1
|
Tondolo JSM, Zeni G, Sassaki GL, Santurio JM, Loreto ES. Carboxymethylation of β-Glucan from Pythium insidiosum: Structural characterization and preliminary adsorption evaluation of DON and T2 toxin. Carbohydr Res 2025; 547:109323. [PMID: 39571190 DOI: 10.1016/j.carres.2024.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/06/2024]
Abstract
This study aimed to evaluate the impact of carboxymethylation on the structural and functional properties of β-glucan derived from the pathogenic oomycete Pythium insidiosum. β-Glucan was extracted and subjected to carboxymethylation (CM-glucan), with structural changes analyzed using 13C and 1H NMR spectroscopy. The modified β-glucan's ability to adsorb mycotoxins, specifically deoxynivalenol (DON) and T2 toxin, was assessed through in vitro adsorption assays. Results demonstrated that the adsorption of DON by CM-glucan increased from 0 % to 59.11 %, corresponding to the adsorption of approximately 1.18 μg of DON from the initial concentration (2 μg/mL). Similarly, the adsorption of T2 toxin increased slightly from 0 % to 4.54 %, corresponding to 0.09 μg of T2 toxin adsorbed from the initial concentration (2 μg/mL). These findings underscore the potential of chemical modifications to enhance the functional properties of natural polysaccharides, suggesting future applications in mycotoxin adsorption and other biological properties across various areas.
Collapse
Affiliation(s)
- Juliana S M Tondolo
- Sobresp Faculty of Health Sciences, 520 Appel Street, Santa Maria, RS, 97015-030, Brazil
| | - Gilson Zeni
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, RS, Brazil
| | - Guilherme L Sassaki
- Department of Biochemistry and Molecular Biology, Center for Biological Sciences, Federal University of Paraná, PR, Brazil
| | - Janio M Santurio
- Department of Microbiology and Parasitology, Federal University of Santa Maria, RS, Santa Maria, Brazil
| | - Erico S Loreto
- Sobresp Faculty of Health Sciences, 520 Appel Street, Santa Maria, RS, 97015-030, Brazil.
| |
Collapse
|
2
|
Gao Y, Feng X, Zhang R, Xiao J, Huang Q, Li J, Shi T. Molecular dynamics simulation: Effect of sulfation on the structure of curdlan triple helix in aqueous solution. Int J Biol Macromol 2024; 282:137119. [PMID: 39505189 DOI: 10.1016/j.ijbiomac.2024.137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
In this work, by using molecular dynamics simulations, we elucidate the effect of sulfation substitution on the stability of the curdlan triple helix structure. The simulation results indicate that the stability of the triple helix structure is significantly influenced by the sites of sulfation substitution. The substitution at the O2 site directly disrupts the hydrogen bonding network between the triple helix chains, significantly destroying the triple helix conformation. When substitutions occur at both the O4 and O6 sites simultaneously (O4,6), the electrostatic repulsion between numerous sulfate groups introduces considerable energy perturbation to the triple helix, leading to alterations in the glucan chain conformation and consequent destabilization of the triple helix structure. Meanwhile, we find that even if the sulfation substitution is performed at the same substitution sites, the difference in the degree of substitution also has an impact on the triple helix stability. The resistance of the triple helix to sulfation substitution at O2 is weak, and low degree of substitution can lead to the unwinding of the triple helix. However, it demonstrates higher resistance to substitution at O4,6 where only higher degree of substitution results in triple helix destabilization.
Collapse
Affiliation(s)
- Yufu Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xuan Feng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore, Singapore.
| | - Ran Zhang
- BASF Advanced Chemicals Co. Ltd, No. 300, Jiangxinsha Road, Pudong, Shanghai 200137, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Qingrong Huang
- Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901, USA
| | - Jiawei Li
- Department of Mathematics & Statistics, Boston University, 665 Commonwealth Avenue, Boston, MA 02215, USA
| | - Tongfei Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Martinez EA, Salvay AG, Sanchez-Díaz MR, Ludemann V, Peltzer MA. Functional characterization of biodegradable films obtained from whole Paecilomyces variotii biomass. Int Microbiol 2024; 27:1573-1585. [PMID: 38483746 DOI: 10.1007/s10123-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 10/05/2024]
Abstract
The indiscriminate use of petroleum-based polymers and plastics for single-use food packaging has led to serious environmental problems due the non-biodegradable characteristics. Thus, much attention has been focused on the research of new biobased and biodegradable materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with highly promising properties for the development of biodegradable materials. This study aimed to select a preparation method to develop new biodegradable films using the whole biomass of Paecilomyces variotii subjected to successive physical treatments including ultrasonic homogenization (US) and heat treatment. Sterilization process had an important impact on the final filmogenic dispersion and mechanical properties of the films. Longer US treatments produced a reduction in the particle size and the application of an intermediate UT treatment contributed favorably to the breaking of agglomerates allowing the second US treatment to be more effective, achieving an ordered network with a more uniform distribution. Samples that were not filtrated after the sterilization process presented mechanical properties similar to plasticized materials. On the other hand, the filtration process after sterilization eliminated soluble and hydratable compounds, which produced a reduction in the hydration of the films.
Collapse
Affiliation(s)
- Ezequiel A Martinez
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
- Laboratory of Food Mycology (LMA), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Andrés G Salvay
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Macarena R Sanchez-Díaz
- Laboratory of Food Mycology (LMA), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanesa Ludemann
- Laboratory of Food Mycology (LMA), Department of Science and Technology, National University of Quilmes, Bernal, Argentina
| | - Mercedes A Peltzer
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, National University of Quilmes, Bernal, Argentina.
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Calegari GC, Barboza MGL, Dyna AL, Barbosa-Dekker AM, Dekker RFH, Faccin-Galhardi LC, Orsato A. Structural relationship of regioselectively-sulfonated botryosphaeran derivatives on activity against herpes simplex virus type 1. Int J Biol Macromol 2024; 274:133261. [PMID: 38901516 DOI: 10.1016/j.ijbiomac.2024.133261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The bioactivities of sulfonated polysaccharides are frequently related to their substitution pattern. In this study, the regioselective sulfonation of an exocellular fungal (1→3)(1→6)-β-D-glucan (botryosphaeran) was performed by two different methods: mild sulfonation (MS) and via pivaloyl ester (PS), in order to study the influence of the sulfonation pattern on the antiviral activity of the respective derivatives. Two sulfonated derivatives with substitution degrees of 0.82 (MS) and 0.49 (PS) were obtained, with substitution patterns at positions C-6, and C-2/C-4 of the glucose units, respectively. All derivatives were chemically characterized and evaluated for antiviral activity against Herpes simplex virus type 1 (HSV-1) KOS strain, and dengue type 2 (DENV-2). The sample sulfonated at positions C-6 (MS) showed a remarkable antiviral effect on HSV-1 (IC50 of 5.38 μg mL1), while PS remained inactive. The investigation of the mode of action of sample MS pointed to the inhibition of HSV-1 adsorption to the host cells. Both samples were inactive towards the dengue virus strain. This study demonstrated that the presence of sulfate groups at the C-6 positions of botryosphaeran is the preferred substitution pattern that enables the antiviral activity towards HSV-1.
Collapse
Affiliation(s)
| | | | - André Luiz Dyna
- Departamento de Microbiologia, CCB, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina CEP: 86036-700, Paraná, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Câmpus Londrina CEP: 86036-700, Paraná, Brazil
| | | | - Alexandre Orsato
- Departamento de Química, CCE, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
6
|
Sousa P, Tavares-Valente D, Pereira CF, Pinto-Ribeiro I, Azevedo-Silva J, Madureira R, Ramos ÓL, Pintado M, Fernandes J, Amorim M. Circular economyeast: Saccharomyces cerevisiae as a sustainable source of glucans and its safety for skincare application. Int J Biol Macromol 2024; 265:130933. [PMID: 38508554 DOI: 10.1016/j.ijbiomac.2024.130933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Glucans, a polysaccharide naturally present in the yeast cell wall that can be obtained from side streams generated during the fermentation process, have gained increasing attention for their potential as a skin ingredient. Therefore, this study focused on the extraction method to isolate and purify water-insoluble glucans from two different Saccharomyces cerevisiae strains: an engineered strain obtained from spent yeast in an industrial fermentation process and a wild strain produced through lab-scale fermentation. Two water-insoluble extracts with a high glucose content (> 90 %) were achieved and further subjected to a chemical modification using carboxymethylation to improve their water solubility. All the glucans' extracts, water-insoluble and carboxymethylated, were structurally and chemically characterized, showing almost no differences between both yeast-type strains. To ensure their safety for skin application, a broad safety assessment was undertaken, and no cytotoxic effect, immunomodulatory capacity (IL-6 and IL-8 regulation), genotoxicity, skin sensitization, and impact on the skin microbiota were observed. These findings highlight the potential of glucans derived from spent yeast as a sustainable and safe ingredient for cosmetic and skincare formulations, contributing to the sustainability and circular economy.
