1
|
Song R, Jiang Y, Zhang B, Jiao Z, Yang X, Zhang N. Effects of Hypericum attenuatum Choisy extract on the immunologic function and intestinal microflora of broilers under oxidative stress. Poult Sci 2024; 103:104189. [PMID: 39191003 PMCID: PMC11395763 DOI: 10.1016/j.psj.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated the impact of Hypericum attenuatum Choisy extract (HYG) on immunological function and the cecum microflora in broilers. A total of 240 one-day-old AA broilers were randomly divided into 5 groups with 6 replicates of 8 broilers each: 1) the CN group, in which broilers were injected with saline and fed a basal diet; 2) the PC group, in which broilers were injected with lipolyaccharide (LPS) and fed a basal diet; 3) the HYG1 group, in which broilers were injected with LPS and fed a 400 mg/kg HYG-supplemented diet; 4) the HYG2 group, in which broilers were injected with LPS and fed a 800 mg/kg HYG-supplemented diet; 5) the HYG3 group, in which broilers were injected with LPS and fed a 1,200 mg/kg HYG-supplemented diet. Broilers were injected with 1 mg/kg LPS or the same amount saline 12 hours before sampling on d 21 and 42. The results revealed that dietary 400 mg/kg HYG supplementation alleviated spleen index and thymus index abnormalities, balanced the disturbance of serum immunoglobulin (Ig)M and IgA levels, and regulated the cytokine balance in the serum, liver, spleen and jejunum tissues included induced by LPS. Dietary supplementation with 400 mg/kg HYG also downregulated the relative expression of the inhibitor of kappa B kinase alpha (IKKα) and interleukin (IL)-6 mRNAs in the liver and upregulated the relative expression of the inhibitor kappa B alpha (IκBα) and IL-10 mRNAs in the spleen. Dietary HYG improved the cecal microflora balance at 42 d by increasing the relative abundance of beneficial bacteria, such as Alistipes and Phascolarctobacterium, while reducing the relative abundance of harmful bacteria, such as Helicobacter and Colidextribacter. Spearman correlation analysis revealed a negative correlation between activation of the NF-κB inhibitory pathway in the liver and the presence of Phascolarctobacterium, Erysipelatoclostridium, Subdoligranulum and Parabacteroides. Conclusions: The incorporation of 400 mg/kg HYG into the diet was optimal in improving broiler immunological function.
Collapse
Affiliation(s)
- Rui Song
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China; Agricultural Technology Extension Center, Shuyang County Agriculture and Rural Affairs Bureau, Shuyang 223600, China
| | - Yanzhen Jiang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Bo Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zimeng Jiao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Xing Yang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Wang N, Li C, Zhang Z. Arctigenin ameliorates high-fat diet-induced metabolic disorders by reshaping gut microbiota and modulating GPR/HDAC3 and TLR4/NF-κB pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156123. [PMID: 39396403 DOI: 10.1016/j.phymed.2024.156123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Arctigenin (AG), a phenylpropanoid lignan from the medicinal and food homologous plant Arctium lappa l., is known for its anti-cancer, anti-inflammatory and antioxidant properties. However, the pharmacological effects of AG on metabolic disorders remain limited, and specific mechanisms based on gut microbiota have not been reported. PURPOSE This study aimed to evaluate the regulation of glycolipid metabolism by AG in obese mice and investigate the potential mechanisms associated with gut microbes. METHODS The anti-obesity efficacy of AG was evaluated in high-fat diet (HFD)-fed mice. 16S rRNA gene sequencing and GC-MS were used to detect changes in gut microbes and metabolite levels. Immunohistochemistry, immunofluorescence, and polymerase chain reaction were used to validate the molecular mechanisms of gut microbe-derived metabolites involved in the improvement of intestinal homeostasis and hepatic metabolism by AG. RESULTS We found that AG significantly ameliorated HFD-induced glucolipid metabolism disorders, liver degeneration and the imbalance of macrophage M1/M2 polarization. In addition, AG attenuated intestinal barrier damage, inflammation and imbalance of Th17/Treg immune in HFD mice. Importantly, AG promoted short-chain fatty acid (SCFA)-producing bacteria and SCFA levels, which regulated the G protein-coupled receptor (GPR)41/43 and HDAC3 pathways to induce FOXP3 protein expression and consequently maintained intestinal Th17/Treg immunity. AG also inhibited lipopolysaccharide (LPS) production leading to attenuation of TLR4/NF-κB-mediated intestinal inflammation. Furthermore, AG upregulated intestinal MCT1 protein levels to promote absorption of SCFA and activated the hepatic GPR41/43/109a-AMPK pathway to regulate lipid metabolism, and thus reduced lipid accumulation. CONCLUSION This study first demonstrated that AG could modulate the gut microbiota and derived metabolites to repair intestinal damage and regulate hepatic metabolic pathways, thereby ameliorating metabolic disorders induced by HFD. These findings support the great potential of AG as a novel prebiotic to fight obesity and chronic metabolic diseases by targeting the gut microbiota.
Collapse
Affiliation(s)
- Nana Wang
- School of Public Health, Soochow University, Suzhou 215123, China
| | - Changhao Li
- School of Public Health, Soochow University, Suzhou 215123, China
| | - Zengli Zhang
- School of Public Health, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Yang M, Mao K, Cao X, Liu H, Mao W, Hao L. Integrated network toxicology, transcriptomics and gut microbiomics reveals hepatotoxicity mechanism induced by benzo[a]pyrene exposure in mice. Toxicol Appl Pharmacol 2024; 491:117050. [PMID: 39111554 DOI: 10.1016/j.taap.2024.117050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental pollutant posing various toxicity effects on organisms. Previous studies demonstrated that BaP could induce hepatotoxicity, while the underlying mechanism remains incompletely elucidated. In this study, a comprehensive strategy including network toxicology, transcriptomics and gut microbiomics was applied to investigate the hepatotoxicity and the associated mechanism of BaP exposure in mice. The results showed that BaP induced liver damage, liver oxidative stress and hepatic lipid metabolism disorder. Mechanistically, BaP may disrupt hepatic lipid metabolism through increasing the uptake of free fatty acid (FFA), promoting the synthesis of FA and triglyceride (TG) in the liver and suppressing lipid synthesis in white adipose tissue. Moreover, integrated network toxicology and hepatic transcriptomics revealed that BaP induced hepatotoxicity by acting on several core targets, such as signal transducer and activator of transcription 1 (STAT1), C-X-C motif chemokine ligand 10 (CXCL10) and toll-like receptor 2 (TLR2). Further analysis suggested that BaP inhibited JAK2-STAT3 signaling pathway, as supported by molecular docking and western blot. The 16S rRNA sequencing showed that BaP changed the composition of gut microbiota which may link to the hepatotoxicity based on the correlation analysis. Taken together, this study demonstrated that BaP caused liver injury, hepatic lipid metabolism disorder and gut microbiota dysbiosis, providing novel insights into the hepatotoxic mechanism induced by BaP exposure.
Collapse
Affiliation(s)
- Miao Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weifeng Mao
- China National Center for Food Safety Risk Assessment, No. 37, Guangqu Road, Chaoyang District, Beijing 100022, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Lian Y, Fu G, Liang X, He X, Xu J, Fan H, Wan Y. Combination of Artemisia selengensis Turcz leaves polysaccharides and dicaffeoylquinic acids could be a potential inhibitor for hyperuricemia. Int J Biol Macromol 2024; 271:132687. [PMID: 38806079 DOI: 10.1016/j.ijbiomac.2024.132687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Caffeioyl quinic acids and polysaccharides from Artemisia selengensis Turcz are considered potential bioactive substances for hyperuricemia (HUA) treatment. While the mechanism of multi-component combined intervention of polysaccharides and dicaffeoylquinic acids (diCQAs) is not yet clear. In this study, we investigated the effect of A. selengensis Turcz leaves polysaccharides (APS) on the HUA treatment with diCQAs in vitro by direct inhibition of XOD activities and in vivo by using animal model. The results showed that APS had almost no inhibitory effect on XOD activities in vitro, but the inhibitory activity of diCQAs on XOD was affected by changes in inhibition type and inhibition constant. Compared to APS and diCQAs alone, high-dose APS and diCQAs in combination (ADPSh) could significantly reduce the production of uric acid (16.38 % reduction compared to diCQAs group) and oxidative stress damage. Additionally, this combined therapy showed promise in restoring the gut microbiota balance and increasing the short-chain fatty acids levels. The results suggested that APS and diCQAs in combination could be a potential inhibitor for HUA treatment.
Collapse
Affiliation(s)
- Yingzhu Lian
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xinchao He
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jin Xu
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haowei Fan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, College of Food Science & Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
5
|
Liu Q, Zhang Z, Ji P, Liu J, Chen B, E M, Qi H, Hou T, Huang Q, Ding L, Guo C, Zhao D, Yang W, Wang Z, Li X. Ginseng polysaccharide components attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation. Int J Biol Macromol 2024; 269:131872. [PMID: 38677706 DOI: 10.1016/j.ijbiomac.2024.131872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
The increasing incidence of obesity has led to widespread attention in the exploration of natural ingredients. Ginseng polysaccharides (PGP), the main components from Panax ginseng, have been reported potential effect to attenuate obesity and regulate lipid metabolism. In this study, we found that PGP inhibited the high-fat diet (HFD)-induced weight gain, fat ratio and fat tissue weight after 8-week administration. Serum and liver lipid analysis showed that PGP decreased the levels of triglyceride and total cholesterol, which was mediated by the inhibition of key genes for fatty acid and cholesterol metabolisms. Metabolomics studies showed that the inhibitory effect of PGP on liver lipid accumulation was significantly correlated with its regulation of citric acid cycle and lysine degradation. PGP regulated the expression of genes related to lysine degradation in both liver tissue and hepatocytes. In addition, PGP reshaped the composition of fecal microbiota at the genus and species levels in obese mice. Spearman's correlation analysis demonstrated that Staphylococcus sciuri, Staphylococcus lentus, and Pseudoflavonifractor sp. An85 may be the potential targets that PGP maintains the abundance of l-lysine against obesity. It concluded that PGP can attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation.
Collapse
Affiliation(s)
- Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Jiaqi Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Boxue Chen
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Tong Hou
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Qingxia Huang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Wenzhi Yang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China.
| |
Collapse
|
6
|
Chen Y, Xie C, Lei Y, Ye D, Wang L, Xiong F, Wu H, He Q, Zhou H, Li L, Xing J, Wang C, Zheng M. Theabrownin from Qingzhuan tea prevents high-fat diet-induced MASLD via regulating intestinal microbiota. Biomed Pharmacother 2024; 174:116582. [PMID: 38642504 DOI: 10.1016/j.biopha.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.
