1
|
Jaiswal C, Singh AK. Particulate matter exposure and its consequences on hippocampal neurogenesis and cognitive function in experimental models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125275. [PMID: 39515570 DOI: 10.1016/j.envpol.2024.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Exposure to air pollution is thought to cause millions of deaths globally each year. According to the Who 2018, approximately 7 million deaths annually are caused predominantly by noncommunicable diseases due to air pollution. Exposure to air particulate matter 2.5 (PM2.5) has been strongly associated with increased mortality and has significant effects on brain health. Air pollution, particularly ultrafine particulate matter, has emerged as a serious environmental concern with profound implications for human health. Studies in animal models have indicated that exposure to these pollutants during gestational development impacts prenatal and postnatal brain development. In particular, air pollution has been increasingly identified as a potential causative factor, as it affects neurogenesis in the brain's hippocampal region. The hippocampus is highly vulnerable to PM exposure, and any alteration in the structure or function of this region leads to various neurodevelopmental defects and neurodegenerative disorders via oxidative stress, microglial activation, neuronal death, and differential expression of genes. The neurogenesis process involves several steps, such as proliferation, differentiation, migration, synaptogenesis, and neuritogenesis. If any step of the neurogenesis process is hampered by environmental exposure or other factors, it can lead to neurodevelopmental defects, neurodegenerative disorders, and cognitive decline. One significant contributor to these alterations is air pollution, which ranks as the leading environmental risk factor worldwide. Some of the most common effects include oxidative stress, neuroinflammation, depressive behavior, altered cognitive processes, and microglial activation. This review explores how prenatal and postnatal PM exposure affects the hippocampal regions of the brain and the defects associated with exposure.
Collapse
Affiliation(s)
- Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India.
| |
Collapse
|
2
|
Dustin CM, Shiva SS, Vazquez A, Saeed A, Pascoal T, Cifuentes-Pagano E, Pagano PJ. NOX2 in Alzheimer's and Parkinson's disease. Redox Biol 2024; 78:103433. [PMID: 39616884 DOI: 10.1016/j.redox.2024.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Alzheimer's Disease (AD), and related dementias, represent a growing concern for the worldwide population given the increased numbers of people of advanced age. Marked by significant degradation of neurological tissues and critical processes, in addition to more specific factors such as the presence of amyloid plaques and neurofibrillary tangles in AD, robust discussion is ongoing regarding the precise mechanisms by which these diseases arise. One of the major interests in recent years has been the contribution of reactive oxygen species (ROS) and, particularly, the contribution of the ROS-generating NADPH Oxidase proteins. NADPH Oxidase 2 (NOX2), the prototypical member of the family, represents a particularly interesting target for study given its close association with vascular and inflammatory processes in all tissues, including the brain, and the association of these processes with AD development and progression. In this review, we discuss the most relevant and recent work regarding the contribution of NOX2 to AD progression in neuronal, microglial, and cerebrovascular signaling. Furthermore, we will discuss the most promising NOX2-targeted therapeutics for potential AD management and treatment.
Collapse
Affiliation(s)
- Christopher M Dustin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sruti S Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alberto Vazquez
- Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 1526, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 1526, USA
| | - Anum Saeed
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tharick Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Patrick J Pagano
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
3
|
Kim J, Moon JS. Molecular Roles of NADPH Oxidase-Mediated Oxidative Stress in Alzheimer's Disease: Isoform-Specific Contributions. Int J Mol Sci 2024; 25:12299. [PMID: 39596364 PMCID: PMC11594809 DOI: 10.3390/ijms252212299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress is linked to the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder marked by memory impairment and cognitive decline. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and the formation of neurofibrillary tangles (NFTs) of hyperphosphorylated tau. AD is associated with an imbalance in redox states and excessive reactive oxygen species (ROS). Recent studies report that NADPH oxidase (NOX) enzymes are significant contributors to ROS generation in neurodegenerative diseases, including AD. NOX-derived ROS aggravates oxidative stress and neuroinflammation during AD. In this review, we provide the potential role of all NOX isoforms in AD pathogenesis and their respective structural involvement in AD progression, highlighting NOX enzymes as a strategic therapeutic target. A comprehensive understanding of NOX isoforms and their inhibitors could provide valuable insights into AD pathology and aid in the development of targeted treatments for AD.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
| | - Jong-Seok Moon
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea;
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Macías F, Ulloa M, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin protects hippocampal neurons against H2O2-induced neurotoxicity by suppressing BAX and NOX4 via the NF-κB signaling pathway. PLoS One 2024; 19:e0313328. [PMID: 39499702 PMCID: PMC11537405 DOI: 10.1371/journal.pone.0313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Reactive oxygen species (ROS) are physiological byproducts of neuronal metabolism. However, an imbalance between ROS generation and antioxidant capacity, often driven by dysregulated pro-oxidant enzymes like nicotinamide adenine dinucleotide phosphate oxidases (NOX), can result in deleterious oxidative stress. This oxidative stress is a critical factor in the pathogenesis of neurodegenerative diseases. While interventions with broad-spectrum antioxidants have demonstrated limited efficacy, the modulation of endogenous antioxidant mechanisms presents a promising therapeutic avenue. Here, we investigated the potential of the neuroprotective hormone prolactin to mitigate oxidative stress and subsequent neuronal cell death. Prolactin protected primary mouse hippocampal neurons from hydrogen peroxide (H2O2)-induced oxidative damage. Prolactin reduced ROS levels, lipid peroxidation, and apoptosis, and its effects were occluded by a specific prolactin receptor antagonist (G129R-hPRL). Mechanistically, prolactin suppressed H2O2-induced mRNA upregulation of pro-oxidative Nox4 and pro-apoptotic Bax. Moreover, prolactin induced nuclear factor kappa B (NF-κB) nuclear translocation, and the inhibition of the NF-κB signaling pathway abolished the neuroprotective and transcriptional effects of prolactin, indicating its central role in prolactin-mediated protection. Our findings indicate that prolactin exerts potent antioxidant and neuroprotective effects by modulating the expression of Nox4 and Bax, thereby reducing ROS generation and neuronal apoptosis. This study underscores the therapeutic potential of prolactin in attenuating oxidative stress and suggests a possible role in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
- CONAHCYT–Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| |
Collapse
|
5
|
Magnusson A, Wu R, Demirel I. Porphyromonas gingivalis triggers microglia activation and neurodegenerative processes through NOX4. Front Cell Infect Microbiol 2024; 14:1451683. [PMID: 39469453 PMCID: PMC11513391 DOI: 10.3389/fcimb.2024.1451683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024] Open
Abstract
Periodontitis and infections with periodontal bacteria have been highlighted as risk factors for dementia. In recent years, attention has been drawn to the role of microglia cells in neurodegenerative diseases. However, there is limited knowledge of the influence of periodontal bacteria on microglia cells. The aim of the present study was to investigate the interactions between the periodontal bacteria Porphyromonas gingivalis and microglia cells and to unravel whether these interactions could contribute to the pathology of Alzheimer's disease. We found, through microarray analysis, that stimulation of microglia cells with P. gingivalis resulted in the upregulation of several Alzheimer's disease-associated genes, including NOX4. We also showed that P. gingivalis lipopolysaccharides (LPS) mediated reactive oxygen species (ROS) production and interleukin 6 (IL-6) and interleukin 8 (IL-8) induction via NOX4 in microglia. The viability of neurons was shown to be reduced by conditioned media from microglia cells stimulated with P. gingivalis LPS and the reduction was NOX4 dependent. The levels of total and phosphorylated tau in neurons were increased by conditioned media from microglia cells stimulated with P. gingivalis or LPS. This increase was NOX4-dependent. In summary, our findings provide us with a potential mechanistic explanation of how the periodontal pathogen P. gingivalis could trigger or exacerbate AD pathogenesis.