Collapse
Affiliation(s)
- Pedro Sousa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Inês Pinto-Ribeiro
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Fernandes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal, Unipessoal Lda, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Amorim
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
7
|
Kei N, Cheung KK, Ma KL, Yau TK, Lauw S, Wong VWS, You L, Cheung PCK. Effects of Oat β-Glucan and Inulin on Alleviation of Nonalcoholic Steatohepatitis Aggravated by Circadian Disruption in C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3520-3535. [PMID: 38333950 DOI: 10.1021/acs.jafc.3c08028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
This was the first study that examined the effects of oat β-glucan and inulin on diet-induced nonalcoholic steatohepatitis (NASH) in circadian-disrupted (CD)-male C57BL/6J mice. CD intensified NASH, significantly increasing alanine aminotransferase and upregulating hepatic tumor necrosis factor α (TNFα) and transforming growth factor β 1 (TGFβ1). However, these observations were significantly alleviated by oat β-glucan and inulin treatments. Compared to CD NASH mice, oat β-glucan significantly decreased the liver index, aspartate aminotransferase (AST), and insulin. In prebiotic-treated and CD NASH mice, significant negative correlations were found between enrichment of Muribaculaceae bacterium Isolate-036 (Harlan), Muribaculaceae bacterium Isolate-001 (NCI), and Bacteroides ovatus after oat β-glucan supplementation with TNFα and TGFβ1 levels; and enrichment of Muribaculaceae bacterium Isolate-110 (HZI) after inulin supplementation with AST level. In conclusion, oat β-glucan and inulin exhibited similar antiliver injury, anti-inflammatory, and antifibrotic activities but had no effect on cecal short-chain fatty acids and gut microbiota diversity in CD NASH mice.
Collapse
Affiliation(s)
- Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Kam Kuen Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Food Research Centre, The Chinese University of Hong Kong, New Territories, Hong Kong SAR , China
| | - Ka Lee Ma
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Tsz Kwan Yau
- Cell and Molecular Biology Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Food Research Centre, The Chinese University of Hong Kong, New Territories, Hong Kong SAR , China
| | - Vincent Wai Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Food Research Centre, The Chinese University of Hong Kong, New Territories, Hong Kong SAR , China
| |
Collapse
|
8
|
Dong QQ, Wu Q, Lu Y, Shi Y, Yang KD, Xu XL, Chen W. Exploring β-glucan as a micro-nano system for oral delivery targeted the colon. Int J Biol Macromol 2023; 253:127360. [PMID: 37827417 DOI: 10.1016/j.ijbiomac.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The critical role of oral colon-specific delivery systems (OCDDS) is important for delivering active agents to the colon and rectum specifically via the oral route. The use of micro/nanostructured OCDDS further improves drug stability, bioavailability, and retention time, leading to enhanced therapeutic effects. However, designing micro/nanoscale OCDDSs is challenging due to pH changes, enzymatic degradation, and systemic absorption and metabolism. Biodegradable natural polysaccharides are a promising solution to these problems, and β-glucan is one of the most promising natural polysaccharides due to its unique structural features, conformational flexibility, and specific processing properties. This review covers the diverse chemical structures of β-glucan, its benefits (biocompatibility, easy modification, and colon-specific degradation), and various β-glucan-based micro/nanosized OCDDSs, as well as their drawbacks. The potential of β-glucan offers exciting new opportunities for colon-specific drug delivery.
Collapse
Affiliation(s)
- Qing-Qing Dong
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Qian Wu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Lu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Yi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Ke-Da Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| | - Wei Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China.
| |
Collapse
|
9
|
Pires MC, de Gois Andriolo N, Lopes BRP, Ruiz ALTG, do Nascimento VMG, Toledo KA, Santos CD. Some new insights into the biological activities of carboxymethylated polysaccharides from Lasiodiplodia theobromae. BMC Complement Med Ther 2023; 23:356. [PMID: 37805488 PMCID: PMC10559501 DOI: 10.1186/s12906-023-04190-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Carboxymethylated Lasiodiplodan (LaEPS-C), Lasiodiplodia theobromae β-glucan exopolysaccharide derivative, has a well-known range of biological activities. Compared to LaEPS-C, its fractions, Linear (LLaEPS-C) and Branched (BLaEPS-C), have biological potentialities scarcely described in the literature. So, in this study, we investigate the immunomodulatory, antiviral, antiproliferative, and anticoagulant activities of LLaEPS-C and BLaEPS-C and compare them to the LaEPS-C. METHODS LaEPS was obtained from L. theobromae MMBJ. After carboxymethylation, LaEPS-C structural characteristics were confirmed by Elementary Composition Analysis by Energy Dispersive X-Ray Detector (EDS), Fourier Transform Infrared (FTIR), and Nuclear Magnetic Resonance (NMR). The immunomodulatory activity on cytokine secretion was evaluated in human monocyte-derived macrophage cultures. The antiviral activity was evaluated by Hep-2 cell viability in the presence or absence of hRSV (human respiratory syncytial virus). In vitro antiproliferative activity was tested by sulforhodamine B assay. The anticoagulant activity was determined by APTT (Activated Partial Thromboplastin Time) and PT (Prothrombin Time). RESULTS LaEPS-C showed low macrophage cell viability only at 100 µg/mL (52.84 ± 24.06, 48 h), and LLaEPS-C presented no effect. Conversely, BLaEPS-C showed cytotoxicity from 25 to 100 µg/mL (44.36 ± 20.16, 40.64 ± 25.55, 33.87 ± 25.16; 48 h). LaEPS-C and LLaEPS-C showed anti-inflammatory activity. LaEPS-C presented this at 100 µg/mL (36.75 ± 5.53, 48 h) for IL-10, and LLaEPS-C reduces TNF-α cytokine productions at 100 µg/mL (18.27 ± 5.80, 48 h). LLaEPS-C showed an anti-hRSV activity (0.7 µg/ml) plus a low cytotoxic activity for Hep-2 cells (1.4 µg/ml). LaEPS-C presented an antiproliferative activity for NCI-ADR/RES (GI50 65.3 µg/mL). A better PT was achieved for LLaEPS-C at 5.0 µg/mL (11.85 ± 0.87s). CONCLUSIONS These findings demonstrated that carboxymethylation effectively improves the biological potential of the LaEPS-C and their fractions. From those polysaccharides tested, LLaEPS provided the best results with low toxicity for anti-inflammatory, antiviral, and anticoagulant activities.
