1
|
Di Donato M, Cristiani CM, Capone M, Garofalo C, Madonna G, Passacatini LC, Ottaviano M, Ascierto PA, Auricchio F, Carbone E, Migliaccio A, Castoria G. Role of the androgen receptor in melanoma aggressiveness. Cell Death Dis 2025; 16:34. [PMID: 39837817 PMCID: PMC11751086 DOI: 10.1038/s41419-025-07350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Malignant melanoma represents the fifth most common cancer in the world and its incidence is rising. Novel therapies targeting receptor tyrosine kinases, kinases and immune checkpoints have been employed with a significant improvement of the overall survival and long-term disease containment. Nevertheless, the disease often progresses and becomes resistant to the therapies. As such, the discovery of new targets and drugs for advanced melanoma still remains a difficult task. Gender disparities, with a female advantage in melanoma incidence and outcome, have been reported. Although emerging studies support the pro-tumorigenic role of androgen/androgen receptor axis in melanoma, the molecular bases of such evidence are still under intense investigation. We now report that ligand activation of the androgen receptor drives melanoma invasiveness and its escape from natural killer-mediated cytotoxic effect. By combining different experimental approaches, we observe that melanoma escape is mediated by the androgen-triggered shedding of the surface molecule MICA. Specific blockade of ADAM10 or androgen receptor impairs the androgen-induced MICA shedding and melanoma immune-escape. Further, the increase in MICA serum levels correlates with a poor outcome in melanoma patients treated with the anti-PD-1 monoclonal antibody, pembrolizumab. At last, melanoma cells depleted of the androgen receptor become more responsive to the most commonly used immunocheckpoint inhibitors, suggesting that the receptor dampens the immunotherapy efficacy. Taken together, our findings identify the androgen receptor as a diagnostic guidance in melanoma and support the repositioning of AR blockers in clinical management of patients.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Costanza Maria Cristiani
- Neuroscience Research Center, Department of Medical and Surgical Sciences - 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Mariaelena Capone
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, 88100, Catanzaro, Italy
| | - Gabriele Madonna
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | | | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS- Fondazione "G. Pascale", Napoli, Italy
| | - Ferdinando Auricchio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Ennio Carbone
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania 'L. Vanvitelli'- Via L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
2
|
Pogoda-Wesołowska A, Sługocka N, Synowiec A, Brodaczewska K, Mejer-Zahorowski M, Ziękiewicz M, Szypowski W, Szymański P, Stępień A. The current state of knowledge on the role of NKG2D ligands in multiple sclerosis and other autoimmune diseases. Front Mol Neurosci 2025; 17:1493308. [PMID: 39866909 PMCID: PMC11758245 DOI: 10.3389/fnmol.2024.1493308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system (CNS) disease with demyelinating inflammatory characteristics. It is the most common nontraumatic and disabling disease affecting young adults. The incidence and prevalence of MS have been increasing. However, its exact cause remains unclear. The main tests used to support the diagnosis are magnetic resonance imaging (MRI) examination and cerebrospinal fluid (CSF) analysis. Nonetheless, to date, no sensitive or specific marker has been identified for the detection of the disease at its initial stage. In recent years, researchers have focused on the fact that the number of natural killer cell group 2 member D (NKG2D) family of C-type lectin-like receptor + (NKG2D+) T cells in the peripheral blood, CSF, and brain tissue has been shown to be higher in patients with MS than in controls. The activating receptor belonging to the NKG2D is stimulated by specific ligands: in humans these are major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) and MHC class I polypeptide-related sequence B (MICB) proteins and UL16 binding 1-6 proteins (ULBP1-6). Under physiological conditions, the aforementioned ligands are expressed at low or undetectable levels but can be induced in response to stress factors. NKG2D ligands (NKG2DLs) are involved in epigenetic regulation of their expression. To date, studies in cell cultures, animal models, and brain tissues have revealed elevated expression of MICA/B, ULPB4, and its mouse homolog murine UL16 binding protein-like transcript (MULT1), in oligodendrocytes and astrocytes from patients with MS. Furthermore, soluble forms of NKG2DLs were elevated in the plasma and CSF of patients with MS compared to controls. In this review, we aim to describe the role of NKG2D and NKG2DLs, and their interactions in the pathogenesis of MS, as well as in other autoimmune diseases such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), and celiac disease (CeD). We also assess the potential of these proteins as diagnostic markers and consider future perspectives for targeting NKG2D ligands and their pathways as therapeutic targets in MS.
Collapse
Affiliation(s)
| | - Nina Sługocka
- Faculty of Medicine, University of Warsaw, Warsaw, Poland
| | - Agnieszka Synowiec
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine–National Research Institute, Warsaw, Poland
| | - Marcin Mejer-Zahorowski
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Maciej Ziękiewicz
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Wojciech Szypowski
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Piotr Szymański
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| | - Adam Stępień
- Neurology Clinic, Military Institute of Medicine- National Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
de Oliveira Ciriaco VA, Rodrigues AM, da Silva Tibúrcio BC, Silva JM, Naslavsky MS, Mendes-Junior CT, Bannwart Castro CF, Castelli EC. The MICA deletion across different populations. Hum Immunol 2024; 85:111183. [PMID: 39571451 DOI: 10.1016/j.humimm.2024.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/14/2024]
Abstract
The MICA gene encodes a glycoprotein upregulated upon cellular stress, particularly in oxidative stress, intracellular infections, and tumorigenesis. This stress-signaling molecule interacts with the activating receptor NKG2D from Natural Killer (NK) and some T lymphocytes, stimulating their cytotoxic activity. MICA is encoded within the human Major Histocompatibility Complex next to the HLA-B locus and is highly polymorphic. MICA might be absent from chromosome 6 due to a large deletion of approximately 100 Kb between HLA-B and MICB. Therefore, some individuals may not produce any isoform of MICA. The distribution of this phenotype may vary among different populations. We evaluated the distribution of the MICA*del and other MICA null alleles in different biogeographic regions and the Linkage Disequilibrium (LD) pattern between this allele and HLA-B. We detected at least two different patterns of deletion, one with full deletion of MICA and surrounding sequences and one partial MICA deletion. The presence of different patterns of deletion suggests independent deletion events. We confirm that the previously described MICA*del allele is mainly associated with B*48 and MICB*009N in Asia and America, but other haplotypes also occur. While most samples with complete or partial MICA deletion are heterozygous and present one functional copy of both MICA and MICB genes, we detected two samples with no functional MICA and one with no functional MIC genes. Therefore, other mechanisms might be in place to compensate for the absence of MIC molecules.
Collapse
Affiliation(s)
| | - Amanda Muniz Rodrigues
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | | - Joyce Machado Silva
- São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, SP, Brazil; Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Camila Ferreira Bannwart Castro
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Erick C Castelli
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil; São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil.
| |
Collapse
|
4
|
Toyoda H, Kuramasu A, Hosonuma M, Murayama M, Narikawa Y, Isobe J, Baba Y, Tajima K, Funayama E, Shida M, Maruyama Y, Sasaki A, Hirasawa Y, Tsurui T, Ariizumi H, Ishiguro T, Suzuki R, Kobayashi S, Horiike A, Hida N, Sambe T, Nobe K, Wada S, Kobayashi H, Tsuji M, Kobayashi S, Tsunoda T, Kudo Y, Kiuchi Y, Yoshimura K. MHC class I polypeptide-related sequence B shedding modulates pancreatic tumor immunity via the activation of NKG2D Low T cells. Sci Rep 2024; 14:23401. [PMID: 39379424 PMCID: PMC11461622 DOI: 10.1038/s41598-024-73712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
Natural killer group 2 member D ligands (NKG2DLs) are expressed as stress response proteins in cancer cells. NKG2DLs induce immune cell activation or tumor escape responses, depending on their expression. Human pancreatic cancer cells, PANC-1, express membrane MHC class I polypeptide-related sequence A/B (mMICA/B), whereas soluble MICB (sMICB) is detected in the culture supernatant. We hypothesized that sMICB saturates NKG2D in NKG2DLow T cells and inhibits the activation signal from mMICB to NKG2D. Knockdown of MICB by siRNA reduced sMICB level, downregulated mMICB expression, maintained NKG2DLow T cell activation, and inhibited NKG2DHigh T cell activation. To maintain mMICB expression and downregulate sMICB expression, we inhibited a disintegrin and metalloproteinase (ADAM), a metalloproteinase that sheds MICB. Subsequently, the shedding of MICB was prevented using ADAM17 inhibitors, and the activation of NKG2DLow T cells was maintained. In vivo xenograft model revealed that NKG2DHigh T cells have superior anti-tumor activity. These results elucidate the mechanism of immune escape via sMICB and show potential for the activation of NKG2DLow T cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Hitoshi Toyoda
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Atsuo Kuramasu
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Masahiro Hosonuma
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Masakazu Murayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
- Department of Otorhinolaryngology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yoichiro Narikawa
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
- Department of Otorhinolaryngology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Junya Isobe
- Department of Hospital Pharmaceutics, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Yuta Baba
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Kohei Tajima
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Eiji Funayama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Midori Shida
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Yuki Maruyama
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Aya Sasaki
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Risako Suzuki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Sei Kobayashi
- Department of Otorhinolaryngology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Noriko Hida
- Division of Clinical Pharmacology, Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Division of Clinical Research and Development, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Takehiko Sambe
- Division of Clinical Research and Development, Department of Clinical Pharmacy, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Koji Nobe
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, Tokyo, 142-8555, Japan
| | - Satoshi Wada
- Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, 157-8577, Japan
| | - Hitome Kobayashi
- Department of Otorhinolaryngology, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Shinichi Kobayashi
- Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, 157-8577, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yoshifumi Kudo
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, Showa University School of Medicine, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo, 142-8555, Japan
| | - Kiyoshi Yoshimura
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan.
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| |
Collapse
|
5
|
Sesma A, Pardo J, Isla D, M. Gálvez E, Gascón-Ruiz M, Martínez-Lostao L, Moratiel A, Paño-Pardo JR, Quílez E, Torres-Ramón I, Yubero A, Zapata-García M, Domingo MP, Esteban P, Sanz Pamplona R, Lastra R, Ramírez-Labrada A. Peripheral Blood TCRβ Repertoire, IL15, IL2 and Soluble Ligands for NKG2D Activating Receptor Predict Efficacy of Immune Checkpoint Inhibitors in Lung Cancer. Cancers (Basel) 2024; 16:2798. [PMID: 39199571 PMCID: PMC11352724 DOI: 10.3390/cancers16162798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has changed the therapeutic paradigm of lung cancer (LC), becoming the standard of treatment for previously untreated advanced non-small cell lung cancer (NSCLC) without actionable mutations. It has allowed the achievement of durable responses and resulted in significant survival benefits. However, not all patients respond; hence, molecular biomarkers are needed to help us predict which patients will respond. With this objective, a prospective observational study was designed, including a cohort of 55 patients with NSCLC who received ICIs. We studied whether biomarkers such as TCRβ and specific cytokines involved in the regulation of T cell activity were related to the immunotherapy response. In the survival analysis, it was found that patients with higher TCRβ clonality, lower TCRβ evenness, higher TCRβ Shannon diversity and lower TCRβ convergence had higher overall survival (OS) and progression-free survival (PFS). However, no statistically significant association was observed. Regarding cytokines, those patients with higher levels of IL-2 and IL-15 presented statistically significantly shorter OS and PFS, respectively. In fact, in the multivariable analysis, the high IL-15 level increased the risk of death by three times. Although the sample size was small and more studies are needed to confirm our results, our study reveals promising markers of responses to ICIs.
