1
|
Pereira GDN, Seribelli AA, Campioni F, Gomes CN, Tiba-Casas MR, Medeiros MIC, Rodrigues DDP, Falcão JP. High levels of multidrug-resistant isolates of genetically similar Salmonella 1,4, [5],12:I:- from Brazil between 1983 and 2020. J Med Microbiol 2024; 73. [PMID: 38375878 DOI: 10.1099/jmm.0.001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Introduction. Salmonella 1,4, [5],12:i:- strains with different antimicrobial resistance profiles have been associated with foodborne disease outbreaks in several countries. In Brazil, S. 1,4, [5],12:i:- was identified as one of the most prevalent serovars in São Paulo State during 2004-2020.Gap Statement. However, few studies have characterized this serovar in Brazil.Aim. This study aimed to determine the antimicrobial resistance profiles of S. 1,4, [5],12:i:- strains isolated from different sources in Southeast Brazil and compare their genetic diversity.Methodology. We analysed 113 S. 1,4, [5],12:i:- strains isolated from humans (n=99), animals (n=7), food (n=5) and the environment (n=2) between 1983 and 2020. Susceptibility testing against 13 antimicrobials was performed using the disc diffusion method for all the strains. Plasmid resistance genes and mutations in the quinolone resistance-determining regions were identified in phenotypically fluoroquinolone-resistant strains. Molecular typing was performed using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) for all strains and multilocus sequence typing (MLST) for 40 selected strains.Results. Of the 113 strains, 54.87 % were resistant to at least one antimicrobial. The highest resistance rates were observed against ampicillin (51.33 %), nalidixic acid (39.82 %) and tetracycline (38.05 %). Additionally, 39 (34.51 %) strains were classified as multidrug-resistant (MDR). Nine fluoroquinolone-resistant strains exhibited the gyrA mutation (Ser96→Tyr96) and contained the qnrB gene. The 113 strains were grouped into two clusters using ERIC-PCR, and most of strains were present in one cluster, with a genetic similarity of ≥80 %. Finally, 40 strains were typed as ST19 using MLST.Conclusion. The prevalence of MDR strains is alarming because antimicrobial treatment against these strains may lead to therapeutic failure. Furthermore, the ERIC-PCR and MLST results suggested that most strains belonged to one main cluster. Thus, a prevalent subtype of Salmonella 1,4, [5],12:i:- strains has probably been circulating among different sources in São Paulo, Brazil, over decades.
Collapse
Affiliation(s)
- Giovana do Nascimento Pereira
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas (DACTB), Ribeirão Preto, SP, Brazil
| | - Amanda Aparecida Seribelli
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas (DACTB), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto, Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Ribeirão Preto, SP, Brazil
| | - Fábio Campioni
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas (DACTB), Ribeirão Preto, SP, Brazil
- Universidade de São Paulo (USP), Instituto de Física de São Carlos, Departamento de Física e Ciência Interdisciplinar, São Carlos, SP, Brazil
| | - Carolina Nogueira Gomes
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas (DACTB), Ribeirão Preto, SP, Brazil
| | | | | | | | - Juliana Pfrimer Falcão
- Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Departamento de Análises Clínicas, Toxicológicas e Bromatológicas (DACTB), Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Leão C, Silveira L, Usié A, Gião J, Clemente L, Themudo P, Amaro A, Pista A. Genetic Diversity of Salmonella enterica subsp. enterica Serovar Enteritidis from Human and Non-Human Sources in Portugal. Pathogens 2024; 13:112. [PMID: 38392849 PMCID: PMC10892295 DOI: 10.3390/pathogens13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the leading causes of foodborne infections associated with broilers and laying hens. Portugal has had the lowest notification rates of salmonellosis in recent years, due to the vaccinations of layer and breeder flocks and strict compliance with biosecurity measures. However, data about the genetic diversity of S. Enteritidis in Portugal are scarce. In this study, 102 S. Enteritidis isolates selected from human (n = 63) and non-human sources (n = 39) were characterized by serotyping, antimicrobial susceptibility, and whole genome sequencing. The S. Enteritidis population was mainly resistant to fluoroquinolones, and a sole isolate showed resistance to extended-spectrum cephalosporins. ST11 was the most frequent sequence type, and three novel STs from human isolates (ST9236, ST4457, and ST9995) were assigned. Several Salmonella pathogenic islands (SPI) and Putative SPI were present in the genomes, namely SPI-1, 2, 3, 4, 5, 9, 10, 12, 13, and 14, C63PI, CS54_island, and 170 virulence genes were identified. The phylogenetic analysis revealed that strains from Portugal are genetically heterogeneous regarding sample type, collection date, and genetic content. This study increases the available data, essential to a better characterization of strains in a global context.
Collapse
Affiliation(s)
- Célia Leão
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Ana Usié
- Department of Animal Genomics and Bioinformatics, Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal;
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento & CHANGE–Global Change and Sustainability Institute, CEBAL, 7801-908 Beja, Portugal
| | - Joana Gião
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, 1300-477 Lisbon, Portugal
| | - Patricia Themudo
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, Department of Antimicrobial Resistance, National Institute of Agrarian and Veterinary Research (INIAV, IP), 2780-157 Oeiras, Portugal; (C.L.); (J.G.); (L.C.); (P.T.); (A.A.)