Collapse
Affiliation(s)
- Matheus Cerdeira Pires
- Experiential Master of Science in Biotechnology, College of Science, Northeastern University, Boston, MA, USA
- LAQUA (Laboratório de Química da Unesp Assis), University of São Paulo State (UNESP), Assis, SP, Brazil
| | - Natalia de Gois Andriolo
- LAQUA (Laboratório de Química da Unesp Assis), University of São Paulo State (UNESP), Assis, SP, Brazil
- Continuing Education Program in Economics and Business Management (PECEGE), Superior School of Agriculture "Luiz de Queiroz" University of São Paulo (USP) (Esalq-USP), Piracicaba, São Paulo, Brazil
| | - Bruno Rafael Pereira Lopes
- Laboratory of Cellular and Molecular Immunology, University of São Paulo State (UNESP), Assis, SP, Brazil
| | - Ana Lucia Tasca Gois Ruiz
- Farmacologia e Toxicologia Experimental), LAFTEx (Laboratório de Fitoquímica, State University of Campinas, Campinas, SP, Brazil
| | | | - Karina Alves Toledo
- Laboratory of Cellular and Molecular Immunology, University of São Paulo State (UNESP), Assis, SP, Brazil
| | - Catarina Dos Santos
- LAQUA (Laboratório de Química da Unesp Assis), University of São Paulo State (UNESP), Assis, SP, Brazil.
| |
Collapse
|
10
|
Kei N, Wong VWS, Lauw S, You L, Cheung PCK. Utilization of Food-Derived β-Glucans to Prevent and Treat Non-Alcoholic Fatty Liver Disease (NAFLD). Foods 2023; 12:3279. [PMID: 37685211 PMCID: PMC10486587 DOI: 10.3390/foods12173279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease nowadays. Currently, there is no officially approved drug to treat NAFLD. In view of the increasing global prevalence of NAFLD and an absence of treatments, the development of effective treatments is of utmost importance. β-glucan, a natural bioactive polysaccharide, has demonstrated hepatoprotective effects in NAFLD prevention and treatment. This review solely focuses on gathering the published preclinical animal studies that demonstrated the anti-liver injury, anti-steatotic, anti-inflammatory, anti-fibrotic, and antioxidant activities of β-glucan. The impact of β-glucan on gut microbiota and its metabolites including short-chain fatty acids and bile acids as the underlying mechanism for its bioactive beneficial effect on NAFLD is also explored. Given the limited knowledge of β-glucan on anti-fibrotic activity, bile acid metabolism, and gut microbiota function, additional relevant research is highly encouraged to lay a solid foundation for the use of food-derived β-glucan as a functional food for NAFLD. It is envisaged that further investigation of food-derived β-glucan in human clinical studies should be carried out for its wider utilization.
Collapse
Affiliation(s)
- Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (N.K.); (S.L.)
| | - Vincent Wai Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (N.K.); (S.L.)
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; (N.K.); (S.L.)
| |
Collapse
|
11
|
Yang Y, Wang P, Ji Z, Xu X, Zhang H, Wang Y. Polysaccharide‑platinum complexes for cancer theranostics. Carbohydr Polym 2023; 315:120997. [PMID: 37230639 DOI: 10.1016/j.carbpol.2023.120997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.
Collapse
Affiliation(s)
- Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zengrui Ji
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
12
|
Ma L, Chen T, Wu J, Li X, Wang J, Li W. The structure and in vitro antioxidant activity of carboxymethyl glucans. Nat Prod Res 2023; 37:3048-3064. [PMID: 36562541 DOI: 10.1080/14786419.2022.2146109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
In this study, a degree substitution of 0.796 was obtained through the process of carboxymethylation (CMG). Carboxymethyl glucans with three different molecular weights (CMG-A, CMG-B and CMG-C) were obtained using membrane separation technology. Structural characterization and in vitro antioxidant activity were also evaluated. As per the outcomes of infrared spectroscopy spectroscopy and Nuclear magnetic resonance studies, CMG-A, CMG-B, CMG-C and contained carboxyl methyl groups. The substitution order of carboxymethylation branched-chain was as follows: 6δ > 4δ > 2δ. Atomic Force Microscope images obtained from the analysis of dilute aqueous solution (0.1 mg/mL) showed that some of the structures in CMG-A, CMG-B and CMG-C, were triple-helical species coexisting with larger aggregates and single chains. In vitro antioxidant experiment shown that the CMG-C had the best antioxidant property, the half-inhibitory concentration of hydroxyl radical scavenging, iron chelation and ABTS scavenging were 0.319, 0.168 and 1.344 mg/mL, respectively.
Collapse
Affiliation(s)
- Liang Ma
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Ten Chen
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu Province, China
| | - Jiaxin Wu
- School of Pharmacy Lanzhou University, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xin Li
- Environmental and Applied Microbiology Key Laboratory, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, province, China
| | - Jie Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province, China
| |
Collapse
|
13
|
Fu Z, Zhang X, Liu J, Li J, Zeng Y, Yang J, Sun Y, Cui J, Zhu Y. Enzymatic synthesis and immunomodulatory activity of highly branched α-D-glucans with glycogen-like structure. Int J Biol Macromol 2023; 237:123882. [PMID: 37015174 DOI: 10.1016/j.ijbiomac.2023.123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 04/05/2023]
|
14
|
Yang F, Cheung PCK. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J Fungi (Basel) 2023; 9:jof9040475. [PMID: 37108930 PMCID: PMC10143420 DOI: 10.3390/jof9040475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal β-glucans are naturally occurring active macromolecules used in food and medicine due to their wide range of biological activities and positive health benefits. Significant research efforts have been devoted over the past decade to producing fungal β-glucan-based nanomaterials and promoting their uses in numerous fields, including biomedicine. Herein, this review offers an up-to-date report on the synthetic strategies of common fungal β-glucan-based nanomaterials and preparation methods such as nanoprecipitation and emulsification. In addition, we highlight current examples of fungal β-glucan-based theranostic nanosystems and their prospective use for drug delivery and treatment in anti-cancer, vaccination, as well as anti-inflammatory treatments. It is anticipated that future advances in polysaccharide chemistry and nanotechnology will aid in the clinical translation of fungal β-glucan-based nanomaterials for the delivery of drugs and the treatment of illnesses.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
15
|
Exopolysaccharides of Fungal Origin: Properties and Pharmaceutical Applications. Processes (Basel) 2023. [DOI: 10.3390/pr11020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fungal exopolysaccharides (EPSs) represent an important group of bioactive compounds secreted by fungi. These biopolymers can be utilized individually or in combination with different bioactive substances for a broad range of pharmaceutical field applications, due to their various biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antiviral, anti-diabetic, and anticoagulant effects. The paper presents an up-to-date review of the main fungal polysaccharides (pullulan, schizophyllan, scleroglucan, botryosphaeran, lentinan, grifolan, and lasiodiplodan), highlighting their structures, producing strains, and useful properties in a double position, as controlled release (rate and selectively targeting) drug carriers, but mostly as active immunomodulating and antitumor compounds in cancer therapy.
Collapse
|
16
|
Ma Z, Hu Y, Li X, Liu R, Xia E, Xu P, Yang Y. Stereoselective synthesis of α-glucosides with glucosyl (Z)-Ynenoates as donors. Carbohydr Res 2023; 523:108710. [PMID: 36370627 DOI: 10.1016/j.carres.2022.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
A SPhosAuNTf2-promoted DMF-modulated glycosylation approach with glycosyl (Z)-ynenoates as donors was developed for highly α-selective synthesis of various linkage types of α-glucans. The substituent groups were also found to play a significant role in the α-selective glucosylation reactions. The glycosylation approach was effectively applied to the stereospecific synthesis of the α-1,6-linked triglucoside.
Collapse
Affiliation(s)
- Zhi Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Hu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rongkun Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - E Xia
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
17
|
Lin B, Huang G. An important polysaccharide from fermentum. Food Chem X 2022; 15:100388. [PMID: 36211774 PMCID: PMC9532711 DOI: 10.1016/j.fochx.2022.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Extraction, structure and modification of polysaccharides from fermentum were summarized. Structure-activity relationship and application of polysaccharides from fermentum were reviewed. It provided a strong basis for the development and application of polysaccharides from fermentum.
Fermentum is a common unicellular fungus with many biological activities attributed to β-polysaccharides. Different in vivo and in vivo experimental studies have long proven that fermentum β-polysaccharides have antioxidant, anti-tumor, and fungal toxin adsorption properties. However, there are many uncertainties regarding the relationship between the structure and biological activity of fermentum β-polysaccharides, and a systematic summary of fermentum β-polysaccharides is still lacking. Herein, we reviewed the research progress about the extraction, structure and modification, structure–activity relationship, activity and application of fermentum β-polysaccharides, compared the extraction methods of fermentum β-polysaccharide, and paid special attention to the structure–activity relationship and application of fermentum β-polysaccharide, which provided a strong basis for the development and application of fermentum β-polysaccharide.