Collapse
Affiliation(s)
- Anna Magnusson
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Periodontology and Implantology, Postgraduate Dental Education Center and School of Medical Sciences, Faculty of Medicine and Health, Orebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Liu G, Wang D, Jia J, Hao C, Ge Q, Xu L, Zhang C, Li X, Mi Y, Wang H, Miao L, Chen Y, Zhou J, Xu X, Liu Y. Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress. Neurochem Res 2024; 49:2871-2887. [PMID: 39026086 DOI: 10.1007/s11064-024-04212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Daohui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jianru Jia
- Baoding People's Hospital, Baoding, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Qinggang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Liqiang Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jingwen Zhou
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xiaodan Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China.
| |
Collapse
|
7
|
Boonpraman N, Yi SS. NADPH oxidase 4 (NOX4) as a biomarker and therapeutic target in neurodegenerative diseases. Neural Regen Res 2024; 19:1961-1966. [PMID: 38227522 DOI: 10.4103/1673-5374.390973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
Diseases like Alzheimer's and Parkinson's diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer's disease and Parkinson's disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
Collapse
Affiliation(s)
- Napissara Boonpraman
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Sun Shin Yi
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
- Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, South Korea
- iConnectome, Co., Ltd., Cheonan, South Korea
| |
Collapse
|
8
|
Goli VVN, Tatineni S, Hani U, Ghazwani M, Talath S, Sridhar SB, Alhamhoom Y, Fatima F, Osmani RAM, Shivaswamy U, Chandrasekaran V, Gurupadayya B. Pharmacokinetics and Pharmacodynamics of a Nanostructured Lipid Carrier Co-Encapsulating Artemether and miRNA for Mitigating Cerebral Malaria. Pharmaceuticals (Basel) 2024; 17:466. [PMID: 38675426 PMCID: PMC11053970 DOI: 10.3390/ph17040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebral malaria (CM), a severe neurological pathology caused by Plasmodium falciparum infection, poses a significant global health threat and has a high mortality rate. Conventional therapeutics cannot cross the blood-brain barrier (BBB) efficiently. Therefore, finding effective treatments remains challenging. The novelty of the treatment proposed in this study lies in the feasibility of intranasal (IN) delivery of the nanostructured lipid carrier system (NLC) combining microRNA (miRNA) and artemether (ARM) to enhance bioavailability and brain targeting. The rational use of NLCs and RNA-targeted therapeutics could revolutionize the treatment strategies for CM management. This study can potentially address the challenges in treating CM, allowing drugs to pass through the BBB. The NLC formulation was developed by a hot-melt homogenization process utilizing 3% (w/w) precirol and 1.5% (w/v) labrasol, resulting in particles with a size of 94.39 nm. This indicates an effective delivery to the brain via IN administration. The results further suggest the effective intracellular delivery of encapsulated miRNAs in the NLCs. Investigations with an experimental cerebral malaria mouse model showed a reduction in parasitaemia, preservation of BBB integrity, and reduced cerebral haemorrhages with the ARM+ miRNA-NLC treatment. Additionally, molecular discoveries revealed that nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and Interleukin-6 (IL-6) levels were reduced in the treated groups in comparison to the CM group. These results support the use of nanocarriers for IN administration, offering a viable method for mitigating CM through the increased bioavailability of therapeutics. Our findings have far-reaching implications for future research and personalized therapy.
Collapse
Affiliation(s)
- Veera Venkata Nishanth Goli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India; (V.V.N.G.); (S.T.)
| | - Spandana Tatineni
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India; (V.V.N.G.); (S.T.)
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (U.H.); (M.G.); (Y.A.)
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (U.H.); (M.G.); (Y.A.)
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia; (U.H.); (M.G.); (Y.A.)
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India;
| | | | - Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India;
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Shivarathreeshwara Nagara, Mysuru 570015, India; (V.V.N.G.); (S.T.)
| |
Collapse
|
9
|
Asri AK, Lee HY, Chen YL, Wong PY, Hsu CY, Chen PC, Lung SCC, Chen YC, Wu CD. A machine learning-based ensemble model for estimating diurnal variations of nitrogen oxide concentrations in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170209. [PMID: 38278267 DOI: 10.1016/j.scitotenv.2024.170209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Air pollution is inextricable from human activity patterns. This is especially true for nitrogen oxide (NOx), a pollutant that exists naturally and also as a result of anthropogenic factors. Assessing exposure by considering diurnal variation is a challenge that has not been widely studied. Incorporating 27 years of data, we attempted to estimate diurnal variations in NOx across Taiwan. We developed a machine learning-based ensemble model that integrated hybrid kriging-LUR, machine-learning, and an ensemble learning approach. Hybrid kriging-LUR was performed to select the most influential predictors, and machine-learning algorithms were applied to improve model performance. The three best machine-learning algorithms were suited and reassessed to develop ensemble learning that was designed to improve model performance. Our ensemble model resulted in estimates of daytime, nighttime, and daily NOx with high explanatory powers (Adj-R2) of 0.93, 0.98, and 0.94, respectively. These explanatory powers increased from the initial model that used only hybrid kriging-LUR. Additionally, the results depicted the temporal variation of NOx, with concentrations higher during the daytime than the nighttime. Regarding spatial variation, the highest NOx concentrations were identified in northern and western Taiwan. Model evaluations confirmed the reliability of the models. This study could serve as a reference for regional planning supporting emission control for environmental and human health.
Collapse
Affiliation(s)
- Aji Kusumaning Asri
- Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Hsiao-Yun Lee
- Department of Leisure Industry and Health Promotion, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.
| | - Yu-Ling Chen
- Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Pei-Yi Wong
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan.
| | - Chin-Yu Hsu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taiwan.
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan.
| | - Shih-Chun Candice Lung
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan; Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan; Institute of Environmental Health, School of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan.
| | - Chih-Da Wu
- Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
10
|
Stojkovic L, Jovanovic I, Dincic E, Djordjevic A, Kuveljic J, Djuric T, Stankovic A, Vojinovic S, Zivkovic M. Targeted RNAseq Revealed the Gene Expression Signature of Ferroptosis-Related Processes Associated with Disease Severity in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:3016. [PMID: 38474262 DOI: 10.3390/ijms25053016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Detrimental molecular processes in multiple sclerosis (MS) lead to the cellular accumulation of lipid peroxidation products and iron in the CNS, which represents the main driving force for ferroptosis. Ferroptosis is an iron-dependent form of regulated cell death, with proposed roles in neurodegeneration, oligodendrocyte loss and neuroinflammation in the pathogenesis of MS. Ferroptosis-related gene expression signature and molecular markers, which could reflect MS severity and progression, are currently understudied in humans. To tackle these challenges, we have applied a curated approach to create and experimentally analyze a comprehensive panel of ferroptosis-related genes covering a wide range of biological processes associated with ferroptosis. We performed the first ferroptosis-related targeted RNAseq on PBMCs from highly distinctive MS phenotype groups: mild relapsing-remitting (RR) (n = 24) and severe secondary progressive (SP) (n = 24), along with protein detection of GPX4 and products of lipid peroxidation (MDA and 4-HNE). Out of 138 genes, 26 were differentially expressed genes (DEGs), indicating changes in both pro- and anti-ferroptotic genes, representing a molecular signature associated with MS severity. The top three DEGs, as non-core ferroptosis genes, CDKN1A, MAP1B and EGLN2, were replicated by qPCR to validate findings in independent patient groups (16 RR and 16 SP MS). Co-expression and interactions of DEGs were presented as additional valuable assets for deeper understanding of molecular mechanisms and key targets related to MS severity. Our study integrates a wide genetic signature and biochemical markers related to ferroptosis in easily obtainable PBMCs of MS patients with clinical data and disease severity, thus providing novel molecular markers which can complement disease-related changes in the brain and undergo further research as potential therapeutic targets.
