1
|
Hagemann MJL, Chadwick L, Drake MJ, Hill DJ, Baker BC, Faul CFJ. High-Performance Dopamine-Based Supramolecular Bio-Adhesives. Macromol Rapid Commun 2024; 45:e2400345. [PMID: 38760014 PMCID: PMC11628360 DOI: 10.1002/marc.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The need for wound closure or surgical procedures has been commonly met by the application of sutures. Unfortunately, these are often invasive or subject to contamination. Alternative solutions are offered by surgical adhesives that can be applied and set without major disruption; a new class of supramolecular-based adhesives provides potential solutions to some of these challenges. In this study, a series of polymers utilizing dopamine as a self-assembling unit are synthesized. It is found that these motifs act as extremely effective adhesives, with control over the mechanical strength of the adhesion and materials' tensile properties enabled by changing monomer feed ratios and levels of cross-linking. These materials significantly outperform commercially available bio-adhesives, showing yield strengths after adhesion at least two times higher than that of BioGlue and Tisseel, as well as the ability to re-adhere with significant recovery of adhesion strength. Promisingly, the materials are shown to be non-cytotoxic, with cell viability > 90%, and able to perform in aqueous environments without significant loss in strength. Finally, the removal of the materials, is possible using benign organic solvents such as ethanol. These properties all demonstrate the effectiveness of the materials as potential bio-adhesives, with potential advantages for use in surgery.
Collapse
Affiliation(s)
| | - Lewis Chadwick
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| | - Marcus J. Drake
- Department of Surgery and CancerImperial Collegedu Cane roadLondonW12 0HSUK
| | - Darryl J. Hill
- School of Cellular and Molecular MedicineUniversity of BristolBristolBS8 1TDUK
| | | | | |
Collapse
|
2
|
Grosjean M, Girard E, Bethry A, Chagnon G, Garric X, Nottelet B. Degradable Bioadhesives Based on Star PEG-PLA Hydrogels for Soft Tissue Applications. Biomacromolecules 2023; 24:4430-4443. [PMID: 36524541 DOI: 10.1021/acs.biomac.2c01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Edouard Girard
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
- Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, Grenoble38043, France
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université Grenoble Alpes, Grenoble38058, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Grégory Chagnon
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| |
Collapse
|
3
|
Han GY, Hwang SK, Cho KH, Kim HJ, Cho CS. Progress of tissue adhesives based on proteins and synthetic polymers. Biomater Res 2023; 27:57. [PMID: 37287042 DOI: 10.1186/s40824-023-00397-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023] Open
Abstract
In recent years, polymer-based tissue adhesives (TAs) have been developed as an alternative to sutures to close and seal incisions or wounds owing to their ease of use, rapid application time, low cost, and minimal tissue damage. Although significant research is being conducted to develop new TAs with improved performances using different strategies, the applications of TAs are limited by several factors, such as weak adhesion strength and poor mechanical properties. Therefore, the next-generation advanced TAs with biomimetic and multifunctional properties should be developed. Herein, we review the requirements, adhesive performances, characteristics, adhesive mechanisms, applications, commercial products, and advantages and disadvantages of proteins- and synthetic polymer-based TAs. Furthermore, future perspectives in the field of TA-based research have been discussed.
Collapse
Affiliation(s)
- Gi-Yeon Han
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea
| | - Soo-Kyung Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ki-Hyun Cho
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Chong-Su Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Bingol HB, Bender JC, Opsteen JA, Leeuwenburgh SC. Bone adhesive materials: From bench to bedside. Mater Today Bio 2023; 19:100599. [PMID: 37063249 PMCID: PMC10102013 DOI: 10.1016/j.mtbio.2023.100599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable bone adhesives represent a highly sought-after type of biomaterial which would enable replacement of traditional metallic devices for fixation of bone. However, these biomaterials should fulfil an extremely large number of requirements. As a consequence, bone-adhesive biomaterials which meet all of these requirements are not yet commercially available. Therefore, this comprehensive review provides an extensive overview of the development of bone adhesives from a translational perspective. First, the definition, classification, and chemistry of various types of bone adhesives are highlighted to provide a detailed overview of this emerging class of biomaterials. In this review we particularly focused studies which describe the use of materials that are capable of gluing two pieces of bone together within a time frame of minutes to days. Second, this review critically reflects on i) the experimental conditions of commonly employed adhesion tests to assess bone adhesion and ii) the current state-of-the-art regarding their preclinical and clinical applicability.
Collapse
Affiliation(s)
- Hatice B. Bingol
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- GATT Technologies BV, Nijmegen, the Netherlands
| | | | | | - Sander C.G. Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Corresponding author.