Collapse
|
18
|
Dextrans and dextran derivatives as polyelectrolytes in layer-by-layer processing materials – A review. Carbohydr Polym 2022; 293:119700. [DOI: 10.1016/j.carbpol.2022.119700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
|
19
|
Wouk J, Celestino GG, Rodrigues BCD, Malfatti CRM, Cunha MAA, Orsato A, Barbosa-Dekker AM, Dekker RFH, Lonni AASG, Reis Tavares E, Faccin-Galhardi LC. Sulfonated (1 → 6)-β-d-Glucan (Lasiodiplodan): A Promising Candidate against the Acyclovir-Resistant Herpes Simplex Virus Type 1 (HSV-1) Strain. Biomacromolecules 2022; 23:4041-4052. [PMID: 36173245 DOI: 10.1021/acs.biomac.2c00156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a persistent human pathogen, and the emergence of strains resistant to Acyclovir (ACV, reference drug) shows the urgency to develop new treatments. We report the antiherpetic mechanism of the action of lasiodiplodan (LAS-N, (1 → 6)-β-d-glucan) and its sulfonated derivative (LAS-S3) in vitro and in vivo. LAS-S3 showed anti-HSV-1 action with high selectivity indices for HSV-1 KOS (88.1) and AR (189.2), sensitive and resistant to ACV, respectively. LAS-S3 inhibited >80% of HSV-1 infection in different treatment protocols (virucidal, adsorption inhibition, and post-adsorption effects), even at low doses, and showed a preventive effect and DNA and protein synthesis inhibition. The antiherpetic effect was confirmed in vivo by the cosmetic LAS-S3-CRÈME decreasing cutaneous lesions of HSV-1, including the AR strain. LAS-S3 possessed a broad-spectrum mechanism of action acting in the early and post-adsorption stages of HSV-1 infection, and LAS-S3-CRÈME is a potential antiherpetic candidate for patients infected by HSV-1-resistant strains.
Collapse
Affiliation(s)
| | | | | | - Carlos R M Malfatti
- Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Campus CEDETEG, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava 85040-167, Brazil
| | - Mário A A Cunha
- Departamento de Química, Universidade Tecnológica Federal do Paraná (UTFPR), Pato Branco 85503-390, Brazil
| | | | - Aneli M Barbosa-Dekker
- β-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, 731 Avenida João Miguel Caram, Londrina 86036-700, Brazil
| | - Robert F H Dekker
- β-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, 731 Avenida João Miguel Caram, Londrina 86036-700, Brazil
| | | | | | | |
Collapse
|
20
|
Fujiike AY, Lee CYAL, Rodrigues FST, Oliveira LCB, Barbosa-Dekker AM, Dekker RFH, Cólus IMS, Serpeloni JM. Anticancer effects of carboxymethylated (1→3)(1→6)-β-D-glucan (botryosphaeran) on multicellular tumor spheroids of MCF-7 cells as a model of breast cancer. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:521-537. [PMID: 35255775 DOI: 10.1080/15287394.2022.2048153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breast cancer is the most common cancer worldwide among the female population. The fungal exopolysaccharide botryosphaeran is a (1→3)(1→6)-β-D-glucan with limited solubility in water that can be promoted through carboxymethylation. Thus, the aim of this study was to examine in-vitro anticancer effects of carboxymethylated-botryosphaeran (CM-BOT) on breast cancer MCF-7 cells cultivated in multicellular tumor spheroids (MCTS). CM-BOT (≥ 600 µ/ml) decreased the viability (resazurin assay) of MCF-7 grown in monolayers after 24 hr incubation. Although CM-BOT did not markedly alter viability of MCTS in the resazurin assay after 24, 48 or 72 hr, CM-BOT ≥ 600 µg/ml produced cell-death by apoptosis after 72 hr utilizing the triple staining assay and labeling dead cells with propidium iodide, which can also be visualized on the architecture of MCTS. CM-BOT (1000 µg/ml) inhibited cell proliferation, which resulted in MCTSs with smaller diameters than controls. CM-BOT at all concentrations examined decreased the ability of MCF-7 to form colonies and to migrate in the extracellular matrix. This is the first report using MCTS-architecture to study anti-tumor effects of β-glucans. Our findings are important in the search for compounds for use in breast cancer therapy, or as adjuvants in reducing the adverse effects of mammary tumor chemotherapy.
Collapse
Affiliation(s)
- Andressa Y Fujiike
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Celina Y A L Lee
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Fabiana S T Rodrigues
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Larissa C B Oliveira
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Campus Londrina, Londrina, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos EIRELI, Lote 24, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Campus Londrina, Londrina, Brazil
| | - Ilce M S Cólus
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliana M Serpeloni
- Laboratório de Mutagênese e Oncogenética - Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
21
|
Hamidi M, Okoro OV, Milan PB, Khalili MR, Samadian H, Nie L, Shavandi A. Fungal exopolysaccharides: Properties, sources, modifications, and biomedical applications. Carbohydr Polym 2022; 284:119152. [DOI: 10.1016/j.carbpol.2022.119152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 12/20/2022]
|
22
|
Weldu WD, Wang CC. Rationalizing the Stereoelectronic Influence of Interglycosidic Bond Conformations on the Reactivity of 1,4- O-Linked Disaccharide Donors. J Org Chem 2021; 86:17906-17917. [PMID: 34818891 DOI: 10.1021/acs.joc.1c02207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disaccharide donors are key precursors in convergent glycan synthesis strategies. Unexpectedly, we observed that disaccharide thioglycosyl donors containing 1,4-O-linked α-glycosidic bonds are much more reactive than their β-analogues with the same protecting group pattern. Herein, we rationalized that such a difference in their reactivity is attributed to the conformation of the 1,4-O-interglycosidic bond which is controlled by anomeric and exo-anomeric effects. Moreover, the conformational preferences of these donors are dictated by the dihedral angles ϕ and ψ of their interglycosidic linkages and the torsional angle ω of their side chain along the C5-C6 bond. This fundamental research clarifies how the long-range stereoelectronic effects from the nonreducing end sugar can influence the reactivity of the leaving group at the reducing end and the behavior of disaccharide donors thereof.
Collapse
Affiliation(s)
- Welday Desta Weldu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.,Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
23
|
Faustino M, Durão J, Pereira CF, Pintado ME, Carvalho AP. Mannans and mannan oligosaccharides (MOS) from Saccharomyces cerevisiae - A sustainable source of functional ingredients. Carbohydr Polym 2021; 272:118467. [PMID: 34420726 DOI: 10.1016/j.carbpol.2021.118467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Sustainable industry practices and circular economy concepts encourage the transformation of production waste into by-products. Saccharomyces cerevisiae is widely used in fermentation industry worldwide, generating large amounts of spent yeast which is mainly directed to animal feed or discarded as waste. Instead of becoming and environmental problem, spent yeast can be directed to the extraction of valuable compounds such as mannans and mannan oligosaccharides (MOS). This review presents a compilation of the studies up to date regarding the different chemical, enzymatic, mechanical or physical processes addressed for mannans extraction and MOS production. Additionally, the existing studies on the chemical modification of mannans aimed to improve specific characteristics are also discussed. Finally, the more relevant bioactivities and potential applications of mannans, MOS and mannose are presented, together with products on the market containing these compounds.
Collapse
Affiliation(s)
- Margarida Faustino
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Joana Durão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Carla F Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
24
|
Effect of Gamma Irradiation on Enhanced Biological Activities of Exopolysaccharide from Halomonas desertis G11: Biochemical and Genomic Insights. Polymers (Basel) 2021; 13:polym13213798. [PMID: 34771355 PMCID: PMC8588121 DOI: 10.3390/polym13213798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
In this work, a native exopolysaccharide (nEPS) produced by Halomonas desertis G11 isolated from a Tunisian extreme environment was modified by gamma irradiation. Characterization as well as the antioxidant and antitumor activities of nEPS and its gamma-irradiated derivatives (iEPSs) were comparatively evaluated. In vitro and in vivo antioxidant potentials were determined by using different methods and through different antioxidant enzymes. The antitumor activity was checked against a human colon cancer cell line. Analyses of the complete genome sequence were carried out to identify genes implicated in the production of nEPS. Thus, the genomic biosynthesis pathway and the export mechanism of nEPS were proposed. Analyses of irradiation data showed that iEPSs acquired new functional groups, lower molecular weights, and gained significantly (p < 0.05) higher antioxidant and antitumor abilities compared with nEPS. These findings provide a basis for using iEPSs as novel pharmaceutical agents for human therapies.