Collapse
Affiliation(s)
- Yong Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Chen Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China; Obstetrics and Gynecology of the Second Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
| | - Yining Lei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Dan Ye
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Le Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Fang Xiong
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Hui Wu
- Xianning Public Inspection Center of Hubei Province, Xianning 437100, China
| | - Qiang He
- Xianning Public Inspection Center of Hubei Province, Xianning 437100, China
| | - Hongfu Zhou
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Ling Li
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Jun Xing
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Cai Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China
| | - Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Hubei Industrial Technology Research Institute of Intelligent Health, Xianning 437100, China.
| |
Collapse
|
7
|
Elhessy HM, Berika M, Salem YG, El-Desoky MM, Eldesoqui M, Mostafa N, Habotta OA, Lashine NH. Therapeutic effects of intermittent fasting on high-fat, high-fructose diet; involvement of jejunal aquaporin 1, 3, and 7. Heliyon 2024; 10:e28436. [PMID: 38560252 PMCID: PMC10979098 DOI: 10.1016/j.heliyon.2024.e28436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background Aquaporins (AQPs) are transmembrane channel proteins. Aquaporin 1 (AQP1), Aquaporin 3 (AQP3), and Aquaporin 7 (AQP7) are expressed in the jejunum. The purpose of this study was to ascertain how a high-fat high-fructose diet (HFFD) and intermittent fasting (IF) affect AQP1, AQP3, and AQP7 expression in the rat jejunum. Methods Sixteen adult male rats were divided into control rats (n = 4) fed on a basal diet and water ad libitum for 12 weeks; IF control rats (n = 4) followed the IF protocol, HFFD-fed rats (n = 8) fed HFFD for eight weeks, and rats were randomized into two groups: HFFD only or HFFD and IF protocol from the beginning of the 9th week until the end of the experiment. The lipid profile values were assessed after 12 weeks. Jejunal oxidative markers (malondialdehyde and reduced glutathione) and AQP1, AQP3, and AQP7 mRNA expression were measured. Jejunal sections were used for morphometric analysis of villus length and crypt depth. Immunohistochemical evaluation of AQP1, AQP3, and AQP7 expression was also performed. Results IF ameliorates HFFD-induced lipid profile, oxidative stress, and jejunal morphometric changes. The results of both mRNA expression using PCR and immunohistochemistry showed a significant increase in AQP1, AQP3, and AQP7 expression in HFFD, whereas IF caused a decline in this expression. Conclusion These findings suggest that IF can reduce inflammation, and oxidative stress and restore jejunal morphology caused by HFFD.
Collapse
Affiliation(s)
- Heba M. Elhessy
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Mohamed Berika
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Rehabilitation Science, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Yassmin G. Salem
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Manal M. El-Desoky
- Department of Chemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mamdouh Eldesoqui
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, 13713, Riyadh, Saudi Arabia
| | - Nora Mostafa
- Department of Chemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nermeen H. Lashine
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
Ren D, Ding M, Su J, Ye J, He X, Zhang Y, Shang X. Stachyose in combination with L. rhamnosus GG ameliorates acute hypobaric hypoxia-induced intestinal barrier dysfunction through alleviating inflammatory response and oxidative stress. Free Radic Biol Med 2024; 212:505-519. [PMID: 38211833 DOI: 10.1016/j.freeradbiomed.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
High altitude is closely related to intestinal mucosal damage and intestinal microbiota imbalance, and there is currently no effective prevention and treatment measures. In this study, the effects of stachyose (STA), L. rhamnosus GG (LGG) and their combination on inflammatory response, oxidatve stress and intestinal barrier function in mice exposed to acute hypobaric hypoxia were investigated. Our results indicated the combination of STA and LGG could more effectively regulate intestinal microbiota disorders caused by hypobaric hypoxia than STA or LGG alone. When mice were administered with STA + LGG, the content of short chain fatty acids (SCFAs) especially butyric acid significantly increased, which helped intestinal cells to form tight connections, improve the level of anti-inflammatory cytokine (TGF-β) and antioxidant enzymes (SOD, CAT, GSH-Px), and decrease the expression of pro-inlammatory cytokines and hypoxia-inducing factors (IFN-γ, IL-1β, IL-6, TNF-α and HIF-1α), thereby enhance the strong intestinal barrier function. Furthermore, the synbiotics significantly reduced the ratio of Firmicutes to Bacteroidetes, while significantly increased the relative abundance of Rikenella, Bacteroides, Odoribacter, Ruminiclostridium_5 and Gordonibacter, which were correlated with production of SCFAs and anti-inflammatory role. Correlation analysis showed that the protective effect of synbiotics on intestinal barrier function was associated with its anti-inflammatory activity and antioxidant capacity. It provided a strong foundation for further research on the role of STA and LGG in maintaining normal intestinal function at high altitude. Our study has identified and demonstrated a new synbiotic that may be one of the ideal intervention measures for preventing and treating intestinal dysfunction at high altitude.
Collapse
Affiliation(s)
- Dingxin Ren
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Mengying Ding
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Junqing Su
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jianzhou Ye
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Xiaoqin He
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yafeng Zhang
- No. 889, Xi'an Institute for Food and Drug, Cangtai West Road, Chang'an District, Xi'an, Shaanxi, 710700, PR China
| | - Xiaoya Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
9
|
Zhao WX, Wang T, Zhang YN, Chen Q, Wang Y, Xing YQ, Zheng J, Duan CC, Chen LJ, Zhao HJ, Wang SJ. Molecular Mechanism of Polysaccharides Extracted from Chinese Medicine Targeting Gut Microbiota for Promoting Health. Chin J Integr Med 2024; 30:171-180. [PMID: 35583582 DOI: 10.1007/s11655-022-3522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The accumulating evidence revealed that gut microbiota plays an important role in pathological process of disease including obesity, type 2 diabetes mellitus, heart failure, and non-alcoholic fatty liver disease. Polysaccharides extracted from Chinese medicine (CM) can not only alleviate pathological status but also promote health by anti-inflammatory, regulating immunity, lowering blood glucose and lipids, anti-cancer, and anti-oxidation. The alterations of gut microbiota composition and metabolism pathways are the potential mechanisms of CM polysaccharides treatment. In addition, they exert functions through gut-organ axis or play an indirect role by synergistic actions with other drugs or components mediated by gut microbiota. This review summarizes the molecular mechanisms of CM polysaccharides interacted with intestinal microbial inhabitants as potential prebiotics for promoting health.
Collapse
Affiliation(s)
- Wen-Xiao Zhao
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Ya-Nan Zhang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Qian Chen
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yuan Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Yan-Qing Xing
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Jun Zheng
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Chen-Chen Duan
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Li-Jun Chen
- School of Nursing, Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Hai-Jun Zhao
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Shi-Jun Wang
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| |
Collapse
|
10
|
Wu D, Zhao H, Guo L, Liu X, Liang Y, Liu Q, Cao W, Chen X, Gao X. Fu Brick Tea as a Staple Food Supplement Attenuates High Fat Diet Induced Obesity in Mice. Foods 2023; 12:4488. [PMID: 38137292 PMCID: PMC10743230 DOI: 10.3390/foods12244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Fu brick tea (FBT), a product of microbial fermentation from primary dark tea, also known as raw material tea (RMT), has been extensively studied for its functional properties. However, its potential as a staple food supplement for weight loss remains poorly understood. This study compared the weight loss effects of orlistat, traditional plain noodles (NN), and noodles supplemented with varying amounts of RMT (RMTN) and FBT (FBTN), with the aim to elucidate their lipid-reducing effects and underlying mechanisms. Experimental trials on high fat diet fed mice revealed significant weight loss, lipid-lowering, and hypoglycemic effects upon supplementation with orlistat, RMTN, and FBTN. Moreover, supplementation with orlistat, RMTN, and FBTN effectively restored serum and liver-related index levels, mitigating high-fat diet-induced dyslipidemia. Additionally, these supplements ameliorated liver and kidney damage by inhibiting oxidative stress and inflammatory responses. Furthermore, orlistat, RMTN, and FBTN exert their anti-obesity effects primarily by modulating genes associated with lipid metabolism and inflammatory responses and through regulation of the composition and structure of the gut microbiota. Importantly, FBTN demonstrated a significantly stronger lipid-lowering effect compared to RMTN, particularly at higher tea addition ratios. In contrast, NN supplementation exhibited minimal to no weight loss effects. Based on these findings, it could be inferred that FBT holds promise as a staple food supplement to ameliorate high-fat diet-induced obesity and its associated health conditions.
Collapse
Affiliation(s)
- Daying Wu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Lei Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| | - Xiukun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| | - Yan Liang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Qian Liu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (H.Z.); (Y.L.); (Q.L.); (W.C.)
| | - Xueyan Chen
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (L.G.); (X.L.)
| |
Collapse
|
11
|
Tang C, Wang Y, Chen D, Zhang M, Xu J, Xu C, Liu J, Kan J, Jin C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res Int 2023; 172:113192. [PMID: 37689942 DOI: 10.1016/j.foodres.2023.113192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Unhealthy dietary patterns-induced obesity and obesity-related complications pose a great threat to human health all over the world. Accumulating evidence suggests that the pathophysiology of obesity and obesity-associated metabolic disorders is closely associated with dysregulation of lipid and energy metabolism, and metabolic inflammation. In this review, three potential anti-obesity mechanisms of natural polysaccharides are introduced. Firstly, natural polysaccharides protect against diet-induced obesity directly by improving lipid and cholesterol metabolism. Since the immunity also affects lipid and energy metabolism, natural polysaccharides improve lipid and energy metabolism by regulating host immunity. Moreover, diet-induced mitochondrial dysfunction, prolonged endoplasmic reticulum stress, defective autophagy and microbial dysbiosis can disrupt lipid and/or energy metabolism in a direct and/or inflammation-induced manner. Therefore, natural polysaccharides also improve lipid and energy metabolism and suppress inflammation by alleviating mitochondrial dysfunction and endoplasmic reticulum stress, promoting autophagy and regulating gut microbiota composition. Specifically, this review comprehensively summarizes underlying anti-obesity mechanisms of natural polysaccharides and provides a theoretical basis for the development of functional foods. For the first time, this review elucidates anti-obesity mechanisms of natural polysaccharides from the perspectives of their hypolipidemic, energy-regulating and immune-regulating mechanisms.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yuxin Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jingguo Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Chen Xu
- Nanjing Key Laboratory of Quality and safety of agricultural product, Nanjing Xiaozhuang University, Nanjing 211171, China.