| |
Collapse
|
5
|
Cai Y, Chen G, Yu Z, Lu J, Fang X. Synthesis of a novel biodegradable curing agent modified by castor oil for polyacrylate adhesive applications. J Appl Polym Sci 2023. [DOI: 10.1002/app.53648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yangben Cai
- Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo China
- Research and Development Department Ningbo Soken Chemistry limited company Ningbo China
| | - Guofei Chen
- Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhujun Yu
- Research and Development Department Ningbo Soken Chemistry limited company Ningbo China
| | - Jianxian Lu
- Research and Development Department Ningbo Soken Chemistry limited company Ningbo China
| | - Xingzhong Fang
- Ningbo Key Laboratory of Polymer Materials Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences Ningbo China
| |
Collapse
|
6
|
Xu C, Hong Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact Mater 2022; 15:250-271. [PMID: 35386346 PMCID: PMC8940769 DOI: 10.1016/j.bioactmat.2021.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
As a type of elastomeric polymers, non-degradable polyurethanes (PUs) have a long history of being used in clinics, whereas biodegradable PUs have been developed in recent decades, primarily for tissue repair and regeneration. Biodegradable thermoplastic (linear) PUs are soft and elastic polymeric biomaterials with high mechanical strength, which mimics the mechanical properties of soft and elastic tissues. Therefore, biodegradable thermoplastic polyurethanes are promising scaffolding materials for soft and elastic tissue repair and regeneration. Generally, PUs are synthesized by linking three types of changeable blocks: diisocyanates, diols, and chain extenders. Alternating the combination of these three blocks can finely tailor the physio-chemical properties and generate new functional PUs. These PUs have excellent processing flexibilities and can be fabricated into three-dimensional (3D) constructs using conventional and/or advanced technologies, which is a great advantage compared with cross-linked thermoset elastomers. Additionally, they can be combined with biomolecules to incorporate desired bioactivities to broaden their biomedical applications. In this review, we comprehensively summarized the synthesis, structures, and properties of biodegradable thermoplastic PUs, and introduced their multiple applications in tissue repair and regeneration. A whole picture of their design and applications along with discussions and perspectives of future directions would provide theoretical and technical supports to inspire new PU development and novel applications.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
7
|
Xie M, Zeng Y, Wu H, Wang S, Zhao J. Multifunctional carboxymethyl chitosan/oxidized dextran/sodium alginate hydrogels as dressing for hemostasis and closure of infected wounds. Int J Biol Macromol 2022; 219:1337-1350. [PMID: 36057297 DOI: 10.1016/j.ijbiomac.2022.08.166] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022]
|
8
|
Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. MATERIALS 2022; 15:ma15155215. [PMID: 35955150 PMCID: PMC9369661 DOI: 10.3390/ma15155215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Laparoscopic surgery is undergoing rapid development. Replacing the traditional method of joining cut tissues with sutures or staples could greatly simplify and speed up laparoscopic procedures. This alternative could undoubtedly be adhesives. For decades, scientists have been working on a material to bond tissues together to create the best possible conditions for tissue regeneration. The results of research on tissue adhesives achieved over the past years show comparable treatment effects to traditional methods. Tissue adhesives are a good alternative to surgical sutures in wound closure. This article is a review of the most important groups of tissue adhesives including their properties and possible applications. Recent reports on the development of biological adhesives are also discussed.
Collapse
|
9
|
Wendels S, Balahura R, Dinescu S, Ignat S, Costache M, Avérous L. Influence of the Macromolecular architecture on the properties of biobased polyurethane tissue adhesives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
A Novel In Vitro Method to Assess the Microbial Barrier Function of Tissue Adhesives Using Bioluminescence Imaging Technique. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3483238. [PMID: 35047631 PMCID: PMC8763484 DOI: 10.1155/2022/3483238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Background. Tissue glues can minimize treatment invasiveness, mitigate the risk of infection, and reduce surgery time; ergo, they have been developed and used in surgical procedures as wound closure devices beside sutures, staples, and metallic grafts. Regardless of their structure or function, tissue glues should show an acceptable microbial barrier function before being used in humans. This study proposes a novel in vitro method using Escherichia coli Lux and bioluminescence imaging technique to assess the microbial barrier function of tissue glues. Different volumes and concentrations of E. coli Lux were applied to precured or cured polyurethane-based tissue glue placed on agar plates. Plates were cultured for 1 h, 24 h, 48 h, and 72 h with bioluminescence signal measurement subsequently. Herein, protocol established a volume of 5 μL of a 1 : 100 dilution of E. coli Lux containing around 2 × 107 CFU/mL as optimal for testing polyurethane-based tissue glue. Measurement of OD600nm, determination of CFU/mL, and correlation with the bioluminescence measurement in p/s unit resulted in a good correlation between CFU/mL and p/s and demonstrated good reproducibility of our method. In addition, this in vitro method could show that the tested polyurethane-based tissue glue can provide a reasonable barrier against the microbial penetration and act as a bacterial barrier for up to 48 h with no penetration and up to 72 h with a low level of penetration through the material. Overall, we have established a novel, sensitive, and reproducible in vitro method using the bioluminescence imaging technique for testing the microbial barrier function of new tissue glues.