Collapse
Affiliation(s)
- Ljiljana Stojkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Ivan Jovanovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Evica Dincic
- Clinic for Neurology, Military Medical Academy, 11000 Belgrade, Serbia
- Medical Faculty, University of Defense in Belgrade, 11042 Belgrade, Serbia
| | - Ana Djordjevic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Kuveljic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Tamara Djuric
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Slobodan Vojinovic
- Department of Neurology, Medical Faculty, University of Nis, 18000 Nis, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Yaribeygi H, Hemmati MA, Nasimi F, Pakdel R, Jamialahmadi T, Sahebkar A. Empagliflozin alleviates diabetes-induced cognitive impairments by lowering nicotinamide adenine dinucleotide phosphate oxidase-4 expression and potentiating the antioxidant defense system in brain tissue of diabetic rats. Behav Brain Res 2024; 460:114830. [PMID: 38141785 DOI: 10.1016/j.bbr.2023.114830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Diabetes-induced cognitive impairment is a major challenge in patients with uncontrolled diabetes mellitus. It has a complicated pathophysiology, but the role of oxidative stress is central. Therefore, the use of antidiabetic drugs with extra-glycemic effects that reduce oxidative damage may be a promising treatment option. METHODS Male Wistar rats were randomly divided into four groups as normal, normal treated, diabetic and diabetic treated (n = 8 per group). Type 1 diabetes was induced by a single intraperitoneal dose of streptozotocin (STZ) (40 mg/kg). Two treatment groups received empagliflozin for 5 weeks (20 mg/kg/po). Cognitive ability was evaluated using open field, Elevated Plus Maze (EPM) and the Morris Water Maze (MWM) tests at study completion. Blood and brain tissue samples were collected - and analysis for malondialdehyde (MDA) and glutathione (GLT) content and catalase (CAT) and superoxide dismutase (SOD) enzyme activity were performed. Additionally, expression of nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox-4) enzyme in brain tissue was analyzed using RT-PCR. RESULTS STZ increased blood glucose and induced diabetes with oxidative stress by lowering the antioxidant system potency and increasing Nox-4 expression after 5-weeks in brain tissue accompanied by reduction in cognitive performance. Also, diabetes induced anxiety-like behavior and impaired spatial memory in MWM, EPM and open field tests. However, empagliflozin reversed these changes, improving SOD and CAT activity, GLT content and reducing Nox-4 expression and MDA concentration in brain tissue while improving cognitive ability. It reduced anxiety and depression-related activities. It also improved spatial memory in MWM test. CONCLUSION Uncontrolled diabetes negatively impacts mental function and impairs learning and cognitive performance via oxidative stress induction, the Nox-4 enzyme playing a central role. Empagliflozin reverses these effects, improving cognitive ability via promoting the anti-oxidative system and damping Nox-4 free radical generator enzyme expression. Therefore, empagliflozin is a promising treatment, providing both antidiabetic and extra-glycemic benefits for improving brain function in the diabetic milieu.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
13
|
Kanbay M, Tanriover C, Copur S, Peltek IB, Mutlu A, Mallamaci F, Zoccali C. Social isolation and loneliness: Undervalued risk factors for disease states and mortality. Eur J Clin Invest 2023; 53:e14032. [PMID: 37218451 DOI: 10.1111/eci.14032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Social isolation and loneliness are two common but undervalued conditions associated with a poor quality of life, decreased overall health and mortality. In this review, we aim to discuss the health consequences of social isolation and loneliness. We first provide the potential causes of these two conditions. Then, we explain the pathophysiological processes underlying the effects of social isolation and loneliness in disease states. Afterwards, we explain the important associations between these conditions and different non-communicable diseases, as well as the impact of social isolation and loneliness on health-related behaviours. Finally, we discuss the current and novel potential management strategies for these conditions. Healthcare professionals who attend to socially isolated and/or lonely patients should be fully competent in these conditions and assess their patients thoroughly to detect and properly understand the effects of isolation and loneliness. Patients should be offered education and treatment alternatives through shared decision-making. Future studies are needed to understand the underlying mechanisms better and to improve the treatment strategies for both social isolation and loneliness.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit Azienda Ospedaliera "Bianchi-Melacrino-Morelli" & CNR-IFC, Institute of Clinical Physiology, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension of Reggio Calabria, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York City, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy and Associazione Ipertensione Nefrologia Trapianto Renal (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| |
Collapse
|
14
|
Lu Y, Chen Y, Xu S, Wei L, Zhang Y, Chen W, Liu M, Zhong C. HDAC inhibitor attenuates rat traumatic brain injury induced neurological impairments. Heliyon 2023; 9:e18485. [PMID: 37560709 PMCID: PMC10407045 DOI: 10.1016/j.heliyon.2023.e18485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Oxidative stress plays an important role in the secondary neuronal damage after traumatic brain injury (TBI). Inhibition of histone deacetylases (HDACs) has been shown to reduce reactive oxygen species (ROS) production and NADPH oxidases (Nox) transcription. Vorinostat is an HDAC inhibitor. This study investigated the influence of vorinostat on neurological impairments in a rat model of TBI induced by lateral fluid percussion injury (LFPI). Different concentrations of vorinostat (5, 25, and 50 mg/kg) were administered via intraperitoneal injection. Neurological deficits were evaluated by modified neurological severity scoring (mNSS). Evans blue extravasation was performed to assess blood-brain barrier (BBB) permeability. Morris water maze assay was performed to evaluate cognitive impairments. Protein levels were evaluated through ELISA and Western blot. Vorinostat was found to attenuate TBI induced brain edema and BBB permeability in rats. Vorinostat also alleviated TBI-induced neurological impairments and anxiety-like behavior in rats. Vorinostat attenuated TBI induced apoptosis and oxidative stresses in ipsilateral injury cortical tissue. Vorinostat inhibited HDAC1, HDAC3, and Nox4 while activated AMPK signaling in ipsilateral injury cortical tissue. In conclusion, administration of vorinostat alleviates the secondary damage of TBI in rat model. The oxidative stress in the ipsilateral injury cortical tissues is decreased by the inhibition of Nox4 expression and the activation of AMPK.
Collapse
Affiliation(s)
| | | | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
15
|
Chakraborty S, Tabrizi Z, Bhatt NN, Franciosa SA, Bracko O. A Brief Overview of Neutrophils in Neurological Diseases. Biomolecules 2023; 13:biom13050743. [PMID: 37238612 DOI: 10.3390/biom13050743] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Neutrophils are the most abundant leukocyte in circulation and are the first line of defense after an infection or injury. Neutrophils have a broad spectrum of functions, including phagocytosis of microorganisms, the release of pro-inflammatory cytokines and chemokines, oxidative burst, and the formation of neutrophil extracellular traps. Traditionally, neutrophils were thought to be most important for acute inflammatory responses, with a short half-life and a more static response to infections and injury. However, this view has changed in recent years showing neutrophil heterogeneity and dynamics, indicating a much more regulated and flexible response. Here we will discuss the role of neutrophils in aging and neurological disorders; specifically, we focus on recent data indicating the impact of neutrophils in chronic inflammatory processes and their contribution to neurological diseases. Lastly, we aim to conclude that reactive neutrophils directly contribute to increased vascular inflammation and age-related diseases.