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
| |
Collapse
|
3
|
Gvaladze T, Lehnherr H, Große-Kleimann J, Hertwig S. A Bacteriophage Cocktail Reduces Five Relevant Salmonella Serotypes at Low Multiplicities of Infection and Low Temperatures. Microorganisms 2023; 11:2298. [PMID: 37764141 PMCID: PMC10535997 DOI: 10.3390/microorganisms11092298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella are important pathogenic bacteria and, following Campylobacter, they are the second most common cause of bacterial foodborne infections worldwide. To reduce the presence of bacteria along the food chain, the application of bacteriophages (phages) may be a promising tool. In this study, the lytic properties of six phages against five relevant Salmonella serotypes (S. Enteritidis, S. Typhimurium, S. Infantis, S. Paratyphi B and S. Indiana) were analyzed. Three phages were able to lyse all five serotypes. We determined the lytic potential of each phage on indicator strains in vitro at room temperature (RT) and at 37 °C using low multiplicities of infection (MOIs). Most phages reduced their host more efficiently at RT than at 37 °C, even at the lowest MOI of 0.001. Following this, the lytic activity of a cocktail comprising five phages (MOI = 0.1) was examined with each of the five serotypes and a mix of them at RT, 15, 12, 10, 8 and 6 °C. All cultures of single serotypes as well as the mixture of strains were significantly reduced at temperatures as low as 8 °C. For single serotypes, reductions of up to 5 log10 units and up to 2.3 log10 units were determined after 6 h (RT) and 40 h (8 °C), respectively. The mixture of strains was reduced by 1.7 log10 units at 8 °C. The data clearly suggest that these phages are suitable candidates for biocontrol of various Salmonella serotypes under food manufacturing conditions.
Collapse
Affiliation(s)
- Tamar Gvaladze
- Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | | | - Julia Große-Kleimann
- Department for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Stefan Hertwig
- Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| |
Collapse
|
4
|
Galán-Relaño Á, Sánchez-Carvajal J, Gómez-Gascón L, Vera E, Huerta B, Cardoso-Toset F, Gómez-Laguna J, Astorga R. Phenotypic and genotypic antibiotic resistance patterns in Salmonella Typhimurium and its monophasic variant from pigs in southern Spain. Res Vet Sci 2022; 152:596-603. [DOI: 10.1016/j.rvsc.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
|
5
|
Martins Morasi R, Zimbardi da Silva A, Thais Alves Dantas S, Faganello C, Cristina Bastos Juliano L, Lúcia Mores Rall V, Ribeiro Tiba-Casas M, Pantoja JC, Ferreira Amarante A, Cristina Cirone Silva N. Overview of antimicrobial resistance and virulence factors in Salmonella spp. isolated in the last two decades from chicken in Brazil. Food Res Int 2022; 162:111955. [DOI: 10.1016/j.foodres.2022.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
|
6
|
Detection of extended spectrum beta-lactamase (ESBL)–production in Salmonella Typhimurium isolated from poultry birds in Nasarawa State, Nigeria. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Qin X, Yang M, Cai H, Liu Y, Gorris L, Aslam MZ, Jia K, Sun T, Wang X, Dong Q. Antibiotic Resistance of Salmonella Typhimurium Monophasic Variant 1,4,[5],12:i:- in China: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11040532. [PMID: 35453283 PMCID: PMC9031511 DOI: 10.3390/antibiotics11040532] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Antibiotic resistance in Salmonella is a global public health problem. Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-), a monophasic variant of Salmonella Typhmurium, is one of the leading Salmonella serovars in several countries. This study aimed to assess the prevalence of antibiotic resistance to this serovar in China through a systematic review and meta-analysis. Nineteen eligible studies during 2011–2021 were included. A total of 4514 isolates from humans, animals, foods, and the environment were reported, which mainly concerned isolates found in Guangdong, Guangxi, Jiangsu, and Shanghai. A random-effects model was used to estimate the pooled resistance rate of S. 1,4,[5],12:i:-. Rates were found to be very high (values ≥ 75%) for tetracycline, ampicillin, sulfisoxazole, and streptomycin; high (50–75%) for nalidixic acid, amoxicillin–clavulanic acid, and chloramphenicol; and moderate (25–50%) for trimethoprim–sulfamethoxazole, kanamycin, trimethoprim, and gentamicin. The rates of resistance to ciprofloxacin, cefotaxime, ceftriaxone, cefepime, ceftazidime, and colistin were low (values ≤ 25%), but of great concern in terms of their current clinical importance. Furthermore, a high multidrug resistance rate (86%, 95% CI: 78–92%) was present in S. 1,4,[5],12:i:-, with the ASSuT pattern largely dominating. Subgroup analysis results showed that the high heterogeneity of resistance rates was not entirely dependent on isolated sources. Taken together, the severity of antibiotic resistance in S. 1,4,[5],12:i:- urgently requires the rational use of antibiotics in future infection control and antibiotic stewardship programs.
Collapse
Affiliation(s)
- Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Mingzhe Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Leon Gorris
- Food Safety Futures, 6524 BS Nijmegen, The Netherlands;
| | - Muhammad Zohaib Aslam
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Kai Jia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
- Correspondence:
| |
Collapse
|
8
|
Impact of long-term dietary habits on the human gut resistome in the Dutch population. Sci Rep 2022; 12:1892. [PMID: 35115599 PMCID: PMC8814023 DOI: 10.1038/s41598-022-05817-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
The human gut microbiome plays a central role in health and disease. Environmental factors, such as lifestyle and diet, are known to shape the gut microbiome as well as the reservoir of resistance genes that these microbes harbour; the resistome. In this study we assessed whether long-term dietary habits within a single geographical region (the Netherlands) impact the human gut resistome. Faecal samples from Dutch omnivores, pescatarians, vegetarians and vegans were analysed by metagenomic shotgun sequencing (MSS) (n = 149) and resistome capture sequencing approach (ResCap) (n = 64). Among all diet groups, 119 and 145 unique antibiotic resistance genes (ARGs) were detected by MSS or ResCap, respectively. Five or fifteen ARGs were shared between all diet groups, based on MSS and ResCap, respectively. The total number of detected ARGs by MSS or ResCap was not significantly different between the groups. MSS also revealed that vegans have a distinct microbiome composition, compared to other diet groups. Vegans had a lower abundance of Streptococcus thermophilus and Lactococcus lactis compared to pescatarians and a lower abundance of S. thermophilus when compared to omnivores. In summary, our study showed that long-term dietary habits are not associated with a specific resistome signature.