Collapse
|
11
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
El-Raheem HA, Hassan RYA, Khaled R, El-Dek S, Farghali A, El-Sherbiny IM. A better understanding of the polymeric irradiation using physico-electrochemical characteristics. RADIATION EFFECTS AND DEFECTS IN SOLIDS 2021; 176:1021-1037. [DOI: 10.1080/10420150.2021.1990926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2021] [Indexed: 09/02/2023]
Affiliation(s)
- Hany Abd El-Raheem
- Center of Materials Sciences, Zewail City of Science and Technology, Giza, Egypt
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rabeay Y. A. Hassan
- Center of Materials Sciences, Zewail City of Science and Technology, Giza, Egypt
- Applied Organic Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | - Rehab Khaled
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - S.I. El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
13
|
A mussel glue-inspired monomer-etchant cocktail for improving dentine bonding. J Dent 2021; 116:103888. [PMID: 34762990 DOI: 10.1016/j.jdent.2021.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The humid oral environment adversely affects the interaction between a functionalised primer and dentine collagen after acid-etching. Robust adhesion of marine mussels to their wet substrates instigates the quest for a strategy that improves the longevity of resin-dentine bonds. In the present study, an etching strategy based on the incorporation of biomimetic dopamine methacrylamide (DMA) as a functionalised primer into phosphoric acid etchant was developed. The mechanism and effect of this DMA-containing acid-etching strategy on bond durability were examined. METHODS Etchants with different concentrations of DMA (1, 3 or 5 mM) were formulated and tested for their demineralisation efficacy. The interaction between DMA and dentine collagen, the effect of DMA on collagen stability and the collagenase inhibition capacity of the DMA-containing etchants were evaluated. The effectiveness of this new etching strategy on resin-dentine bond durability was investigated. RESULTS All etchants were capable of demineralising dentine and exposing the collagen matrix. The latter strongly integrated with DMA via covalent bond, hydrogen bond and Van der Waals' forces. These interactions significantly improve collagen stability and inhibited collagenase activity. Application of the etchant containing 5 mM DMA achieved the most durable bonding interface. CONCLUSION Dopamine methacrylamide interacts with dentine collagen in a humid environment and improves collagen stability. The monomer effectively inactivates collagenase activity. Acid-etching with 5 mM DMA-containing phosphoric acid has the potential to prolong the longevity of bonded dental restorations without compromising clinical operation time. CLINICAL SIGNIFICANCE The use of 5 mM dopamine methacrylamide-containing phosphoric acid for etching dentine does not require an additional clinical step and has potential to improve the adhesive performance of bonded dental restorations.
Collapse
|
14
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 413] [Impact Index Per Article: 103.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Zhang Y, Li X, Wei W, Liu X. A Strong Dual-Component Bioadhesive Based on Solventless Thiol-isocyanate Click Chemistry. ACS Biomater Sci Eng 2021; 7:3389-3398. [PMID: 34165278 DOI: 10.1021/acsbiomaterials.1c00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Isocyanate is an efficient tissue anchor for engineering of strong bioadhesives. However, isocyanate-containing adhesives were seldom manufactured due to their requirement of water-free administration and time-consuming moisture-induced solidification. To address this issue, here, a solventless dual-component bioadhesive based on thiol-isocyanate cross-linking chemistry is reported. This dual-component bioadhesive consists of a hyperbranched polymer with thiol groups (HBPTE) and an isocyanate-modified polyethylene glycol (PEGNCO). HBPTE and PEGNCO are low-viscosity fluids at room temperature and hence could be used directly as adhesive components, in the absence of a catalyst and a solvent. The thiol-isocyanate click chemistry of components provides the HBPTE-PEGNCO mixture with a gelation time of 1.8-3 min, which makes it acceptable for practical applications. The abundance of isocyanate groups in the adhesive molecule provides strong bonding strength through formation of chemical linkages with reactive groups on the tissue. Moreover, in vitro and in vivo evaluations showed excellent biocompatibility of the HBPTE-PEGNCO adhesive. This dual-component bioadhesive based on solventless thiol-isocyanate click chemistry displayed a fast gelation time and excellent bonding performance, providing a pioneering idea for engineering isocyanate-containing bioadhesives.
Collapse
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
16
|
The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam. Polymers (Basel) 2021; 13:polym13122020. [PMID: 34205593 PMCID: PMC8234072 DOI: 10.3390/polym13122020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022] Open
Abstract
Neem (Azadirachta indica) oil is a non-edible oil that contains azadirachtin, which can be used as a biopesticide. This study synthesizes bio-based polyurethane (PU) foam from neem and castor (Ricinus communis L.) oil at normal temperature and pressure. Neem oil can be reacted to narrow-distribution polyol by transesterification of oil and glycerol. Neem oil glyceride (NOG) can be used as polyol for bio-based PU foams and can be blended with castor oil homogeneously to reduce the cost of production. The composition of polyol was castor oil and 0 to 20% molar ratios of NOG. Hexamethylene diisocyanate trimer (Desmodur N) was used as isocyanate. The molar ratios of NCO/OH were set as 1.0, 1.5 and 2.0. The average hydroxyl contents of castor oil, neem oil and NOG were 2.7 mmol/g, 0.1 mmol/g and 5.1 mmol/g, respectively. The reaction time of bio-based PU foam could be adjusted between 5 to 10 min, which is acceptable for manufacturing. The densities of PU foams were between 49.7 and 116.2 kg/m3 and decreased with increasing NCO/OH and NOG ratios and decreasing neem oil. The ranges of specific compressive strength of foams were from 0.0056 to 0.0795 kPa·m3/kg. Increasing the NOG and neem oil ratio significantly enhanced the specific compressive strength in the low NCO/OH ratio. The solvent resistance and thermogravimetric (TG) results showed that the foams have high water and thermal stability. NOG can help to increase solvent resistance. Adding neem oil reduces the solvent resistance. The results indicated that increasing NCO/OH and NOG ratios increases the cross-linking density and hard segment content of PU foams. This investigation demonstrated that castor oil-based PU foams are improved by adding NOG to the polyol mixture. PU foam has excellent properties. Neem oil can be used in manufacturing processes to produce high-performance foams via a green synthesis process.
Collapse
|
17
|
Park SG, Li MX, Cho WK, Joung YK, Huh KM. Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydr Polym 2021; 260:117808. [PMID: 33712154 DOI: 10.1016/j.carbpol.2021.117808] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.