Collapse
Affiliation(s)
| | - Zeynab Tabrizi
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | | | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Department of Neurology, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
16
|
Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel) 2023; 12:antiox12020517. [PMID: 36830075 PMCID: PMC9952099 DOI: 10.3390/antiox12020517] [Citation(s) in RCA: 127] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative disorders constitute a substantial proportion of neurological diseases with significant public health importance. The pathophysiology of neurodegenerative diseases is characterized by a complex interplay of various general and disease-specific factors that lead to the end point of neuronal degeneration and loss, and the eventual clinical manifestations. Oxidative stress is the result of an imbalance between pro-oxidant species and antioxidant systems, characterized by an elevation in the levels of reactive oxygen and reactive nitrogen species, and a reduction in the levels of endogenous antioxidants. Recent studies have increasingly highlighted oxidative stress and associated mitochondrial dysfunction to be important players in the pathophysiologic processes involved in neurodegenerative conditions. In this article, we review the current knowledge of the general effects of oxidative stress on the central nervous system, the different specific routes by which oxidative stress influences the pathophysiologic processes involved in Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis and Huntington's disease, and how oxidative stress may be therapeutically reversed/mitigated in order to stall the pathological progression of these neurodegenerative disorders to bring about clinical benefits.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 5116, PMB, Nigeria
| | - Michelle B. Gerke-Duncan
- Education Innovation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
17
|
Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol 2023; 14:1106515. [PMID: 36814920 PMCID: PMC9939898 DOI: 10.3389/fimmu.2023.1106515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Sustained neuroinflammation is a major contributor to the progression of neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's (PD) diseases. Neuroinflammation, like other cellular processes, is affected by the circadian clock. Microglia, the resident immune cells in the brain, act as major contributors to neuroinflammation and are under the influence of the circadian clock. Microglial responses such as activation, recruitment, and cytokine expression are rhythmic in their response to various stimuli. While the link between circadian rhythms and neuroinflammation is clear, significant gaps remain in our understanding of this complex relationship. To gain a greater understanding of this relationship, the interaction between the microglial circadian clock and the enzyme NADPH Oxidase Isoform 2 (NOX2) was studied; NOX2 is essential for the production of reactive oxygen species (ROS) in oxidative stress, an integral characteristic of neuroinflammation. Methods BV2 microglia were examined over circadian time, demonstrating oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox and p47phox. Results The BV2 microglial clock exerted significant control over NOX2 expression and inhibition of NOX2 enabled the microglia to retain a functional circadian clock while reducing levels of ROS and inflammatory cytokines. These trends were mirrored in mouse bone marrow-derived primary macrophages. Conclusions NOX2 plays a crucial role in the interaction between the circadian clock and the activation of microglia/macrophages into their pro-inflammatory state, which has important implications in the control of neuroinflammation.
Collapse
Affiliation(s)
- Iswarya Muthukumarasamy
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sharleen M. Buel
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jennifer M. Hurley
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan S. Dordick
- Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
18
|
Discovery of a NADPH oxidase inhibitor, (E)-3-cyclohexyl-5-(4-((2-hydroxyethyl)(methyl)amino)benzylidene)-1-methyl-2-thioxoimidazolidin-4-oneone, as a novel therapeutic for Parkinson's disease. Eur J Med Chem 2022; 244:114854. [DOI: 10.1016/j.ejmech.2022.114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
|
19
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
20
|
Stykel MG, Ryan SD. Nitrosative stress in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:104. [PMID: 35953517 PMCID: PMC9372037 DOI: 10.1038/s41531-022-00370-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized, in part, by the loss of dopaminergic neurons within the nigral-striatal pathway. Multiple lines of evidence support a role for reactive nitrogen species (RNS) in degeneration of this pathway, specifically nitric oxide (NO). This review will focus on how RNS leads to loss of dopaminergic neurons in PD and whether RNS accumulation represents a central signal in the degenerative cascade. Herein, we provide an overview of how RNS accumulates in PD by considering the various cellular sources of RNS including nNOS, iNOS, nitrate, and nitrite reduction and describe evidence that these sources are upregulating RNS in PD. We document that over 1/3 of the proteins that deposit in Lewy Bodies, are post-translationally modified (S-nitrosylated) by RNS and provide a broad description of how this elicits deleterious effects in neurons. In doing so, we identify specific proteins that are modified by RNS in neurons which are implicated in PD pathogenesis, with an emphasis on exacerbation of synucleinopathy. How nitration of alpha-synuclein (aSyn) leads to aSyn misfolding and toxicity in PD models is outlined. Furthermore, we delineate how RNS modulates known PD-related phenotypes including axo-dendritic-, mitochondrial-, and dopamine-dysfunctions. Finally, we discuss successful outcomes of therapeutics that target S-nitrosylation of proteins in Parkinson’s Disease related clinical trials. In conclusion, we argue that targeting RNS may be of therapeutic benefit for people in early clinical stages of PD.
Collapse
Affiliation(s)
- Morgan G Stykel
- The Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, ON, Canada
| | - Scott D Ryan
- The Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON N1G 2W1, ON, Canada. .,Neurodegenerative Disease Center, Scintillon Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
21
|
Wang W, Zhang X, Lin L, Ren J, He R, Sun K. Inhibition of NADPH oxidase 2 (NOX2) reverses cognitive deficits by modulating excitability and excitatory transmission in the hippocampus after traumatic brain injury. Biochem Biophys Res Commun 2022; 617:1-7. [DOI: 10.1016/j.bbrc.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022]
|
22
|
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X, Lijuan G. NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. J Neuroinflammation 2022; 19:184. [PMID: 35836200 PMCID: PMC9281066 DOI: 10.1186/s12974-022-02551-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) often promote acute brain injury after stroke, but their roles in the recovery phase have not been well studied. We tested the hypothesis that ROS activity mediated by NADPH oxidase 2 (NOX2) contributes to acute brain injury but promotes functional recovery during the delayed phase, which is linked with neuroinflammation, autophagy, angiogenesis, and the PI3K/Akt signaling pathway. METHODS We used the NOX2 inhibitor apocynin to study the role of NOX2 in brain injury and functional recovery in a middle cerebral artery occlusion (MCAO) stroke mouse model. Infarct size, neurological deficits and behavior were evaluated on days 3, 7, 10 and 14 after reperfusion. In addition, dynamic NOX2-induced ROS levels were measured by dihydroethidium (DHE) staining. Autophagy, inflammasomes, and angiogenesis were measured by immunofluorescence staining and western blotting. RNA sequencing was performed, and bioinformatics technology was used to analyze differentially expressed genes (DEGs), as well as the enrichment of biological functions and signaling pathways in ischemia penumbra at 7 days after reperfusion. Then, Akt pathway-related proteins were further evaluated by western blotting. RESULTS Our results showed that apocynin injection attenuated infarct size and mortality 3 days after stroke but promoted mortality and blocked functional recovery from 5 to 14 days after stroke. DHE staining showed that ROS levels were increased at 3 days after reperfusion and then gradually declined in WT mice, and these levels were significantly reduced by the NOX2 inhibitor apocynin. RNA-Seq analysis indicated that apocynin activated the immune response under hypoxic conditions. The immunofluorescence and western blot results demonstrated that apocynin inhibited the NLRP3 inflammasome and promoted angiogenesis at 3 days but promoted the NLRP3 inflammasome and inhibited angiogenesis at 7 and 14 days after stroke, which was mediated by regulating autophagy activation. Furthermore, RNA-Seq and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that apocynin injection resulted in PI3K-Akt signaling pathway enrichment after 7 days of MCAO. We then used an animal model to show that apocynin decreased the protein levels of phosphorylated PI3K and Akt and NF-κB p65, confirming that the PI3K-Akt-NF-κB pathway is involved in apocynin-mediated activation of inflammation and inhibition of angiogenesis. CONCLUSIONS NOX2-induced ROS production is a double-edged sword that exacerbates brain injury in the acute phase but promotes functional recovery. This effect appears to be achieved by inhibiting NLRP3 inflammasome activation and promoting angiogenesis via autophagy activation.
Collapse
Affiliation(s)
- Ye Yingze
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Zhihong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Yina
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zeng Zhi
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiong Xiaoxing
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Gu Lijuan
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
23
|
NADPH Oxidases in Pain Processing. Antioxidants (Basel) 2022; 11:antiox11061162. [PMID: 35740059 PMCID: PMC9219759 DOI: 10.3390/antiox11061162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.