Collapse
Affiliation(s)
- Andrea Sesma
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Julian Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Microbiology, Radiology, Pediatry and Public Health Department Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Dolores Isla
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Eva M. Gálvez
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Instituto de Carboquímica (ICB-CSIC), Miguel Luesma 4, 50018 Zaragoza, Spain
| | - Marta Gascón-Ruiz
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Luis Martínez-Lostao
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Nanoscience Institute, 50018 Zaragoza, Spain
- Aragon Materials Science Institute, 50009 Zaragoza, Spain
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Alba Moratiel
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - J. Ramón Paño-Pardo
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
- Infectious Disease Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain
| | - Elisa Quílez
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Irene Torres-Ramón
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Alfonso Yubero
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Zapata-García
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - María Pilar Domingo
- Immunology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain;
| | - Patricia Esteban
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rebeca Sanz Pamplona
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Rodrigo Lastra
- Medical Oncology Department, University Hospital Lozano Blesa, 50009 Zaragoza, Spain; (D.I.); (M.G.-R.); (A.M.); (E.Q.); (I.T.-R.); (A.Y.); (M.Z.-G.); (R.L.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
| | - Ariel Ramírez-Labrada
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain; (J.P.); (L.M.-L.); (J.R.P.-P.); (P.E.); (R.S.P.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain;
| |
Collapse
|
6
|
Wang Q, Chen S, Guo Z, Xia S, Zhang M. NK-like CD8 T cell: one potential evolutionary continuum between adaptive memory and innate immunity. Clin Exp Immunol 2024; 217:136-150. [PMID: 38651831 PMCID: PMC11239564 DOI: 10.1093/cei/uxae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
CD8 T cells are crucial adaptive immune cells with cytotoxicity to fight against pathogens or abnormal self-cells via major histocompatibility complex class I-dependent priming pathways. The composition of the memory CD8 T-cell pool is influenced by various factors. Physiological aging, chronic viral infection, and autoimmune diseases promote the accumulation of CD8 T cells with highly differentiated memory phenotypes. Accumulating studies have shown that some of these memory CD8 T cells also exhibit innate-like cytotoxicity and upregulate the expression of receptors associated with natural killer (NK) cells. Further analysis shows that these NK-like CD8 T cells have transcriptional profiles of both NK and CD8 T cells, suggesting the transformation of CD8 T cells into NK cells. However, the specific induction mechanism underlying NK-like transformation and the implications of this process for CD8 T cells are still unclear. This review aimed to deduce the possible differentiation model of NK-like CD8 T cells, summarize the functions of major NK-cell receptors expressed on these cells, and provide a new perspective for exploring the role of these CD8 T cells in health and disease.
Collapse
Affiliation(s)
- Qiulei Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shaodan Chen
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Minghui Zhang
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Seller A, Tegeler CM, Mauermann J, Schreiber T, Hagelstein I, Liebel K, Koch A, Heitmann JS, Greiner SM, Hayn C, Dannehl D, Engler T, Hartkopf AD, Hahn M, Brucker SY, Salih HR, Märklin M. Soluble NKG2DLs Are Elevated in Breast Cancer Patients and Associate with Disease Outcome. Int J Mol Sci 2024; 25:4126. [PMID: 38612935 PMCID: PMC11012452 DOI: 10.3390/ijms25074126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Ligands of the natural killer group 2D (NKG2DL) family are expressed on malignant cells and are usually absent from healthy tissues. Recognition of NKG2DLs such as MICA/B and ULBP1-3 by the activating immunoreceptor NKG2D, expressed by NK and cytotoxic T cells, stimulates anti-tumor immunity in breast cancer. Upregulation of membrane-bound NKG2DLs in breast cancer has been demonstrated by immunohistochemistry. Tumor cells release NKG2DLs via proteolytic cleavage as soluble (s)NKG2DLs, which allows for effective immune escape and is associated with poor prognosis. In this study, we collected serum from 140 breast cancer (BC) and 20 ductal carcinoma in situ (DCIS) patients at the time of initial diagnosis and 20 healthy volunteers (HVs). Serum levels of sNKG2DLs were quantified through the use of ELISA and correlated with clinical data. The analyzed sNKG2DLs were low to absent in HVs and significantly higher in BC patients. For some of the ligands analyzed, higher sNKG2DLs serum levels were associated with the classification of malignant tumor (TNM) stage and grading. Low sMICA serum levels were associated with significantly longer progression-free (PFS) and overall survival (OS). In conclusion, we provide the first insights into sNKG2DLs in BC patients and suggest their potential role in tumor immune escape in breast cancer. Furthermore, our observations suggest that serum sMICA levels may serve as a prognostic parameter in the patients analyzed in this study.
Collapse
Affiliation(s)
- Anna Seller
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Christian M. Tegeler
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Jonas Mauermann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Tatjana Schreiber
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Kai Liebel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - André Koch
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
- Department of Peptide-Based Immunotherapy, Institute of Immunology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Sarah M. Greiner
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Clara Hayn
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Dominik Dannehl
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Tobias Engler
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Andreas D. Hartkopf
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Markus Hahn
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health, University Hospital Tübingen, Calwerstraße 7, 72076 Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.S.)
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Röntgenweg 11, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Siemaszko J, Dratwa M, Szeremet A, Majcherek M, Czyż A, Sobczyk-Kruszelnicka M, Fidyk W, Solarska I, Nasiłowska-Adamska B, Skowrońska P, Bieniaszewska M, Tomaszewska A, Basak GW, Giebel S, Wróbel T, Bogunia-Kubik K. MICB Genetic Variants and Its Protein Soluble Level Are Associated with the Risk of Chronic GvHD and CMV Infection after Allogeneic HSCT. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0012. [PMID: 38847554 DOI: 10.2478/aite-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/24/2024]
Abstract
The aim of the present study was to determine the associations between the MICB genetic variability and the expression and the risk of development of post-transplant complications after allogeneic hematopoietic stem cell transplantation (HSCT). HSCT recipients and their donors were genotyped for two MICB polymorphisms (rs1065075, rs3828903). Moreover, the expression of a soluble form of MICB was determined in the recipients' serum samples after transplantation using the Luminex assay. Our results revealed a favorable role of the MICB rs1065075 G allele. Recipients with donors carrying this genetic variant were less prone to developing chronic graft-versus-host disease (cGvHD) when compared to recipients without any symptoms of this disease (41.41% vs. 65.38%, p = 0.046). Moreover, the MICB rs1065075 G allele was associated with a lower incidence of cytomegalovirus (CMV) reactivation, both as a donor (p = 0.015) and as a recipient allele (p = 0.039). The MICB rs1065075 G variant was also found to be associated with decreased serum soluble MICB (sMICB) levels, whereas serum sMICB levels were significantly higher in recipients diagnosed with CMV infection (p = 0.0386) and cGvHD (p = 0.0008) compared to recipients without those complications. A protective role of the G allele was also observed for the rs3828903 polymorphism, as it was more frequently detected among donors of recipients without cGvHD (89.90% vs. 69.23%; p = 0.013). MICB genetic variants, as well as serum levels of sMICB, may serve as prognostic factors for the risk of developing cGvHD and CMV infection after allogeneic HSCT.
Collapse
Affiliation(s)
- Jagoda Siemaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Szeremet
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Majcherek
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Czyż
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Sobczyk-Kruszelnicka
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Wojciech Fidyk
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Iwona Solarska
- Institute of Hematology and Blood Transfusion Medicine, Warsaw, Poland
| | | | | | - Maria Bieniaszewska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Tomaszewska
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Department of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
9
|
Yoon SE, Park S, Cho J, Ryu KJ, Yandava B, Lee S, Kim SJ, Kim WS. The impact of sMICA/sMICB on immunochemotherapy outcomes in newly diagnosed diffuse large B-cell lymphoma. Front Oncol 2023; 13:1194315. [PMID: 38033491 PMCID: PMC10687412 DOI: 10.3389/fonc.2023.1194315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Soluble MHC class I-related chain A (sMICA) and B (sMICB) play a critical role tumor evolution and poor prognosis through an immune evasion mechanism. Thus, this study determines the interaction between sMICA/sMICB and the tumor immune environment in newly diagnosed diffuse large B-cell lymphoma (ND-DLBCL). Methods We analyzed sMICA/sMICB, cytokine in serum, and macrophage polarization analysis in tissue samples before the first chemotherapy administration. This research was performed to investigate the correlation between sMICA/sMICB expression and treatment outcomes as well as their influence on the immune system within ND-DLBCL. Results Of the 262 patients, 47.3% (n = 124) presented stage III or IV at diagnosis and 50.8% (n = 133) had a high International Prognostic Index (IPI ≥ 3). The patients with high (p = 0.034 and 0.004), elevated lactate dehydrogenase (p = 0.002 and 0.030), advanced stage (p = 0.003 and 0.012), and higher IPI risk (p = 0.009, and 0.032) correlated with the detection of sMICA or sMICB. The median progression-free survival (PFS) of patients with sMICA (p = 0.006) or sMICB (p =0.032) was inferior. Among the patients with advanced-stage or high IPI, those with sMICA or sMICB presented an inferior PFS and OS compared to those without. TNF-a, a pro-inflammatory cytokine, showed statistical significance with detected sMICA (p = 0.035) or sMICB (p = 0.044). Among anti-inflammatory cytokines, IL-1RA (P-value = 0.013) and IL-10 (p = 0.005) were associated with detecting sMICB, but not sMICA. In tissue samples, sMICA or sMICB detection did not correlate with the CD68/CD163 ratio. Discussion Conclusively, the identification of sMICA/sMICB presented unfavorable immunochemotherapy outcomes, and it was assumed that sMICA or sMICB and various cytokines interact, but the relationship with macrophage differentiation is unclear. Therefore, further research is needed to determine the relationship between sMICA/sMICB and tumor microenvironment in DLBCL.