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
12
|
Du J, Fan D, Yang X, Dong Z, Zhao L. Facile fabrication of Artemisia sphaerocephala krasch gum hydrogels by radiation induced cross-linking polymerization and enhanced ultrahigh adsorption for methylene blue. Int J Biol Macromol 2023; 249:126074. [PMID: 37524276 DOI: 10.1016/j.ijbiomac.2023.126074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Although Artemisia sphaerocephala krasch gum (ASKG) has attracted growing attention in the field of medical engineering and food industries, however, there are few studies on the gelation of ASKG. In this paper, acrylic acid modified ASKG hydrogels were prepared by radiation induced grafting, cross-linking and polymerization technique for the first time. The semi-IPN structure was prepared by the cross-linked ASKG network and poly-AAc dispersed within the network. The effects of the adsorbed dose on the swelling ratio and gel fraction were investigated. The different acrylic acid content modified ASKG hydrogels (ASKGAAc1 and ASKGAAc2) for methyl blue (MB) adsorption were investigated, and the ASKG hydrogels was also studied for comparison. The influence of pH, contact time, initial concentration, temperature, ion strength on MB adsorption were tested. The results showed that acrylic acid can promote the formation of hydrogel and greatly enhanced the adsorption of ASKG. The adsorption isotherms were well obeyed the Langmuir model, and the maximum adsorption capacity for MB of ASKG, ASKGAAc1 and ASKGAAc2 were 571.43, 1517.8 and 1654.9 mg/g, respectively. Moreover, the MB adsorption by ASKG based hydrogels was exothermic, spontaneous, and more favorable at lower temperature. Furthermore, the adsorption-desorption experiments demonstrated a good reusability of these hydrogels.
Collapse
Affiliation(s)
- Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongcheng Fan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhen Dong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
13
|
Forte N, Roussel C, Marfella B, Lauritano A, Villano R, De Leonibus E, Salviati E, Khalilzadehsabet T, Giorgini G, Silvestri C, Piscitelli F, Mollica MP, Di Marzo V, Cristino L. Olive oil-derived endocannabinoid-like mediators inhibit palatable food-induced reward and obesity. Commun Biol 2023; 6:959. [PMID: 37735539 PMCID: PMC10514336 DOI: 10.1038/s42003-023-05295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
N-oleoylglycine (OlGly), a lipid derived from the basic component of olive oil, oleic acid, and N-oleoylalanine (OlAla) are endocannabinoid-like mediators. We report that OlGly and OlAla, by activating the peroxisome proliferator-activated receptor alpha (PPARα), reduce the rewarding properties of a highly palatable food, dopamine neuron firing in the ventral tegmental area, and the obesogenic effect of a high-fat diet rich in lard (HFD-L). An isocaloric olive oil HFD (HFD-O) reduced body weight gain compared to the HFD-L, in a manner reversed by PPARα antagonism, and enhanced brain and intestinal OlGly levels and gut microbial diversity. OlGly or OlAla treatment of HFD-L mice resulted in gut microbiota taxonomic changes partly similar to those induced by HFD-O. We suggest that OlGly and OlAla control body weight by counteracting highly palatable food overconsumption, and possibly rebalancing the gut microbiota, and provide a potential new mechanism of action for the obeso-preventive effects of olive oil-rich diets.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Charlène Roussel
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Anna Lauritano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Rosaria Villano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Institute of Biochemistry and Cell Biology, Consiglio Nazionale delle Ricerche (CNR), Monterotondo Scalo, Rome, Italy
| | | | - Tina Khalilzadehsabet
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Giada Giorgini
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Cristoforo Silvestri
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada.
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, 61V0AG, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli (NA), Italy.
| |
Collapse
|
14
|
Yan JK, Chen TT, Li LQ, Liu F, Liu X, Li L. The anti-hyperlipidemic effect and underlying mechanisms of barley ( Hordeum vulgare L.) grass polysaccharides in mice induced by a high-fat diet. Food Funct 2023. [PMID: 37449927 DOI: 10.1039/d3fo01451g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hyperlipidemia is a pathological disorder of lipid metabolism that can cause fatty liver, atherosclerosis, acute myocardial infarction, and other diseases, seriously endangering people's health. Polysaccharides have been shown to have lipid-lowering potential. In the current study, the anti-hyperlipidemia effect and potential mechanisms of a polysaccharide (BGP-Z31) obtained from barley grass harvested at the stem elongation stage in high-fat diet (HFD)-treated mice were investigated. Results showed that supplementation with BGP-Z31 (200 and 400 mg kg-1) not only suppressed obesity, organ enlargement, and fat accumulation caused by HFD, but also regulated dyslipidemia, relieved liver function injury, and ameliorated the oxidative stress level. Meanwhile, BGP-Z31 increased the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in HFD-induced mice. Gut microbiota analysis demonstrated that BGP-Z31 had no obvious effect on the gut microbiota diversity in mice treated with HFD, but it positively remodeled the intestinal flora structure by elevating the relative abundances of Bacteroides, Muribaculaceae, and Lachnospiraceae and lowering the Firmicutes/Bacteroides value and the relative abundance of Desulfovibrionaceae. Therefore, our data suggested that BGP-Z31 can be used as a promising nutritional supplement for dietary intervention in hyperlipidemia.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
| | - Ting-Ting Chen
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
15
|
Kerem G, Yu X, Ismayi A, Teng B, Udduttula A, Liu C, Yu Z, Tohty D, Zhang JV, Ren PG. Small intestinal microbiota composition altered in obesity-T2DM mice with high salt fed. Sci Rep 2023; 13:8256. [PMID: 37217529 DOI: 10.1038/s41598-023-33909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity has become a global concern because of increasing the risk of many diseases. Alterations in human gut microbiota have been proven to be associated with obesity, yet the mechanism of how the microbiota are altered by high salt diet (HSD) remains obscure. In this study, the changes of Small Intestinal Microbiota (SIM) in obesity-T2DM mice were investigated. High-throughput sequencing was applied for the jejunum microbiota analysis. Results revealed that high salt intake (HS) could suppress the body weight (B.W.) in some extent. In addition, significant T2DM pathological features were revealed in high salt-high food diet (HS-HFD) group, despite of relatively lower food intake. High-throughput sequencing analysis indicated that the F/B ratio in HS intake groups increased significantly (P < 0.001), whereas beneficial bacteria, such as lactic acid or short chain fatty acid producing bacteria, were significantly decreased in HS-HFD group (P < 0.01 or P < 0.05). Furthermore, Halorubrum luteum were observed in small intestine for the first time. Above results preliminary suggested that in obesity-T2DM mice, high dietary salt could aggravate the imbalance of composition of SIM to unhealthy direction.
Collapse
Affiliation(s)
- Goher Kerem
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiangfang Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Aynur Ismayi
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bin Teng
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Anjaneyulu Udduttula
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chang Liu
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhongjia Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Dilbar Tohty
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong Key Laboratory of Nanomedicine, Shenzhen, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
16
|
Li C, Su Z, Chen Z, Cao J, Liu X, Xu F. Lactobacillus reuteri strain 8008 attenuated the aggravation of depressive-like behavior induced by CUMS in high-fat diet-fed mice through regulating the gut microbiota. Front Pharmacol 2023; 14:1149185. [PMID: 37050901 PMCID: PMC10083334 DOI: 10.3389/fphar.2023.1149185] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Objective: Gut microbiota play a key role in the pathogenesis of obesity and depression. Probiotics are a preventive strategy for obesity and a novel treatment for depression symptoms. However, the ameliorative or therapeutic effect of potential probiotic candidate Lactobacillus reuteri (L. reuteri) on obesity and depression comorbidity still remains unclear. We investigated the effects of chronic unpredictable mild stress (CUMS) in high-fat diet-fed mice and the effects of Lactobacillus reuteri strain 8008 on various disease indicators of obesity and depression comorbidity disease. Methods: Forty male C57BL/6 mice were randomized into 2 groups: the normal control (NC) group (n = 10) and the high-fat diet (HFD) group (n = 30), being fed with normal diet (ND) or high-fat diet (HFD) for 8 weeks, respectively. Then the obese mice fed with HFD were randomly allocated into 3 sub-groups: the HFD group (n = 10); the HFD + CUMS group (n = 10); the HFD + CUMS + L.r group (n = 10). The latter 2 subgroups underwent CUMS for 4 weeks to build the obesity and depression comorbidity mice model. During the duration of treatment, mice were gavaged with 0.5 mL PBS solution or L. reuteri (2 × 109 CFU/mL) once a day, respectively. The body weight, food intake, organ weight, behavioral indicators, histology, blood lipids, levels of inflammatory cytokines and tight junction proteins and abundance of colonic contents bacteria were measured. Results: The obesity and depression comorbidity mice model was successfully established after HFD feeding and chronic stress. The comorbid mice demonstrated inflammatory responses increase in liver and adipose tissues, worsened damage to the intestinal barrier as well as gut microbiota disorder. Gavaged with L. reuteri attenuated depressive-like behavior, improved blood lipids and insulin resistance, reduced inflammation in liver and adipose tissues, improved intestinal tight junctions as well as the microbiome dysbiosis in obesity and depression comorbidity mice. Conclusion: Lactobacillus reuteri strain 8008 could alleviate depressive-like behaviors and related indicators of obesity disorders by regulating the gut microbiota in obesity and depression comorbid mice.
Collapse
Affiliation(s)
- Canye Li
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zuanjun Su
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Zhicong Chen
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Jinming Cao
- Fengxian Hospital, Southern Medical University, Shanghai, China
| | - Xiufeng Liu
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, Southern Medical University, Shanghai, China
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
17
|
Fu H, Liu H, Ge Y, Chen Y, Tan P, Bai J, Dai Z, Yang Y, Wu Z. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130669. [PMID: 36586336 DOI: 10.1016/j.jhazmat.2022.130669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China.
| |
Collapse
|
18
|
Xu X, Wang L, Zhang K, Zhang Y, Fan G. Managing metabolic diseases: The roles and therapeutic prospects of herb-derived polysaccharides. Biomed Pharmacother 2023; 161:114538. [PMID: 36931026 DOI: 10.1016/j.biopha.2023.114538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolic diseases have become a public health problem worldwide. Effective, novel and natural therapies are urgently needed to treat metabolic diseases. As natural bioactive compounds, polysaccharides have many physiological and medicinal properties. Recently, herb-derived polysaccharides have shown beneficial effects in the treatment of metabolic diseases, but the underlying mechanisms remain unclear. This review comprehensively summarizes the pharmacological progress and clinical evidence of herb-derived polysaccharides in the treatment of three metabolic diseases, namely type 2 diabetes mellitus, nonalcoholic fatty liver disease and obesity, and more importantly, discusses the molecular mechanism involved. Existing evidence has proved that herb-derived polysaccharides can maintain glucose homeostasis, promote insulin secretion, improve insulin resistance, reduce weight gain and hepatic steatosis, inhibit lipogenesis, alleviate oxidative stress and inflammation, and improve gut microbiota disorders in rodents with metabolic diseases. Notably, so far, human clinical trials of herb-derived polysaccharides for these three metabolic diseases remain rare. All in all, herb-derived polysaccharides may have good potential as drug candidates for the prevention and management of metabolic diseases. More high-quality clinical trials are needed to further validate its effectiveness and safety in human subjects.