Collapse
|
24
|
Jiang Y, Kang Y, Liu J, Yin S, Huang Z, Shao L. Nanomaterials alleviating redox stress in neurological diseases: mechanisms and applications. J Nanobiotechnology 2022; 20:265. [PMID: 35672765 PMCID: PMC9171999 DOI: 10.1186/s12951-022-01434-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overproduced reactive oxygen and reactive nitrogen species (RONS) in the brain are involved in the pathogenesis of several neurological diseases, such as Alzheimer's disease, Parkinson's disease, traumatic brain injury, and stroke, as they attack neurons and glial cells, triggering cellular redox stress. Neutralizing RONS, and, thus, alleviating redox stress, can slow down or stop the progression of neurological diseases. Currently, an increasing number of studies are applying nanomaterials (NMs) with anti-redox activity and exploring the potential mechanisms involved in redox stress-related neurological diseases. In this review, we summarize the anti-redox mechanisms of NMs, including mimicking natural oxidoreductase activity and inhibiting RONS generation at the source. In addition, we propose several strategies to enhance the anti-redox ability of NMs and highlight the challenges that need to be resolved in their application. In-depth knowledge of the mechanisms and potential application of NMs in alleviating redox stress will help in the exploration of the therapeutic potential of anti-redox stress NMs in neurological diseases.
Collapse
Affiliation(s)
- Yanping Jiang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Suhan Yin
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Zhendong Huang
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
25
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
26
|
Villar-Delfino PH, Gomes NAO, Christo PP, Nogueira-Machado JA, Volpe CMO. Edaravone Inhibits the Production of Reactive Oxygen Species in Phagocytosis- and PKC-Stimulated Granulocytes from Multiple Sclerosis Patients Edaravone Modulate Oxidative Stress in Multiple Sclerosis. J Cent Nerv Syst Dis 2022; 14:11795735221092524. [PMID: 35599854 PMCID: PMC9121512 DOI: 10.1177/11795735221092524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Oxidative stress is associated with the pathogenesis of MS. Edaravone (EDV)
has been proposed as a therapeutic resource for central nervous system
diseases, and it was effective in reducing oxidative stress. However, the
antioxidant mechanisms of EDV are poorly studied. Objective This study aimed to evaluate the effects of EDV on resting, phagocytosis, and
PKC-activated granulocytes derived from MS patients and a healthy control
group. Methods The effects of EDV on ROS production in phagocytosis (ROS production in the
presence of opsonized particles) and PKC-stimulated granulocytes were
evaluated in a luminol-dependent chemiluminescence method. Calphostin C was
used in some experiments to compare with those of EDV. Results EDV inhibited ROS production in phagocytosis of opsonized particles and
PKC-stimulated granulocytes from MS patients and healthy control group. In
the presence of calphostin C, the inhibition of ROS production was similar
to that observed with EDV. Conclusion These findings suggest the involvement of EDV on the ROS-PKC-NOX signaling
pathways modulating oxidative stress in MS. EDV represents a promising
treatment option to control oxidative innate immune response for MS.
Collapse
Affiliation(s)
- Pedro Henrique Villar-Delfino
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Nathália Augusta Oliveira Gomes
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Pereira Christo
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Maria Oliveira Volpe
- Faculdade Santa Casa BH, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
27
|
Maciejczyk M, Żebrowska E, Nesterowicz M, Supruniuk E, Choromańska B, Chabowski A, Żendzian-Piotrowska M, Zalewska A. α-Lipoic Acid Reduces Ceramide Synthesis and Neuroinflammation in the Hypothalamus of Insulin-Resistant Rats, While in the Cerebral Cortex Diminishes the β-Amyloid Accumulation. J Inflamm Res 2022; 15:2295-2312. [PMID: 35422650 PMCID: PMC9005076 DOI: 10.2147/jir.s358799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background Oxidative stress underlies metabolic diseases and cognitive impairment; thus, the use of antioxidants may improve brain function in insulin-resistant conditions. We are the first to evaluate the effects of α-lipoic acid (ALA) on redox homeostasis, sphingolipid metabolism, neuroinflammation, apoptosis, and β-amyloid accumulation in the cerebral cortex and hypothalamus of insulin-resistant rats. Methods The experiment was conducted on male cmdb/outbred Wistar rats fed a high-fat diet (HFD) for 10 weeks with intragastric administration of ALA (30 mg/kg body weight) for 4 weeks. Pro-oxidant and pro-inflammatory enzymes, oxidative stress, sphingolipid metabolism, neuroinflammation, apoptosis, and β-amyloid level were assessed in the hypothalamus and cerebral cortex using colorimetric, fluorimetric, ELISA, and HPLC methods. Statistical analysis was performed using three-way ANOVA followed by the Tukey HSD test. Results ALA normalizes body weight, food intake, glycemia, insulinemia, and systemic insulin sensitivity in HFD-fed rats. ALA treatment reduces nicotinamide adenine dinucleotide phosphate (NADPH) and xanthine oxidase activity, increases ferric-reducing antioxidant power (FRAP) and thiol levels in the hypothalamus of insulin-resistant rats. In addition, it decreases myeloperoxidase, glucuronidase, and metalloproteinase-2 activity and pro-inflammatory cytokines (IL-1β, IL-6) levels, while in the cerebral cortex ALA reduces β-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and caspase-3 activity. ALA improves systemic oxidative status and reduces insulin-resistant rats’ serum cytokines, chemokines, and growth factors. Conclusion ALA normalizes lipid and carbohydrate metabolism in insulin-resistant rats. At the brain level, ALA primarily affects hypothalamic metabolism. ALA improves redox homeostasis by decreasing the activity of pro-oxidant enzymes, enhancing total antioxidant potential, and reducing protein and lipid oxidative damage in the hypothalamus of HFD-fed rats. ALA also reduces hypothalamic inflammation and metalloproteinases activity, and cortical β-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and neuronal apoptosis. Although further study is needed, ALA may be a potential treatment for patients with cerebral complications of insulin resistance.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, 2C Mickiewicza Street, Bialystok, Poland, Email
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Restorative Dentistry and Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
29
|
Morris G, Walder K, Berk M, Carvalho AF, Marx W, Bortolasci CC, Yung AR, Puri BK, Maes M. Intertwined associations between oxidative and nitrosative stress and endocannabinoid system pathways: Relevance for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110481. [PMID: 34826557 DOI: 10.1016/j.pnpbp.2021.110481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/19/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) appears to regulate metabolic, cardiovascular, immune, gastrointestinal, lung, and reproductive system functions, as well as the central nervous system. There is also evidence that neuropsychiatric disorders are associated with ECS abnormalities as well as oxidative and nitrosative stress pathways. The goal of this mechanistic review is to investigate the mechanisms underlying the ECS's regulation of redox signalling, as well as the mechanisms by which activated oxidative and nitrosative stress pathways may impair ECS-mediated signalling. Cannabinoid receptor (CB)1 activation and upregulation of brain CB2 receptors reduce oxidative stress in the brain, resulting in less tissue damage and less neuroinflammation. Chronically high levels of oxidative stress may impair CB1 and CB2 receptor activity. CB1 activation in peripheral cells increases nitrosative stress and inducible nitric oxide (iNOS) activity, reducing mitochondrial activity. Upregulation of CB2 in the peripheral and central nervous systems may reduce iNOS, nitrosative stress, and neuroinflammation. Nitrosative stress may have an impact on CB1 and CB2-mediated signalling. Peripheral immune activation, which frequently occurs in response to nitro-oxidative stress, may result in increased expression of CB2 receptors on T and B lymphocytes, dendritic cells, and macrophages, reducing the production of inflammatory products and limiting the duration and intensity of the immune and oxidative stress response. In conclusion, high levels of oxidative and nitrosative stress may compromise or even abolish ECS-mediated redox pathway regulation. Future research in neuropsychiatric disorders like mood disorders and deficit schizophrenia should explore abnormalities in these intertwined signalling pathways.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolf Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| | - Alison R Yung
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Health Science, University of Manchester, UK.
| | - Basant K Puri
- University of Winchester, UK, and C.A.R., Cambridge, UK.