Collapse
Affiliation(s)
- Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sujin Park
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Ju Ryu
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | | | - Sewon Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ormandjieva A, Yordanov S, Stoyanov H, Deliverska E, Shivarov V, Ivanova M. The role of non-classical and chain-related human leukocyte antigen polymorphisms in laryngeal squamous cell carcinoma. Mol Biol Rep 2023; 50:7245-7252. [PMID: 37418079 DOI: 10.1007/s11033-023-08629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is the major pathological subtype of laryngeal cancer. It has been shown that alterations of the expression of non-classical human leukocyte antigens (HLA) and the chain-related MIC molecules by malignant cells can lead to escape from the immune system control and certain allele variants may participate in immune editing and therefore be associated with modulation of cancer risk. The aim of the present study was to investigate the role of non-classical HLA class Ib and chain-related MIC polymorphisms, determined at the allelic level by next-generation sequencing (NGS), in patients from the Bulgarian population, diagnosed with LSCC. MATERIALS AND METHODS In the present study DNA samples from 48 patients with LSCC were used. Data was compared to 63 healthy controls analysed in previous studies. HLA genotyping was performed by using the AlloSeq Tx17 early pooling protocol and the library preparation AlloSeq Tx17 kit (CareDx). Sequencing was performed on MiniSeq sequencing platform (Illumina) and HLA genotypes were assigned with the AlloSeq Assign analysis software v1.0.3 (CareDx) and the IPD-IMGT/HLA database 3.45.1.2. RESULTS The HLA disease association tests revealed a statistically significant predisposing association of HLA-F*01:01:02 (Pc = 0.0103, OR = 24.0194) with LSCC, while HLA-F*01:01:01 (Pc = 8.21e-04, OR = 0.0485) has a possible protective association. Additionally we observed several haplotypes with statistically significant protective and predisposing associations. The strongest association was observed for F*01:01:01-H*01:01:01 (P = 0.0054, haplotype score=-2.7801). CONCLUSION Our preliminary study suggests the involvement of HLA class Ib in cancer development and the possible role of the shown alleles as biomarkers of LSCC.
Collapse
Affiliation(s)
- Anastasia Ormandjieva
- Department of Clinical Immunology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | | | - Hristo Stoyanov
- Department of Dental, Oral and Maxillofacial surgery, FDM, Medical University - Sofia, Sofia, Bulgaria
| | - Elitsa Deliverska
- Department of Dental, Oral and Maxillofacial surgery, FDM, Medical University - Sofia, Sofia, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Medical Faculty, Medical University, Sofia, Bulgaria
- Clinic of Clinical Immunology with Stem Cell Bank, University Hospital ''Alexandrovska'', Sofia, Bulgaria
| |
Collapse
|
11
|
Chen S, Liu Y, Zhong Z, Wei C, Liu Y, Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol 2023; 14:1134663. [PMID: 36865552 PMCID: PMC9971222 DOI: 10.3389/fimmu.2023.1134663] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Endometriosis, an estrogen-dependent chronic inflammatory disease characterized by the growth of endometrium-like tissues outside the uterine cavity, affects 10% of reproductive-age women. Although the pathogenesis of endometriosis is uncertain, it is widely accepted that retrograde menstruation results in ectopic endometrial tissue implantation. Given that not all women with retrograde menstruation develop endometriosis, immune factors have been hypothesized to affect the pathogenesis of endometriosis. In this review, we demonstrate that the peritoneal immune microenvironment, including innate immunity and adaptive immunity, plays a central role in the pathogenesis of endometriosis. Current evidence supports the fact that immune cells, such as macrophages, natural killer (NK) cells, dendritic cells (DCs), neutrophils, T cells, and B cells, as well as cytokines and inflammatory mediators, contribute to the vascularization and fibrogenesis of endometriotic lesions, accelerating the implantation and development of ectopic endometrial lesions. Endocrine system dysfunction influences the immune microenvironment through overexpressed estrogen and progesterone resistance. In light of the limitations of hormonal therapy, we describe the prospects for potential diagnostic biomarkers and nonhormonal therapy based on the regulation of the immune microenvironment. Further studies are warranted to explore the available diagnostic biomarkers and immunological therapeutic strategies for endometriosis.
Collapse
Affiliation(s)
- Siman Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yukai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zhiqi Zhong
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Chunyan Wei
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yuyin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China,*Correspondence: Xiaoyong Zhu,
| |
Collapse
|
12
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
13
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
14
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
15
|
Neuchel C, Fürst D, Tsamadou C, Schrezenmeier H, Mytilineos J. Extended loci histocompatibility matching in HSCT-Going beyond classical HLA. Int J Immunogenet 2021; 48:299-316. [PMID: 34109752 DOI: 10.1111/iji.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Unrelated haematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in a variety of haematologic malignancies. The continuous refinement of treatment protocols and supportive care paired with ongoing achievements in the technological field of histocompatibility testing enabled this transformation. Without a doubt, HLA matching is still the foremost criterion for donor selection in unrelated HSCT. However, HSCT-related treatment complications still occur frequently, often resulting in patients suffering severely or even dying as a consequence of such complications. Current literature indicates that other immune system modulating factors may play a role in the setting of HSCT. In this review, we discuss the current clinical evidence of a possible influence of nonclassical HLA antigens HLA-E, HLA-F, and HLA-G as well as the HLA-like molecules MICA and MICB, in HSCT.
Collapse
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Ulm, Germany
| |
Collapse
|
16
|
Wang W, Bai L, Xu D, Li W, Cui J. Immunotherapy: A Potential Approach to Targeting Cancer Stem Cells. Curr Cancer Drug Targets 2021; 21:117-131. [PMID: 32364076 DOI: 10.2174/1568009620666200504111914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
Tumor recurrence and drug resistance are two of the key factors affecting the prognosis of cancer patients. Cancer stem cells (CSCs) are a group of cells with infinite proliferation potential which are not sensitive to traditional therapies, including radio- and chemotherapy. These CSCs are considered to be central to tumor recurrence and the development of drug resistance. In addition, CSCs are important targets in cancer immunotherapy because of their expression of novel tumorassociated antigens, which result from mutations in cancer cells over the course of treatment. Emerging immunotherapies, including cancer vaccines, checkpoint blockade therapies, and transferred immune cell therapies, have all been shown to be more effective when they selectively target CSCs. Such therapies may also provide novel additions to the current therapeutic milieu and may offer new therapeutic combinations for treatment. This review summarizes the relationships between various immunotherapies and CSCs and provides novel insights into potential therapeutic applications for these approaches in the future.
Collapse
Affiliation(s)
- Wenjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Dongsheng Xu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
17
|
Sekiba K, Otsuka M, Seimiya T, Tanaka E, Funato K, Miyakawa Y, Koike K. The fatty-acid amide hydrolase inhibitor URB597 inhibits MICA/B shedding. Sci Rep 2020; 10:15556. [PMID: 32968163 PMCID: PMC7512021 DOI: 10.1038/s41598-020-72688-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023] Open
Abstract
MICA/B proteins are expressed on the surface of various types of stressed cells, including cancer cells. Cytotoxic lymphocytes expressing natural killer group 2D (NKG2D) receptor recognize MICA/B and eliminate the cells. However, cancer cells evade such immune recognition by inducing proteolytic shedding of MICA/B proteins. Therefore, preventing the shedding of MICA/B proteins could enhance antitumor immunity. Here, by screening a protease inhibitor library, we found that the fatty-acid amide hydrolase (FAAH) inhibitor, URB597, suppresses the shedding of MICA/B. URB597 significantly reduced the soluble MICA level in culture medium and increased the MICA level on the surface of cancer cells. The effect was indirect, being mediated by increased expression of tissue inhibitor of metalloproteinases 3 (TIMP3). Knockdown of TIMP3 expression reversed the effect of URB597, confirming that TIMP3 is required for the MICA shedding inhibition by URB597. In contrast, FAAH overexpression reduced TIMP3 expression and the cell-surface MICA level and increased the soluble MICA level. These results suggest that inhibition of FAAH could prevent human cancer cell evasion of immune-mediated clearance.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuyoshi Funato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Miyakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
18
|
Lazarova M, Wels WS, Steinle A. Arming cytotoxic lymphocytes for cancer immunotherapy by means of the NKG2D/NKG2D-ligand system. Expert Opin Biol Ther 2020; 20:1491-1501. [PMID: 32726145 DOI: 10.1080/14712598.2020.1803273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The activating NKG2D receptor plays a central role in the immune recognition and elimination of abnormal self-cells by cytotoxic lymphocytes. NKG2D binding to cell stress-inducible ligands (NKG2DL) up-regulated on cancer cells facilitates their immunorecognition. Yet tumor cells utilize various escape mechanisms to avert NKG2D-based immunosurveillance. Hence, therapeutic strategies targeting the potent NKG2D/NKG2DL axis and such immune escape mechanisms become increasingly attractive in cancer therapy. AREAS COVERED This perspective provides a brief introduction into the NKG2D/NKG2DL axis and its relevance for cancer immune surveillance. Subsequently, the most advanced therapeutic approaches targeting the NKG2D system are presented focusing on NKG2D-CAR engineered immune cells and antibody-mediated strategies to inhibit NKG2DL shedding by tumors. EXPERT OPINION Thus far, NKG2D-CAR engineered lymphocytes represent the most advanced therapeutic approach utilizing the NKG2D system. Similarly to other tumor-targeting CAR approaches, NKG2D-CAR cells demonstrate powerful on-target activity, but may also cause off-tumor toxicities or lose efficacy, if NKG2DL expression by tumors is reduced. However, NKG2D-CAR cells also act on the tumor microenvironment curtailing its immunosuppressive properties, thus providing an independent therapeutic benefit. The potency of tumoricidal NKG2D-expressing lymphocytes can be further boosted by enhancing NKG2DL expression through small molecules and therapeutic antibodies inhibiting tumor-associated shedding of NKG2DL.
Collapse
Affiliation(s)
- Mariya Lazarova
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany
| | - Winfried S Wels
- Institute for Tumor Biology and Experimental Therapy , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz , Frankfurt am Main, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt , Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt , Frankfurt am Main, Germany
| |
Collapse
|
19
|
Shimizu K, Iyoda T, Yamasaki S, Kadowaki N, Tojo A, Fujii SI. NK and NKT Cell-Mediated Immune Surveillance against Hematological Malignancies. Cancers (Basel) 2020; 12:cancers12040817. [PMID: 32231116 PMCID: PMC7226455 DOI: 10.3390/cancers12040817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Recent cancer treatment modalities have been intensively focused on immunotherapy. The success of chimeric antigen receptor T cell therapy for treatment of refractory B cell acute lymphoblastic leukemia has pushed forward research on hematological malignancies. Among the effector types of innate lymphocytes, natural killer (NK) cells show great importance in immune surveillance against infectious and tumor diseases. Particularly, the role of NK cells has been argued in either elimination of target tumor cells or escape of tumor cells from immune surveillance. Therefore, an NK cell activation approach has been explored. Recent findings demonstrate that invariant natural killer T (iNKT) cells capable of producing IFN-γ when optimally activated can promptly trigger NK cells. Here, we review the role of NKT and/or NK cells and their interaction in anti-tumor responses by highlighting how innate immune cells recognize tumors, exert effector functions, and amplify adaptive immune responses. In addition, we discuss these innate lymphocytes in hematological disorders, particularly multiple myeloma and acute myeloid leukemia. The immune balance at different stages of both diseases is explored in light of disease progression. Various types of innate immunity-mediated therapeutic approaches, recent advances in clinical immunotherapies, and iNKT-mediated cancer immunotherapy as next-generation immunotherapy are then discussed.