Collapse
|
9
|
Multi-Drug and β-Lactam Resistance in Escherichia coli and Food-Borne Pathogens from Animals and Food in Portugal, 2014–2019. Antibiotics (Basel) 2022; 11:antibiotics11010090. [PMID: 35052967 PMCID: PMC8773433 DOI: 10.3390/antibiotics11010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Animal and food sources are seen as a potential transmission pathway of antimicrobial resistance (AMR) to humans. The aim of this study is to describe Campylobacter, Salmonella, and commensal Escherichia coli multi-drug resistance (MDR) in the food chain between 2014 and 2019 in Portugal. AMR surveillance data from food-producing animals and food were assessed. MDR relative frequencies were estimated by bacterial genus and year. AMR profiles were created using observations of resistance to antimicrobial classes from each isolate. Antimicrobial susceptibility testing results were clustered using k-modes. Clusters were described by population, AMR classification, β-lactamases, sample stage, sample type, season, and year. Overall, MDR was more prevalent for E. coli, ranging from 74–90% in animal and 94–100% in food samples. MDR was found to be more widespread in resistance profiles that were common among E. coli and Salmonella isolates and in those exclusively observed for E. coli, frequently including (fluoro)quinolones and cephalosporins resistance. β-lactam resistance was observed around 75% to 3rd/4th-generation cephalosporins in E. coli. Clusters suggest an escalating MDR behaviour from farm to post-farm stages in all bacteria and that Salmonella (fluoro)quinolones resistance may be associated with broilers. These findings support policy and decision making to tackle MDR in farm and post-farm stages.
Collapse
|
10
|
Clemente L, Leão C, Moura L, Albuquerque T, Amaro A. Prevalence and Characterization of ESBL/AmpC Producing Escherichia coli from Fresh Meat in Portugal. Antibiotics (Basel) 2021; 10:antibiotics10111333. [PMID: 34827270 PMCID: PMC8615096 DOI: 10.3390/antibiotics10111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 10/25/2022] Open
Abstract
The present study aimed to characterize the extended-spectrum β-lactamases and plasmid-mediated AmpC β-lactamases (ESBL/PMAβ) among Escherichia coli producers isolated from beef, pork, and poultry meat collected at retail, in Portugal. A total of 638 meat samples were collected and inoculated on selective medium for the search of E. coli resistant to 3rd generation cephalosporins. Isolates were characterized by antimicrobial susceptibility testing, molecular assays targeting ESBL/AmpC, plasmid-mediated quinolone resistance (PMQR), and plasmid-mediated colistin resistance (PMCR) encoding genes. The highest frequency of E. coli non-wild type to 3rd generation cephalosporins and fluoroquinolones was observed in broiler meat (30.3% and 93.3%, respectively). Overall, a diversity of acquired resistance mechanisms, were detected: blaESBL [blaCTX-M-1 (n = 19), blaCTX-M-15 (n = 4), blaCTX-M-32 (n = 12), blaCTX-M-55 (n = 8), blaCTX-M-65 (n = 4), blaCTX-M-27 (n = 2), blaCTX-M-9 (n = 1), blaCTX-M-14 (n = 11), blaSHV-12 (n = 27), blaTEM-52 (n = 1)], blaPMAβ [blaCMY-2 (n = 8)], PMQR [qnrB (n = 27), qnrS (n = 21) and aac(6')-Ib-type (n = 4)] and PMCR [mcr-1 (n = 8)]. Our study highlights that consumers may be exposed through the food chain to multidrug-resistant E. coli carrying diverse plasmid-mediated antimicrobial resistance genes, posing a great hazard to food safety and a public health risk.
Collapse
Affiliation(s)
- Lurdes Clemente
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, University of Lisbon, 1300-477 Lisbon, Portugal
- Correspondence:
| | - Célia Leão
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Laura Moura
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
- Faculty of Pharmacy Science, University of Lisbon, FFUL, 1649-019 Lisbon, Portugal
| | - Teresa Albuquerque
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, National Reference Laboratory of Animal Health, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (C.L.); (L.M.); (T.A.); (A.A.)
| |
Collapse
|
11
|
Rincón-Gamboa SM, Poutou-Piñales RA, Carrascal-Camacho AK. Analysis of the assessment of antimicrobial susceptibility. Non-typhoid Salmonella in meat and meat products as model (systematic review). BMC Microbiol 2021; 21:223. [PMID: 34340654 PMCID: PMC8328484 DOI: 10.1186/s12866-021-02268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The scientific publications of antimicrobial susceptibilities and resistance must be precise, with interpretations adjusted to the standard. In this frame, knowledge of antimicrobial resistance is fundamental in pathogenic microorganisms such as Salmonella spp., known for many annual deaths worldwide. The objective of this work was to compare the interpretation of standards, the concentrations, and the breakpoints, to study antimicrobial resistance in Non-Typhoidal Salmonella (NTS) isolated from beef, pork, and chicken meat, meat products, and propose additional considerations that improve the use and usefulness of published results. RESULTS After refining the search based on meeting the inclusion and exclusion criteria, 48 papers were selected. In 33 (68.8%) of them, the disc diffusion method was used, in 11 (22.9%) the MIC determination method, and in 4 (8.33%) were used both. In 24 (50%) of the articles, the selection of a different (correct) standard could have had an impact on the interpretation of antimicrobial susceptibility, which observed when considering three scenarios, i) comparison between the year of the isolation versus the implemented standard, ii) comparison between the year of submission versus implemented standard and iii) comparison between the year of publication versus implemented standard. CONCLUSIONS The most frequent scenario was the inadequate selection of standards, indicating that some studies had not ensured that applied standards kept in line with the date of isolation, date of publication and interpretation of susceptibilities. We proposed 2 years for standards use for resistance and multi-resistance interpretations. On the other hand, we invite researchers to publish their results in the shortest possible time, and editors and reviewers of scientific journals to prioritise these types of studies and verify the correspondence between the standard cited and the one used and the one to be taken into account.