Collapse
|
25
|
Bezerra LS, Magnani M, Pimentel TC, Freire FMDS, da Silva TAF, Ramalho RC, Alves AF, de Brito Alves JL, de Medeiros IA, Veras RC. Carboxymethyl-glucan from Saccharomyces cerevisiae reduces blood pressure and improves baroreflex sensitivity in spontaneously hypertensive rats. Food Funct 2021; 12:8552-8560. [PMID: 34337642 DOI: 10.1039/d1fo01079d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboxymethyl-glucan (CMG) is a derivative of β-d-glucan extracted from Sacharomyces cerevisae. This polymer presents improved physicochemical properties and shows health benefits, such as immunomodulation, antioxidant, anti-inflammatory, anti-tumor, and antiplatelet activities, and improved vascular function. However, studies concerning the effect of administration of CMG on the cardiovascular parameters, mainly in the field of hypertension, are scarce. This study aimed to investigate the effect of administration of CMG in spontaneously hypertensive rats (SHR) and normotensive rats (WKY) models. Normotensive and hypertensive animals received CMG at doses of 20 mg kg-1 and 60 mg kg-1 for four weeks. Then, weight gain, lipid profile, renal function, blood pressure, cardiac hypertrophy, baroreflex sensitivity, and sympathetic tone were evaluated. Oral administration of CMG influenced weight gain and cholesterol levels, and significantly reduced urea in the hypertensive animals. It decreased blood pressure levels and cardiac hypertrophy, improved baroreflex response, and reduced the influence of sympathetic tone. The results demonstrate the antihypertensive effect of CMG through improvement in baroreflex sensitivity via sympathetic tone modulation.
Collapse
Affiliation(s)
- Lorena Soares Bezerra
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Marciane Magnani
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil. and Department of Food Engineering, Federal University of Paraíba (UFPB), Brazil
| | | | | | | | | | - Adriano Francisco Alves
- Department of Physiology and Pathology, Laboratory of Pathology, Health Sciences Center, UFPB, Brazil
| | - José Luiz de Brito Alves
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil.
| | - Isac Almeida de Medeiros
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, UFPB, Brazil
| | - Robson Cavalcante Veras
- Post-Graduate Program in Nutritional Sciences, Health Sciences Center, Federal University of Paraíba (Universidade Federal da Paraíba - UFPB), Brazil. and Department of Pharmaceutical Sciences, Health Sciences Center, UFPB, Brazil
| |
Collapse
|
26
|
Tsivileva O, Pozdnyakov A, Ivanova A. Polymer Nanocomposites of Selenium Biofabricated Using Fungi. Molecules 2021; 26:3657. [PMID: 34203966 PMCID: PMC8232642 DOI: 10.3390/molecules26123657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.
Collapse
Affiliation(s)
- Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia
| | - Alexander Pozdnyakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| | - Anastasiya Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia; (A.P.); (A.I.)
| |
Collapse
|
27
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
28
|
Jakobek L, Ištuk J, Matić P, Skendrović Babojelić M. Interactions of polyphenols from traditional apple varieties 'Bobovac', 'Ljepocvjetka' and 'Crvenka' with β-Glucan during in vitro simulated digestion. Food Chem 2021; 363:130283. [PMID: 34120042 DOI: 10.1016/j.foodchem.2021.130283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Interactions between β-glucan and polyphenols might have an effect on polyphenol digestion and bioaccessibility. The influence of β-glucan on in vitro gastrointestinal digestion of polyphenols of traditional apple varieties was studied. Polyphenols were chemically and enzymatically extracted, and identified and quantified with high-performance liquid chromatography. Simulated digestion of peel and flesh of apples was conducted. Polyphenols released in digestion in lower amounts than occur naturally in apples. Their content increased from the oral to the gastric, then decreased in the intestinal phase (up to 21% (peel) and 16% (flesh) were recovered) where anthocyanins and flavan-3-ols were not found. β-glucan decreased (oral and intestinal digestion of peel) or increased (gastric digestion of peel; oral, gastric, intestinal digestion of flesh) the recovered polyphenols. Interactions between β-glucan, polyphenols and enzymes might have influenced these effects. β-glucan is suggested to increase the polyphenol content reaching lower parts of the digestive tract.
Collapse
Affiliation(s)
- Lidija Jakobek
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | - Jozo Ištuk
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | - Petra Matić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR 31000 Osijek, Croatia.
| | | |
Collapse
|
29
|
Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol 2021; 181:877-889. [PMID: 33864864 DOI: 10.1016/j.ijbiomac.2021.04.069] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
β-glucans are polysaccharides which can be obtained from different sources, and which have been described as potential prebiotics. The beneficial effects associated with β-glucan intake are that they reduce energy intake, lower cholesterol levels and support the immune system. Nevertheless, the mechanism(s) of action underpinning these health effects related to β-glucans are still unclear, and the precise impact of β-glucans on the gut microbiota has been subject to debate and revision. In this review, we summarize the most recent advances involving structurally different types of β-glucans as fermentable substrates for Bacteroidetes (mainly Bacteroides) and Bifidobacterium species as glycan degraders. Bacteroides is one of the most abundant bacterial components of the human gut microbiota, while bifidobacteria are widely employed as a probiotic ingredient. Both are generalist glycan degraders capable of using a wide range of substrates: Bacteroides spp. are specialized as primary degraders in the metabolism of complex carbohydrates, whereas Bifidobacterium spp. more commonly metabolize smaller glycans, in particular oligosaccharides, sometimes through syntrophic interactions with Bacteroides spp., in which they act as secondary degraders.
Collapse
Affiliation(s)
- Pedro J Fernandez-Julia
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Ireland University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Reddy Shetty P, Batchu UR, Buddana SK, Sambasiva Rao K, Penna S. A comprehensive review on α-D-Glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydr Res 2021; 503:108297. [PMID: 33813321 DOI: 10.1016/j.carres.2021.108297] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Glucans are the most abundant natural polysaccharides across the living kingdom with tremendous biological activities. Now a days, α-D-glucans are gaining importance as a prebiotics, nutraceuticals, immunostimulants, antiproliferative agents and biodegradable polymers in pharmaceutical and cosmetic sectors. A wide variety of bioresources including bacteria, fungi, lichens, algae, plants and animals produce α-D-glucans either as an exopolysaccharide (EPS) or a cell wall component or an energy storage polymer. The α-D-glucans exhibit great structural and functional diversity as the type of linkage and percentage of branching dictate the functional properties of glucans. Among the different linkages, bioactivities are greatly confined to the α-D-(1 → 3) linkages whereas starch and other polymers consisting of α-D-(1 → 4) (1 → 6) linkages are specific for food and pharmaceutical applications. However, the bioactivities of the α-D-(1 → 3) glucans in native form is limited mainly due to their hydrophobic nature. Hence several derivatization techniques have been developed to improve the bioavailability as well as bioactive features such as antiviral, antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antitumor properties. Though, several reports have presented about α-D-glucans, still there is an ambiguity in terms of their structure among different natural sources and moreover no comprehensive information was available on their derivatization techniques and application potential. Therefore, the present review summarizes distinct description on diverse sources, type of linkages, derivatization techniques as well as the application potential of the native and modified α-D-glucans.
Collapse
Affiliation(s)
- Prakasham Reddy Shetty
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
| | - Uma Rajeswari Batchu
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India.
| | - Sudheer Kumar Buddana
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology, Ghaziabad, 201001, New Delhi, India.
| | - Krs Sambasiva Rao
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, 522510, Andhra Pradesh, India.