Collapse
Affiliation(s)
- Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
| | - Norimitsu Kadowaki
- Department of Internal Medicine, Hematology, Rheumatology and Respiratory Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Arinobu Tojo
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan;
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; (T.I.); (S.Y.)
- Correspondence: (K.S.); (S.-i.F.); Tel.: +81-45-503-7062 (K.S. & S.-i.F.); Fax: +81-45-503-7061 (K.S. & S.-i.F.)
| |
Collapse
|
20
|
Ferrari de Andrade L, Kumar S, Luoma AM, Ito Y, Alves da Silva PH, Pan D, Pyrdol JW, Yoon CH, Wucherpfennig KW. Inhibition of MICA and MICB Shedding Elicits NK-Cell-Mediated Immunity against Tumors Resistant to Cytotoxic T Cells. Cancer Immunol Res 2020; 8:769-780. [PMID: 32209637 DOI: 10.1158/2326-6066.cir-19-0483] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/14/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Resistance to cytotoxic T cells is frequently mediated by loss of MHC class I expression or IFNγ signaling in tumor cells, such as mutations of B2M or JAK1 genes. Natural killer (NK) cells could potentially target such resistant tumors, but suitable NK-cell-based strategies remain to be developed. We hypothesized that such tumors could be targeted by NK cells if sufficient activating signals were provided. Human tumors frequently express the MICA and MICB ligands of the activating NKG2D receptor, but proteolytic shedding of MICA/B represents an important immune evasion mechanism in many human cancers. We showed that B2M- and JAK1-deficient metastases were targeted by NK cells following treatment with a mAb that blocks MICA/B shedding. We also demonstrated that the FDA-approved HDAC inhibitor panobinostat and a MICA/B antibody acted synergistically to enhance MICA/B surface expression on tumor cells. The HDAC inhibitor enhanced MICA/B gene expression, whereas the MICA/B antibody stabilized the synthesized protein on the cell surface. The combination of panobinostat and the MICA/B antibody reduced the number of pulmonary metastases formed by a human melanoma cell line in NOD/SCID gamma mice reconstituted with human NK cells. NK-cell-mediated immunity induced by a mAb specific for MICA/B, therefore, provides an opportunity to target tumors with mutations that render them resistant to cytotoxic T cells.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunity, Cellular/immunology
- Killer Cells, Natural/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lucas Ferrari de Andrade
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
- Department of Oncological Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sushil Kumar
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Yoshinaga Ito
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Pedro Henrique Alves da Silva
- Department of Oncological Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deng Pan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Jason W Pyrdol
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Charles H Yoon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19:200-218. [PMID: 31907401 DOI: 10.1038/s41573-019-0052-1] [Citation(s) in RCA: 737] [Impact Index Per Article: 147.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells can swiftly kill multiple adjacent cells if these show surface markers associated with oncogenic transformation. This property, which is unique among immune cells, and their capacity to enhance antibody and T cell responses support a role for NK cells as anticancer agents. Although tumours may develop several mechanisms to resist attacks from endogenous NK cells, ex vivo activation, expansion and genetic modification of NK cells can greatly increase their antitumour activity and equip them to overcome resistance. Some of these methods have been translated into clinical-grade platforms and support clinical trials of NK cell infusions in patients with haematological malignancies or solid tumours, which have yielded encouraging results so far. The next generation of NK cell products will be engineered to enhance activating signals and proliferation, suppress inhibitory signals and promote their homing to tumours. These modifications promise to significantly increase their clinical activity. Finally, there is emerging evidence of increased NK cell-mediated tumour cell killing in the context of molecularly targeted therapies. These observations, in addition to the capacity of NK cells to magnify immune responses, suggest that NK cells are poised to become key components of multipronged therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Jain
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Bogomiakova ME, Eremeev AV, Lagarkova MA. At Home among Strangers: Is It Possible to Create Hypoimmunogenic Pluripotent Stem Cell Lines? Mol Biol 2019. [DOI: 10.1134/s0026893319050042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Wang Y, Nicholes K, Shih IM. The Origin and Pathogenesis of Endometriosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:71-95. [PMID: 31479615 DOI: 10.1146/annurev-pathmechdis-012419-032654] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent molecular genetic findings on endometriosis and normal endometrium suggest a modified model in which circulating epithelial progenitor or stem cells intended to regenerate uterine endometrium after menstruation may become overreactive and trapped outside the uterus. These trapped epithelium-committed progenitor cells form nascent glands through clonal expansion and recruit polyclonal stromal cells, leading to the establishment of deep infiltrating endometriosis. Once formed, the ectopic tissue becomes subject to immune surveillance, resulting in chronic inflammation. The inflammatory response orchestrated by nuclear factor-κB signaling is exacerbated by aberrations in the estrogen receptor-β and progesterone receptor pathways, which are also affected by local inflammation, forming a dysregulated inflammation-hormonal loop. Glandular epithelium within endometriotic tissue harbors cancer-associated mutations that are frequently detected in endometriosis-related ovarian cancers. In this review, we summarize recent advances that have illuminated the origin and pathogenesis of endometriosis and have provided new avenues for research that promise to improve the early diagnosis and management of endometriosis.
Collapse
Affiliation(s)
- Yeh Wang
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; , ,
| | - Kristen Nicholes
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; , ,
| | - Ie-Ming Shih
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; , , .,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
24
|
Campos-Silva C, Kramer MK, Valés-Gómez M. NKG2D-ligands: Putting everything under the same umbrella can be misleading. HLA 2019. [PMID: 29521021 DOI: 10.1111/tan.13246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
NKG2D is a key receptor for the activation of immune effector cells, mainly Natural Killer cells and T lymphocytes, in infection, cancer and autoimmune diseases. Since the detection of ligands for NKG2D in sera of cancer patients is, in many human models, indicative of prognosis, a large number of studies have been undertaken to improve understanding of the biology regulating this receptor and its ligands, with the aim of translating this knowledge into clinical practice. Although it is becoming clear that the NKG2D system can be used as a tool for diagnosis and manipulated for therapy, some questions remain open due to the complexity associated with the existence of a large number of ligands, each one of them displaying distinct biological properties. In this review, we have highlighted some key aspects of this system that differ between humans and mice, including the properties of NKG2D, as well as the genetic and biochemical complexity of NKG2D-ligands. All of these features affect the characteristics of the immune response exerted by NKG2D-expressing cells and are likely to be important factors in the clearance of a tumour or the development of autoimmunity. Implementation of more global analyses, including information on genotype, transcription and protein properties (cellular vs released to the blood stream) of NKG2D-ligands expressed in patients will be necessary to fully understand the links between this system and disease progression.
Collapse
Affiliation(s)
- C Campos-Silva
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - M K Kramer
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - M Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| |
Collapse
|
25
|
Schmiedel D, Mandelboim O. NKG2D Ligands-Critical Targets for Cancer Immune Escape and Therapy. Front Immunol 2018; 9:2040. [PMID: 30254634 PMCID: PMC6141707 DOI: 10.3389/fimmu.2018.02040] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
DNA damage, oncogene activation and excessive proliferation, chromatin modulations or oxidative stress are all important hallmarks of cancer. Interestingly, all of these abnormalities also induce a cellular stress response. By upregulating “stress-induced ligands,” damaged or transformed cells can be recognized by immune cells and cleared. The human genome encodes eight functional “stress-induced ligands”: MICA, MICB, and ULBP1-6. All of them are recognized by a single receptor, NKG2D, which is expressed on natural killer (NK) cells, cytotoxic T cells and other T cell subsets. The NKG2D ligand/NKG2D-axis is well-recognized as an important mediator of anti-tumor activity; however, patient data about the role of NKG2D ligands in immune surveillance and escape appears conflicting. As these ligands are often actively transcribed, tumor cells are urged to manipulate the expression of these ligands on post-transcriptional or post-translational level. Although our knowledge on the regulation of NKG2D ligand expression remains fragmentary, research of the past years revealed multiple cellular mechanisms that are adopted by tumor cells to reduce the expression of “stress-induced ligands” and therefore escape immune recognition. Here, we review the post-transcriptional and post-translational mechanisms by which NKG2D ligands are modulated in cancer cells and their impact on patient prognosis.We discuss controversies and approaches to apply our understanding of the NKG2D ligand/NKG2D-axis for cancer therapy.
Collapse
Affiliation(s)
- Dominik Schmiedel
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
26
|
Sheppard S, Ferry A, Guedes J, Guerra N. The Paradoxical Role of NKG2D in Cancer Immunity. Front Immunol 2018; 9:1808. [PMID: 30150983 PMCID: PMC6099450 DOI: 10.3389/fimmu.2018.01808] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, United States
| | - Amir Ferry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M, Tayade C. The Immunopathophysiology of Endometriosis. Trends Mol Med 2018; 24:748-762. [PMID: 30054239 DOI: 10.1016/j.molmed.2018.07.004] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Endometriosis is a chronic, inflammatory, estrogen-dependent disease characterized by the growth of endometrial tissue outside of the uterine cavity. Although the etiology of endometriosis remains elusive, immunological dysfunction has been proposed as a critical facilitator of ectopic lesion growth following retrograde menstruation of endometrial debris. However, it is not clear whether this immune dysfunction is a cause or consequence of endometriosis. Thus, here we provide in-depth insights into our current understanding of the immunopathophysiology of endometriosis and highlight challenges and opportunities for future research. With the explosion of successful immune-based therapies targeting various chronic inflammatory conditions, it is crucial to determine whether immune dysfunction can be therapeutically targeted in endometriosis.