Collapse
Affiliation(s)
- Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Zhao L, Qiu Y, Zhang P, Wu X, Zhao Z, Deng X, Yang L, Wang D, Yuan G. Gut microbiota mediates positive effects of liraglutide on dyslipidemia in mice fed a high-fat diet. Front Nutr 2022; 9:1048693. [PMID: 36643973 PMCID: PMC9835552 DOI: 10.3389/fnut.2022.1048693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 12/30/2022] Open
Abstract
Except for improving glycemic control, liraglutide, one of the glucagon-like peptide-1 receptor agonists, has exerted promising therapeutic effects for dyslipidemia. It has been proved that gut microbiota plays a dramatic role in regulating lipid metabolism. This study aims to explore whether liraglutide could improve dyslipidemia by modulating the gut microbiota in mice fed a high-fat diet (HFD). The C57BL/6 mice were fed a HFD to establish an animal model of dyslipidemia, and then administered with liraglutide or normal saline (NS) for 12 weeks. Indices of glucolipid metabolism were evaluated. Gut microbiota of the mice was analyzed by 16S rRNA gene sequencing. Compared with HFD group, liraglutide significantly alleviated weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels, meanwhile elevating high-density lipoprotein cholesterol (HDL) levels (all p < 0.05). The gut microbiota analysis revealed that liraglutide greatly reduced the relative abundance of Firmicutes and augmented that of Bacteroidetes, with a concomitant drop in the Firmicutes/Bacteroidetes ratio. Meanwhile, liraglutide dramatically changed the overall composition, promoted the growth of beneficial microbes (Akkermansia, Lactobacillus, Parabacteroides, Oscillospira, etc.), and inhibited the growth of harmful microbes (AF12, Shigella, Proteobacteria, Xenorhabdus, etc.). Especially, the relative abundance of Akkermansia increased the most after liraglutide treatment. Correlation analysis suggested that TC and LDL were positively correlated with some harmful bacteria, and negatively associated with beneficial bacteria. This study confirmed that liraglutide had a certain therapeutic effect on dyslipidemia in HFD-fed mice and could regulate the composition of the gut microbiota associated with lipid metabolism, especially Akkermansia. Thus, affecting gut microbiota might be a potential mechanism of liraglutide in attenuating dyslipidemia.
Collapse
Affiliation(s)
- Li Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China,*Correspondence: Li Zhao,
| | - Yue Qiu
- Department of Endocrinology and Metabolism, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Panpan Zhang
- Department of Endocrinology, Taicang Hospital of Traditional Chinese Medicine, Taicang, Jiangsu, China
| | - Xunan Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhicong Zhao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China,Guoyue Yuan,
| |
Collapse
|
20
|
Wang K, Ma J, Li Y, Han Q, Yin Z, Zhou M, Luo M, Chen J, Xia S. Effects of essential oil extracted from Artemisia argyi leaf on lipid metabolism and gut microbiota in high-fat diet-fed mice. Front Nutr 2022; 9:1024722. [PMID: 36407543 PMCID: PMC9670120 DOI: 10.3389/fnut.2022.1024722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/20/2023] Open
Abstract
Artemisia argyi leaf is a well-known species in traditional Chinese medicine, and its essential oil (AAEO) has been identified to exert various physiological activities. The aim of this study was to investigate the effects of AAEO on lipid metabolism and the potential microbial role in high-fat diet (HFD)-fed mice. A total of 50 male mice were assigned to five groups for feeding with a control diet (Con), a high-fat diet (HFD), and the HFD plus the low (LEO), medium (MEO), and high (HEO) doses of AAEO. The results demonstrated that dietary HFD markedly increased the body weight gain compared with the control mice (p < 0.05), while mice in the HEO group showed a lower body weight compared to the HFD group (p < 0.05). The weight of fatty tissues and serum lipid indexes (TBA, HDL, and LDL levels) were increased in response to dietary HFD, while there was no significant difference in AAEO-treated mice (p < 0.05). The jejunal villus height was dramatically decreased in HFD-fed mice compared with the control mice, while HEO resulted in a dramatically higher villus height than that in the HFD group (p < 0.05). Microbial α-diversity was not changed in this study, but β-diversity indicated that microbial compositions differed in control, HFD, and EO subjects. At the genus level, the relative abundance of Bacteroides was greater (p < 0.05) in the feces of the Con group when compared to the HFD and EO groups. On the contrary, the abundance of Muribaculum was lower in the Con group compared to the HFD and EO groups (p < 0.05). Although the Muribaculum in the EO group was lower than that in the HFD group, there was no statistically notable difference between the HFD and EO groups (p > 0.05). Simultaneously, the relative abundance of Alistipes (p < 0.05) and Rikenella (p < 0.05) was also dramatically higher in the Con group than in the HFD and EO groups. The abundance of norank_f__norank_o__Clostridia_UCG-014 was lower in the HFD or EO group than in the Con group (p < 0.05). In conclusion, the results suggested that HEO could affect body weight and lipid metabolism without gut microbes in ICR mice, and it was beneficial for the structure of the jejunal epithelial tissue.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yunxia Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qi Han
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhangzheng Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Minyi Luo
- Agricultural Service Center, Xiaolan Town, Zhongshan, Guangdong, China
| | - Jiayi Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, China
| | - Siting Xia
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
21
|
Álvarez-Mercado AI, Plaza-Diaz J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients 2022; 14:4116. [PMID: 36235768 PMCID: PMC9573424 DOI: 10.3390/nu14194116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022] Open
Abstract
A polysaccharide is a macromolecule composed of more than ten monosaccharides with a wide distribution and high structural diversity and complexity in nature. Certain polysaccharides are immunomodulators and play key roles in the regulation of immune responses during the progression of some diseases. In addition to stimulating the growth of certain intestinal bacteria, polysaccharides may also promote health benefits by modulating the gut microbiota. In the last years, studies about the triad gut microbiota-polysaccharides-health have increased exponentially. In consequence, in the present review, we aim to summarize recent knowledge about the function of dietary polysaccharides on gut microbiota composition and how these effects affect host health.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
22
|
He H, Chen C, Zhao W. Soybean soluble polysaccharide prevents obesity in high-fat diet-induced rats via lipid metabolism regulation. Int J Biol Macromol 2022; 222:3057-3065. [DOI: 10.1016/j.ijbiomac.2022.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
23
|
Zeng X, Ren D, Li D, Du H, Yang X. Artemisia sphaerocephala Krasch polysaccharide promotes adipose thermogenesis and decreases obesity by shaping the gut microbiota. Food Funct 2022; 13:10651-10664. [PMID: 36169214 DOI: 10.1039/d2fo02257e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study was designed to investigate the underlying mechanism of Artemisia sphaerocephala Krasch polysaccharide (ASKP) against obesity. Here, our results showed that ASKP considerably reduced body weight gain and metabolic disorders in high fat diet (HFD)-fed mice. 16S rRNA gene sequencing revealed that ASKP relieved the gut microbiota disorder caused by HFD and promoted the proliferation of probiotics such as Lactobacillus, Bifidobacterium and Blautia. Interestingly, the fecal levels of succinate, a microbial metabolite associated with adipose thermogenesis, were dramatically elevated by ASKP treatment in obese mice. Accordingly, ASKP promoted thermogenesis of brown adipose tissue (BAT) and browning of inguinal white adipose tissue (iWAT) of mice fed with a HFD, as revealed by the elevated expression of thermogenic marker genes (UCP1, CIDEA and PGC1α) in BAT and iWAT. Importantly, antibiotic treatment significantly decreased the ASKP-elevated fecal levels of succinate and further abolished the adipose thermogenesis effects of ASKP. Taken together, our results show that ASKP prevents obesity through iWAT browning and BAT activation, a mechanism that is dependent on the gut microbiota metabolism.
Collapse
Affiliation(s)
- Xiaoqian Zeng
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Donglu Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Haiping Du
- Institute of Physical Education, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
24
|
Isinglass Polysaccharides Regulate Intestinal-Barrier Function and Alleviate Obesity in High-Fat Diet Mice through the HO-1/Nrf2 Pathway and Intestinal Microbiome Environment. Nutrients 2022; 14:nu14193928. [PMID: 36235584 PMCID: PMC9573006 DOI: 10.3390/nu14193928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Plant polysaccharide intervention has shown significant potential to combat obesity. However, studies on animal polysaccharides are indeed rare. The aim of this study was to investigate the potential functions of CIP (IL) on obesity, intestinal microflora dysbiosis, and the possible protection of intestinal barrier in mice fed with high-fat diet (HFD). Our results revealed that after 13 weeks, the HFD+L (high-fat diet + 25 mg/kg CIP) group showed significantly more weight loss and fat accumulation relative to the HFD+H (high-fat diet + 50 mg/kg CIP) group. Furthermore, CIP intervention modulated lipid metabolism and mRNA levels of inflammatory mediators in liver. Overall, CIP clearly improved the intestinal barrier in HFD-fed mice. Additionally, we observed that CIP intervention improved intestinal microbiota community richness and diversity in HFD-fed mice. The CIP intervention mice group showed a relatively low Firmicutes to Bacteroidetes ratio compared to the HFD group. This study concluded that CIP could be used as a functional food to prevent adipocyte accumulation, reduce systemic inflammation, and protect the intestinal barrier.
Collapse
|
25
|
Bai R, Cui F, Li W, Wang Y, Wang Z, Gao Y, Wang N, Xu Q, Hu F, Zhang Y. Codonopsis pilosula oligosaccharides modulate the gut microbiota and change serum metabolomic profiles in high-fat diet-induced obese mice. Food Funct 2022; 13:8143-8157. [PMID: 35816111 DOI: 10.1039/d2fo01119k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity has become a major health problem worldwide, linked to gut microbiota imbalance and chronic inflammation. This study aims to evaluate whether Codonopsis pilosula oligosaccharides (CPOs) can alleviate obesity and related metabolic complications in high-fat diet (HFD) induced obese mice. Male C57BL/6J mice were fed with a HFD for 16 weeks and treated daily with CPOs (500 mg kg-1). CPO supplementation decreased body weight and fat accumulation and improved glucose tolerance in HFD-fed mice. CPOs also reversed the effects of the HFD on inflammatory markers and improved macrophage infiltration. The results of gut microbiota analysis showed that CPOs could also regulate gut microbiota composition, significantly increasing the abundance of the beneficial bacteria Muribaculaceae spp., Alistipes and Clostridium and decreasing the abundance of the harmful bacteria Rikenella, Enterobacteriaceae spp., Collinsella and Megasphaera in HFD mice. Based on serum non-targeted metabolomics analysis, 20 key metabolites responding to CPO treatment were identified, and their biological functions were mainly related to tryptophan and bile acid metabolism. The results demonstrate that CPO supplementation can ameliorate HFD-induced obesity and obesity-related metabolic disorders. It can be used as a novel gut microbiota modulator to prevent HFD-induced gut dysbiosis.