Collapse
Affiliation(s)
- Seul Gi Park
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mei-Xian Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
18
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
19
|
Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021; 7:4048-4076. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Chakraborty I, Chatterjee K. Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends. Biomacromolecules 2020; 21:4639-4662. [PMID: 33222440 DOI: 10.1021/acs.biomac.0c01291] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent years have seen rapid growth in utilizing vegetable oils to derive a wide variety of polymers to replace petroleum-based polymers for minimizing environmental impact. Nonedible castor oil (CO) can be extracted from castor plants that grow easily, even in an arid land. CO is a promising source for developing several polymers such as polyurethanes, polyesters, polyamides, and epoxy-polymers. Several synthesis routes have been developed, and distinct properties of polymers have been studied for industrial applications. Furthermore, fillers and fibers, including nanomaterials, have been incorporated in these polymers for enhancing their physical, thermal, and mechanical properties. This review highlights the development of CO-based polymers and their composites with attractive properties for industrial and biomedical applications. Recent advancements in CO-based polymers and their composites are presented along with a discussion on future opportunities for further developments in diverse applications.
Collapse
Affiliation(s)
- Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, India 560012
| |
Collapse
|
21
|
Zhang Y, Li X, Zhu Q, Wei W, Liu X. Photocurable Hyperbranched Polymer Medical Glue for Water-Resistant Bonding. Biomacromolecules 2020; 21:5222-5232. [DOI: 10.1021/acs.biomac.0c01302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Qinfu Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
22
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
23
|
Ge L, Chen S. Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers (Basel) 2020; 12:polym12040939. [PMID: 32325657 PMCID: PMC7240468 DOI: 10.3390/polym12040939] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a brief introduction to the emerging potential use of tissue adhesives in the clinic. Next, several critical mechanisms for adhesion are discussed, including van der Waals forces, capillary forces, hydrogen bonding, static electric forces, and chemical bonds. This article further details the measurement methods of adhesion and highlights the different types of adhesive, including natural or biological, synthetic and semisynthetic, and biomimetic adhesives. Finally, this review article concludes with remarks on the challenges and future directions for design, fabrication, and application of tissue adhesives in the clinic. This review article has promising potential to provide novel creative design principles for the generation of future tissue adhesives.
Collapse
Affiliation(s)
- Liangpeng Ge
- Chongqing Academy of Animal Sciences and Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (L.G.); (S.C.)
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence: (L.G.); (S.C.)
| |
Collapse
|
24
|
Zhang W, Ji T, Lyon S, Mehta M, Zheng Y, Deng X, Liu A, Shagan A, Mizrahi B, Kohane DS. Functionalized Multiarmed Polycaprolactones as Biocompatible Tissue Adhesives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17314-17320. [PMID: 32227980 DOI: 10.1021/acsami.0c03478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Existing tissue adhesives have a trade-off between adhesive strength and biocompatibility. Here, we report a series of biocompatible multiarmed polycaprolactones (PCL) as tissue adhesives that can be released from a hot glue gun and the length of each arm was kept at ∼2-3 kg mol-1 in all the polymers. The adhesion properties were dependent on the number of functionalized (N-hydroxysuccinimide ester (NHS), aldehyde (CHO), and isocyanate (NCO)) arms of the multiarmed polymers. The more arms, the higher the adhesion strength. For example, the adhesion strength in binding cut rat skin increased from 2.3 N cm-2 for 2PCL-NHS to 11.2 N cm-2 for 8-PCL-NHS. CHO- and NCO-modified 8PCL also had suitable adhesive properties. All the multiarmed polymers had minimal cytotoxicity in vitro and good biocompatibility in vivo, suggesting their potential as promising alternative surgical adhesives.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sophie Lyon
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Manisha Mehta
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yueqin Zheng
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alona Shagan
- Faculty of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
25
|
Cernadas T, Morgado S, Alves P, Gonçalves FAMM, Correia TR, Correia IJ, Ferreira P. Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesives. J Appl Polym Sci 2020. [DOI: 10.1002/app.49092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Teresa Cernadas
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | - Stacy Morgado
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | - Patrícia Alves
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | | | - Tiago R. Correia
- CICS‐UBI, Health Sciences Research CenterUniversity of Beira Interior Covilhã Portugal
| | - Ilídio J. Correia
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
- CICS‐UBI, Health Sciences Research CenterUniversity of Beira Interior Covilhã Portugal
| | - Paula Ferreira
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| |
Collapse
|
26
|
Sun S, Wang W, Liu F, Zhang L, Fan X. Coating layer preparation with mixed vegetable oil and nutrient release regulation of fertilizer. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Krishnadoss V, Melillo A, Kanjilal B, Hannah T, Ellis E, Kapetanakis A, Hazelton J, San Roman J, Masoumi A, Leijten J, Noshadi I. Bioionic Liquid Conjugation as Universal Approach To Engineer Hemostatic Bioadhesives. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38373-38384. [PMID: 31523968 DOI: 10.1021/acsami.9b08757] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adhesion to wet and dynamic surfaces is vital for many biomedical applications. However, the development of effective tissue adhesives has been challenged by the required combination of properties, which includes mechanical similarity to the native tissue, high adhesion to wet surfaces, hemostatic properties, biodegradability, high biocompatibility, and ease of use. In this study, we report a novel bioinspired design with bioionic liquid (BIL) conjugated polymers to engineer multifunctional highly sticky, biodegradable, biocompatible, and hemostatic adhesives. Choline-based BIL is a structural precursor of the phospholipid bilayer in the cell membrane. We show that the conjugation of choline molecules to naturally derived polymers (i.e., gelatin) and synthetic polymers (i.e., polyethylene glycol) significantly increases their adhesive strength and hemostatic properties. Synthetic or natural polymers and BILs were mixed at room temperature and cross-linked via visible light photopolymerization to make hydrogels with tunable mechanical, physical, adhesive, and hemostatic properties. The hydrogel adhesive exhibits a close to 50% decrease in the total blood volume loss in tail cut and liver laceration rat animal models compared to the control. This technology platform for adhesives is expected to have further reaching application vistas from tissue repair to wound dressings and the attachment of flexible electronics.