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
30
|
Hsu CY, Vo TTT, Lee CW, Chen YL, Lin WN, Cheng HC, Vo QC, Lee IT. Carbon monoxide releasing molecule-2 attenuates angiotensin II-induced IL-6/Jak2/Stat3-associated inflammation by inhibiting NADPH oxidase- and mitochondria-derived ROS in human aortic smooth muscle cells. Biochem Pharmacol 2022; 198:114978. [PMID: 35218740 DOI: 10.1016/j.bcp.2022.114978] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common inflammatory vascular disease. Angiotensin II (Ang II) involves in AAA progression by promoting the proliferation and migration of vascular smooth muscle cells, the degradation of extracellular matrices, and the generation of ROS to lead to vascular inflammation. Carbon monoxide releasing molecule-2 (CORM-2) is known to exert anti-inflammatory and antioxidant activities. However, it remains unclear whether CORM-2 can suppress Ang II-induced vascular inflammation to prevent AAA progression. Therefore, this study aimed to investigate the vasoprotective effects of CORM-2 against Ang II-induced inflammatory responses of human aortic smooth muscle cells (HASMCs) and the underlying mechanisms of those effects. The results showed that Ang II induced inflammatory responses of HASMCs via NADPH oxidase- and mitochondria-derived ROS/NF-κB/IL-6/Jak2/Stat3 pathway which was attenuated by the pretreatment with CORM-2. Additionally, CORM-2 further exhibited anti-inflammatory activities in Ang II-stimulated HASMCs, as indicated by the reduction of monocyte adhesion to HASMCs and migration of HASMCs via the suppression of ICAM-1 and VCAM-1 as well as MMP-2 and MMP-9 levels, respectively. Moreover, Ang II-induced COX-2-mediated PGE2 secretion was also inhibited by the pretreatment with CORM-2. Importantly, our data demonstrated that CORM-2 reversed Ang II-induced IL-6 overexpression dependent on Nrf2 activation and HO-1 expression. Taken together, the present study indicates that CORM-2-induced Nrf2/HO-1 alleviates IL-6/Jak2/Stat3-mediated inflammatory responses to Ang II by inhibiting NADPH oxidase- and mitochondria-derived ROS, suggesting that CORM-2 is a promising pharmacologic candidate to reverse the pathological changes involved in the inflammation of vessel wall for the prevention and treatment of AAA.
Collapse
Affiliation(s)
- Chien-Yi Hsu
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan; Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Guishan District, Taoyuan City, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Quang Canh Vo
- Department of Dental Biomaterials Science, Dental Research Institute and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Wu Q, Gurpinar A, Roberts M, Camelliti P, Ruggieri MR, Wu C. Identification of the NADPH Oxidase (Nox) Subtype and the Source of Superoxide Production in the Micturition Centre. BIOLOGY 2022; 11:183. [PMID: 35205049 PMCID: PMC8868587 DOI: 10.3390/biology11020183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023]
Abstract
Oxidative inflammatory damage to specialised brain centres may lead to dysfunction of their associated peripheral organs, such as the bladder. However, the source of reactive oxygen species (ROS) in specific brain regions that regulate bladder function is poorly understood. Of all ROS-generating enzymes, the NADPH oxidase (Nox) family produces ROS as its sole function and offers an advantage over other enzymes as a drug-targetable molecule to selectively control excessive ROS. We investigated whether the Nox 2 subtype is expressed in the micturition regulatory periaqueductal gray (PAG) and Barrington's nucleus (pontine micturition centre, PMC) and examined Nox-derived ROS production in these structures. C57BL/6J mice were used; PAG, PMC, cardiac tissue, and aorta were isolated. Western blot determined Nox 2 expression. Lucigenin-enhanced chemiluminescence quantified real-time superoxide production. Western blot experiments demonstrated the presence of Nox 2 in PAG and PMC. There was significant NADPH-dependent superoxide production in both brain tissues, higher than that in cardiac tissue. Superoxide generation in these brain tissues was significantly suppressed by the Nox inhibitor diphenyleneiodonium (DPI) and also reduced by the Nox-2 specific inhibitor GSK2795039, comparable to aorta. These data provide the first evidence for the presence of Nox 2 and Nox-derived ROS production in micturition centres.
Collapse
Affiliation(s)
- Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Ayse Gurpinar
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Maxwell Roberts
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Michael R Ruggieri
- Department of Anatomy & Cell Biology, Temple University, Philadelphia, PA 19122, USA
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
32
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
33
|
Fang J, Sheng R, Qin ZH. NADPH Oxidases in the Central Nervous System: Regional and Cellular Localization and the Possible Link to Brain Diseases. Antioxid Redox Signal 2021; 35:951-973. [PMID: 34293949 DOI: 10.1089/ars.2021.0040] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: The significant role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in signal transduction is mediated by the production of reactive oxygen species (ROS), especially in the central nervous system (CNS). The pathogenesis of some neurologic and psychiatric diseases is regulated by ROS, acting as a second messenger or pathogen. Recent Advances: In the CNS, the involvement of Nox-derived ROS has been implicated in the regulation of multiple signals, including cell survival/apoptosis, neuroinflammation, migration, differentiation, proliferation, and synaptic plasticity, as well as the integrity of the blood/brain barrier. In these processes, the intracellular signals mediated by the members of the Nox family vary among different tissues. The present review illuminates the regions and cellular, subcellular localization of Nox isoforms in the brain, the signal transduction, and the role of NOX enzymes in pathophysiology, respectively. Critical Issues: Different signal transduction cascades are coupled to ROS derived from various Nox homologues with varying degrees. Therefore, a critical issue worth noting is the varied role of the homologues of NOX enzymes in different signaling pathways and also they mediate different phenotypes in the diverse pathophysiological condition. This substantiates the effectiveness of selective Nox inhibitors in the CNS. Future Directions: Further investigation to elucidate the role of various homologues of NOX enzymes in acute and chronic brain diseases and signaling mechanisms, and the development of more specific NOX inhibitors for the treatment of CNS disease are urgently needed. Antioxid. Redox Signal. 35, 951-973.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
34
|
Karahalil B, Miser Salihoğlu E, Elkama A, Orhan G, Saygın E, Yardim Akaydin S. Individual susceptibility has a major impact on strong association between oxidative stress, defence systems and Parkinson's disease. Basic Clin Pharmacol Toxicol 2021; 130:158-170. [PMID: 34582115 DOI: 10.1111/bcpt.13659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons, which causes Parkinson's disease (PD). Oxidative stress products, antioxidant and their balance have important roles in the development of oxidative stress-based PD. The impact of reactive oxygen species (ROS) and defence systems can be altered by genetic polymorphisms, and thus the risk of PD may also be affected. We aimed to investigate the possible association of individual susceptibility with the development of oxidative stress-based PD. For this purpose, we measured serum levels of folic acid, homocysteine, Vitamin B6 and B12 that play roles in folate-dependent one-carbon pathway, oxidant or antioxidant enzymes (NADPH oxidase, MnSOD, GPX), 8-OHdG and repair enzymes (OGG1, XRCC1 and MTH1) by ELISA, and analysed related gene polymorphisms by PCR-RFLP. XRCC1, ROS, NADPH and folic acid levels were found to be statistically higher in patients than controls. XRCC1, MnSOD and GPX activities were increased. We observed higher levels of 8-OHdG in patients with MnSOD and XRCC1 mutant genotypes and higher XRCC1 levels in patients with NOX p22 fox mutant genotypes rather than controls. We suggest that routinely clinical validation of major oxidative stress-related biomarkers will be a good approach to manage detrimental effects of PD.