Collapse
Affiliation(s)
- Lindsey K Symons
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Vanessa R Kay
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Ryan M Marks
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kiera Liblik
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, Ontario, K7L 2V7, Canada; Division of Cancer Biology and Genetics, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
28
|
Cox ST, Danby R, Hernandez D, Laza-Briviesca R, Pearson H, Madrigal JA, Saudemont A. Functional Characterisation and Analysis of the Soluble NKG2D Ligand Repertoire Detected in Umbilical Cord Blood Plasma. Front Immunol 2018; 9:1282. [PMID: 29963042 PMCID: PMC6013648 DOI: 10.3389/fimmu.2018.01282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
We previously reported that cord blood plasma (CBP) contains significantly more soluble NKG2D ligands (sNKG2DLs), such as sMICB and sULBP1, than healthy adult plasma. Viral infection or malignant transformation upregulates expression of NKG2D ligand on affected cells, leading to NK group 2, member D (NKG2D)-mediated natural killer (NK) cell lysis. Conversely, sNKG2DL engagement of NKG2D decreases NK cell cytotoxicity leading to viral or tumour immune escape. We hypothesised that sNKG2DLs detected in CBP may represent an additional fetal–maternal tolerance mechanism. To further understand the role of sNKG2DL in pregnancy and individual contributions of the various ligand types, we carried out functional analysis using 181 CBP samples. To test the ability of CBP to suppress the function of NK cells in vitro, we measured expression of NKG2D, CD107a, and IFN-γ in NK cells from control donors after exposure to 181 individual CBP samples and characterised the sMICA, sMICB, and sULBP1 content of each one. Furthermore, to detect possible allelic differences between samples that may also affect function, we carried out umbilical cord blood typing for MHC class I-related chain A (MICA) and MHC class I-related chain B (MICB) coding and promoter allelic types. Strongest functional correlations related to increasing concentration of exosomal sULBP1, which was present in all CBP samples tested. In addition, common MICB alleles, such as MICB*005:02, resulted in increased concentration of sMICB. Interestingly, MICB*005:02 uniquely associated with eight different promoter types. Among promoter polymorphisms, P2 resulted in the highest expression of sMICB and P9 the least and was confirmed using luciferase reporter assays. Higher levels of sMICB associated with lower IFN-γ production, indicating that sMICB also suppressed NK cell function. We also examined the MICA functional dimorphism encoding methionine (met) or valine (val) at residue 129 associated with strong or weak NKG2D binding, respectively. Most sMICA associated with val/val, some with met/val but none with met/met and, counter-intuitively, the presence of sMICA in CBP increased NK cell cytotoxicity. We propose a model for fetal–maternal tolerance, whereby NK cell activity is limited by sULBP1 and sMICB in CBP. The release of 129val sMICA with weak NKG2D signalling may reduce the overall net suppressive signal and break tolerance thus allowing fetal NK cells to overcome immunological threats in utero.
Collapse
Affiliation(s)
- Steven T Cox
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| | - Robert Danby
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Diana Hernandez
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| | | | - Hayley Pearson
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom
| | - J Alejandro Madrigal
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| | - Aurore Saudemont
- Anthony Nolan Research Institute, Royal Free Hospital, London, United Kingdom.,Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
29
|
Zöller T, Wittenbrink M, Hoffmeister M, Steinle A. Cutting an NKG2D Ligand Short: Cellular Processing of the Peculiar Human NKG2D Ligand ULBP4. Front Immunol 2018; 9:620. [PMID: 29651291 PMCID: PMC5884875 DOI: 10.3389/fimmu.2018.00620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Stress-induced cell surface expression of MHC class I-related glycoproteins of the MIC and ULBP families allows for immune recognition of dangerous "self cells" by human cytotoxic lymphocytes via the NKG2D receptor. With two MIC molecules (MICA and MICB) and six ULBP molecules (ULBP1-6), there are a total of eight human NKG2D ligands (NKG2DL). Since the discovery of the NKG2D-NKG2DL system, the cause for both redundancy and diversity of NKG2DL has been a major and ongoing matter of debate. NKG2DL diversity has been attributed, among others, to the selective pressure by viral immunoevasins, to diverse regulation of expression, to differential tissue expression as well as to variations in receptor interactions. Here, we critically review the current state of knowledge on the poorly studied human NKG2DL ULBP4. Summarizing available facts and previous studies, we picture ULBP4 as a peculiar ULBP family member distinct from other ULBP family members by various aspects. In addition, we provide novel experimental evidence suggesting that cellular processing gives rise to mature ULBP4 glycoproteins different to previous reports. Finally, we report on the proteolytic release of soluble ULBP4 and discuss these results in the light of known mechanisms for generation of soluble NKG2DL.
Collapse
Affiliation(s)
- Tobias Zöller
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Mareike Wittenbrink
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Meike Hoffmeister
- Institute of Biochemistry II, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.,Brandenburg Medical School (MHB) Theodor Fontane, Institute of Biochemistry, Neuruppin, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Maurer S, Kropp KN, Klein G, Steinle A, Haen SP, Walz JS, Hinterleitner C, Märklin M, Kopp HG, Salih HR. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. Oncoimmunology 2017; 7:e1364827. [PMID: 29308299 DOI: 10.1080/2162402x.2017.1364827] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
Platelets promote metastasis, among others by coating cancer cells traveling through the blood, which results in protection from NK cell immune-surveillance. The underlying mechanisms, however, remain to be fully elucidated. Here we report that platelet-coating reduces surface expression of NKG2D ligands, in particular MICA and MICB, on tumor cells, which was mirrored by enhanced release of their soluble ectodomains. Similar results were obtained upon exposure of tumor cells to platelet-releasate and can be attributed to the sheddases ADAM10 and ADAM17 that are detectable on the platelet surface and in releasate following activation and at higher levels on platelets of patients with metastasized lung cancer compared with healthy controls. Platelet-mediated NKG2DL-shedding in turn resulted in impaired "induced self" recognition by NK cells as revealed by diminished NKG2D-dependent lysis of tumor cells. Our results indicate that platelet-mediated NKG2DL-shedding may be involved in immune-evasion of (metastasizing) tumor cells from NK cell reactivity.
Collapse
Affiliation(s)
- Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| | - Korbinian Nepomuk Kropp
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| | - Gerd Klein
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian P Haen
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Juliane S Walz
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Clemens Hinterleitner
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| | - Hans-Georg Kopp
- Department of Hematology and Oncology, Eberhard Karls University, Tuebingen, Germany
| | - Helmut Rainer Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Tuebingen, Germany
| |
Collapse
|
31
|
Schäfer C, Ascui G, Ribeiro CH, López M, Prados-Rosales R, González PA, Bueno SM, Riedel CA, Baena A, Kalergis AM, Carreño LJ. Innate immune cells for immunotherapy of autoimmune and cancer disorders. Int Rev Immunol 2017; 36:315-337. [PMID: 28933579 DOI: 10.1080/08830185.2017.1365145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modulation of the immune system has been widely targeted for the treatment of several immune-related diseases, such as autoimmune disorders and cancer, due to its crucial role in these pathologies. Current available therapies focus mainly on symptomatic treatment and are often associated with undesirable secondary effects. For several years, remission of disease and subsequently recovery of immune homeostasis has been a major goal for immunotherapy. Most current immunotherapeutic strategies are aimed to inhibit or potentiate directly the adaptive immune response by modulating antibody production and B cell memory, as well as the effector potential and memory of T cells. Although these immunomodulatory approaches have shown some success in the clinic with promising therapeutic potential, they have some limitations related to their effectiveness in disease models and clinical trials, as well as elevated costs. In the recent years, a renewed interest has emerged on targeting innate immune cells for immunotherapy, due to their high plasticity and ability to exert a potent and extremely rapid response, which can influence the outcome of the adaptive immune response. In this review, we discuss the immunomodulatory potential of several innate immune cells, as well as they use for immunotherapy, especially in autoimmunity and cancer.
Collapse
Affiliation(s)
- Carolina Schäfer
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Gabriel Ascui
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Carolina H Ribeiro
- b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Mercedes López
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Rafael Prados-Rosales
- c Centro de Investigaciones Cooperativas en Biociencias (CIC bioGUNE) , Bilbao , Spain
| | - Pablo A González
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,e Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Universidad Andrés Bello , Santiago , Chile
| | - Andrés Baena
- f Departamento de Microbiología y Parasitología, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | - Alexis M Kalergis
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile.,g Departamento de Endocrinología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leandro J Carreño
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| |
Collapse
|
32
|
Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017; 31:64-75. [PMID: 28882429 DOI: 10.1016/j.smim.2017.07.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis. This review will explore many of the checkpoint receptors tumors utilize to manipulate the NK cell response as well as some of the current and upcoming pharmacological solutions to limit tumor suppression of NK cell function. Furthermore, we will discuss the potential to use these drugs in combinational therapies with novel antibody reagents such as bi- and tri-specific killer engagers (BiKEs and TriKEs) against tumor-specific antigens to enhance NK cell-mediated tumor rejection.
Collapse
Affiliation(s)
- Zachary B Davis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| | - Daniel A Vallera
- Masonic Cancer Center, University of Minnesota, United States; Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, United States
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States.
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| |
Collapse
|
33
|
Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S, Thiery J. Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget 2017; 8:19780-19794. [PMID: 28423623 PMCID: PMC5386721 DOI: 10.18632/oncotarget.15540] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/16/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a central role in the complex process of tumor-stroma interaction and promote tumor growth. Emerging evidences also suggest that these fibroblasts are involved in the alteration of the anti-tumor immune response by impacting several immune cell populations, especially through their secretion of pro-inflammatory and immunosuppressive factors in the tumor microenvironment. However, the underlying immuno-modulating mechanisms triggered by these fibroblasts are still only partially defined. In this study, we provide evidence that melanoma-associated fibroblasts decrease the susceptibility of melanoma tumor cells to NK-mediated lysis through the secretion of active matrix metalloproteinases. This secretion reduces the expression of the two NKG2D ligands, MICA/B, at the surface of tumor cells and consequently decreases the NKG2D-dependent cytotoxic activity of NK cells against melanoma tumor cells. Together, our data demonstrate that the modification of tumor cell susceptibility to killer cells is an important determinant of the anti-tumor immune response alteration triggered by CAFs.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Thouraya Ben Safta-Saadoun
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Johanne Gourbeix
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Andrea Cavalcanti
- Department of General Surgery, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Robert
- Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France.,INSERM, UMR 981, Villejuif, France.,Dermatology Service, Department of Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Salem Chouaib
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| | - Jerome Thiery
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,University Paris Sud, Faculty of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
34
|
Vyas M, Reinartz S, Hoffmann N, Reiners KS, Lieber S, Jansen JM, Wagner U, Müller R, von Strandmann EP. Soluble NKG2D ligands in the ovarian cancer microenvironment are associated with an adverse clinical outcome and decreased memory effector T cells independent of NKG2D downregulation. Oncoimmunology 2017; 6:e1339854. [PMID: 28932639 PMCID: PMC5599084 DOI: 10.1080/2162402x.2017.1339854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
The immune receptor NKG2D is predominantly expressed on NK cells and T cell subsets and confers anti-tumor activity. According to the current paradigm, immune surveillance is counteracted by soluble ligands shed into the microenvironment, which down-regulate NKG2D receptor expression. Here, we analyzed the clinical significance of the soluble NKG2D ligands sMICA and sULBP2 in the malignancy-associated ascites of ovarian cancer. We show that high levels of sMICA and sULBP2 in ascites were associated with a poor prognosis. Ascites inhibited the activation of normal NK cells, which, in contrast to the prevailing notion, was not associated with decreased NKG2D expression. Of note, an inverse correlation of soluble NKG2D ligands with effector memory T cells and a direct correlation with pro-tumorigenic CD163+CD206+ macrophages was observed. Thus, the role of soluble NKG2D ligands within the ovarian cancer microenvironment is more complex than anticipated and does not exclusively function via NKG2D downregulation.