Collapse
Affiliation(s)
| | - Atlee Melillo
- Cooper Medical School of Rowan University , Camden , New Jersey 08103-1211 , United States
| | | | | | | | | | - Joshua Hazelton
- Cooper Medical School of Rowan University , Camden , New Jersey 08103-1211 , United States
| | - Janika San Roman
- Cooper Medical School of Rowan University , Camden , New Jersey 08103-1211 , United States
| | | | - Jeroen Leijten
- Developmental BioEngineering (DBE) , The University of Twente , 7522 NB Enschede , Netherlands
| | | |
Collapse
|
28
|
Jain R, Wairkar S. Recent developments and clinical applications of surgical glues: An overview. Int J Biol Macromol 2019; 137:95-106. [DOI: 10.1016/j.ijbiomac.2019.06.208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
|
29
|
Agnol LD, Dias FTG, Nicoletti NF, Marinowic D, Moura E Silva S, Marcos-Fernandez A, Falavigna A, Bianchi O. Polyurethane tissue adhesives for annulus fibrosus repair: Mechanical restoration and cytotoxicity. J Biomater Appl 2019; 34:673-686. [PMID: 31354030 DOI: 10.1177/0885328219864901] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lucas Dall Agnol
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | | | | - Daniel Marinowic
- 4 Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sidnei Moura E Silva
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,5 Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Asdrubal Falavigna
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,3 Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Otávio Bianchi
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,2 Materials Science Graduate Program (PGMAT), University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,7 Federal University of Rio Grande do Sul, Materials engineering department, Porto Alegre, Brazil
| |
Collapse
|
30
|
Talukdar MIA, Akram MK, Singh T, Malik MA, Dar OA, Hashmi AA. In-situ modification of castor oil with divalent metal ions like Zn (II), Cu (II), Co (II) and Ba (II) and their comparative antioxidant study by in-vitro methods. Food Chem 2019; 284:213-218. [PMID: 30744848 DOI: 10.1016/j.foodchem.2019.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/09/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
US Food and Drug Administration (FDA) permitted for direct addition of castor oil into food for human consumption and recently FDA approved castor oil as over-the-counter (OTC) for laxative drug. Castor oil (COL) is a vegetable oil and naturally polyol which is inexpensive, environmental friendly and a very valuable renewable resource. Metals are believed to influence antioxidant property of ligands. Metals copper, zinc, cobalt and barium were incorporated with castor oil and subsequently structures were established by FT-IR, UV-Visible, and 1H NMR spectroscopic techniques. In vitro antioxidant activities of metal containing COL were determined by DPPH and superoxide scavenging methods and the results were compared with vitamin C. Enhanced antioxidant nature of metal containing castor oil was noticed and compared to virgin castor oil. This study reveals that synthesized metal containing-COL is a potential antioxidant material.
Collapse
Affiliation(s)
- Md Ikbal Ahmed Talukdar
- Bioinorganic Research Lab, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Taruna Singh
- Department of Chemistry, Gargi College, University of Delhi, India
| | - Manzoor A Malik
- Bioinorganic Research Lab, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Ovas A Dar
- Bioinorganic Research Lab, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Athar A Hashmi
- Bioinorganic Research Lab, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
31
|
Uscátegui YL, Díaz LE, Gómez-Tejedor JA, Vallés-Lluch A, Vilariño-Feltrer G, Serrano MA, Valero MF. Candidate Polyurethanes Based on Castor Oil ( Ricinus communis), with Polycaprolactone Diol and Chitosan Additions, for Use in Biomedical Applications. Molecules 2019; 24:E237. [PMID: 30634633 PMCID: PMC6359294 DOI: 10.3390/molecules24020237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Polyurethanes are widely used in the development of medical devices due to their biocompatibility, degradability, non-toxicity and chemical versatility. Polyurethanes were obtained from polyols derived from castor oil, and isophorone diisocyanate, with the incorporation of polycaprolactone-diol (15% w/w) and chitosan (3% w/w). The objective of this research was to evaluate the effect of the type of polyol and the incorporation of polycaprolactone-diol and chitosan on the mechanical and biological properties of the polyurethanes to identify the optimal ones for applications such as wound dressings or tissue engineering. Polyurethanes were characterized by stress-strain, contact angle by sessile drop method, thermogravimetric analysis, differential scanning calorimetry, water uptake and in vitro degradation by enzymatic processes. In vitro biological properties were evaluated by a 24 h cytotoxicity test using the colorimetric assay MTT and the LIVE/DEAD kit with cell line L-929 (mouse embryonic fibroblasts). In vitro evaluation of the possible inflammatory effect of polyurethane-based materials was evaluated by means of the expression of anti-inflammatory and proinflammatory cytokines expressed in a cellular model such as THP-1 cells by means of the MILLIPLEX® MAP kit. The modification of polyols derived from castor oil increases the mechanical properties of interest for a wide range of applications. The polyurethanes evaluated did not generate a cytotoxic effect on the evaluated cell line. The assessed polyurethanes are suggested as possible candidate biomaterials for wound dressings due to their improved mechanical properties and biocompatibility.