Collapse
Affiliation(s)
- Ruibin Bai
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Fang Cui
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China. .,Codonopsis Radix Research Institute, Lanzhou University, Lanzhou, 730000, China
| | - Wen Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China. .,Codonopsis Radix Research Institute, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Zixia Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Yingrui Gao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Nan Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Qiaohong Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China.
| | - Fangdi Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, 730000, China. .,Codonopsis Radix Research Institute, Lanzhou University, Lanzhou, 730000, China
| | - Yan Zhang
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, 252052, China.
| |
Collapse
|
26
|
Wang A, Guan B, Shao C, Zhao L, Li Q, Hao H, Gao Z, Chen K, Hou Y, Xu H. Qing-Xin-Jie-Yu Granule alleviates atherosclerosis by reshaping gut microbiota and metabolic homeostasis of ApoE-/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154220. [PMID: 35675748 DOI: 10.1016/j.phymed.2022.154220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a key pathological factor in cardiovascular disease (CVD) and is characterized by high mortality and morbidity worldwide. Metabolic disorders, including pathoglycemia and dyslipidemia that lead to chronic inflammation, represent the prominent pathological characteristics of atherosclerotic CVD, Qing-Xin-Jie-Yu Granule (QXJYG) is a Chinese traditional decoction that has been clinically proven to be effective for patients with CVD. However, the underlying mechanisms have not been completely elucidated. PURPOSE To investigate the protective effects of QXJYG against AS and its potential mechanisms. METHODS QXJYG was orally administered at doses of 1.664 and 4.992 g·kg-1·d-1 in a high-fat diet (HFD)-induced AS model using ApoE-/- mice. Histopathological and immunohistochemical analyses, ELISA, untargeted and targeted metabolomics analysis, 16S rRNA analysis, and RT-qPCR were performed to identify the therapeutic effects and mechanisms of QXJYG in treating HFD-induced AS. RESULTS QXJYG retarded HFD-induced weight gain and reduced the increased serum levels of total cholesterol, triglycerides, and low-density lipoprotein-cholesterol, whereas high-dose QXJYG increased the serum level of high-density lipoprotein-cholesterol in HFD-fed ApoE-/- mice. Meanwhile, QXJYG reduced the serum levels, as well as aortas mRNA levels of the inflammatory cytokines, IL-1β and IL-6, which indicates that QXJYG is effective against metaflammation. Mechanistically, QXJYG reshaped the gut microbiota and its associated bile acids (BAs) metabolomic phenotype, partly by increasing the levels of BA synthesis enzymes, hepatic CYP7A1, and CYP27A1, while decreasing ileal FGF15 and β-Klotho mRNA expression, favoring facilitated de novo BAs synthesis and thereby driving cholesterol catabolic excretion. CONCLUSION Our findings indicate that QXJYG is effective against HFD-triggered chronic inflammation, and contributes to the alleviation of AS development, and the antiatherogenic properties of QXJYG may be partly due to the remodeling of the gut microbiota and BA metabolism. Although the results are encouraging, further clinical studies of anti-AS herbal medicines are required to elucidate the full potential of the gut microbiota and BA metabolism.
Collapse
Affiliation(s)
- Anlu Wang
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Baoyi Guan
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Chang Shao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Zhao
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Qiuyi Li
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuye Gao
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Keji Chen
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Xu
- China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing 100091, China.
| |
Collapse
|
27
|
Huang Y, Chen H, Zhang K, Lu Y, Wu Q, Chen J, Li Y, Wu Q, Chen Y. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: A review. Int J Biol Macromol 2022; 213:967-986. [PMID: 35697165 DOI: 10.1016/j.ijbiomac.2022.06.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/08/2023]
Abstract
Intestinal dysbiosis is one of the major causes of the occurrence of metabolic syndromes, such as obesity, diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases. Polysaccharide-based microbial therapeutic strategies have excellent potential in the treatment of metabolic syndromes, but the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria and the host are essential to achieve precise control of the gut microbiome and obtain valuable clinical data. Polysaccharides cannot be directly digested; the behavior in the intestinal tract is considered a "bridge" between microbiota and host communication. To provide a relatively comprehensive reference for researchers in the field, we will discuss the polysaccharide extraction and purification processes and chemical and structural characteristics, focusing on the polysaccharides in gut microbiota through the immune system, gut-liver axis, gut-brain axis, energy axis interactions, and potential applications.
Collapse
Affiliation(s)
- Yuzhe Huang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Hao Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Kunfeng Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yongming Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Qianzheng Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Jielin Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yong Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Qingxi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Ecological Engineering and Biotechnology of Anhui Province and Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China.
| |
Collapse
|
28
|
Oyster (Crassostrea gigas) polysaccharide ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat diet fed mice. Int J Biol Macromol 2022; 216:916-926. [PMID: 35868410 DOI: 10.1016/j.ijbiomac.2022.07.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/15/2022]
Abstract
Oyster is nutritious shellfish, wildly consumed throughout the world. Its polysaccharide (OPS) has various bioactivity. In the present study, the anti-obesity effect of OPS was evaluated in obese mice induced by a high-fat diet (HFD). The results showed that OPS significantly alleviated weight gain, dyslipidemia, and metabolic endotoxemia of obese mice, and accelerated the production of short-chain fatty acids. OPS also regulated lipid metabolism of adipose and liver by activating the expression of p-AMPKα to further down-regulate the expression of SREBP-1c, PPARγ, and p-ACC-1. 16S rRNA results indicated that OPS corrected HFD-induced gut microbiota dysbiosis by enriching beneficial bacteria (Bifidobacterium, Lactobacillus, Dobosiella, and Faecalibaculum) and decreasing harmful bacteria (Erysipelatoclostridium, Helicobacter, and Mucispirillum). In summary, these results revealed that OPS could serve as a potential prebiotic to improve obesity.
Collapse
|
29
|
Yang Z, Zhu X, Wen A, Ran J, Qin L, Zhu Y. Coix Seed-Based Milk Fermented With Limosilactobacillus reuteri Improves Lipid Metabolism and Gut Microbiota in Mice Fed With a High-Fat Diet. Front Nutr 2022; 9:921255. [PMID: 35903451 PMCID: PMC9320324 DOI: 10.3389/fnut.2022.921255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the effects of coix seed-based milk (CSM) fermented with Limosilactobacillus reuteri (L. reuteri) on dyslipidemia and the composition of the intestinal microbiota in high fat diet (HFD)-fed mice. Changes in the body weight, serum lipid levels, activities of hepatic oxidative stress factors, expression of lipid-related genes, and composition of the intestinal microbiota of HFD-fed mice after supplementation with CSM were determined. The results showed that intake of CSM reduced the body weight gain as well as serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and increased the high-density lipoprotein cholesterol (HDL-C) levels in the mice. Meanwhile, supplementation with CSM could relieve liver oxidative stress, down-regulate the expression of genes related to lipid synthesis, and prevent liver fat accumulation in mice fed with HFD. The 16S rRNA sequencing of the intestinal microbiota showed that CSM regulated the gut microbiota community structure at different taxonomic levels, and reversed gut dysbiosis induced by HFD. The relative abundance of Muribaculaceae, Lachnospiraceae, Dubosiella and Akkermansia which are negatively correlated with blood lipid levels were significantly increased by the intervention of CSM, while the relative abundance of Desulfovibrionaceae, Ruminococca-ceae_UCG-014, Psychrobacter, and Staphylococcus which have positive correlation with blood lipid levels were significantly decreased. These results indicated that CSM might serve as a novel and promising dietary supplement for ameliorating hyperlipidemia and intestinal microbiota disorders caused by HFDs.
Collapse
Affiliation(s)
- Zhoujie Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xiaoli Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Anyan Wen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Likang Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- *Correspondence: Likang Qin
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, China
| |
Collapse
|
30
|
Huang R, Zhu Z, Wu S, Wang J, Chen M, Liu W, Huang A, Zhang J, Wu Q, Ding Y. Polysaccharides from Cordyceps militaris prevent obesity in association with modulating gut microbiota and metabolites in high-fat diet-fed mice. Food Res Int 2022; 157:111197. [PMID: 35761521 DOI: 10.1016/j.foodres.2022.111197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/23/2022] [Accepted: 03/27/2022] [Indexed: 01/05/2023]
Abstract
Improved gut microbes and nutritious metabolites have been considered as the mediators of health benefits from indigestible polysaccharides, but their role in the anti-obesity effect of polysaccharides from Cordyceps militaris (CMP) remains elusive. This study aims to explore the potential mediators of the anti-obesity effects of CMP in high-fat diet (HFD)-fed mice using 16S rRNA sequencing and untargeted metabolomics analysis. The results showed that CMP supplementation in HFD-fed mice reduced body weight, fat accumulation, pro-inflammatory cytokine levels, and impaired glucose tolerance as well as gut barrier. Moreover, the CMP reversed the HFD-induced gut microbiota dysbiosis, as indicated by the elevated population of Alloprevotella, Parabacteroides, Butyricimonas, and Alistipes; and decreased population of Negativebacillus, in addition to altered levels of metabolites, such as brassicasterol and 4'-O-methylkanzonol W. Notably, CMP prevented obesity in association with the altered gut microbes and metabolites. These findings suggest that CMP may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play a critical role in its preventing obesity-related diseases.
Collapse
Affiliation(s)
- Rui Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shujian Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Mengfei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wei Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Aohuan Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
31
|
Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153279. [PMID: 35074372 DOI: 10.1016/j.scitotenv.2022.153279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathological changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Rui Jia
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| |
Collapse
|
32
|
Zeng Z, Zhou Y, Xu Y, Wang S, Wang B, Zeng Z, Wang Q, Ye X, Jin L, Yue M, Tang L, Zou P, Zhao P, Li W. Bacillus amyloliquefaciens SC06 alleviates the obesity of ob/ob mice and improves their intestinal microbiota and bile acid metabolism. Food Funct 2022; 13:5381-5395. [PMID: 35470823 DOI: 10.1039/d1fo03170h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary interventions with probiotics have been widely reported to be effective in regulating obesity, and the intestinal microbiota is considered to be an important environmental factor. However, few reports focus on the interactions of microbiota-metabolites-phenotypic variables in ob/ob mice, and they have not been characterized in great detail. In this study, we investigated the effects of Bacillus amyloliquefaciens SC06 on obesity, the intestinal microbiota and the bile acid metabolism of ob/ob mice using biochemical testing, histochemical staining, high-throughput sequencing of the 16S rRNA gene, LC-MS/MS analysis and qRT-PCR. The results showed that SC06 ameliorated the fat mass percentage, hepatic steatosis and liver lipid metabolism disorders and reshaped the gut microbiota and metabolites in male ob/ob mice, specifically deceasing f_S24-7, p_TM7, s_Alistipes massiliensis, f_Rikenellaceae, f_Prevotellaceae, f_Lactobacillaceae, g_Alistipes, g_Flexispira, g_Lactobacillus, g_Odoribacter, g_AF12 and g_Prevotella and increasing f_Bacteroidaceae, g_Bacteroides and f_Desulfovibrionaceae. Meanwhile, SC06 treatment groups had lower ibuprofen and higher glycodeoxycholic acid and 7-dehydrocholesterol. Correlation analysis further clarified the relationships between compositional changes in the microbiota and alterations in the metabolites and phenotypes of ob/ob mice. Moreover, SC06 downregulated bile acid synthesis, export and re-absorption in the liver and increased ileum re-absorption into the blood in ob/ob mice, which may be mediated by the FXR-SHP/FGF15 signaling pathway. These results suggest that Bacillus amyloliquefaciens SC06 can ameliorate obesity in male ob/ob mice by reshaping the intestinal microbial composition, changing metabolites and regulating bile acid metabolism via the FXR signaling pathway.
