington CT
| | | | - Adaya Weissler-Snir
- Hartford HealthCare, Heart and Vascular Institute Hartford CT.,Department of Medicine University of Connecticut Farmington CT
| |
Collapse
|
44
|
Arrhythmogenic Right Ventricular Cardiomyopathy. JACC Clin Electrophysiol 2022; 8:533-553. [PMID: 35450611 DOI: 10.1016/j.jacep.2021.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/21/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) encompasses a group of conditions characterized by right ventricular fibrofatty infiltration, with a predominant arrhythmic presentation. First described in the late 1970s and early 1980s, it is now frequently recognized to have biventricular involvement. The prevalence is ∼1:2,000 to 1:5,000, depending on geographic location, and it has a slight male predominance. The diagnosis of ARVC is determined on the basis of fulfillment of task force criteria incorporating electrophysiological parameters, cardiac imaging findings, genetic factors, and histopathologic features. Risk stratification of patients with ARVC aims to identify those who are at increased risk of sudden cardiac death or sustained ventricular tachycardia. Factors including age, sex, electrophysiological features, and cardiac imaging investigations all contribute to risk stratification. The current management of ARVC includes exercise restriction, β-blocker therapy, consideration for implantable cardioverter-defibrillator insertion, and catheter ablation. This review summarizes our current understanding of ARVC and provides clinicians with a practical approach to diagnosis and management.
Collapse
|
45
|
Krishnan N, Ingles J. The Need for Inclusive Genomic Research. Circ Genom Precis Med 2022; 15:e003736. [DOI: 10.1161/circgen.122.003736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Neesha Krishnan
- Centre for Population Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia (N.K., J.I.)
- UNSW Sydney, Australia (N.K., J.I.)
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Australia (N.K., J.I.)
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia (N.K., J.I.)
- UNSW Sydney, Australia (N.K., J.I.)
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Australia (N.K., J.I.)
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia (J.I.)
| |
Collapse
|
46
|
Lopes LR, Quarta G, Cardim N, Gimeno JR. Editorial: Comprehensive Risk Prediction in Cardiomyopathies: New Genetic and Imaging Markers of Risk. Front Cardiovasc Med 2022; 9:849882. [PMID: 35345484 PMCID: PMC8957109 DOI: 10.3389/fcvm.2022.849882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luis Rocha Lopes
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- *Correspondence: Luis Rocha Lopes
| | | | - Nuno Cardim
- Hospital da Luz, Lisbon, Portugal
- Universidade Nova de Lisboa, Lisbon, Portugal
| | - Juan Ramon Gimeno
- Unidad Centros, Servicios y Unidades de Referencia/European Reference Networks Cardiopatías Familiares, Hospital Clínico Universitario Virgen Arrixaca, Murcia, Spain
| |
Collapse
|
47
|
Meraviglia V, Alcalde M, Campuzano O, Bellin M. Inflammation in the Pathogenesis of Arrhythmogenic Cardiomyopathy: Secondary Event or Active Driver? Front Cardiovasc Med 2022; 8:784715. [PMID: 34988129 PMCID: PMC8720743 DOI: 10.3389/fcvm.2021.784715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare inherited cardiac disease characterized by arrhythmia and progressive fibro-fatty replacement of the myocardium, which leads to heart failure and sudden cardiac death. Inflammation contributes to disease progression, and it is characterized by inflammatory cell infiltrates in the damaged myocardium and inflammatory mediators in the blood of ACM patients. However, the molecular basis of inflammatory process in ACM remains under investigated and it is unclear whether inflammation is a primary event leading to arrhythmia and myocardial damage or it is a secondary response triggered by cardiomyocyte death. Here, we provide an overview of the proposed players and triggers involved in inflammation in ACM, focusing on those studied using in vivo and in vitro models. Deepening current knowledge of inflammation-related mechanisms in ACM could help identifying novel therapeutic perspectives, such as anti-inflammatory therapy.
Collapse
Affiliation(s)
- Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Mireia Alcalde
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain.,Centro Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain.,Centro Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands.,Department of Biology, University of Padua, Padua, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
48
|
Adhyapak S, Gupta A, Shaikh J, Kramadhari H, Varghese K. Interesting Arrhythmogenic Right Ventricular Cardiomyopathy: A Diagnosis beyond Criteria? JOURNAL OF THE INDIAN ACADEMY OF ECHOCARDIOGRAPHY & CARDIOVASCULAR IMAGING 2022. [DOI: 10.4103/jiae.jiae_14_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
49
|
Cadrin-Tourigny J, Tadros R. Predicting sudden cardiac death in genetic heart disease. Can J Cardiol 2022; 38:479-490. [DOI: 10.1016/j.cjca.2022.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
|
50
|
Ma C, Fan J, Zhou B, Zhao C, Zhao X, Su B, Miao Y, Liao Y, Wang L. Myocardial strain measured via two-dimensional speckle-tracking echocardiography in a family diagnosed with arrhythmogenic left ventricular cardiomyopathy. Cardiovasc Ultrasound 2021; 19:40. [PMID: 34930282 PMCID: PMC8686556 DOI: 10.1186/s12947-021-00270-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy is a myocardial disorder characterized by ventricular arrhythmias, right and/or left ventricular involvement, and fibrofatty infiltrations in the myocardium. We report a family diagnosed with arrhythmogenic left ventricular cardiomyopathy (ALVC) and depict their echocardiographic characteristics. METHODS AND RESULTS Fifteen family members were divided into three groups based on whether they carried the TMEM43 mutation and had been diagnosed with ALVC. Eight of them had TMEM43 mutations, and four were diagnosed with ALVC according to the Padua criteria. Only the proband experienced sudden cardiac death and had a dilated left ventricle. Left ventricular ejection fraction was reduced in two patients; however, left ventricular global longitudinal strain was depressed in three patients. Low QRS voltages in limb leads were evident in three patients, and five patients had frequent ventricular premature contractions. Late gadolinium enhancement was evident in three patients. Left ventricular layer-specific strain showed that the transmural strain gradient ratio was increased in patients diagnosed with ALVC, and it was elevated in the genotype-positive and phenotype-negative groups compared with healthy individuals. CONCLUSION Global left ventricular longitudinal strain better evaluated left ventricular function than left ventricular ejection fraction. The transmural strain gradient ratio was elevated in patients diagnosed with ALVC, suggesting that it was useful for the evaluation of ALVC.
Collapse
Affiliation(s)
- Changsheng Ma
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiali Fan
- The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Bingyuan Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Caiming Zhao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Su
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzhu Miao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuping Liao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|