Collapse
Affiliation(s)
- Yomaira L Uscátegui
- Doctoral Program of Biosciences, Universidad de La Sabana, Chía 140013, Colombia.
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia.
| | - Luis E Díaz
- Bioprospecting Research Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia.
| | - José A Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain.
| | - Ana Vallés-Lluch
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Guillermo Vilariño-Feltrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - María A Serrano
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.
| | - Manuel F Valero
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chía 140013, Colombia.
| |
Collapse
|
32
|
Song CK, Kim MK, Lee J, Davaa E, Baskaran R, Yang SG. Dopa-Empowered Schiff Base Forming Alginate Hydrogel Glue for Rapid Hemostatic Control. Macromol Res 2018. [DOI: 10.1007/s13233-019-7026-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Gregorí Valdés BS, Gomes CSB, Gomes PT, Ascenso JR, Diogo HP, Gonçalves LM, Galhano Dos Santos R, Ribeiro HM, Bordado JC. Synthesis and Characterization of Isosorbide-Based Polyurethanes Exhibiting Low Cytotoxicity Towards HaCaT Human Skin Cells. Polymers (Basel) 2018; 10:polym10101170. [PMID: 30961095 PMCID: PMC6403884 DOI: 10.3390/polym10101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
The synthesis of four samples of new polyurethanes was evaluated by changing the ratio of the diol monomers used, poly(propylene glycol) (PPG) and D-isosorbide, in the presence of aliphatic isocyanates such as the isophorone diisocyanate (IPDI) and 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). The thermal properties of the four polymers obtained were determined by DSC, exhibiting Tg values in the range 55–70 °C, and their molecular structure characterized by FTIR, 1H, and 13C NMR spectroscopies. The diffusion coefficients of these polymers in solution were measured by the Pulse Gradient Spin Echo (PGSE) NMR method, enabling the calculation of the corresponding hydrodynamic radii in diluted solution (1.62–2.65 nm). The molecular weights were determined by GPC/SEC and compared with the values determined by a quantitative 13C NMR analysis. Finally, the biocompatibility of the polyurethanes was assessed using the HaCaT keratinocyte cell line by the MTT reduction assay method showing values superior to 70% cell viability.
Collapse
Affiliation(s)
- Barbara S Gregorí Valdés
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Clara S B Gomes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro T Gomes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - José R Ascenso
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Hermínio P Diogo
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Lídia M Gonçalves
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Rui Galhano Dos Santos
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Helena M Ribeiro
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - João C Bordado
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
34
|
Agnol LD, Gonzalez Dias FT, Nicoletti NF, Falavigna A, Bianchi O. Polyurethane as a strategy for annulus fibrosus repair and regeneration: a systematic review. Regen Med 2018; 13:611-626. [DOI: 10.2217/rme-2018-0003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: Disc herniation is a spine disease that leads to suffering and disability. Discectomy is a Janus-faced approach that relieves pain symptoms but leave the intervertebral discs predisposed to herniation. This systematic review discussed the mechanical and biological requirements for a polyurethane-based biomaterial to be used in annular repair. Methods: Search strategy was performed in PubMed, Web of Science and Scopus databases to define the main mechanical properties, biological findings and follow-up aspects of these biomaterials. The range was limited to articles published from January 2000 to December 2017 in English language. Results: The search identified 82 articles. From these, a total of 18 articles underwent a full-text analysis, and 16 studies were included in the review. Conclusion: The polyurethane presents suitable properties to be used as an engineered solution to re-establish the microenvironment and biomechanical features of the intervertebral disc.
Collapse
Affiliation(s)
- Lucas Dall Agnol
- Health Sciences Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | | | - Natália Fontana Nicoletti
- Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Asdrubal Falavigna
- Health Sciences Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
- Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Otávio Bianchi
- Health Sciences Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
- Materials Science Postgraduate Program, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Giol ED, Van Vlierberghe S, Unger RE, Schaubroeck D, Ottevaere H, Thienpont H, Kirkpatrick CJ, Dubruel P. Endothelialization and Anticoagulation Potential of Surface-Modified PET Intended for Vascular Applications. Macromol Biosci 2018; 18:e1800125. [DOI: 10.1002/mabi.201800125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Elena Diana Giol
- Polymer Chemistry and Biomaterials Research (PBM) Group; Centre of Macromolecular Chemistry; Ghent University; Krijgslaan 281, S4-bis B-9000 Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research (PBM) Group; Centre of Macromolecular Chemistry; Ghent University; Krijgslaan 281, S4-bis B-9000 Belgium
- Brussels Photonics (B-PHOT); Vrije Universiteit Brussel; Pleinlaan 2 B-1050 Belgium
| | - Ronald E. Unger
- REPAIR LAB; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraat 1 55131 Germany
| | - David Schaubroeck