Collapse
Affiliation(s)
- Bensu Karahalil
- Faculty of Pharmacy, Toxicology Department, Gazi University, Ankara, Turkey
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Aylin Elkama
- Faculty of Pharmacy, Toxicology Department, Gazi University, Ankara, Turkey
| | - Gürdal Orhan
- Ministry of Health, Neurology Clinic, Ankara City Hospital, Ankara, Turkey
| | - Evrim Saygın
- Faculty of Pharmacy, Toxicology Department, Gazi University, Ankara, Turkey
| | | |
Collapse
|
35
|
Malkov A, Popova I, Ivanov A, Jang SS, Yoon SY, Osypov A, Huang Y, Zilberter Y, Zilberter M. Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun Biol 2021; 4:1054. [PMID: 34504272 PMCID: PMC8429759 DOI: 10.1038/s42003-021-02551-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
A predominant trigger and driver of sporadic Alzheimer’s disease (AD) is the synergy of brain oxidative stress and glucose hypometabolism starting at early preclinical stages. Oxidative stress damages macromolecules, while glucose hypometabolism impairs cellular energy supply and antioxidant defense. However, the exact cause of AD-associated glucose hypometabolism and its network consequences have remained unknown. Here we report NADPH oxidase 2 (NOX2) activation as the main initiating mechanism behind Aβ1-42-related glucose hypometabolism and network dysfunction. We utilize a combination of electrophysiology with real-time recordings of metabolic transients both ex- and in-vivo to show that Aβ1-42 induces oxidative stress and acutely reduces cellular glucose consumption followed by long-lasting network hyperactivity and abnormalities in the animal behavioral profile. Critically, all of these pathological changes were prevented by the novel bioavailable NOX2 antagonist GSK2795039. Our data provide direct experimental evidence for causes and consequences of AD-related brain glucose hypometabolism, and suggest that targeting NOX2-mediated oxidative stress is a promising approach to both the prevention and treatment of AD. Anton Malkov, Irina Popova et al. demonstrate that beta-amyloid application induces oxidative stress and reduces glucose consumption in the mouse brain, leading to network hyperactivity and behavioral changes—pathologies similar to those observed early on in Alzheimer’s disease patients. Inhibition of NADPH oxidase 2 (NOX2) rescued these phenotypes, suggesting that NOX2 may represent an important therapeutic target for Alzheimer’s disease.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anton Ivanov
- Aix Marseille Université, Inserm, Marseille, France
| | - Sung-Soo Jang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Alexander Osypov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
36
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
37
|
Wang HK, Chen JS, Hsu CY, Su YT, Sung TC, Liang CL, Kwan AL, Wu CC. A Novel NGF Receptor Agonist B355252 Ameliorates Neuronal Loss and Inflammatory Responses in a Rat Model of Cerebral Ischemia. J Inflamm Res 2021; 14:2363-2376. [PMID: 34103967 PMCID: PMC8179829 DOI: 10.2147/jir.s303833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/13/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Cerebral ischemia is a leading cause of disability and death worldwide. However, an effective therapeutic approach for the condition remains undiscovered. The previously proposed growth factor-based therapy has been inefficient due to its inability to pass through the blood–brain barrier. B355252, a newly developed small molecule, exhibited a potential neuroprotective effect in vivo. However, its exact efficacy in cerebral ischemia remains unclear. Methods We adopt an endothelin-1 stereotaxic intracranial injection to induced cerebral ischemia in rat. We further conducted 2,3,5-triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, enzyme-linked immunosorbent assay (ELISA), and behavioral tests to evaluate the efficacy of B355252 in neuroprotection, anti-inflammation, and behavioral outcome improvements. Results We identified that B355252 could protect ischemic neurons from neuronal loss by attenuating DNA damage, reducing ROS production and the LDH level, and preventing neuronal apoptosis. Moreover, inflammatory responses in astrocytic and microglial gliosis, as well as IL-1β and TNF-α levels, were ameliorated. Consequently, the behavioral outcomes of ischemic rats in neurologic responses and fore paw function recovery were improved. Discussion Overall, our study verified the in vivo therapeutic potential of B355252. The study findings further support its application in the development of a therapeutic approach for stroke.
Collapse
Affiliation(s)
- Hao-Kuang Wang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Sheng Chen
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Yu Hsu
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Su
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ching Sung
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Loong Liang
- Department of Neurosurgery, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
38
|
Echavarría-Consuegra L, Cook GM, Busnadiego I, Lefèvre C, Keep S, Brown K, Doyle N, Dowgier G, Franaszek K, Moore NA, Siddell SG, Bickerton E, Hale BG, Firth AE, Brierley I, Irigoyen N. Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection. PLoS Pathog 2021; 17:e1009644. [PMID: 34138976 PMCID: PMC8211288 DOI: 10.1371/journal.ppat.1009644] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.
Collapse
Affiliation(s)
- Liliana Echavarría-Consuegra
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Georgia M. Cook
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Charlotte Lefèvre
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Sarah Keep
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Katherine Brown
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nicole Doyle
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | | | - Krzysztof Franaszek
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nathan A. Moore
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stuart G. Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
39
|
Oxidative Stress, Neuroinflammation, and NADPH Oxidase: Implications in the Pathogenesis and Treatment of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7086512. [PMID: 33953837 PMCID: PMC8068554 DOI: 10.1155/2021/7086512] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/17/2021] [Accepted: 04/03/2021] [Indexed: 01/17/2023]
Abstract
NADPH oxidase as an important source of intracellular reactive oxygen species (ROS) has gained enormous importance over the years, and the detailed structures of all the isoenzymes of the NADPH oxidase family and their regulation have been well explored. The enzyme has been implicated in a variety of diseases including neurodegenerative diseases. The present brief review examines the body of evidence that links NADPH oxidase with the genesis and progression of Alzheimer's disease (AD). In short, evidence suggests that microglial activation and inflammatory response in the AD brain is associated with increased production of ROS by microglial NADPH oxidase. Along with other inflammatory mediators, ROS take part in neuronal degeneration and enhance the microglial activation process. The review also evaluates the current state of NADPH oxidase inhibitors as potential disease-modifying agents for AD.
Collapse
|
40
|
Morgese MG, Schiavone S, Bove M, Colia AL, Dimonte S, Tucci P, Trabace L. N-3 PUFA Prevent Oxidative Stress in a Rat Model of Beta-Amyloid-Induced Toxicity. Pharmaceuticals (Basel) 2021; 14:ph14040339. [PMID: 33917814 PMCID: PMC8068120 DOI: 10.3390/ph14040339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/11/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) are involved in brain disorders associated to amyloid beta (Aβ) toxicity for which oxidative stress, neurochemical dysfunctions, and neuroinflammation are underlying mechanisms. Here, mechanisms through which lifelong exposure to n-3 PUFA-enriched or n-6/n-3 balanced diets could elicit a protective role in a rat model of Aβ-induced toxicity were investigated. To this aim, we quantified hippocampal reactive oxygen species (ROS) amount, 8-hydroxy-2'-deoxyguanosine and interleukin-10 levels, NADPH oxidase (NOX) 1, NOX2, superoxide dismutase 1, and glutathione contents, as well as plasmatic malondialdehyde. Moreover, in the same experimental groups, we assessed tryptophan, serotonin, and its turnover, kynurenine, and noradrenaline amounts. Results showed increased hippocampal ROS and NOX2 levels, serotonin turnover, kynurenine, and noradrenaline contents in Aβ-treated rats. Both n-6/n-3 balanced and n-3 PUFA enriched diets reduced ROS production, NOX1 and malondialdehyde levels, serotonin turnover, and kynurenine amount in Aβ-injected rats, while increasing NOX2, superoxide dismutase 1, and serotonin contents. No differences in plasmatic coenzyme Q10, reduced glutathione (GSH) and tryptophan levels were detected among different experimental groups, whereas GSH + oxidized glutathione (GSSG) levels were increased in sham animals fed with n-3 PUFA enriched diet and in Aβ-treated rats exposed to both n-6/n-3 balanced and n-3 enriched diets. In addition, Aβ-induced decrease of interleukin-10 levels was prevented by n-6/n-3 PUFA balanced diet. N-3 PUFA enriched diet further increased interleukin-10 and 8-hydroxy-2'-deoxyguanosine levels. In conclusion, our data highlight the possible neuroprotective role of n-3 PUFA in perturbation of oxidative equilibrium induced by Aβ-administration.