Collapse
Affiliation(s)
- Sandra M Rincón-Gamboa
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | - Ana K Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
12
|
Rincón-Gamboa SM, Poutou-Piñales RA, Carrascal-Camacho AK. Antimicrobial Resistance of Non-Typhoid Salmonella in Meat and Meat Products. Foods 2021; 10:1731. [PMID: 34441509 PMCID: PMC8392175 DOI: 10.3390/foods10081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica serovars are associated with numerous annual deaths worldwide and are responsible for a large number of foodborne diseases. Within this frame of reference, knowledge of antimicrobial susceptibility represents the fundamental approach of most Salmonella treatments. Therefore, scientific publications of antimicrobial susceptibilities and resistance must be precise, with interpretations adjusted to a particular standard. Hence, the three objectives in this study were: (i) to describe the frequency of antimicrobial-resistant isolates of Non-Typhoidal Salmonella (NTS) isolated from beef, pork, chicken meat, and other meat products; (ii) to describe the distribution of serovars and their multi-resistance to antibiotics for clinical use (veterinary and human) between 1996 and 2019; and (iii) to propose additional considerations that could improve the use and usefulness of the published results. Our results determined that the predominant isolates came from poultry. Enteritidis and Typhimurium were the most reported serovars by MIC (with both having the highest resistance to TET) while the lowest resistance was to CIP and CRO for Enteritidis and Typhimurium, respectively. The multi-resistance pattern AMP AMC CEP GEN KAN STR TET was the most frequently observed pattern by MIC in Montevideo and Seftenberg, while, for disc diffusion, the pattern AMP STR TET was the most frequent in the Bredeney serotype. In conclusion, researchers should carry out homogeneous sampling procedures, identify the types of the samples, use standard identification methods, and employ appropriate standards for antimicrobial susceptibility interpretation. Additionally, there is also a need for all WHO members to comply with the WHA 73.5 resolution. Our final recommendation is for all producers to reduce antibiotic prophylactic use.
Collapse
Affiliation(s)
- Sandra M. Rincón-Gamboa
- Laboratorio de Microbiología de Alimentos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia; (S.M.R.-G.); (A.K.C.-C.)
- Laboratorio Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia
| | - Raúl A. Poutou-Piñales
- Laboratorio Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia
| | - Ana K. Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C. 110-23, Colombia; (S.M.R.-G.); (A.K.C.-C.)
| |
Collapse
|
13
|
Prevalence of extended-spectrum β-lactamase (ESBL)-producing Salmonella enterica from retail fishes in Egypt: A major threat to public health. Int J Food Microbiol 2021; 351:109268. [PMID: 34098467 DOI: 10.1016/j.ijfoodmicro.2021.109268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/22/2023]
Abstract
The increase in multidrug-resistant Salmonella enterica and its spread from food to humans are considered a serious public health concern worldwide. Little is currently known about the prevalence of extended-spectrum β-lactamase (ESBL)-producing S. enterica in fish in Africa. Therefore, this study aimed to investigate the existence of ESBL-producing S. enterica in retail fish in Egypt. In total, 200 fish samples were collected randomly from various retail fish markets in Egypt. S. enterica were detected in 19 (9.5%; 95% CI: 5.8-14.4) of the fish samples analyzed. Of the 19 non-repetitive S. enterica isolates, 18 were serologically categorized into eight S. enterica serovars and a non-typable serovar. All 19 S. enterica isolates (100%) showed multidrug-resistant phenotypes to at least three classes of antimicrobials, and 11 (57.9%) exhibited an ESBL-resistant phenotype and harbored at least one ESBL-encoding gene. The ESBL-producing S. enterica serovars were as follows: Kentucky (3 isolates; 15.8%), Enteritidis (2 isolates; 10.5%), Typhimurium (2 isolates; 10.5%), and 1 isolate (5.3%) each of Infantis, Virchow, Paratyphi B, and Senftenberg. The identified β-lactamase-encoding genes included ESBL-encoding genes blaCTX-M-3, blaCTX-M-14, blaCTX-M-15, blaSHV-1, blaSHV-2 and blaSHV-12; the AmpC β-lactamase-encoding gene blaCMY-2; and the narrow-spectrum β-lactamase-encoding genes blaTEM-1 and blaOXA-1. All S. enterica isolates were negative for carbapenemase-encoding genes. Molecular analysis of plasmid transferability and replicon typing revealed that most plasmids (with β-lactamase-encoding genes) were transferrable, and the most common incompatibility groups were IncI1, IncA/C, IncHI1, and IncN. To the best of our knowledge, this is the first report for molecular characterization of ESBL-producing S. enterica in fish in Egypt. The occurrence of ESBL-producing S. enterica in retail fish constitutes a potential public health threat with the possibility of transmission of these strains with resistance genes to humans. Such transmission would exacerbate the resistance to an important class of antibiotics commonly used in hospitals to treat typhoid and non-typhoidal Salmonella infections.