Collapse
Affiliation(s)
- Zhonghua Zeng
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Yibin Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Song Wang
- Biomarker Technologies Corporation, Beijing 101300, China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zihan Zeng
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiaolin Ye
- University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Lu Jin
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Min Yue
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
33
|
Wu G, Tawfeeq HR, Lackey AI, Zhou Y, Sifnakis Z, Zacharisen SM, Xu H, Doran JM, Sampath H, Zhao L, Lam YY, Storch J. Gut Microbiota and Phenotypic Changes Induced by Ablation of Liver- and Intestinal-Type Fatty Acid-Binding Proteins. Nutrients 2022; 14:1762. [PMID: 35565729 PMCID: PMC9099671 DOI: 10.3390/nu14091762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fatty acid-binding protein (IFABP; FABP2) and liver fatty acid-binding protein (LFABP; FABP1) are small intracellular lipid-binding proteins. Deficiency of either of these proteins in mice leads to differential changes in intestinal lipid transport and metabolism, and to markedly divergent changes in whole-body energy homeostasis. The gut microbiota has been reported to play a pivotal role in metabolic process in the host and can be affected by host genetic factors. Here, we examined the phenotypes of wild-type (WT), LFABP-/-, and IFABP-/- mice before and after high-fat diet (HFD) feeding and applied 16S rRNA gene V4 sequencing to explore guild-level changes in the gut microbiota and their associations with the phenotypes. The results show that, compared with WT and IFABP-/- mice, LFABP-/- mice gained more weight, had longer intestinal transit time, less fecal output, and more guilds containing bacteria associated with obesity, such as members in family Desulfovibrionaceae. By contrast, IFABP-/- mice gained the least weight, had the shortest intestinal transit time, the most fecal output, and the highest abundance of potentially beneficial guilds such as those including members from Akkermansia, Lactobacillus, and Bifidobacterium. Twelve out of the eighteen genotype-related bacterial guilds were associated with body weight. Interestingly, compared with WT mice, the levels of short-chain fatty acids in feces were significantly higher in LFABP-/- and IFABP-/- mice under both diets. Collectively, these studies show that the ablation of LFABP or IFABP induced marked changes in the gut microbiota, and these were associated with HFD-induced phenotypic changes in these mice.
Collapse
Affiliation(s)
- Guojun Wu
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hiba R. Tawfeeq
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Atreju I. Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yinxiu Zhou
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Zoe Sifnakis
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Sophia M. Zacharisen
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Heli Xu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Justine M. Doran
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
| | - Harini Sampath
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liping Zhao
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yan Y. Lam
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA; (G.W.); (H.S.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
- Gut Microbiota and Metabolism Group, Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA; (H.R.T.); (A.I.L.); (Y.Z.); (Z.S.); (S.M.Z.); (H.X.); (J.M.D.)
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
34
|
Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol 2022; 13:859206. [PMID: 35369480 PMCID: PMC8965082 DOI: 10.3389/fmicb.2022.859206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Unhealthy diet, in particular high-fat diet (HFD) intake, can cause the development of several metabolic disorders, including obesity, hyperlipidemia, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS). These popular metabolic diseases reduce the quality of life, and induce premature death worldwide. Evidence is accumulating that the gut microbiota is inextricably associated with HFD-induced metabolic disorders, and dietary intervention of gut microbiota is an effective therapeutic strategy for these metabolic dysfunctions. Polysaccharides are polymeric carbohydrate macromolecules and sources of fermentable dietary fiber that exhibit biological activities in the prevention and treatment of HFD-induced metabolic diseases. Of note, natural polysaccharides are among the most potent modulators of the gut microbiota composition. However, the prebiotics-like effects of polysaccharides in treating HFD-induced metabolic diseases remain elusive. In this review, we introduce the critical role of gut microbiota human health and HFD-induced metabolic disorders. Importantly, we review current knowledge about the role of natural polysaccharides in improving HFD-induced metabolic diseases by regulating gut microbiota.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | | | - Cun-Wu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Bao-Wei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| |
Collapse
|
35
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1170-1179. [DOI: 10.1093/jpp/rgac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022]
|
36
|
Yang M, Yin Y, Wang F, Zhang H, Ma X, Yin Y, Tan B, Chen J. Supplementation With Lycium barbarum Polysaccharides Reduce Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota. Front Microbiol 2021; 12:719967. [PMID: 34512598 PMCID: PMC8427603 DOI: 10.3389/fmicb.2021.719967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/09/2021] [Indexed: 01/12/2023] Open
Abstract
Lycium barbarum polysaccharides (LBPs) have been proved to prevent obesity and modulate gut microbiota. However, the underlying mechanisms of LBPs’ regulating lipid metabolism remain entirely unclear. Therefore, the purpose of this study was to determine whether LBPs are able to modulate the gut microbiota to prevent obesity. The results showed that oral administration of LBPs alleviated dyslipidemia by decreasing the serum levels of total triglycerides, total cholesterol, and low-density lipoprotein-cholesterol and elevating the high-density lipoprotein cholesterol in obese mice. Furthermore, LBP treatment decreased the number and size of adipocytes in epididymal adipose tissues and downregulated the expression of adipogenesis-related genes, including acetyl-CoA carboxylase 1, fatty acid synthase, stearoyl-CoA desaturase 1, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer-binding protein α. 16S rRNA gene sequencing analysis showed that LBPs increased the diversity of bacteria, reduced the Firmicutes/Bacteroidetes ratio, and improved the gut dysbiosis induced by a high-fat diet; for example, LBPs increased the production of short-chain fatty acid-producing bacteria Lacticigenium, Lachnospiraceae_NK4A136_group, and Butyricicoccus. LBPs treatment also increased the content of fecal short-chain fatty acids, including butyric acid. These findings illustrate that LBPs might be developed as a potential prebiotic to improve lipid metabolism and intestinal diseases.
Collapse
Affiliation(s)
- Mei Yang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Haihan Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Changsha, China
| |
Collapse
|
37
|
Kong Y, Li Y, Dai Z, Qin M, Fan H, Hao J, Zhang C, Zhong Q, Qi C, Wang P. Glycosaminoglycan from Ostrea rivularis attenuates hyperlipidemia and regulates gut microbiota in high-cholesterol diet-fed zebrafish. Food Sci Nutr 2021; 9:5198-5210. [PMID: 34532028 PMCID: PMC8441474 DOI: 10.1002/fsn3.2492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022] Open
Abstract
Hyperlipidemia an immense group of acquired or genetic metabolic disorders that is characterized by an excess of lipids in the bloodstream. Altogether, they have a high prevalence worldwide and constitute a major threat to human health. Glycosaminoglycans (GAG) are natural biomolecules that have hypolipidemic activity. The purpose of this study was to investigate the potential hypolipidemic effect of glycosaminoglycans extracted from Ostrea rivularis (OGAG) on hyperlipidemic zebrafish, as well as the possible underlying mechanism of such effect. Dietary supplementation with OGAG during 4 weeks significantly reduced the serum and hepatic lipid levels and the hepatosomatic index in hyperlipidemic zebrafish. In addition, histopathological showed that OGAG supplementation decreases the volume and number of lipid droplets in hepatocytes. Transcriptome and real-time quantitative polymerase chain reaction analysis revealed that the gene expression levels of PPARγ, SCD, HMGRA, ACAT2, HMGCS, and HMGCR were significantly downregulated by OGAG treatment in hepatocytes, whereas those of CD36, FABP2, FABP6, ABCG5, and CYP7A1 were significantly upregulated. This suggests that the hypolipidemic effect of OGAG relies on increasing the ketogenic metabolism of fatty acids, inhibiting cholesterol synthesis, and enhancing the transformation of cholesterol to bile acid. Furthermore, OGAG treatment improved gut microbiota imbalance by reducing the Firmicutes-to-Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria (Bacteroidetes, Verrucomicrobia, Acidobacteria, and Sphingomonas), and reducing the relative abundance of harmful bacteria (Proteobacteria, Cohaesibacter, Vibrio, and Terrisporobacter). These findings highlight the potential benefit of implementing OGAG as a dietary supplement to prevent and treat hyperlipidemia.
Collapse
Affiliation(s)
- Yan Kong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
| | - Ying Li
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Zi‐Ru Dai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Mei Qin
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - He‐Liang Fan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Jun‐Guang Hao
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Chen‐Xiao Zhang
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Qiu‐Ping Zhong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
| | - Cen Qi
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Pei Wang
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| |
Collapse
|
38
|
Liang J, Xu R, Zong K, Yu N, Wu Z, Wu H, Zhou A. Structural analysis and anti‐obesity effect of
Polygonatum cyrtonema
polysaccharide against obesity induced by high‐fat diet in mice. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Juan Liang
- School of Pharmacy Anhui University of Chinese Medicine Hefei 230038 China
- Anhui Province Key Laboratory of R&D of Chinese Medicine Anhui Province Key Laboratory of Chinese Medicinal Formula Anhui University of Chinese Medicine Hefei 230021 China
| | - Rujing Xu
- Anhui Province Key Laboratory of R&D of Chinese Medicine Anhui Province Key Laboratory of Chinese Medicinal Formula Anhui University of Chinese Medicine Hefei 230021 China
| | - Kai Zong
- Technical Center of Hefei Customs Hefei 230022 China
| | - Nianjun Yu
- School of Pharmacy Anhui University of Chinese Medicine Hefei 230038 China
- Anhui Province Key Laboratory of R&D of Chinese Medicine Anhui Province Key Laboratory of Chinese Medicinal Formula Anhui University of Chinese Medicine Hefei 230021 China
| | - Zhendong Wu
- Jiuhua Medicine Technology Co. Chizhou 242899 China
| | - Hongfei Wu
- School of Pharmacy Anhui University of Chinese Medicine Hefei 230038 China
- Anhui Province Key Laboratory of R&D of Chinese Medicine Anhui Province Key Laboratory of Chinese Medicinal Formula Anhui University of Chinese Medicine Hefei 230021 China
| | - An Zhou
- Anhui Province Key Laboratory of R&D of Chinese Medicine Anhui Province Key Laboratory of Chinese Medicinal Formula Anhui University of Chinese Medicine Hefei 230021 China
| |
Collapse
|
39
|
Natural Dietary and Medicinal Plants with Anti-Obesity Therapeutics Activities for Treatment and Prevention of Obesity during Lock Down and in Post-COVID-19 Era. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177889] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overweight and obesity have become global epidemics, especially during the lockdown due to the COVID-19 pandemic. The potential of medicinal plants as a better and safe option in treating obesity and overweight has gained attention in recent years. Obesity and overweight has become a major public health concern, and its incidence rising at an alarming rate. Obesity is one of the major types of metabolic syndrome, resulting in various types of problems such as hypertension, diabetes, dyslipidemia, and excess fat accumulation. The current searching was done by the keywords in main indexing systems including Scopus, PubMed/MEDLINE, the search engine of Google Scholar, and Institute for Scientific Web of Science. The keywords were traditional medicine, health benefits, pharmaceutical science, pomegranate, punicalin, punicalagin, and ellagitannins. Google Scholar was searched manually for possible missing manuscripts, and there was no language restriction in the search. This review was carried out to highlight the importance of medicinal plants which are common in traditional medicinal sciences of different countries, especially Asia to prevent and treatment of obesity and overweight during the global pandemic and the post-COVID-19 era.