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085, Maharashtra, India.
| |
Collapse
|
31
|
Philippini RR, Martiniano SE, Franco Marcelino PR, Chandel AK, Dos Santos JC, Da Silva SS. Production of β-glucan exopolysaccharide lasiodiplodan by Lasiodiplodia theobromae CCT 3966 from corn bran acid hydrolysate. Appl Microbiol Biotechnol 2021; 105:2319-2332. [PMID: 33599793 DOI: 10.1007/s00253-021-11173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/24/2021] [Accepted: 02/10/2021] [Indexed: 12/25/2022]
Abstract
The potential utilization of corn bran acid hydrolysate (CBAH) was evaluated as an inexpensive feedstock for the production of a rich carbohydrate and protein medium for lasiodiplodan (LAS) production using the filamentous fungus Lasiodiplodia theobromae CCT 3966. Experiments were performed according to a 22 CCRD experimental design aiming to evaluate the influence of agitation speed (rpm) and temperature (°C) over the production of total cell biomass (TCB) and LAS concentration released to the medium (LAS-M), adhered to biomass (LAS-C), and total (LAS-T). Under the selected conditions (temperature of 28°C and agitation of 200 rpm), 8.73 g·L-1 of LAS-T and 4.47 g·L-1 of TCB were obtained. Recovery of LAS-C with hot water was shown as an alternative to increase the production concentration, although it might require further purification steps. CBAH potential for substitution of synthetic media was demonstrated, indicating that it is an adequate raw material containing all necessary nutrients for LAS production.Key points• Corn bran acid hydrolysate is presented as a suitable substrate for β-glucan production.• Lasiodiplodia theobromae CCT 3966 have the potential for the industrial β-glucan production.• Simple recovering of biomass-adhered lasiodiplodan by hot water extraction.
Collapse
Affiliation(s)
- Rafael Rodrigues Philippini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n, 12, Lorena, SP, 602-810, Brazil.
| | - Sabrina Evelin Martiniano
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n, 12, Lorena, SP, 602-810, Brazil
| | - Paulo Ricardo Franco Marcelino
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n, 12, Lorena, SP, 602-810, Brazil
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n, 12, Lorena, SP, 602-810, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n, 12, Lorena, SP, 602-810, Brazil
| | - Silvio Silvério Da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, s/n, 12, Lorena, SP, 602-810, Brazil
| |
Collapse
|
32
|
Sanchez V, Rosales-Mendoza S, Monreal-Escalante E, Murillo-Álvarez JI, Angulo C. Conjugation of β-glucans on heat-stable enterotoxin (ST) to enhance the immunogenic response in mouse leucocytes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111464. [PMID: 33255046 DOI: 10.1016/j.msec.2020.111464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important diarrhea-causing pathogen for humans. Heat-stable enterotoxin (ST) plays a crucial role in triggering diarrhea and ETEC pathogenesis. However, ST is a small peptide that lacks immunogenic activity itself but becomes immunogenic when it is coupled to a carrier molecule. In this study, the β-glucans (BG) from yeasts have been used to test their immunomodulatory activity and adjuvant effect on the properties of ST. This study aimed to synthesize and characterize a conjugate of yeast-derived β-glucan with the ST enterotoxin (BG-ST) and evaluate the antigenic and antioxidant activities in mouse splenocytes. Fourier transform infrared spectroscopy and scanning electron microscopy analysis showed new bands and changes in morphology, respectively, confirming ST was successfully coupled to beta glucan. Additionally, according to the enzyme-linked immunosorbent assay (ELISA), conjugation efficiency was almost 90%. Cellular viability, phagocytic cell proportion, and respiratory burst enhanced splenocytes stimulated by BG-ST. In addition, nitric oxide production and antioxidant enzymes increased in cells stimulated with BG-ST, BG and ST. In conclusion, the results revealed the successful conjugation of β-glucan with ST peptide enhancing immune and antioxidant parameters to a greater extent than their individual components.
Collapse
Affiliation(s)
- Veronica Sanchez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª, Sección, 78210 San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª, Sección, 78210 San Luis Potosí, Mexico
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico; CONACYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S 23090, Mexico
| | - Jesús I Murillo-Álvarez
- Centro Interdisciplinario de Ciencias Marinas-IPN (CICIMAR), Avenida IPN s/n, 23096 La Paz, B.C.S., Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
33
|
Su Y, Chen L, Yang F, Cheung PCK. Beta-d-glucan-based drug delivery system and its potential application in targeting tumor associated macrophages. Carbohydr Polym 2020; 253:117258. [PMID: 33278940 DOI: 10.1016/j.carbpol.2020.117258] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 02/09/2023]
Abstract
Use of polysaccharides as carriers in drug delivery system is a hot topic, especially those with specific recognition of immune cells, enabling them to be applied in targeting delivery system. β-d-glucans are naturally occurring non-digestible polysaccharides with immunomodulatory activities that have attracted increasing attention to serve as therapeutic agents or immune-adjuvants. Being able to be specifically recognized by immune cells like macrophages, β-d-glucans can be developed as promising carriers for targeting delivery with stability, biocompatibility and specificity when applied in immunotherapy. Targeting tumor associated macrophages (TAMs) is an emerging strategy for cancer immunotherapy since it exerts anti-cancer effects based on modulating body immunity in tumor microenvironment (TME). This new strategy does not require high concentration of drugs to kill cancer cells directly and lessen tumor recurrence by creating unique immune memory for malignant cells. In this review, construction strategies of polysaccharide-based drug delivery system of three types of β-d-glucan including non-yeast and yeast β-d-glucans as well as hyper-branched β-d-glucan are discussed with reference to their branching characteristics and conformation. The applications of these β-d-glucans as nano-carrier for drug delivery targeting TAMs are also discussed.
Collapse
Affiliation(s)
- Yuting Su
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
34
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
35
|
Tabernero A, Cardea S. Microbial Exopolysaccharides as Drug Carriers. Polymers (Basel) 2020; 12:E2142. [PMID: 32961830 PMCID: PMC7570138 DOI: 10.3390/polym12092142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Microbial exopolysaccharides are peculiar polymers that are produced by living organisms and protect them against environmental factors. These polymers are industrially recovered from the medium culture after performing a fermentative process. These materials are biocompatible and biodegradable, possessing specific and beneficial properties for biomedical drug delivery systems. They can have antitumor activity, they can produce hydrogels with different characteristics due to their molecular structure and functional groups, and they can even produce nanoparticles via a self-assembly phenomenon. This review studies the potential use of exopolysaccharides as carriers for drug delivery systems, covering their versatility and their vast possibilities to produce particles, fibers, scaffolds, hydrogels, and aerogels with different strategies and methodologies. Moreover, the main properties of exopolysaccharides are explained, providing information to achieve an adequate carrier selection depending on the final application.
Collapse
Affiliation(s)
- Antonio Tabernero
- Department of Chemical Engineering, University of Salamanca, Plaza los Caídos s/n, 37008 Salamanca, Spain;
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
36
|
Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA. An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol 2020; 40:1059-1080. [DOI: 10.1080/07388551.2020.1805405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C. Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L. Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
37
|
Venkatachalam G, Arumugam S, Doble M. Industrial production and applications of α/β linear and branched glucans. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1798820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Geetha Venkatachalam
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT Madras, Chennai, India
| | - Senthilkumar Arumugam
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT Madras, Chennai, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, IIT Madras, Chennai, India
| |
Collapse
|
38
|
Regioselective sulfation of β-glucan from Ganoderma lucidum and structure-anticoagulant activity relationship of sulfated derivatives. Int J Biol Macromol 2020; 155:470-478. [PMID: 32240743 DOI: 10.1016/j.ijbiomac.2020.03.234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
In the present study, regioselective sulfation of β-glucan (GLP) from Ganoderma lucidum were firstly established by using 4,4'-dimethoxytrityl chloride and hexamethyldisilazane as protecting precursor. 2,4,6-O-sulfated, 6-O-sulfated and 2,4-O-sulfated GLP derivatives were prepared and the molecular weights (Mw) of derivatives were determined to range from 0.94 × 104 to 6.27 × 104 g/mol, while the degrees of sulfation (DS) were calculated to vary from 0.83 to 1.74. The regioselective sulfation of GLP was confirmed by FT-IR, 13C NMR spectroscopy and methylation analysis. Results indicated that the sulfated substitution sites were predominantly at C-6 in 6-O-sulfated GLP (S6-OGLP) and C-4 in 2,4-O-sulfated GLP (S2,4-OGLP), respectively. Clotting assays (APTT, PT and TT) in vitro showed that sulfate groups were essential for anticoagulant activity and S6-OGLP exhibited much higher than others. Meanwhile, sulfated GLP with higher DS and Mw showed stronger anticoagulant activity in the case of the same condition.