Collapse
Affiliation(s)
- Maulik Vyas
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Nathalie Hoffmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany.,Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Katrin S Reiners
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Sonja Lieber
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
35
|
Garrido-Tapia M, Hernández CJ, Ascui G, Kramm K, Morales M, Ga Rate V, Zúñiga R, Bustamante M, Aguillón JC, Catala N D, Ribeiro CH, Molina MAC. STAT3 inhibition by STA21 increases cell surface expression of MICB and the release of soluble MICB by gastric adenocarcinoma cells. Immunobiology 2017; 222:1043-1051. [PMID: 28578917 DOI: 10.1016/j.imbio.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/27/2017] [Accepted: 05/14/2017] [Indexed: 02/04/2023]
Abstract
NKG2D is an activating receptor expressed on NK cells that binds to a variety of ligands, including MICA and MICB. These cell surface glycoproteins are overexpressed under cellular transformation, thus playing an important role in cell-mediated immune response to tumors. STAT3 is a transcription factor that is constitutively active in cancer. It negatively regulates MICA expression on target cells, while its inhibition enhances NK cell cytotoxicity against tumors. In this work, we aimed to describe the effect of STAT3 signaling inhibition by STA21 on the regulation of MICB expression in gastric adenocarcinoma cells and its effect on the cytotoxic function of NK cells. Treatment of gastric adenocarcinoma cells with STA21 induced an increase in MICB expression and soluble MICB secretion, as well as a variable pattern on effector cell degranulation. Soluble MICB secretion by gastric adenocarcinoma cells was not affected by metalloprotease inhibition. We also observed that primary gastric adenocarcinoma tissue released soluble MICB into the extracellular milieu. Recombinant MICB induced a significant decrease in the levels of NKG2D receptor on effector NK and CD8+ T cells, which correlated with an impaired cytotoxic function. Altogether, our data provide evidence that STAT3 signaling pathway regulates MICB expression on gastric adenocarcinoma cells and that recombinant soluble MICB compromises the cytolytic activity of NK cells.
Collapse
Affiliation(s)
- Macarena Garrido-Tapia
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Carolina J Hernández
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Chile.
| | - Gabriel Ascui
- Laboratorio de Inmunoedición del Cáncer, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Karina Kramm
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Marcela Morales
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Valentina Ga Rate
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Roberto Zúñiga
- Centro de Inmunobiotecnología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile; Programa de Doctorado en Química, Universidad de la República Oriental de Uruguay, Uruguay.
| | - Marco Bustamante
- Departamento de Cirugía Digestiva, Hospital del Salvador, Facultad de Medicina, Universidad de Chile, Chile.
| | - Juan Carlos Aguillón
- Laboratorio de Enfermedades Autoinmunes e Inflamatorias, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Diego Catala N
- Laboratorio de Inmunoregulación, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Carolina H Ribeiro
- Laboratorio de Inmunoedición del Cáncer, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| | - Mari A Carmen Molina
- Laboratorio de Anticuerpos Recombinantes e Inmunoterapia anti tumoral. Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile; Centro de Inmunobiotecnología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
36
|
Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E. Shaping of Natural Killer Cell Antitumor Activity by Ex Vivo Cultivation. Front Immunol 2017; 8:458. [PMID: 28491060 PMCID: PMC5405078 DOI: 10.3389/fimmu.2017.00458] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023] Open
Abstract
Natural killer (NK) cells are a promising tool for the use in adoptive immunotherapy, since they efficiently recognize and kill tumor cells. In this context, ex vivo cultivation is an attractive option to increase NK cells in numbers and to improve their antitumor potential prior to clinical applications. Consequently, various strategies to generate NK cells for adoptive immunotherapy have been developed. Here, we give an overview of different NK cell cultivation approaches and their impact on shaping the NK cell antitumor activity. So far, the cytokines interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 are used to culture and expand NK cells. The selection of the respective cytokine combination is an important factor that directly affects NK cell maturation, proliferation, survival, distribution of NK cell subpopulations, activation, and function in terms of cytokine production and cytotoxic potential. Importantly, cytokines can upregulate the expression of certain activating receptors on NK cells, thereby increasing their responsiveness against tumor cells that express the corresponding ligands. Apart from using cytokines, cocultivation with autologous accessory non-NK cells or addition of growth-inactivated feeder cells are approaches for NK cell cultivation with pronounced effects on NK cell activation and expansion. Furthermore, ex vivo cultivation was reported to prime NK cells for the killing of tumor cells that were previously resistant to NK cell attack. In general, NK cells become frequently dysfunctional in cancer patients, for instance, by downregulation of NK cell activating receptors, disabling them in their antitumor response. In such scenario, ex vivo cultivation can be helpful to arm NK cells with enhanced antitumor properties to overcome immunosuppression. In this review, we summarize the current knowledge on NK cell modulation by different ex vivo cultivation strategies focused on increasing NK cytotoxicity for clinical application in malignant diseases. Moreover, we critically discuss the technical and regulatory aspects and challenges underlying NK cell based therapeutic approaches in the clinics.
Collapse
Affiliation(s)
- Markus Granzin
- Clinical Research, Miltenyi Biotec Inc., Gaithersburg, MD, USA
| | - Juliane Wagner
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| | - Ulrike Köhl
- Institute of Cellular Therapeutics, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg, Germany.,Division of Immunbiochemistry, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Volker Huppert
- R&D Reagents, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, Hospital of the Goethe University, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy, Cellular Immunology, Goethe University, Frankfurt, Germany
| |
Collapse
|
37
|
Carapito R, Aouadi I, Ilias W, Bahram S. Natural Killer Group 2, Member D/NKG2D Ligands in Hematopoietic Cell Transplantation. Front Immunol 2017; 8:368. [PMID: 28396673 PMCID: PMC5366881 DOI: 10.3389/fimmu.2017.00368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
Natural killer group 2, member D (NKG2D) is an invariant activatory receptor present on subsets of natural killer and T lymphocytes. It stimulates the cytolytic effector response upon engagement of its various stress-induced ligands NKG2D ligands (NKG2DL). Malignant transformation and conditioning treatment prior to hematopoietic cell transplantation (HCT) are stress factors leading to the activation of the NKG2D/NKG2DL signaling in clinical settings. In the context of HCT, NKG2D-bearing cells can kill both tumor and healthy cells expressing NKG2DL. The NKG2D/NKG2DL engagement has therefore a key role in the regulation of one of the most salient issues in allogeneic HCT, i.e., maintaining a balance between graft-vs.-leukemia effect and graft-vs.-host disease. The present review summarizes the current state of our knowledge pertaining to the role of the NKG2D and NKG2DL in HCT.
Collapse
Affiliation(s)
- Raphael Carapito
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France; Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ismail Aouadi
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Wassila Ilias
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx TRANSPLANTEX, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Strasbourg, France; Laboratoire Central d'Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
38
|
Clinical significance of SNP (rs2596542) in histocompatibility complex class I-related gene A promoter region among hepatitis C virus related hepatocellular carcinoma cases. J Adv Res 2017; 8:343-349. [PMID: 28417047 PMCID: PMC5388909 DOI: 10.1016/j.jare.2017.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022] Open
Abstract
The major histocompatibility complex class I-related gene A (MICA) is an antigen induced by stress and performs an integral role in immune responses as an anti-infectious and antitumor agent. This work was designed to investigate whether (SNP) rs2596542C/T in MICA promoter region is predictive of liver cirrhosis (LC) and hepatocellular carcinoma (HCC) or not. Forty-seven healthy controls and 94 HCV-infected patients, subdivided into 47 LC and 47 HCC subjects were enrolled in this study. SNP association was studied using real time PCR and soluble serum MICA concentration was measured using ELISA. Results showed that heterozygous genotype rs2596542CT was significantly (P = 0.022) distributed between HCC and LC related CHC patients. The sMICA was significantly higher (P = 0.0001) among HCC and LC. No significant association (P = 0.56) between rs2596542CT genotypes and sMICA levels was observed. Studying SNP rs2596542C/T association with HCC and LC susceptibility revealed that statistical significant differences (P = 0.013, P = 0.027) were only observed between SNP rs2596542C/T and each of HCC and LC, respectively, versus healthy controls, indicating that the rs2596542C/T genetic variation is not a significant contributor to HCC development in LC patients. Moreover, the T allele was considered a risk factor for HCC and LC vulnerability in HCV patients (OR = 1.93 and 2.1, respectively), while the C allele contributes to decreasing HCC risk. Therefore, SNP (rs2596542C/T) in MICA promoter region and sMICA levels might be potential useful markers in the assessment of liver disease progression to LC and HCC.
Collapse
|
39
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
40
|
Cappel C, Huenecke S, Suemmerer A, Erben S, Rettinger E, Pfirrmann V, Heinze A, Zimmermann O, Klingebiel T, Ullrich E, Bader P, Bremm M. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr Blood Cancer 2016; 63:2230-2239. [PMID: 27433920 DOI: 10.1002/pbc.26147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite advances in therapy, the prognosis is poor and optimized therapies are urgently needed. Therefore, we investigated the antitumor potential of interleukin-15 (IL-15)-activated cytokine-induced killer (CIK) cells against different NB cell lines. PROCEDURE CIK cells were generated from peripheral blood mononuclear cells by the stimulation with interferon-γ (IFN-γ), IL-2, OKT-3 and IL-15 over a period of 10-12 days. The cytotoxic activity against NB cells was analyzed by nonradioactive Europium release assay before and after blocking of different receptor-ligand interactions relevant in CIK cell-mediated cytotoxicity. RESULTS The final CIK cell products consisted in median of 83% (range: 75.9-91.9%) CD3+ CD56- T cells, 14% (range: 5.2-20.7%) CD3+ CD56+ NK-like T cells and 2% (range: 0.9-4.8%) CD3- CD56+ NK cells. CIK cells expanded significantly upon ex vivo stimulation with median rates of 22.3-fold for T cells, 58.3-fold for NK-like T cells and 2.5-fold for NK cells. Interestingly, CD25 surface expression increased from less than equal to 1% up to median 79.7%. Cytotoxic activity of CIK cells against NB cells was in median 34.7, 25.9 and 34.8% against the cell lines UKF-NB-3, UKF-NB-4 and SK-N-SH, respectively. In comparison with IL-2-stimulated NK cells, CIK cells showed a significantly higher cytotoxicity. Antibody-mediated blocking of the receptors NKG2D, TRAIL, FasL, DNAM-1, NKp30 and lymphocyte function-associated antigen-1 (LFA-1) significantly reduced lytic activity, indicating that diverse cytotoxic mechanisms might be involved in CIK cell-mediated NB killing. CONCLUSIONS Unlike the mechanism reported in other malignancies, NKG2D-mediated cytotoxicity does not constitute the major killing mechanism of CIK cells against NB.