Collapse
|
40
|
Zhang Y, Wu T, Li W, Zhao Y, Long H, Liu R, Sui W, Zhang M. Lactobacillus casei LC89 exerts antidiabetic effects through regulating hepatic glucagon response and gut microbiota in type 2 diabetic mice. Food Funct 2021; 12:8288-8299. [PMID: 34308462 DOI: 10.1039/d1fo00882j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous study suggests that Lactobacillus casei exhibits antihyperglycemic activity, however, the molecular mechanism of this has yet to be elucidated. Here, the anti-diabetic effects and underlying mechanisms of Lactobacillus casei LC89 are investigated in type 2 diabetes mellitus (T2DM) mice, which was induced by a high-fat diet (HFD) with streptozotocin (100 mg per kg BW). The results show that LC89 at a dose of 109 CFU day-1 decreases fasting blood glucose (FBG) and insulin levels by 35.12% and 28.37%, respectively, compared to the diabetes control (DC) group. Moreover, LC89 treatment improved the insulin resistance index (HOMA-IR), serum lipid profiles and inflammation cytokines. The real-time polymerase chain reaction indicated that LC89 markedly downregulates the mRNA expression of hepatic glucagon (GCG), glucagon receptor (GCGR), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Meanwhile, LC89 significantly decreases the abundance of Odoribacter, but increases the Alloprevotella, Bacteroides, Parabacteroides and Ruminococcus content. Therefore, LC89 plays a positive role in alleviating T2DM by regulating gut microbiota and glucagon signal pathway-related genes, and it may be a beneficial dietary supplement to regulate glucose metabolism in T2DM.
Collapse
Affiliation(s)
- Yongli Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wen Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yunjiao Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Hairong Long
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. and Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi 530023, China
| | - Rui Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenjie Sui
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education & Tianjin Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China. and Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
41
|
Liaqat I, Durrani AI, Zafar U, Rubab S, Faheem M, Mubin M, Raza C, Aftab N. Role of modified diet and gut microbiota in metabolic endotoxemia in mice. Arch Microbiol 2021; 203:5085-5093. [PMID: 34302505 DOI: 10.1007/s00203-021-02491-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
This study was aimed at investigating the effect of cultured gut microbiota (GM) from obese humans coupled HFD in inducing metabolic endotoxemia in humanized mice. In total, 30 strains were isolated from 10 stool samples of obese patients. Following morphological and biochemical characterization, 16S rRNA gene sequencing of six abundant isolates identified these Klebsiella aerogenes, Levilactobacillus brevis, Escherichia coli, Staphylococcus aureus, Bacillus cereus and Bacillus subtilis (MZ052089-MZ052094). In vivo trial using above isolates, known as human gut microbiota (HGM), was performed for six months. Sixteen mice were distributed into four groups, i.e., G1 (control) mice fed with chow diet, group 2 (G2) with HFD, group 3 (G3) with HFD + HGM and group 4 (G4) with chow diet + HGM. Body mass index (BMI) and plasma endotoxins were measured pre- and post-experiment. In vivo study revealed that HFD + HGM caused significant increase (3.9 g/cm at 20 weeks) in the body weight and BMI (0.4 g/cm post-experiment) of G3 mice compared to the other groups. One-way ANOVA showed significantly higher level of endotoxins (2.41, 4.08 and 3.7 mmol/L) in mice groups G2, G3 and G4, respectively, indicating onset of metabolic endotoxemia. Cecal contents of experimental mice groups showed a shift in microbial diversity as observed by all isolates belonging to either Firmicutes or Bacteroidetes phyla, respectively. In conclusion, current study reported that minor alteration in GM composition through HFD feeding and cultured GM transfer has significant impact in development of metabolic endotoxemia, possibly via modified intestinal permeability.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan.
| | | | - Urooj Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Saima Rubab
- Department of Pharmacognosy, Lahore Pharmacy College, LMDC Lahore, Lahore, Pakistan
| | - Mehwish Faheem
- Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Chand Raza
- Microbiology Lab, Department of Zoology, GC University, Lahore, Pakistan
| | - Nauman Aftab
- Institute of Industrial Biotechnology, GC University, Lahore, Pakistan
| |
Collapse
|
42
|
Guo W, Zhu S, Li S, Feng Y, Wu H, Zeng M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int J Biol Macromol 2021; 182:1371-1383. [PMID: 34004199 DOI: 10.1016/j.ijbiomac.2021.05.067] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Microalgae are emerging as a good source of natural nutraceuticals and medicines. This study aims at evaluating the anti-obesity effects of two microalgae polysaccharides (CPS from Chlorella pyrenoidosa and SPS from Spirulina platensis) in high-fat diet (HFD)-induced obese C57BL/6 mice, with β-glucan as a positive control polysaccharide. CPS, SPS and β-glucan were daily administered intragastrically during 10-week HFD feeding, and conferred equally effective protection against overweight, energy imbalance, glucose tolerance impairment, systemic inflammation, dyslipidemia, and fat deposition in the liver and epididymal white adipose tissues. By western blotting analysis of CPT-1, PPARγ and SREBP-1c, those polysaccharides increased lipolysis and decreased lipogenesis in the liver. According to high-throughput sequencing of fecal 16S rRNA, CPS, SPS and β-glucan corrected the HFD-induced gut dysbiosis similarly by increasing beneficial bacteria especially Clostridia, Bacterioidia and Mollicutes and decreasing unfavorable bacteria especially Actinobacteria and Verrucomicrobia and, as revealed by PICRUSt functional analysis, they restored the HFD-induced perturbations in many gut bacterial enzymes and pathways involved in the metabolism of SCFAs, secondary bile acids and trimethylamine, implicating a possible anti-obesity mechanism through gut microbiome-mediated modulation of host lipid metabolism. Microalgae polysaccharides can thus serve as potent alternative food ingredients to improve disease conditions in obese patients.
Collapse
Affiliation(s)
- Wei Guo
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Suqin Zhu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266021, China
| | - Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yinong Feng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
43
|
Liang D, Zhang L, Chen H, Zhang H, Hu H, Dai X. Potato resistant starch inhibits diet-induced obesity by modifying the composition of intestinal microbiota and their metabolites in obese mice. Int J Biol Macromol 2021; 180:458-469. [PMID: 33711371 DOI: 10.1016/j.ijbiomac.2021.02.209] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/19/2021] [Accepted: 02/27/2021] [Indexed: 12/23/2022]
Abstract
Potato resistant starch type 3 (PRS) is helpful for weight-loss. To investigate the regulatory effects of PRS on high-fat diet (HFD)-induced obesity, different doses of PRS (5%, 15% and 25%) were fed to mice for 12 weeks. Metabolic syndrome related to obesity, intestinal microbiota composition and its metabolites as well as the relationship among them were studied. Results showed that PRS could regulate HFD-induced metabolic syndrome in a dose dependent manner; promote the proliferation of intestinal cells and expression of tight junction proteins, such as Occludin and zonula occludens (ZO)-1; reduce the Firmicutes/Bacteroidetes (F/B) rate; regulate the relative abundance of intestinal microbiota, such as Bifidobacterium, Ruminococcus, Bacteroides and Coprococcus; and promote the production of microbial metabolites, such as propionic acid and acetic acid. Besides, the alteration in the intestinal microbiota composition and metabolites were significantly correlated. It could be concluded that propionic acid and acetic acid were the two dominant metabolites of Bifidobacterium, Ruminococcus, Bacteroides, and Coprococcus, which contributed to the anti-obesity potential of PRS, metabolic syndrome alleviation, and intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Dan Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hongzhu Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hong Zhang
- Hefei CAAS Nutridoer Co. Ltd., Academy of Food Nutrition and Health Innovation, Chinese Academy of Agricultural Sciences, Hefei 238000, PR China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaofeng Dai
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
44
|
Wang Y, Jin C, Wang D, Zhou J, Yang G, Shao K, Wang Q, Jin Y. Effects of chlorothalonil, prochloraz and the combination on intestinal barrier function and glucolipid metabolism in the liver of mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124639. [PMID: 33246813 DOI: 10.1016/j.jhazmat.2020.124639] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Chlorothalonil (CHL) and procymidone (PRO) are fungicides that exhibit low toxicity and are widely used in many countries. And both fungicides are frequently detected in the food chain. However, the health risk posed by these fungicides is still unclear. Here, 8-week-old male C57BL/6 mice were orally treated with CHL (10, 50 mg/kg/day), PRO (20, 100 mg/kg/day) and CHL+PRO (5+10, 25+50 mg/kg/day) by dietary supplementation for 10 weeks. Hepatic pathological analysis showed that exposure to CHL, PRO and CHL+PRO could cause liver injury. The glucose, triglyceride (TG) levels and the related gene expression to glucolipid metabolism changed significantly. The significantly reduced acylcarnitine levels demonstrated that CHL, PRO and CHL+PRO exposure inhibited fatty acids (FAs) β-oxidation. In addition, CHL and PRO altered the structure of the gut microbiota and destroyed the integrity of the intestinal barrier function. In particular, AF12, Odoribacter, Prevotella and Lactobacillus were highly correlated with carnitine. The results showed that CHL, PRO and CHL+PRO exposure might inhibit FAs β-oxidation by decreasing cystic fibrosis transmembrane conductance regulator (CFTR)-mediated ion transport, indicating that these fungicides disturbed intestinal barrier function associated with glucolipid metabolism disorder. Here, the data also indicated that there was an additive effect between CHL and PRO in mice.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Jiajie Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
45
|
Zhu Z, Han Y, Ding Y, Zhu B, Song S, Xiao H. Health effects of dietary sulfated polysaccharides from seafoods and their interaction with gut microbiota. Compr Rev Food Sci Food Saf 2021; 20:2882-2913. [PMID: 33884748 DOI: 10.1111/1541-4337.12754] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Various dietary sulfated polysaccharides (SPs) have been isolated from seafoods, including edible seaweeds and marine animals, and their health effects such as antiobesity and anti-inflammatory activities have attracted remarkable interest. Sulfate groups have been shown to play important roles in the bioactivities of these polysaccharides. Recent in vitro and in vivo studies have suggested that the biological effects of dietary SPs are associated with the modulation of the gut microbiota. Dietary SPs could regulate the gut microbiota structure and, accordingly, affect the production of bioactive microbial metabolites. Because of their differential chemical structures, dietary SPs may specifically affect the growth of certain gut microbiota and associated metabolite production, which may contribute to variable health effects. This review summarizes the latest findings on the types and structural characteristics of SPs, the effects of different processing techniques on the structural characteristics and health effects of SPs, and the current understanding of the role of gut microbiota in the health effects of SPs. These findings might help in better understanding the mechanism of the health effects of SPs and provide a scientific basis for their application as functional food.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yu Ding
- Department of Food Science and Technology, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
46
|
The anti-obesity effects exerted by different fractions of Artemisia sphaerocephala Krasch polysaccharide in diet-induced obese mice. Int J Biol Macromol 2021; 182:825-837. [PMID: 33864863 DOI: 10.1016/j.ijbiomac.2021.04.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Artemisia sphaerocephala Krasch polysaccharide (ASKP) consists of two main fractions, 60P (molecular weight at 551 kDa) and 60S (molecular weight at 39 kDa). The anti-obesity effects of ASKP and its two fractions were investigated in high-fat-diet-fed mice and showed similar capability in efficiently preventing the development of obesity. The final body weight and body weight gain of obesity mice model were reduced by 12.44% and 35.33% by ASKP, 10.63% and 34.35% by 60P, and 7.82% and 20.04% by 60S. They also showed similar efficiency to ameliorate dyslipidemia, systematic inflammation, and gut dysbiosis. The colonic genes of barrier integrity were significantly upregulated and the genes of hepatic lipid metabolism and that of colonic inflammatory response were suppressed. They attenuated the gut dysbiosis in obese mice, such as the significant enrichment of beneficial genera (Bifidobacterium and Olsenella) and suppression of harmful ones (Mucispirillum and Helicobacter). Significant enrichment of carbohydrate metabolism associated with the promotion of short-chain fatty acid production and decrease of the metabolisms related to obesity and gut dysbiosis (valine, leucine, and isoleucine biosynthesis, and nitrogen metabolism) were also observed by the administration of ASKP, 60P, and 60S. Overall, these polysaccharides showed potential in acting as prebiotics in preventing high-fat-diet-induced obesity.