Collapse
|
14
|
Zeng X, Lv S, Qu C, Lan L, Tan D, Li X, Bai L. Serotypes, antibiotic resistance, and molecular characterization of non-typhoidal salmonella isolated from diarrheic patients in Guangxi Zhuang Autonomous Region, China, 2014–2017. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Dor Z, Shnaiderman-Torban A, Kondratyeva K, Davidovich-Cohen M, Rokney A, Steinman A, Navon-Venezia S. Emergence and Spread of Different ESBL-Producing Salmonella enterica Serovars in Hospitalized Horses Sharing a Highly Transferable IncM2 CTX-M-3-Encoding Plasmid. Front Microbiol 2020; 11:616032. [PMID: 33391248 PMCID: PMC7773750 DOI: 10.3389/fmicb.2020.616032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is a major causative pathogen of human and animal gastroenteritis. Antibiotic resistant strains have emerged due to the production of extended-spectrum β-lactamases (ESBLs) posing a major health concern. With the increasing reports on ESBL-producing Enterobacterales that colonize companion animals, we aimed to investigate ESBL dissemination among ESBL-producing Salmonella enterica (ESBL-S) in hospitalized horses. We prospectively collected ESBL-S isolates from hospitalized horses in a Veterinary-Teaching Hospital during Dec 2015-Dec 2017. Selection criteria for ESBL-S were white colonies on CHROMagarESBL plates and an ESBL phenotypic confirmation. Salmonella enterica serovars were determined using the Kaufmann-White-Le-Minor serological scheme. ESBL-encoding plasmids were purified, transformed and compared using restriction fragment length polymorphism (RFLP). Whole genome sequencing (Illumina and MinION platforms) were performed for detailed phylogenetic and plasmid analyses. Twelve ESBL-S were included in this study. Molecular investigation and Sequence Read Archive (SRA) meta-analysis revealed the presence of three unique Salmonella enterica serovars, Cerro, Havana and Liverpool, all reported for the first time in horses. PFGE revealed the clonal spread of S. Cerro between seven horses. All twelve isolates carried bla CTX-M- 3 and showed an identical multidrug resistance profile with co-resistance to trimethoprim/sulfamethoxazole and to aminoglycosides. Plasmid RFLP proved the inter-serovar horizontal spread of a single bla CTX-M- 3-encoding plasmid. Complete sequence of a representative plasmid (S. Havana strain 373.3.1), designated pSEIL-3 was a -86.4 Kb IncM2 plasmid, that encoded nine antibiotic resistance genes. pSEIL-3 was virtually identical to pCTX-M3 from Citrobacter freundii, and showed high identity (>95%) to six other bla CTX-M- 3 or bla NDM- 1 IncM2 broad host range plasmids from various Enterobacterales of human origin. Using a specific six gene-based multiplex PCR, we detected pSEIL-3 in various Enterobacterales species that co-colonized the horses' gut. Together, our findings show the alarming emergence of ESBL-S in hospitalized horses associated with gut shedding and foal morbidity and mortality. We demonstrated the dissemination of CTX-M-3 ESBL among different Salmonella enterica serovars due to transmission of a broad host range plasmid. This report highlights horses as a zoonotic reservoir for ESBL-S, including highly transmissible plasmids that may represent a 'One-Health' hazard. This risk calls for the implementation of infection control measures to monitor and control the spread of ESBL-S in hospitalized horses.
Collapse
Affiliation(s)
- Ziv Dor
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Anat Shnaiderman-Torban
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Kira Kondratyeva
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Assaf Rokney
- Government Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shiri Navon-Venezia
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Dr. Miriam and Sheldon G. Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
16
|
Zhao X, Hu M, Zhang Q, Zhao C, Zhang Y, Li L, Qi J, Luo Y, Zhou D, Liu Y. Characterization of integrons and antimicrobial resistance in Salmonella from broilers in Shandong, China. Poult Sci 2020; 99:7046-7054. [PMID: 33248621 PMCID: PMC7705031 DOI: 10.1016/j.psj.2020.09.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 01/19/2023] Open
Abstract
Salmonella spp. are one of the most important foodborne bacterial pathogens in human beings and animals. This study aimed to analyze the prevalence and characterization of Salmonella from broilers in Shandong, China. A total of 67 Salmonella were recovered from 600 rectal swabs collected from 3 large-scale intensive broiler farms (67/600, 11.2%) between May and October 2018. Among Salmonella isolates, the most common serovars were S. enteritidis and S. typhimurium. The highest occurrence of resistance observed was for polymyxin (100%), followed by ampicillin (68.7%). The multidrug-resistant Salmonella isolation rate was observed to be 53.7%. Four β-lactamase genes were detected among the isolates, and all the isolates carried blaTEM (67/67, 100%), followed by blaOXA (19/67, 28.4%), blaCTX-M (17/67, 25.4%), and blaPSE (7/67, 10.4%). Four plasmid-mediated quinolone resistance gene were detected among the isolates; the prevalent resistance genes was aac(6')-Ib-cr (18/67, 26.9%), followed by oqxB (9/67, 13.4%), qnrB (6/67, 9.0%), and qnrD (1/67, 1.5%). The prevalent rate of mcr-1 was 6.0% (4/67). Class 1 integrons were detected in 26.9% of these isolates and contained 7 groups of resistance gene cassettes. Multilocus sequence typing analysis revealed 7 sequence types, and ST11 was the most frequent sequence types. This study indicated that reduction of Salmonella and strict control on the use of antibiotics in more than 5,000 million broilers in Shandong are the vitally important measures to keep public health.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Ming Hu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Cui Zhao
- Tai'an Animal Health Supervision Institute, Tai'an Animal Husbandry and Veterinary Bureau, Shandong Province, China
| | - Yin Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Lulu Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Jing Qi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Yanbo Luo
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Dong Zhou
- Technical Management Department, Shandong Minhe Animal Husbandry Co., Ltd., Shandong Province, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China.
| |
Collapse
|
17
|
Xu X, Biswas S, Gu G, Elbediwi M, Li Y, Yue M. Characterization of Multidrug Resistance Patterns of Emerging Salmonella enterica Serovar Rissen along the Food Chain in China. Antibiotics (Basel) 2020; 9:antibiotics9100660. [PMID: 33007986 PMCID: PMC7600917 DOI: 10.3390/antibiotics9100660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.