- Centre of Microsystems Technology (CMST); imec and Ghent University; Technologiepark-Zwijnaarde15 B-9052 Belgium
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT); Vrije Universiteit Brussel; Pleinlaan 2 B-1050 Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT); Vrije Universiteit Brussel; Pleinlaan 2 B-1050 Belgium
| | - Charles James Kirkpatrick
- REPAIR LAB; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraat 1 55131 Germany
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research (PBM) Group; Centre of Macromolecular Chemistry; Ghent University; Krijgslaan 281, S4-bis B-9000 Belgium
| |
Collapse
|
36
|
Raghunanan LC, Fernandez-Prieto S, Martínez I, Valencia C, Sánchez MC, Franco JM. Molecular insights into the mechanisms of humidity-induced changes on the bulk performance of model castor oil derived polyurethane adhesives. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Saalah S, Abdullah LC, Aung MM, Salleh MZ, Awang Biak DR, Basri M, Jusoh ER, Mamat S. Physicochemical Properties of Jatropha Oil-Based Polyol Produced by a Two Steps Method. Molecules 2017; 22:molecules22040551. [PMID: 28353677 PMCID: PMC6154640 DOI: 10.3390/molecules22040551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/25/2017] [Indexed: 12/05/2022] Open
Abstract
A low cost, abundant, and renewable vegetable oil source has been gaining increasing attention due to its potential to be chemically modified to polyol and thence to become an alternative replacement for the petroleum-based polyol in polyurethane production. In this study, jatropha oil-based polyol (JOL) was synthesised from non-edible jatropha oil by a two steps process, namely epoxidation and oxirane ring opening. In the first step, the effect of the reaction temperature, the molar ratio of the oil double bond to formic acid, and the reaction time on the oxirane oxygen content (OOC) of the epoxidised jatropha oil (EJO) were investigated. It was found that 4.3% OOC could be achieved with a molar ratio of 1:0.6, a reaction temperature of 60 °C, and 4 h of reaction. Consequently, a series of polyols with hydroxyl numbers in the range of 138–217 mgKOH/g were produced by oxirane ring opening of EJOs, and the physicochemical and rheological properties were studied. Both the EJOs and the JOLs are liquid and have a number average molecular weight (Mn) in the range of 834 to 1457 g/mol and 1349 to 2129 g/mol, respectively. The JOLs exhibited Newtonian behaviour, with a low viscosity of 430–970 mPas. Finally, the JOL with a hydroxyl number of 161 mgKOH/g was further used to synthesise aqueous polyurethane dispersion, and the urethane formation was successfully monitored by Fourier Transform Infrared (FTIR).
Collapse
Affiliation(s)
- Sariah Saalah
- Chemical Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (S.M.)
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (E.R.J.)
- Correspondence: or ; Tel.: +60-3-8946-6288
| | - Min Min Aung
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (E.R.J.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mek Zah Salleh
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Selangor, Malaysia;
| | - Dayang Radiah Awang Biak
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (S.M.)
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Emiliana Rose Jusoh
- Higher Institution Centre of Excellence Wood and Tropical Fibre (HICoE), Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.A.); (E.R.J.)
| | - Suhaini Mamat
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (D.R.A.B.); (S.M.)
- Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Melaka, Malaysia
| |
Collapse
|
38
|
Das S, Kalita H, Mohanty S, Nayak SK. Soybean Oil-Based Polyurethane-(Poly)acrylonitrile Interpenetrating Polymer Networks as Transparent Coating Materials. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhajit Das
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastics Engineering and Technology (CIPET); B-25 CNI Complex Patia, Bhubaneswar Orissa India
| | - Hemjyoti Kalita
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastics Engineering and Technology (CIPET); B-25 CNI Complex Patia, Bhubaneswar Orissa India
| | - Smita Mohanty
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastics Engineering and Technology (CIPET); B-25 CNI Complex Patia, Bhubaneswar Orissa India
| | - Sanjay Kumar Nayak
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastics Engineering and Technology (CIPET); B-25 CNI Complex Patia, Bhubaneswar Orissa India
| |
Collapse
|
39
|
A Bio Polymeric Adhesive Produced by Photo Cross-Linkable Technique. Polymers (Basel) 2016; 8:polym8080292. [PMID: 30974568 PMCID: PMC7934016 DOI: 10.3390/polym8080292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022] Open
Abstract
The advantages of photo polymerization methods compared to thermal techniques are: rapid cure reactions, low energy demands, solvent free requirements and room temperature use. In order to form a macromer, polycaprolactone (PCL) was cross-linked via ultraviolet power with 2-isocyanatoethyl methacrylate. Different methods of characterization were carried out: estimation of swelling capacity, adhesive capacity (using aminated substrates), surface energy (by contact angle), and attenuated total reflectance Fourier transform infrared. In addition to these experiments, we carried out dynamical mechanical thermal analysis, thermogravimetry and thermorphology characterizations of PCL. Thus, it has been concluded that the prepared macromer could be transformed into membranes that were effective as a medical adhesive. The degree of cross linking has been estimated using two different techniques: swelling of the samples and photo cross linking of the samples with different periods of irradiation at relatively high UV-power (600 mW/cm2).