Collapse
|
47
|
Huang Y, Ding Y, Xu H, Shen C, Chen X, Li C. Effects of sodium butyrate supplementation on inflammation, gut microbiota, and short-chain fatty acids in Helicobacter pylori-infected mice. Helicobacter 2021; 26:e12785. [PMID: 33609322 DOI: 10.1111/hel.12785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Inflammation induced by Helicobacter pylori (H. pylori) infection is the basis for the pathogenesis of H. pylori. Butyric acid, a diet-related microbial-associated metabolite, is connected to inflammation, metabolic syndrome, and other diseases. Several studies have indicated the effects of sodium butyrate (SB) against bacteria; however, the effects of SB on the main virulence factors of H. pylori, H. pylori-induced inflammation, and gut microbiota composition remain unclear. MATERIALS AND METHODS SB was supplemented in H. pylori coculture and administered to mice infected with H. pylori. The effects of SB intake on inflammation, gut microbiota composition, and short-chain fatty acids (SCFAs) in H. pylori-infected mice were assessed. RESULTS The in vitro experiments demonstrated that SB not only inhibited the growth of H. pylori but also decreased the mRNA expression of CagA and VacA. SB intake reduced the production of virulence factors in H. pylori-infected mice, inhibited the IκBα/NF-κB pathway by reducing the expression of Toll-like receptors (TLRs), and reduced the production of TNF-α and IL-8. Further analysis demonstrated that H. pylori infection altered the relative abundance of the intestinal microbial community in mice. The level of SCFAs in the feces of H. pylori-infected mice was changed, although the intake of SB did not obviously change the level of SCFAs. CONCLUSIONS Our study showed that SB may decrease H. pylori-induced inflammation by inhibiting the viability and virulence of H. pylori and may reduce inflammation in association with the gut microbiota in H. pylori-infected mice. This study may provide novel insights into the mechanisms by which SB, a diet-related microbial-associated metabolite, affects H. pylori-induced disease development.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiyuan Xu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Shen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changping Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
48
|
Sharma P, Wu G, Kumaraswamy D, Burchat N, Ye H, Gong Y, Zhao L, Lam YY, Sampath H. Sex-Dependent Effects of 7,8-Dihydroxyflavone on Metabolic Health Are Associated with Alterations in the Host Gut Microbiome. Nutrients 2021; 13:nu13020637. [PMID: 33669347 PMCID: PMC7920311 DOI: 10.3390/nu13020637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
7,8-Dihydroxyflavone (DHF) is a naturally occurring flavonoid that has been reported to protect against a variety of pathologies. Chronic administration of DHF prevents high-fat diet (HFD)-induced obesity in female, but not male, mice. However, the mechanisms underlying this sexual dimorphism have not been elucidated. We have discovered that oral DHF supplementation significantly attenuates fat mass, hepatic lipid accumulation, and adipose tissue inflammation in female mice. In contrast, male mice were not protected from adiposity, and had a paradoxical worsening of hepatic lipid accumulation and adipose tissue inflammation upon DHF supplementation. Consistent with these sexually dimorphic effects on body weight and metabolic health, 7,8-DHF induced early and stable remodeling of the female intestinal microbiome. DHF supplementation significantly increased gut microbial diversity, and suppressed potentially detrimental bacteria, particularly Desulfovibrionaceae, which are pro-inflammatory and positively associated with obesity and inflammation. Changes in the female gut microbiome preceded alterations in body weights, and in silico analyses indicated that these early microbial changes were highly predictive of subsequent weight gain in female mice. While some alterations in the intestinal microbiome were also observed in male DHF-supplemented mice, these changes were distinct from those in females and, importantly, were not predictive of subsequent body weight changes in male animals. The temporality of microbial changes preceding alterations in body weight in female mice suggests a role for the gut microbiome in mediating the sexually dimorphic effects of DHF on body weight. Given the significant clinical interest in this flavonoid across a wide range of pathologies, further elucidation of these sexually dimorphic effects will aid the development of effective clinical therapies.
Collapse
Affiliation(s)
- Priyanka Sharma
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (P.S.); (D.K.); (N.B.); (H.Y.)
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
| | - Guojun Wu
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Deeptha Kumaraswamy
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (P.S.); (D.K.); (N.B.); (H.Y.)
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
| | - Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (P.S.); (D.K.); (N.B.); (H.Y.)
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
| | - Hong Ye
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (P.S.); (D.K.); (N.B.); (H.Y.)
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
| | - Yongjia Gong
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liping Zhao
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Yan Y. Lam
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (Y.Y.L.); (H.S.); Tel.: +1-848-932-0266 (H.S.)
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (P.S.); (D.K.); (N.B.); (H.Y.)
- Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ 08901, USA; (G.W.); (Y.G.); (L.Z.)
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (Y.Y.L.); (H.S.); Tel.: +1-848-932-0266 (H.S.)
| |
Collapse
|
49
|
Helicobacter pylori infection worsens impaired glucose regulation in high-fat diet mice in association with an altered gut microbiome and metabolome. Appl Microbiol Biotechnol 2021; 105:2081-2095. [PMID: 33576881 DOI: 10.1007/s00253-021-11165-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/23/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Emerging evidence suggests that Helicobacter pylori infection is associated with metabolic disorders, although the underlying mechanisms are poorly defined. This study aimed to investigate the interaction among H. pylori, a high-fat diet (HFD), and the gut microbiota with glucose regulation and alterations in microbial metabolites. Mice were randomly allocated to H. pylori-infected and noninfected groups fed a chow diet or an HFD. After 4 weeks, two of the HFD groups were given antibiotic cocktails for 8 weeks to eliminate the gut microbiota. The results showed that an HFD significantly promoted increases in body weight, insulin resistance, and glucose intolerance, which were alleviated to normal after antibiotic treatment. H. pylori infection aggravated HFD-induced hyperglycemia, which could not be restored by antibiotics. The perturbation of the gut microbiota was greater in the mice cotreated with H. pylori and an HFD (HFDHp) compared to those administered either H. pylori or an HFD alone, with a loss of diversity, higher abundance of Helicobacter, and lower abundance of Lactobacillus. Furthermore, compared to that of the HFD alone group, the gut microbiota of the HFDHp group was much more susceptible to antibiotic destruction, with extremely lower diversity and dominance of Klebsiella. Fecal metabolome analyses demonstrated that the combination of H. pylori infection and an HFD altered metabolic composition and function, which were linked to glucose dysregulation. H. pylori infection may exacerbate the dysbiosis of the gut microenvironment induced by an HFD, including alterations in the microbiota and metabolites, which weakens the restorative effect of antibiotics and results in the persistence of glucose disorders. KEY POINTS: • The interplay of Hp, HFD, and antibiotics on glucose metabolism was firstly explored. • Hp infection impaired the effect of antibiotics on HFD-induced glucose dysregulation. • Hp infection altered gut microbiota and metabolites which aggravated by HFD.
Collapse
|
50
|
Ibrahim KG, Mukonowenzou NC, Usman D, Adeshina KA, Erlwanger KH. The potential of Artemisia species for use as broad-spectrum agents in the management of metabolic syndrome: a review. Arch Physiol Biochem 2021; 129:752-770. [PMID: 33569991 DOI: 10.1080/13813455.2021.1871761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Although the prevalence of metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that predispose to the development of type 2 diabetes mellitus and cardiovascular diseases, is increasing globally, there is no broad-spectrum agent for its holistic treatment. Natural plant-derived products with a wide spectrum of biological activities are currently being explored as alternatives in the management of diseases. Artemisia species are a heterozygous group of plants of the Compositae family that possess several health benefits. Here we highlight their antidiabetic, anti-obesity, anti-hyperlipidaemic, hepatoprotective and cardioprotective properties among others. These activities have been linked to the presence of phytochemicals that act on several molecular targets to exert their effects and the species of Artemisia are considered to be relatively safe. Artemisia species offer significant anti-MetS activity and thus are strong therapeutic candidates for the effective management of MetS.
Collapse
Affiliation(s)
- Kasimu Ghandi Ibrahim
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nyasha Charity Mukonowenzou
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Dawoud Usman
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kehinde Ahmad Adeshina
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kennedy Honey Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|