Collapse
|
39
|
Wang X, Majzoobi M, Farahnaky A. Ultrasound-assisted modification of functional properties and biological activity of biopolymers: A review. ULTRASONICS SONOCHEMISTRY 2020; 65:105057. [PMID: 32172150 DOI: 10.1016/j.ultsonch.2020.105057] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/15/2020] [Accepted: 03/06/2020] [Indexed: 05/10/2023]
Abstract
In this review, the recent applications of power ultrasound technology in improving the functional properties and biological activities of biopolymers are reviewed. The basic principles of ultrasonic technology are briefly introduced, and its main effects on gelling, structural, textural, emulsifying, rheological properties, solubility, thermal stability, foaming ability and foaming stability and biological activity are illustrated with examples reviewing the latest published research papers. Many positive effects of ultrasound treatment on these functional properties of biopolymers have been confirmed. However, the effectiveness of power ultrasound in improving biopolymers properties depends on a variety of factors, including frequency, intensity, duration, system temperature, and intrinsic properties of biopolymers such as macromolecular structure. In order to obtain the desired outcomes, it is best to apply optimized ultrasound processing parameters and use the best conditions in terms of frequency, amplitude, temperature, time, pH, concentration and ionic strength related to the inherent characteristics of each biopolymer. This will help employ the full potential of ultrasound technology for generating innovative biopolymers functionalities for various applications such as food, pharmaceuticals, and other industries.
Collapse
Affiliation(s)
- Xiaomei Wang
- Faculty of Science, Xi'an Aeronautical University, Xi'an, China
| | - Mahsa Majzoobi
- Biosciences and Food Technology, School of Science, RMIT University, Bundoora West Campus, Melbourne, Victoria 3083, Australia
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Bundoora West Campus, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
40
|
Reyes-Becerril M, Angulo M, Sanchez V, Guluarte C, Angulo C. β-D-glucan from marine yeast Debaryomyces hansenii BCS004 enhanced intestinal health and glucan-expressed receptor genes in Pacific red snapper Lutjanus peru. Microb Pathog 2020; 143:104141. [PMID: 32173493 DOI: 10.1016/j.micpath.2020.104141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
Previous studies have shown that marine yeast Debaryomyces hansenii BCS004 (also known as Dh004) has a potential biotechnological application. The aim of this study was to investigate the structural characterization, antioxidant properties and possible health inductor of dietary β-D-glucan BCS004. In this study, a glucan BCS004 was obtained containing (1-6)-branched (1-3)-β-D-glucan with low molecular weight and a high purity of 90 and 91.7% for one and 4 h, respectively. β-D-glucan BCS004 showed higher antioxidant activity, including DPPH radical and superoxide anion scavenging, β-carotene bleaching inhibition, and iron chelation activity. An in vitro study showed that β-D-glucan BCS004 was safe for peripheral blood leukocytes inducing proliferative effects. Moreover, in an in vivo study using β-D-glucan BCS004 no histopathological damages or intestinal inflammation were observed in fish. The gene expression analysis highlighted that dietary β-D-glucan BCS004 could also up-regulate glucan and macrophage receptor genes in intestine, such as C-type lectin (CTL) and macrophage mannose receptors (MMR). Overall, the results demonstrated that β-D-glucan from D. hansenii BCS004 could be an immunostimulant with antioxidant properties and beneficial effects on intestinal health in fish.
Collapse
Affiliation(s)
- Martha Reyes-Becerril
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Veronica Sanchez
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S, 23096, Mexico.
| |
Collapse
|
41
|
Zhao Q, Zhang H, Zhang Y, Zhou S, Gao J. Stereoselective synthesis of a branched α-decaglucan. Org Biomol Chem 2020; 18:6549-6557. [PMID: 32789329 DOI: 10.1039/d0ob01402h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first and convergent synthesis of a branched Arca subcrenata Lischke α-decaglucan containing all of the α-(1 → 3), α-(1 → 4), and α-(1 → 6) glycosyl linkages was efficiently achieved. The tri- and tetrasaccharide fragments and fully protected decasaccharide were assembled in a one-pot manner with excellent α-stereoselectivity, which was secured by the synergistic α-directing effects of the TolSCl/AgOTf catalysis system and the remote participation effect or steric β-shielding of functionalized groups at the donor 6-O-position. Low substrate concentration was revealed to favor the α-stereochemical outcome of glycosylations between bulkier building blocks. The synthetic approach established here would be very useful for the preparation of more complex α-glucans containing different types of glycosidic linkages and branched architectures.
Collapse
Affiliation(s)
- Qingpeng Zhao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Han Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Yanxin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shihao Zhou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| | - Jian Gao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
42
|
Calegari GC, Queiroz Santos VA, Barbosa-Dekker AM, Busso C, Dekker RFH, Alves da Cunha MA. Sulfonated (1→6)-β-d-Glucan (Lasiodiplodan): Preparation, Characterization and Bioactive Properties. Food Technol Biotechnol 2019; 57:490-502. [PMID: 32123511 PMCID: PMC7029391 DOI: 10.17113/ftb.57.04.19.6264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 12/05/2019] [Indexed: 11/13/2022] Open
Abstract
Sulfonated derivatives of lasiodiplodan (LAS-S) with different degrees of substitution (1.61, 1.42, 1.02 and 0.15) were obtained and characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal and solubility analyses. Antimicrobial, antioxidant and cytotoxic potential were also assessed. The sulfonation was confirmed by FTIR analysis with specific bands at 1250 cm-1 (S=O, strong asymmetrical stretching vibration) and at 810 cm-1 (C-O-S, symmetrical vibration associated with the C-O-SO3 group) in the sulfonated samples. SEM demonstrated that sulfonation promoted morphological changes on the surface of the biopolymer with heterogeneous fibrillary structures appearing along the surface following chemical modification. LAS-S showed high thermal stability, with mass loss due to oxidation at temperatures close to 460 °C. Sulfonation increased the solubility of LAS, and in addition, increased the antimicrobial activity, especially against Candida albicans (fungicidal) and Salmonella enterica Typhimurium (bacteriostatic). Native lasiodiplodan (LAS-N) showed higher OH˙ removal capacity, while LAS-S had higher ferric ion reducing antioxidant power (FRAP) potential. LAS-N and LAS-S did not demonstrate lethal cytotoxicity against wild and mutant strains of Saccharomyces cerevisiae. Samples with higher degree of substitution (1.42 and 1.61) showed lower potential to induce oxidative stress.