Collapse
Affiliation(s)
- Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Silpak Biswas
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
| | - Guimin Gu
- Guangxi Institute for Product Quality Inspection, Nanning 530007, China;
| | - Mohammed Elbediwi
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Animal Health Research Institute, Agriculture Research Centre, Cairo 11435, Egypt
| | - Yan Li
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Min Yue
- Institute of Veterinary Sciences & Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.B.); (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-0571-8898-2832
| |
Collapse
|
18
|
Elamary RB, Albarakaty FM, Salem WM. Efficacy of Acacia nilotica aqueous extract in treating biofilm-forming and multidrug resistant uropathogens isolated from patients with UTI syndrome. Sci Rep 2020; 10:11125. [PMID: 32636429 PMCID: PMC7341837 DOI: 10.1038/s41598-020-67732-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/10/2020] [Indexed: 01/27/2023] Open
Abstract
Escherichia coli is the dominant bacterial cause of UTI among the uropathogens in both developed and developing countries. This study is to investigate the effect of Acacia nilotica aqueous extract on the survival and biofilm of isolated pathogens to reduce UTIs diseases. A total of 170 urine samples were collected from Luxor general hospital and private medical analysis laboratories in Luxor providence, Egypt. Samples were screened for the incidence of uropathogens by biochemical tests, antibiotics susceptibility, detection of virulence, and antibiotic-resistant genes by multiplex PCR, biofilm formation, and time-killing assay. Escherichia coli is by far the most prevalent causative agent with the percentage of 73.7% followed by Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeuroginosa, and Acinetobacter baumanii. Isolates were multidrug-resistant containing blaTEM, blaSHV, blaCTX, qnrs, and aac(3)-Ia resistant genes. All isolates were sensitive to 15-16.7 mg ml-1 of Acacia nilotica aqueous extract. Time killing assay confirmed the bactericidal effect of the extract over time (20-24 h). A high percentage of 3-Cyclohexane-1-Carboxaldehyde, 2,6,6-trimethyl (23.5%); á-Selinene (15.12%); Oleic Acid (14.52%); Globulol (11.35%) were detected among 19 bioactive phytochemical compounds in the aqueous extract of A. nilotica over the GC-mass spectra analysis. The plant extract reduced significantly the biofilm activity of E. coli, K. pneumoniae, P. mirabilis, and P. aeuroginosa by 62.6, 59. 03, 48.9 and 39.2%, respectively. The challenge to improve the production of A. nilotica phytochemicals is considered a very low price for the return.
Collapse
Affiliation(s)
- Rokaia B Elamary
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Fawziah M Albarakaty
- Department of Biology, College of Applied Sciences, Umm Al Qura University, Makkah Al Moukarramh, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Wesam M Salem
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
19
|
Vico JP, Lorenzutti AM, Zogbi AP, Aleu G, Sánchez IC, Caffer MI, Rosmini MR, Mainar-Jaime RC. Prevalence, associated risk factors, and antimicrobial resistance profiles of non-typhoidal Salmonella in large scale swine production in Córdoba, Argentina. Res Vet Sci 2020; 130:161-169. [PMID: 32193003 DOI: 10.1016/j.rvsc.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 11/15/2022]
Abstract
Non-typhoidal Salmonella is considered a major public health concern. The growing relevance of pigs as reservoir of Salmonella spp. has prompted several countries to set up surveillance and control programs to fight Salmonella infection in swine and reduce public health risk. In the last decade, pork production in Córdoba increased significantly to become one of the most important pig production provinces in Argentina. The aim of this study was to estimate Salmonella spp. prevalence and associated risk factors in large scale-farms in this province. Mesenteric lymph nodes (MLN) of 580 pigs from 20 finishing large-scale farms were collected between 2014 and 2015 to estimate Salmonella infection. A prevalence of 41.5% (95%CI: 37.6-45.6%) was observed. Two major risk factors were significantly associated with Salmonella infection, both related to the pre-slaughter period (distance from the farm to the slaughterhouse and lairage time), highlighting the need to pay special attention to pre-slaughter practices in the province. Shortening transport times and complying with national regulations for lairage time at slaughter may help to reduce the prevalence of infection. Sixteen different serovars were identified, being S. Anatum and S. Typhimurium the most prevalent ones. Moreover, two isolate of the monophasic variant of Salmonella Typhimurium (I 4,5,12:i:-) resistant to enrofloxacin and which also displayed multidrug resistance was isolated for first time from pigs in Córdoba. The moderate to high levels of antimicrobial resistance detected for antibiotics commonly used in the pig sector suggested the need for implementing a plan to limit their use in the province.
Collapse
Affiliation(s)
- J P Vico
- Instituto de Investigaciones en Recursos Humanos y Sustentabilidad, José Sánchez Labrador S.J IRNASUS-Conicet-Univesidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, Veterinaria, Universidad Católica de Córdoba, Av. Armada Argentina 3555, X5016DHK Córdoba, Argentina.