Collapse
|
41
|
Hu CF, Wu SP, Lin GJ, Shieh CC, Hsu CS, Chen JW, Chen SH, Hong JS, Chen SJ. Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:638381. [PMID: 33868265 PMCID: PMC8050344 DOI: 10.3389/fimmu.2021.638381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
While oxidative stress has been linked to multiple sclerosis (MS), the role of superoxide-producing phagocyte NADPH oxidase (Nox2) in central nervous system (CNS) pathogenesis remains unclear. This study investigates the impact of Nox2 gene ablation on pro- and anti-inflammatory cytokine and chemokine production in a mouse experimental autoimmune encephalomyelitis (EAE) model. Nox2 deficiency attenuates EAE-induced neural damage and reduces disease severity, pathogenic immune cells infiltration, demyelination, and oxidative stress in the CNS. The number of autoreactive T cells, myeloid cells, and activated microglia, as well as the production of cytokines and chemokines, including GM-CSF, IFNγ, TNFα, IL-6, IL-10, IL-17A, CCL2, CCL5, and CXCL10, were much lower in the Nox2-/- CNS tissues but remained unaltered in the peripheral lymphoid organs. RNA-seq profiling of microglial transcriptome identified a panel of Nox2 dependent proinflammatory genes: Pf4, Tnfrsf9, Tnfsf12, Tnfsf13, Ccl7, Cxcl3, and Cxcl9. Furthermore, gene ontology and pathway enrichment analyses revealed that microglial Nox2 plays a regulatory role in multiple pathways known to be important for MS/EAE pathogenesis, including STAT3, glutathione, leukotriene biosynthesis, IL-8, HMGB1, NRF2, systemic lupus erythematosus in B cells, and T cell exhaustion signaling. Taken together, our results provide new insights into the critical functions performed by microglial Nox2 during the EAE pathogenesis, suggesting that Nox2 inhibition may represent an important therapeutic target for MS.
Collapse
Affiliation(s)
- Chih-Fen Hu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chih-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications of Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wun Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Heng Chen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Shyi-Jou Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
42
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
43
|
Pagano PJ, Cifuentes-Pagano E. The Enigmatic Vascular NOX: From Artifact to Double Agent of Change: Arthur C. Corcoran Memorial Lecture - 2019. Hypertension 2021; 77:275-283. [PMID: 33390049 DOI: 10.1161/hypertensionaha.120.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NOXs (NADPH oxidases) comprise a family of proteins whose primary function is the production of reactive oxygen species, namely, superoxide anion and hydrogen peroxide. The prototype first being discovered and characterized in neutrophils, multiple NOXs are now known to be broadly expressed in cell and organ systems and whose phylogeny spans countless life forms beginning with prokaryotes. This long-enduring evolutionary conservation underscores the importance of fundamental NOX functions. This review chronicles a personal perspective of the field beginning with the discovery of NOXs in the vasculature and the advances achieved through the years as to our understanding of their mechanisms of action and role in oxidative stress and disease. Furthermore, applications of isoform-selective inhibitors to dissect the role of NOX isozymes in vascular biology, focusing on inflammation, pulmonary hypertension, and aging are described.
Collapse
Affiliation(s)
- Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
44
|
Liu G, Liu Q, Yan B, Zhu Z, Xu Y. USP7 Inhibition Alleviates H 2O 2-Induced Injury in Chondrocytes via Inhibiting NOX4/NLRP3 Pathway. Front Pharmacol 2021; 11:617270. [PMID: 33584299 PMCID: PMC7879569 DOI: 10.3389/fphar.2020.617270] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, is a very common joint disease that often affects middle-aged to elderly people. However, current treatment options for OA are predominantly palliative. Thus, understanding its pathological process and exploring its potential therapeutic approaches are of great importance. Rat chondrocytes were isolated and exposed to hydrogen peroxide (H2O2) to mimic OA. The effects of H2O2 on ubiquitin-specific protease 7 (USP7) expression, reactive oxygen species (ROS) levels, proliferation, inflammatory cytokine release, and pyroptosis were measured. USP7 was knocked down (KD) or overexpressed to investigate the role of USP7 in OA. Co-immunoprecipitation (Co-IP) was used to study the interaction between USP7 and NAD(P)H oxidases (NOX)4 as well as NOX4 ubiquitination. NOX4 inhibitor was applied to study the involvement of NOX4 in USP7-mediated OA development. USP7 inhibitor was given to OA animals to further investigate the role of USP7 in OA in vivo. Moreover, H2O2 treatment significantly increased USP7 expression, enhanced ROS levels, and inhibited proliferation in rat chondrocytes. The overexpression of USP7 enhanced pyroptosis, ROS production, interleukin (IL)-1β and IL-18 levels, and the expression level of NLRP3, GSDMD-N, active caspase-1, pro-caspase-1, matrix metalloproteinases (MMP) 1, and MMP13, which was abolished by ROS inhibition. The USP7 KD protected rat chondrocytes against H2O2-induced injury. Co-IP results showed that USP7 interacted with NOX4, and USP7 KD enhanced NOX4 ubiquitinylation. The inhibition of NOX4 blocked the pro-OA effect of USP7. Moreover, the USP7 inhibitor given to OA animals suppressed OA in vivo. USP7 inhibited NOX4 ubiquitination for degradation which leads to elevated ROS production. ROS subsequently activates NLPR3 inflammasome, leading to enhanced production of IL-1β and IL-18, GSDMD-N-dependent pyroptosis, and extracellular matrix remodeling. Thus, UPS7 contributes to the progression of OA via NOX4/ROS/NLPR3 axis.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingbai Liu
- Department of Orthopaedics, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, China
| | - Bin Yan
- Department of Orthopaedics, Taixing People's Hospital, Taixing, China
| | - Ziqiang Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
45
|
Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021; 35:1-20. [PMID: 33515429 PMCID: PMC7893831 DOI: 10.1007/s40263-020-00787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK-iNOS-NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.
Collapse
|
46
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
47
|
Fliesler SJ. EDITOR'S PERSPECTIVE: On the verge of translation: Combined cholesterol-antioxidant supplementation as a potential therapeutic intervention for Smith-Lemli-Opitz syndrome. Exp Eye Res 2020; 202:108390. [PMID: 33307076 DOI: 10.1016/j.exer.2020.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- the State University of New York, Buffalo, NY, 14215-1129, USA; Research Service, Western New York Healthcare System, Buffalo, NY, 14215-1129, USA.
| |
Collapse
|
48
|
Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5021694. [PMID: 33274002 PMCID: PMC7683149 DOI: 10.1155/2020/5021694] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.
Collapse
|
49
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
50
|
Zilberter Y, Zilberter T. Glucose-Sparing Action of Ketones Boosts Functions Exclusive to Glucose in the Brain. eNeuro 2020; 7:ENEURO.0303-20.2020. [PMID: 33168619 PMCID: PMC7768283 DOI: 10.1523/eneuro.0303-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) has been successfully used for a century for treating refractory epilepsy and is currently seen as one of the few viable approaches to the treatment of a plethora of metabolic and neurodegenerative diseases. Empirical evidence notwithstanding, there is still no universal understanding of KD mechanism(s). An important fact is that the brain is capable of using ketone bodies for fuel. Another critical point is that glucose's functions span beyond its role as an energy substrate, and in most of these functions, glucose is irreplaceable. By acting as a supplementary fuel, ketone bodies may free up glucose for its other crucial and exclusive function. We propose that this glucose-sparing effect of ketone bodies may underlie the effectiveness of KD in epilepsy and major neurodegenerative diseases, which are all characterized by brain glucose hypometabolism.
Collapse
Affiliation(s)
- Yuri Zilberter
- Institut de Neurosciences des Systèmes, Aix-Marseille Universite, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1106, Marseille 13385, France
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | | |
Collapse
|