Collapse
|
40
|
Radiation synthesis and characterization of polyvinyl alcohol/chitosan/silver nanocomposite membranes: antimicrobial and blood compatibility studies. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1708-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Marques DS, Santos JMC, Ferreira P, Correia TR, Correia IJ, Gil MH, Baptista CMSG. Functionalization and photocuring of an L-lactic acid macromer for biomedical applications. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1129962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Liu K, Miao S, Su Z, Sun L, Ma G, Zhang S. Castor oil-based waterborne polyurethanes with tunable properties and excellent biocompatibility. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Liu
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Shida Miao
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing P. R. China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing P. R. China
| | - Lijing Sun
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing P. R. China
| | - Songping Zhang
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
43
|
Balcioglu S, Parlakpinar H, Vardi N, Denkbas EB, Karaaslan MG, Gulgen S, Taslidere E, Koytepe S, Ates B. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4456-4466. [PMID: 26824739 DOI: 10.1021/acsami.5b12279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Developing biocompatible tissue adhesives with high adhesion properties is a highly desired goal of the tissue engineering due to adverse effects of the sutures. Therefore, our work involves synthesis, characterization, adhesion properties, protein adsorption, in vitro biodegradation, in vitro and in vivo biocompatibility properties of xylose-based semisynthetic polyurethane (NPU-PEG-X) bioadhesives. Xylose-based semisynthetic polyurethanes were developed by the reaction among 4,4'-methylenebis(cyclohexyl isocyanate) (MCI), xylose and polyethylene glycol 200 (PEG). Synthesized polyurethanes (PUs) showed good thermal stability and high adhesion strength. The highest values in adhesion strength were measured as 415.0 ± 48.8 and 94.0 ± 2.8 kPa for aluminum substrate and muscle tissue in 15% xylose containing PUs (NPU-PEG-X-15%), respectively. The biodegradation of NPU-PEG-X-15% was also determined as 19.96 ± 1.04% after 8 weeks of incubation. Relative cell viability of xylose containing PU was above 86%. Moreover, 10% xylose containing NPU-PEG-X (NPU-PEG-X-10%) sample has favorable tissue response, and inflammatory reaction between 1 and 6 weeks implantation period. With high adhesiveness and biocompatibility properties, NPU-PEG-X can be used in the medical field as supporting materials for preventing the fluid leakage after abdominal surgery or wound closure.
Collapse
Affiliation(s)
- Sevgi Balcioglu
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University , Malatya 44280, Turkey
| | - Nigar Vardi
- Department of Histology-Embryology, Faculty of Medicine, Inonu University , Malatya 44280, Turkey
| | - Emir Baki Denkbas
- Department of Chemistry, Faculty of Science, Hacettepe University , Ankara 06800, Turkey
| | | | - Selam Gulgen
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| | - Elif Taslidere
- Department of Histology-Embryology, Faculty of Medicine, Inonu University , Malatya 44280, Turkey
| | - Suleyman Koytepe
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| |
Collapse
|
44
|
Modaresifar K, Azizian S, Hadjizadeh A. Nano/Biomimetic Tissue Adhesives Development: From Research to Clinical Application. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1114493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Giol ED, Schaubroeck D, Kersemans K, De Vos F, Van Vlierberghe S, Dubruel P. Bio-inspired surface modification of PET for cardiovascular applications: Case study of gelatin. Colloids Surf B Biointerfaces 2015; 134:113-21. [DOI: 10.1016/j.colsurfb.2015.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
46
|
Annabi N, Yue K, Tamayol A, Khademhosseini A. Elastic sealants for surgical applications. Eur J Pharm Biopharm 2015; 95:27-39. [PMID: 26079524 PMCID: PMC4591192 DOI: 10.1016/j.ejpb.2015.05.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Sealants have emerged as promising candidates for replacing sutures and staples to prevent air and liquid leakages during and after the surgeries. Their physical properties and adhesion strength to seal the wound area without limiting the tissue movement and function are key factors in their successful implementation in clinical practice. In this contribution, the advances in the development of elastic sealants formed from synthetic and natural materials are critically reviewed and their shortcomings are pointed out. In addition, we highlight the applications in which elasticity of the sealant is critical and outline the limitations of the currently available sealants. This review will provide insights for the development of novel bioadhesives with advanced functionality for surgical applications.
Collapse
Affiliation(s)
- Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA; Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kan Yue
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Tamayol
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
47
|
Synthesis, functionalization and characterization of UV-curable lactic acid based oligomers to be used as surgical adhesives. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Bajpai S, Pathak V, Soni B. Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing. Int J Biol Macromol 2015; 79:76-85. [DOI: 10.1016/j.ijbiomac.2015.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022]
|
49
|
Abstract
In the United States and Europe, the number of topical adhesives, surgical sealants, and hemostats approved for use in the surgical setting is ever expanding although no single device fills all medical and surgical needs to replace sutures. As more surgical procedures are performed through laparoscopic and robotic approaches, these devices are becoming more important, and current research is focused on solving the limitations of conventional wound treatments. This review article discusses clinical applications of various biologically derived and synthetic products that are currently available to surgeons and those that are in development.
Collapse
Affiliation(s)
- Lindsey Sanders
- Department of Bioengineering, Clemson University, Clemson, South Carolina
| | | |
Collapse
|
50
|
Derceli JDR, Fais LMG, Pinelli LAP. A castor oil-containing dental luting agent: effects of cyclic loading and storage time on flexural strength. J Appl Oral Sci 2015; 22:496-501. [PMID: 25591018 PMCID: PMC4307762 DOI: 10.1590/1678-775720140069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/08/2014] [Indexed: 11/21/2022] Open
Abstract
Favorable results in the use of castor oil polyurethane (COP) as pulp capping, membrane material, sealer, mouthwash and in bone repair, associated with the fact that Ricinus communis is not derived from petroleum and it is abundant in Brazil, encourage researches in the development of luting agents.
Collapse
Affiliation(s)
- Juliana Dos Reis Derceli
- Department of Restorative Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Laiza Maria Grassi Fais
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Lígia Antunes Pereira Pinelli
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, Universidade Estadual Paulista, Araraquara, SP, Brazil
| |
Collapse
|