| | - A M Lorenzutti
- Instituto de Investigaciones en Recursos Humanos y Sustentabilidad, José Sánchez Labrador S.J IRNASUS-Conicet-Univesidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, Veterinaria, Universidad Católica de Córdoba, Av. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - A P Zogbi
- Instituto de Investigaciones en Recursos Humanos y Sustentabilidad, José Sánchez Labrador S.J IRNASUS-Conicet-Univesidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, Veterinaria, Universidad Católica de Córdoba, Av. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - G Aleu
- Instituto de Investigaciones en Recursos Humanos y Sustentabilidad, José Sánchez Labrador S.J IRNASUS-Conicet-Univesidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, Veterinaria, Universidad Católica de Córdoba, Av. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - I C Sánchez
- Instituto de Investigaciones en Recursos Humanos y Sustentabilidad, José Sánchez Labrador S.J IRNASUS-Conicet-Univesidad Católica de Córdoba, Facultad de Ciencias Agropecuarias, Veterinaria, Universidad Católica de Córdoba, Av. Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | - M I Caffer
- Servicio de Enterobacterias, Instituto Nacional de Enfermedades Infecciosas (INEI) - ANLIS "Dr. Carlos G. Malbrán", Avenida Velez Sarfield 563, C1282AFF Ciudad Autónoma de Buenos Aires, Argentina
| | - M R Rosmini
- Universidad Nacional del Litoral, Facultad de Ciencias Veterinarias, R.P. Kreder 2805, S3080HOF Esperanza, Santa Fe, Argentina
| | - R C Mainar-Jaime
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Calle de Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
20
|
Gebreyes WA, Jackwood D, de Oliveira CJB, Lee CW, Hoet AE, Thakur S. Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases. Microbiol Spectr 2020; 8:10.1128/microbiolspec.ame-0011-2019. [PMID: 32220263 PMCID: PMC10773240 DOI: 10.1128/microbiolspec.ame-0011-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 12/20/2022] Open
Abstract
Zoonotic and livestock diseases are very important globally both in terms of direct impact on human and animal health and in terms of their relationship to the livelihood of farming communities, as they affect income generation and food security and have other, indirect consequences on human lives. More than two-thirds of emerging infectious diseases in humans today are known to be of animal origin. Bacterial, viral, and parasitic infections that originate from animals, including hypervirulent and multidrug-resistant (MDR) bacterial pathogens, such as livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA), invasive nontyphoidal Salmonella of animal origin, hyperviruent Clostridium difficile, and others, are of major significance to public health. Understanding the origin, risk factors, transmission, prevention, and control of such strains has been a challenge for various reasons, particularly due to the transdisciplinary partnership between and among human, environment, and animal health sectors. MDR bacteria greatly complicate the clinical management of human infections. Food animal farms, pets in communities, and veterinary hospital environments are major sources of such infections. However, attributing such infections and pinpointing sources requires highly discriminatory molecular methods as outlined in other parts of this curated series. Genotyping methods, such as multilocus sequence typing, pulsed-field gel electrophoresis, restriction fragment length polymorphism, and several others, have been used to decipher sources of foodborne and other zoonotic infectious diseases. In recent years, whole-genome-sequence-based approaches have been increasingly used for molecular epidemiology of diseases at the interface of humans, animals, and the environment. This part of the series highlights the major zoonotic and foodborne disease issues. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Wondwossen A Gebreyes
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH 43210
- Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Daral Jackwood
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691
- Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Celso Jose Bruno de Oliveira
- Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH 43210
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691
- Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Armando E Hoet
- Global One Health initiative (GOHi), The Ohio State University, Columbus, OH 43210
- Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Siddhartha Thakur
- Population Health and Pathobiology (PHP), College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| |
Collapse
|
21
|
Silveira L, Pinto M, Isidro J, Pista Â, Themudo P, Vieira L, Machado J, Gomes JP. Multidrug-Resistant Salmonella enterica Serovar Rissen Clusters Detected in Azores Archipelago, Portugal. Int J Genomics 2019; 2019:1860275. [PMID: 31950026 PMCID: PMC6948285 DOI: 10.1155/2019/1860275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Gastrointestinal infections caused by nontyphoidal Salmonella (NTS) remain one of the main causes of foodborne illness worldwide. Within the multiple existing Salmonella enterica serovars, the serovar Rissen is rarely reported, particularly as a cause of human salmonellosis. Between 2015 and 2017, the Portuguese National Reference Laboratory of Gastrointestinal Infections observed an increase in the number of clinical cases caused by multidrug-resistant (MDR) S. enterica serovar Rissen, particularly from the Azores archipelago. In the present study, we analyzed by whole genome sequencing (WGS) all clinical, animal, food, and environmental isolates received up to 2017 in the Portuguese Reference Laboratories. As such, through a wgMLST-based gene-by-gene analysis, we aimed to identify potential epidemiological clusters linking clinical and samples from multiple sources, while gaining insight into the genetic diversity of S. enterica serovar Rissen. We also investigated the genetic basis driving the observed multidrug resistance. By integrating 60 novel genomes with all publicly available serovar Rissen genomes, we observed a low degree of genetic diversity within this serovar. Nevertheless, the majority of Portuguese isolates showed high degree of genetic relatedness and a potential link to pork production. An in-depth analysis of these isolates revealed the existence of two major clusters from the Azores archipelago composed of MDR isolates, most of which were resistant to at least five antimicrobials. Considering the well-known spread of MDR between gastrointestinal bacteria, the identification of MDR circulating clones should constitute an alert to public health authorities. Finally, this study constitutes the starting point for the implementation of the "One Health" approach for Salmonella surveillance in Portugal.