Collapse
Affiliation(s)
- Gabrielle Cristina Calegari
- Chemistry Department, Federal University of Technology - Paraná, Via do Conhecimento, Km 1, 85503-390 Pato Branco, PR, Brazil
| | | | - Aneli M. Barbosa-Dekker
- Chemistry Department, State University of Londrina, Rod. Celso Garcia Cid, Km 380, 86057-970 Londrina, PR, Brazil
| | - Cleverson Busso
- Bioprocess and Biotechnology Engineering Coordination, Federal University of Technology - Paraná, Rua Cristo Rei, 19, 85902-490 Toledo, PR, Brazil
| | - Robert F. H. Dekker
- Graduate Program in Environmental Engineering, Federal University of Technology - Paraná, Estr. dos Pioneiros, 3131, 86036-370 Londrina, PR, Brazil
| | - Mário Antônio Alves da Cunha
- Chemistry Department, Federal University of Technology - Paraná, Via do Conhecimento, Km 1, 85503-390 Pato Branco, PR, Brazil
| |
Collapse
|
43
|
Vetvicka V, Vannucci L, Sima P. β-glucan as a new tool in vaccine development. Scand J Immunol 2019; 91:e12833. [PMID: 31544248 DOI: 10.1111/sji.12833] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Vaccination constitutes one of the major breakthroughs in human medicine. At the same time, development of more immunogenic vaccine alternatives to using aluminium-based adjuvants is one of the most important phases of vaccination development. Among different sources of carbohydrate polymers, including plants, microbes and synthetic sources tested, glucans were found to be the most promising vaccine adjuvant, as they alone stimulate various immune reactions including antibody production without any negative side effects. The use of glucan particles as a delivery system is a viable option based on the documented efficient antigen loading and receptor-targeted uptake in antigen-presenting cells. In addition to particles, soluble glucans can be used as novel hydrogels or as direct immunocyte-targeting delivery systems employing novel complexes with oligodeoxynucleotides. This review focuses on recent advances in glucan-based vaccine development from glucan-based conjugates to a glucan-based delivery and adjuvant platform.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Luca Vannucci
- Laboratory of Immunotherapy, Institute of Microbiology, Prague, Czech Republic
| | - Petr Sima
- Laboratory of Immunotherapy, Institute of Microbiology, Prague, Czech Republic
| |
Collapse
|
44
|
Liu H, Li F, Luo P. Effect of Carboxymethylation and Phosphorylation on the Properties of Polysaccharides from Sepia esculenta Ink: Antioxidation and Anticoagulation in Vitro. Mar Drugs 2019; 17:md17110626. [PMID: 31683929 PMCID: PMC6891342 DOI: 10.3390/md17110626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect of carboxymethylation and phosphorylation modification on Sepia esculenta ink polysaccharide (SIP) properties, this study prepared carboxymethyl SIP (CSIP) with the chloracetic acid method, and phosphorylated SIP (PSIP) with the sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) method, on the basis of an orthogonal experiment. The in vitro antioxidant and anticoagulant activities of the derivatives were determined by assessing the scavenging capacity of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals, which activated the partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). The results showed that SIP was modified successfully to be CSIP and PSIP, and degrees of substitution (DSs) of the two products were 0.9913 and 0.0828, respectively. Phosphorylation efficiently improved the antioxidant property of SIP, and the IC50 values of PSIP on DPPH and hydroxyl radicals decreased by 63.25% and 13.77%, respectively. But carboxymethylation reduced antioxidant activity of the native polysaccharide, IC50 values of CSIP on the DPPH and hydroxyl radicals increased by 16.74% and 6.89%, respectively. SIP significantly prolonged the APTT, PT, and TT in a dose-dependent fashion, suggesting that SIP played an anticoagulant action through intrinsic, extrinsic, and common coagulation pathways. CSIP and PSIP both possessed a stronger anticoagulant capacity than SIP via the same pathways; moreover, CSIP was observed to be more effective in prolonging APTT and PT than PSIP.
Collapse
Affiliation(s)
- Huazhong Liu
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Fangping Li
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ping Luo
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
45
|
Iurckevicz G, Dahmer D, Q Santos VA, Vetvicka V, M Barbosa-Dekker A, F H Dekker R, Maneck Malfatti CR, A da Cunha MA. Encapsulated Microparticles of (1→6)-β-d-Glucan Containing Extract of Baccharis dracunculifolia: Production and Characterization. Molecules 2019; 24:E2099. [PMID: 31163607 PMCID: PMC6600449 DOI: 10.3390/molecules24112099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
β-Glucans are biomacromolecules well known, among other biological activities, for their immunomodulatory potential. Similarly, extracts of Baccharis dracunculifolia also possess biological properties and are used in folk medicine for the treatment of inflammation, ulcers, and hepatic diseases. Microparticles containing (1→6)-β-d-glucan (lasiodiplodan) and B. dracunculifolia extract were produced and characterized. A 23 factorial design was employed to define the conditions of production of microparticles by atomization. Lasiodiplodan associated with maltodextrin and gum arabic was studied as a matrix material. Microparticles of 0.4 μm mean size and high phenolics content (3157.9 μg GAE/g) were obtained under the optimized conditions. The microparticle size ranged from 0.23 to 1.21 µm, and the mathematical model that best represented the release kinetics of the extract was the Korsmeyer-Peppas model. Diffusional exponent (n) values of 0.64 at pH 7.7 and 1.15 at pH 2.61 were found, indicating particles with a non-Fickian or anomalous transport system, and Super Case II transport, respectively. Thermal analysis indicated that the microparticles demonstrated high thermal stability. The X-ray diffraction analyses revealed an amorphous structure, and HPLC-DAD analysis showed microparticles rich in phenolic compounds: caffeic acid, p-coumaric acid, and catechin. The microparticles obtained comprise a new biomaterial with biological potential for applications in different fields.
Collapse
Affiliation(s)
- Genice Iurckevicz
- Chemistry Department, Universidade Estadual do Centro Oeste, Rua Simeão Varela de Sá, 03, Vila Carli, CEP, Guarapuava, PR 85040-080, Brazil.
| | - Débora Dahmer
- Chemistry Department, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, Km 1, CEP, Pato Branco, PR 85503-390, Brazil.
| | - Vidiany A Q Santos
- Chemistry Department, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, Km 1, CEP, Pato Branco, PR 85503-390, Brazil.
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, 511 S. Floyd St, Louisville, KY 40292, USA.
| | - Aneli M Barbosa-Dekker
- Chemistry Department, CCE, Universidade Estadual de Londrina, CEP, Londrina, PR 86057-970, Brazil.
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus Londrina, CEP, Londrina, PR 86036-370, Brazil.
| | - Carlos Ricardo Maneck Malfatti
- Chemistry Department, Universidade Estadual do Centro Oeste, Rua Simeão Varela de Sá, 03, Vila Carli, CEP, Guarapuava, PR 85040-080, Brazil.
| | - Mário A A da Cunha
- Chemistry Department, Universidade Tecnológica Federal do Paraná, Via do Conhecimento, Km 1, CEP, Pato Branco, PR 85503-390, Brazil.
| |
Collapse
|
46
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Fungal Exocellular (1-6)-β-d-glucan: Carboxymethylation, Characterization, and Antioxidant Activity. Int J Mol Sci 2019; 20:ijms20092337. [PMID: 31083511 PMCID: PMC6539860 DOI: 10.3390/ijms20092337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Exocellular (1→6)-β-d-glucan (lasiodiplodan) produced by the fungus Lasiodiplodia theobromae MMPI was derivatized by carboxymethylation using different concentrations of a derivatizing agent. Lasiodiplodan was derivatized by carboxymethylation in an attempt to increase its solubility and enhance its biological activities. Carboxymethylglucans with degrees of substitution (DS) of 0.32, 0.47, 0.51, 0.58, and 0.68 were produced and characterized. FTIR analysis showed a band of strong intensity at 1600 cm−1 and an absorption band at 1421 cm−1, resulting from asymmetric and symmetrical stretching vibrations, respectively, of the carboxymethyl group COO- in the carboxymethylated samples. Thermal analysis showed that native lasiodiplodan (LN) and carboxymethylated derivatives (LC) exhibited thermal stability up to 200–210 °C. X-ray diffractometry demonstrated that both native and carboxymethylated lasiodiplodan presented predominantly an amorphous nature. Scanning electron microscopy revealed that carboxymethylation promoted morphological changes in the biopolymer and increased porosity, and alveolar structures were observed along the surface. The introduction of carboxymethyl groups in the macromolecule promoted increased solubility and potentiated the hydroxyl radical-scavenging activity, suggesting a correlation between degree of substitution and antioxidant activity.
Collapse
|
48
|
Morales D, Smiderle FR, Piris AJ, Soler-Rivas C, Prodanov M. Production of a β-d-glucan-rich extract from Shiitake mushrooms (Lentinula edodes) by an extraction/microfiltration/reverse osmosis (nanofiltration) process. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Jakobek L, Matić P. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Zhang Y, Zhou S, Wang X, Zhang H, Guo Z, Gao J. A new method for α-specific glucosylation and its application to the one-pot synthesis of a branched α-glucan. Org Chem Front 2019. [DOI: 10.1039/c8qo01177j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed a new and highly efficient α-specific glucosylation method based on the synergistic α-directing effects of a TolSCl/AgOTf promoter system and the steric β-shielding or the remote participation of protecting groups at the donor 6-O-position.
Collapse
Affiliation(s)
- Yanxin Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Shihao Zhou
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Xiaohan Wang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Han Zhang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| | - Jian Gao
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao
- China
| |
Collapse
|