Collapse
Affiliation(s)
- Claudia Cappel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Anica Suemmerer
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Stephanie Erben
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Verena Pfirrmann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Annekathrin Heinze
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Evelyn Ullrich
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
41
|
Haberthur K, Brennan K, Hoglund V, Balcaitis S, Chinn H, Davis A, Kreuser S, Winter C, Leary SES, Deutsch GH, Ellenbogen RG, Crane CA. NKG2D ligand expression in pediatric brain tumors. Cancer Biol Ther 2016; 17:1253-1265. [PMID: 27834580 DOI: 10.1080/15384047.2016.1250047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Adult brain tumors establish an immunosuppressive tumor microenvironment as a modality of immune escape, with several immunotherapies designed to overcome this barrier. However, the relationship between tumor cells and immune cells in pediatric brain tumor patients is not as well-defined. In this study, we sought to determine whether the model of immune escape observed in adult brain tumors is reflected in patients with pediatric brain tumors by evaluating NKG2D ligand expression on tissue microarrays created from patients with a variety of childhood brain tumor diagnoses, and infiltration of Natural Killer and myeloid cells. We noted a disparity between mRNA and protein expression for the 8 known NKG2D ligands. Surprisingly, high-grade gliomas did not have increased NKG2D ligand expression compared to normal adjacent brain tissue, nor did they have significant myeloid or NK cell infiltration. These data suggest that pediatric brain tumors have reduced NK cell-mediated immune surveillance, and a less immunosuppressive tumor microenvironment as compared to their adult counterparts. These data indicate that therapies aimed to improve NK cell trafficking and functions in pediatric brain tumors may have a greater impact on anti-tumor immune responses and patient survival, with fewer obstacles to overcome.
Collapse
Affiliation(s)
- Kristen Haberthur
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Kathryn Brennan
- b University of Michigan , Department of Immunology , Ann Arbor , MI , USA
| | - Virginia Hoglund
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Stephanie Balcaitis
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Harrison Chinn
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Amira Davis
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Shannon Kreuser
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA
| | - Conrad Winter
- c Department of Pathology Seattle Children's Hospital , Seattle , WA , USA
| | - Sarah E S Leary
- d Seattle Children's Hospital and Associate Professor , Center for Clinical and Translational Research, Seattle Children's Research Institute , WA , USA
| | - Gail H Deutsch
- e Fetal Autopsy Services, Department of Pathology , Seattle Children's Hospital , WA , USA
| | - Richard G Ellenbogen
- f University of Washington School of Medicine, Theodore S. Roberts Endowed Chair in Pediatric Neurological Surgery, Seattle Children's Hospital , WA , USA
| | - Courtney A Crane
- a Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute , Seattle , WA , USA.,g University of Washington Department of Neurological Surgery , Seattle , WA , USA
| |
Collapse
|
42
|
Ruck T, Bittner S, Afzali AM, Göbel K, Glumm S, Kraft P, Sommer C, Kleinschnitz C, Preuße C, Stenzel W, Wiendl H, Meuth SG. The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies. Oncotarget 2016; 6:43230-43. [PMID: 26646698 PMCID: PMC4791228 DOI: 10.18632/oncotarget.6462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/14/2015] [Indexed: 12/29/2022] Open
Abstract
NKG2D is an activating receptor on T cells, which has been implicated in the pathogenesis of autoimmune diseases. T cells are critically involved in idiopathic inflammatory myopathies (IIM) and have been proposed as specific therapeutic targets. However, the mechanisms underlying T cell-mediated progressive muscle destruction in IIM remain to be elucidated. We here determined the involvement of the NKG2D – IL-15 signaling pathway. Primary human myoblasts expressed NKG2D ligands, which were further upregulated upon inflammatory stimuli. In parallel, shedding of the soluble NKG2D ligand MICA (sMICA) decreased upon inflammation potentially diminishing inhibition of NKG2D signaling. Membrane-related expression of IL-15 by myoblasts induced differentiation of naïve CD8+ T cells into highly activated, cytotoxic CD8+NKG2Dhigh T cells demonstrating NKG2D-dependent lysis of myoblasts in vitro. CD8+NKG2Dhigh T cell frequencies were increased in the peripheral blood of polymyositis (PM) patients and correlated with serum creatinine kinase concentrations, while serum sMICA levels were not significantly changed. In muscle biopsy specimens from PM patients expression of the NKG2D ligand MICA/B was upregulated, IL-15 was expressed by muscle cells, CD68+ macrophages as well as CD4+ T cells, and CD8+NKG2D+ cells were frequently detected within inflammatory infiltrates arguing for a local signaling circuit in the inflammatory muscle milieu. In conclusion, the NKG2D – IL-15 signaling pathway contributes to progressive muscle destruction in IIM potentially opening new therapeutic avenues.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Stefan Bittner
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Kerstin Göbel
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sarah Glumm
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Peter Kraft
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Muenster, Muenster, Germany
| |
Collapse
|
43
|
Burga RA, Nguyen T, Zulovich J, Madonna S, Ylisastigui L, Fernandes R, Yvon E. Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells. Cytotherapy 2016; 18:1410-1421. [PMID: 27421740 DOI: 10.1016/j.jcyt.2016.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022]
Abstract
Natural killer (NK) cells are members of the innate immune system that recognize target cells via activating and inhibitory signals received through cell receptors. Derived from the lymphoid lineage, NK cells are able to produce cytokines and exert a cytotoxic effect on viral infected and malignant cells. It is their unique ability to lyse target cells rapidly and without prior education that renders NK cells a promising effector cell for adoptive cell therapy. However, both viruses and tumors employ evasion strategies to avoid attack by NK cells, which represent biological challenges that need to be harnessed to fully exploit the cytolytic potential of NK cells. Using genetic modification, the function of NK cells can be enhanced to improve their homing, cytolytic activity, in vivo persistence and safety. Examples include gene modification to express chemokine, high-affinity Fc receptor and chimeric antigen receptors, suicide genes and the forced expression of cytokines such as interleukin (IL)-2 and IL-15. Preclinical studies have clearly demonstrated that such approaches are effective in improving NK-cell function, homing and safety. In this review, we summarize the recent advances in the genetic manipulations of NK cells and their application for cellular immunotherapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burga
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Tuongvan Nguyen
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane Zulovich
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah Madonna
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Loyda Ylisastigui
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Rohan Fernandes
- Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA; Children's National Health System, Washington, DC, USA
| | - Eric Yvon
- The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
44
|
Abstract
Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer.
Collapse
Affiliation(s)
- Maelig G Morvan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
45
|
Song H, Kim Y, Park G, Kim YS, Kim S, Lee HK, Chung WY, Park SJ, Han SY, Cho D, Hur D. Transforming growth factor-β1 regulates human renal proximal tubular epithelial cell susceptibility to natural killer cells via modulation of the NKG2D ligands. Int J Mol Med 2015; 36:1180-8. [PMID: 26311146 DOI: 10.3892/ijmm.2015.2317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/13/2015] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-β (TGF-β) has a significant role in the response to injury and tissue repair, and it has been detected in various cell types. However, the mechanism by which it regulates the response to ischemia‑reperfusion injury (IRI) and manipulates natural killer (NK) cells is not well understood. In the present study, TGF‑β modulated NK cell function, thereby promoting recovery from renal IRI. Human renal proximal tubular epithelial cells (HK‑2) treated with TGF‑β exhibited increased surface and intracellular expression of the NK group 2 member D (NKG2D) ligand MICA. This increased surface expression of MICA inhibited NK cell cytotoxicity to the HK‑2 cells. In addition, an enzyme‑linked immunosorbent assay revealed that TGF‑β treatment evidently increased the amount of soluble MICA released into the culture supernatant from HK‑2 cells. Taken together, these findings suggest that TGF‑β‑induced release of soluble MICA leads to downregulation of NKG2D, thereby preventing NK cell‑mediated cytotoxicity toward renal proximal tubular epithelial cells in renal IRI, which in turn improves the survival of these cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Microbiology and Immunology, Laboratory for Medical Oncology, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Yeonye Kim
- Department of Microbiology and Immunology, Laboratory for Medical Oncology, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Gabin Park
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Yeong-Seok Kim
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Seonghan Kim
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614‑735, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Inje University Busan Paik Hospital, Busan 614‑735, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614‑735, Republic of Korea
| | - Sang-Youb Han
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Gyeonggi 411‑706, Republic of Korea
| | - Daeho Cho
- Department of Life Science, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea
| | - Daeyoung Hur
- Department of Anatomy, Inje University College of Medicine, Busan 614‑735, Republic of Korea
| |
Collapse
|
46
|
Giannattasio A, Weil S, Kloess S, Ansari N, Stelzer EHK, Cerwenka A, Steinle A, Koehl U, Koch J. Cytotoxicity and infiltration of human NK cells in in vivo-like tumor spheroids. BMC Cancer 2015; 15:351. [PMID: 25933805 PMCID: PMC4422268 DOI: 10.1186/s12885-015-1321-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/17/2015] [Indexed: 02/12/2023] Open
Abstract
Background The complex cellular networks within tumors, the cytokine milieu, and tumor immune escape mechanisms affecting infiltration and anti-tumor activity of immune cells are of great interest to understand tumor formation and to decipher novel access points for cancer therapy. However, cellular in vitro assays, which rely on monolayer cultures of mammalian cell lines, neglect the three-dimensional architecture of a tumor, thus limiting their validity for the in vivo situation. Methods Three-dimensional in vivo-like tumor spheroid were established from human cervical carcinoma cell lines as proof of concept to investigate infiltration and cytotoxicity of NK cells in a 96-well plate format, which is applicable for high-throughput screening. Tumor spheroids were monitored for NK cell infiltration and cytotoxicity by flow cytometry. Infiltrated NK cells, could be recovered by magnetic cell separation. Results The tumor spheroids were stable over several days with minor alterations in phenotypic appearance. The tumor spheroids expressed high levels of cellular ligands for the natural killer (NK) group 2D receptor (NKG2D), mediating spheroid destruction by primary human NK cells. Interestingly, destruction of a three-dimensional tumor spheroid took much longer when compared to the parental monolayer cultures. Moreover, destruction of tumor spheroids was accompanied by infiltration of a fraction of NK cells, which could be recovered at high purity. Conclusion Tumor spheroids represent a versatile in vivo-like model system to study cytotoxicity and infiltration of immune cells in high-throughput screening. This system might proof useful for the investigation of the modulatory potential of soluble factors and cells of the tumor microenvironment on immune cell activity as well as profiling of patient-/donor-derived immune cells to personalize cellular immunotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1321-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ariane Giannattasio
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Sandra Weil
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Stephan Kloess
- Institute for Cellular therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Nariman Ansari
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences, Goethe Universität, Frankfurt, Germany.
| | - Ernst H K Stelzer
- Physical Biology Group, Buchmann Institute for Molecular Life Sciences, Goethe Universität, Frankfurt, Germany.
| | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany.
| | - Alexander Steinle
- Institute for Molecular Medicine, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | - Ulrike Koehl
- Institute for Cellular therapeutics, IFB-Tx, Hannover Medical School, Hannover, Germany.
| | - Joachim Koch
- NK Cell Biology, Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| |
Collapse
|
47
|
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 2015; 4:e1016700. [PMID: 26140242 DOI: 10.1080/2162402x.2015.1016700] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
It has become evident that tumor-induced immuno-suppressive factors in the tumor microenvironment play a major role in suppressing normal functions of effector T cells. These factors serve as hurdles that limit the therapeutic potential of cancer immunotherapies. This review focuses on illustrating the molecular mechanisms of immunosuppression in the tumor microenvironment, including evasion of T-cell recognition, interference with T-cell trafficking, metabolism, and functions, induction of resistance to T-cell killing, and apoptosis of T cells. A better understanding of these mechanisms may help in the development of strategies to enhance the effectiveness of cancer immunotherapies.
Collapse
Key Words
- 1MT, 1-methyltryptophan
- COX2, cyclooxygenase-2
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GPI, glycosylphosphatidylinositol
- Gal1, galectin-1
- HDACi, histone deacetylase inhibitor
- HLA, human leukocyte antigen
- IDO, indoleamine-2,3- dioxygenase
- IL-10, interleukin-10
- IMC, immature myeloid cell
- MDSC, myeloid-derived suppressor cells
- MHC, major histocompatibility
- MICA, MHC class I related molecule A
- MICB, MHC class I related molecule B
- NO, nitric oxide
- PARP, poly ADP-ribose polymerase
- PD-1, program death receptor-1
- PD-L1, programmed death ligand 1
- PGE2, prostaglandin E2
- RCAS1, receptor-binding cancer antigen expressed on Siso cells 1
- RCC, renal cell carcinoma
- SOCS, suppressor of cytokine signaling
- STAT3, signal transducer and activator of transcription 3
- SVV, survivin
- T cells
- TCR, T-cell receptor
- TGF-β, transforming growth factor β
- TRAIL, TNF-related apoptosis-inducing ligand
- VCAM-1, vascular cell adhesion molecule-1
- XIAP, X-linked inhibitor of apoptosis protein
- iNOS, inducible nitric-oxide synthase
- immunosuppression
- immunosuppressive factors
- immunotherapy
- tumor microenvironment
Collapse
Affiliation(s)
- Annie A Wu
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| | - Virginia Drake
- School of Medicine; University of Maryland ; Baltimore, MD USA
| | | | - ShihChi Chiu
- College of Medicine; National Taiwan University ; Taipei, Taiwan
| | - Lei Zheng
- Department of Oncology; The Johns Hopkins University School of Medicine ; Baltimore, MD USA
| |
Collapse
|
48
|
González-Foruria I, Santulli P, Chouzenoux S, Carmona F, Batteux F, Chapron C. Soluble ligands for the NKG2D receptor are released during endometriosis and correlate with disease severity. PLoS One 2015; 10:e0119961. [PMID: 25775242 PMCID: PMC4361401 DOI: 10.1371/journal.pone.0119961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/18/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disease. Abundant bulk of evidence suggests that patients with endometriosis have an immunity dysfunction that enables ectopic endometrial cells to implant and proliferate. Previous studies show that natural killer cells have a pivotal role in the immune control of endometriosis. METHODS AND FINDINGS This is a prospective laboratory study conducted in a tertiary-care university hospital between January 2011 and April 2013. We investigated non-pregnant, younger than 42-year-old patients (n= 202) during surgery for benign gynaecological conditions. After complete surgical exploration of the abdominopelvic cavity, 121 women with histologically proven endometriosis and 81 endometriosis-free controls women were enrolled. Patients with endometriosis were classified according to a surgical classification in three different types of endometriosis: superficial peritoneal endometriosis (SUP), ovarian endometrioma (OMA) and deep infiltrating endometriosis (DIE). Peritoneal fluid samples were obtained from all study participants during the surgery in order to detect soluble NKG2D ligands (MICA, MICB and ULBP-2). When samples with undetectable peritoneal fluid levels of MICA, MICB and ULBP-2 were excluded, MICA ratio levels were significantly higher in endometriosis patients than in controls (median, 1.1 pg/mg; range, 0.1-143.5 versus median, 0.6 pg/mg; range, 0.1-3.5; p=0.003). In a similar manner peritoneal fluid MICB levels were also increased in endometriosis-affected patients compared with disease-free women (median, 4.6 pg/mg; range, 1.2-4702 versus median, 3.4 pg/mg; range, 0.7-20.1; p=0.001). According to the surgical classification, peritoneal fluid soluble MICA, MICB and ULBP-2 ratio levels were significantly increased in DIE as compared to controls (p=0.015, p=0.003 and p=0.045 respectively). MICA ratio levels also correlated with dysmenorrhea (r=0.232; p=0.029), total rAFS score (r=0.221; p=0.031) and adhesions rAFS score (r=0.221; p=0.031). CONCLUSIONS We demonstrate a significant increase of peritoneal fluid NKG2D ligands in women with endometriosis especially in those cases presenting DIE. This study suggests that NKG2D ligands shedding is a novel pathway in endometriosis complex pathogenesis that impairs NK cell function.
Collapse
Affiliation(s)
- Iñaki González-Foruria
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM, Paris, France
- Université Paris Descartes, Sorbone Paris Cité, Faculté de Médecine, Assistance Publique—Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, Paris, France
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine-University of Barcelona, Barcelona, Spain
| | - Pietro Santulli
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM, Paris, France
- Université Paris Descartes, Sorbone Paris Cité, Faculté de Médecine, Assistance Publique—Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, Paris, France
| | - Sandrine Chouzenoux
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM, Paris, France
| | - Francisco Carmona
- Institut Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine-University of Barcelona, Barcelona, Spain
| | - Frédéric Batteux
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM, Paris, France
- Service d’immunologie biologique, Hôpital Cochin, Paris cedex 14, France
- DHU Risque et grossesse, Hôpital Cochin, Paris cedex 14, France
| | - Charles Chapron
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM, Paris, France
- Université Paris Descartes, Sorbone Paris Cité, Faculté de Médecine, Assistance Publique—Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine, Paris, France
- DHU Risque et grossesse, Hôpital Cochin, Paris cedex 14, France
| |
Collapse
|
49
|
Deng W, Gowen BG, Zhang L, Wang L, Lau S, Iannello A, Xu J, Rovis TL, Xiong N, Raulet DH. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 2015; 348:136-9. [PMID: 25745066 DOI: 10.1126/science.1258867] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022]
Abstract
Immune cells, including natural killer (NK) cells, recognize transformed cells and eliminate them in a process termed immunosurveillance. It is thought that tumor cells evade immunosurveillance by shedding membrane ligands that bind to the NKG2D-activating receptor on NK cells and/or T cells, and desensitize these cells. In contrast, we show that in mice, a shed form of MULT1, a high-affinity NKG2D ligand, causes NK cell activation and tumor rejection. Recombinant soluble MULT1 stimulated tumor rejection in mice. Soluble MULT1 functions, at least in part, by competitively reversing a global desensitization of NK cells imposed by engagement of membrane NKG2D ligands on tumor-associated cells, such as myeloid cells. The results overturn conventional wisdom that soluble ligands are always inhibitory and suggest a new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Weiwen Deng
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Benjamin G Gowen
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Li Zhang
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Lin Wang
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephanie Lau
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Alexandre Iannello
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jianfeng Xu
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Tihana L Rovis
- Center for Proteomics University of Rijeka Faculty of Medicine Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Na Xiong
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | - David H Raulet
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Tong HV, Song LH, Hoan NX, Cuong BK, Sy BT, Son HA, Quyet D, Binh VQ, Kremsner PG, Bock CT, Velavan TP, Toan NL. Soluble MICB protein levels and platelet counts during hepatitis B virus infection and response to hepatocellular carcinoma treatment. BMC Infect Dis 2015; 15:25. [PMID: 25626490 PMCID: PMC4318451 DOI: 10.1186/s12879-015-0754-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 01/14/2015] [Indexed: 12/18/2022] Open
Abstract
Background The human major histocompatibility complex class I polypeptide-related sequence B (MICB) is a protein that modulates the NK and T cell activation through the NKG2D receptor and is related to several diseases including cancer. Methods The study investigated the prognostic role of soluble MICB (sMICB) protein in the progression of HBV-related liver diseases and to HBV-related HCC treatment. The sMICB serum levels were measured in 266 chronic HBV-infected Vietnamese patients and in healthy controls, and correlated with clinical and laboratory parameters and with therapeutic interventions for HBV-related HCC. Results Significant differences in both clinical and laboratory parameters were observed among the patient groups with different stages of hepatitis. The platelet counts were significantly decreased with disease progression (P < 0.001). The sMICB serum levels were significantly increased in HBV patients compared to healthy controls (P < 0.0001). Among the patients with different stages of hepatitis, asymptomatic individuals (ASYM) revealed higher sMICB serum levels while liver cirrhosis (LC) patients revealed lower sMICB serum levels (P < 0.0001) compared to other patient groups. Notably, the sMICB serum levels were decreased in treated HCC patient group compared to not-treated HCC patient group (P = 0.05). Additionally, the sMICB levels were significantly correlated with platelet counts in ASYM and HCC patients (r = −0.37, P = 0.009; and r = 0.22, P = 0.025, respectively). Conclusions Our results demonstrate a potential role of sMICB serum levels and platelet counts during immune response to the HBV infection, liver disease progression and response to the HCC treatment.
Collapse
Affiliation(s)
- Hoang Van Tong
- Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi, Viet Nam. .,Institute of Tropical Medicine, University of Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.
| | - Le Huu Song
- Tran Hung Dao Hospital, 108 Institute of Clinical Medical and Pharmaceutical Sciences, No 1 Tran Hung Dao Street, Hai Ba Trung District, Hanoi, Vietnam.
| | - Nghiem Xuan Hoan
- Tran Hung Dao Hospital, 108 Institute of Clinical Medical and Pharmaceutical Sciences, No 1 Tran Hung Dao Street, Hai Ba Trung District, Hanoi, Vietnam.
| | - Bui Khac Cuong
- Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi, Viet Nam. .,Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Vietnam.
| | - Bui Tien Sy
- Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi, Viet Nam. .,Robert Koch Institute, Seestrasse 10, D-13353, Berlin, Germany.
| | - Ho Anh Son
- Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi, Viet Nam. .,Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Vietnam.
| | - Do Quyet
- Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi, Viet Nam.
| | - Vu Quoc Binh
- Vietnam Military Medical Bureau, No 276 Nghi Tam, Tay Ho District, Hanoi, Vietnam.
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany.
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany. .,Fondation Congolaise pour la Recherche Medicale, P.O Box 2672, Brazzaville, Republic of Congo.
| | - Nguyen Linh Toan
- Vietnam Military Medical University, 160 Phung Hung Street, Ha Dong District, Ha Noi, Viet Nam. .,Department of Pathophysiology, Vietnam Military Medical University, 160 Phung Hung, Ha Dong, Ha Noi, Vietnam.
| |
Collapse
|