Collapse
Affiliation(s)
- Leonor Silveira
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Miguel Pinto
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Isidro
- National Institute of Agrarian and Veterinary Research, Bacteriology and Micology Laboratory, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Ângela Pista
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Patrícia Themudo
- National Institute of Agrarian and Veterinary Research, Bacteriology and Micology Laboratory, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculty of Medical Sciences, New University of Lisbon, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Jorge Machado
- National Reference Laboratory of Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
22
|
Antonelli P, Belluco S, Mancin M, Losasso C, Ricci A. Genes conferring resistance to critically important antimicrobials in Salmonella enterica isolated from animals and food: A systematic review of the literature, 2013–2017. Res Vet Sci 2019; 126:59-67. [DOI: 10.1016/j.rvsc.2019.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023]
|
23
|
Yang X, Wu Q, Zhang J, Huang J, Chen L, Wu S, Zeng H, Wang J, Chen M, Wu H, Gu Q, Wei X. Prevalence, Bacterial Load, and Antimicrobial Resistance of Salmonella Serovars Isolated From Retail Meat and Meat Products in China. Front Microbiol 2019; 10:2121. [PMID: 31608021 PMCID: PMC6771270 DOI: 10.3389/fmicb.2019.02121] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
Salmonella remains the leading cause of reported bacterial foodborne disease in China. Meat products are recognized as one of the major sources of human salmonellosis; however, there is a lack of comprehensive, quantitative data concerning Salmonella contamination of these foods. Therefore, the objectives of this study were to investigate the prevalence, bacterial load, and antimicrobial resistance profiles of various Salmonella serovars in retail meat across the whole of China. Between July 2011 and June 2016, a total of 807 retail meat samples were collected, covering most provincial capitals in China. Overall, 159 (19.7%) samples tested positive for Salmonella. The highest contamination rate occurred in pork (37.3%, n = 287), followed by beef (16.1%, n = 161), mutton (10.9%, n = 92), dumplings (6.6%, n = 212), and smoked pork (3.6%, n = 55). Most probable number (MPN) analysis revealed that contamination was mainly in the range of 0.3–10 MPN/g among those samples testing positive using this method (n = 83), with eight samples exceeding 110 MPN/g. Among the 456 Salmonella enterica subsp. enterica isolates obtained in this study, 29 serovars and 33 multilocus sequence typing patterns were identified, with S. Derby, S. Typhimurium, S. London, S. Rissen, S. 1,4,[5],12:i:-, S. Weltevreden, and S. Enteritidis being the most prevalent. Among the 218 non-duplicate isolates, 181 (83.0%) were resistant to at least one class of antimicrobials and 128 (58.7%) were resistant to at least three classes. High rates of resistance were observed for tetracycline (65.6%), ampicillin (45.4%), trimethoprim-sulfamethoxazole (40.8%), streptomycin (40.4%), and nalidixic acid (35.8%), with the seven most prevalent serovars, except S. Weltevreden, showing higher rates of resistance and multidrug resistance compared with the less dominant serovars. Of note, all S. Indiana isolates exhibited resistance to extended-spectrum cephalosporins (including ceftriaxone and cefepime), ciprofloxacin, and multiple other classes of antibiotics. Further, two S. 1,4,[5],12:i:- isolates showed resistance to imipenem. This study provides systematic and comprehensive data on the prevalence and antimicrobial resistance profiles of various Salmonella serovars isolated from meat products in China, indicating their potential risk to public health.
Collapse
Affiliation(s)
- Xiaojuan Yang
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Qingping Wu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Jiahui Huang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Ling Chen
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Shi Wu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Haoming Wu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Qihui Gu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| | - Xianhu Wei
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, China
| |
Collapse
|
24
|
Sun H, Wan Y, Du P, Bai L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog Dis 2019; 17:87-97. [PMID: 31532231 DOI: 10.1089/fpd.2019.2676] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica remains an important foodborne pathogen in all regions of the world, with Typhimurium as one of the most frequent serotypes causing foodborne disease. However, the past two decades have seen a rapid worldwide emergence of a new Salmonella serotype, namely monophasic variant of S. Typhimurium, whose antigenic formula is 1,4,[5],12:i:-. It has become one of the 2-5 most common Salmonella serotypes responsible for animal and human infections in different regions. The global epidemic of monophasic S. 1,4,[5],12:i:- has mainly been characterized by an increase in multidrug-resistant S. 1,4,[5],12:i:- isolated in Europe since 1997. The unexpected link to swine has escalated monophasic S. Typhimurium infections to the status of a global public health emergency. The large-scale application of whole genome sequencing (WGS) in the last 10 years has revealed the phylogenetic associations of the bacterium and its antimicrobial resistance (AMR) genes. Local and global transmission reconstructed by WGS have shown that different clones have emerged following multiple independent events worldwide, and have elucidated the role of this zoonotic pathogen in the spread of AMR. This article discusses our current knowledge of the global ecology, epidemiology, transmission, bacterial adaptation, and evolution of this emerging Salmonella serotype.
Collapse
Affiliation(s)
- Honghu Sun
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China.,Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Yuping Wan
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
25
|
Haeri A, Ahmadi E. Fecal Colonization of Extended-Spectrum Beta Lactamase-Producing Salmonella spp. in Broilers in Lorestan Province of Iran. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2019. [DOI: 10.15171/ijep.2019.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Poultry is considered as a major source of human contamination with nontyphoidal Salmonella species. Global concern regarding the emergence and dispersion of extended-spectrum beta-lactamase (ESBLs)-producing isolates in broilers has increased during recent years. Objective: This study was proposed to evaluate the prevalence of Salmonella and the associated ESBLs in broilers in Lorestan province of Iran. Materials and Methods: Five hundred fresh fecal samples of broilers were phenotypically screened for Salmonella. The isolates were confirmed molecularly using an invA-based polymerase chain reaction (PCR). Confirmatory combination disk method was applied for phenotypic detection of ESBLs among the isolates, followed by molecular identification of blaCTX-M, blaTEM, and blaSHV genes in 3 single PCR assays among positive isolates. Chi-square test in SPSS software was used for the assessment of statistical relationships. Results: Of the 95 Salmonella isolates detected using routine bacteriological methods, all were confirmed molecularly. They generated the expected 254-bp amplicon. Moreover, 13 isolates were phenotypically recognized as ESBL determinants, among which 9 and 4 harbored blaCTX-M and blaTEM, respectively. No blaSHV and co-existence of the genes were determined. Conclusion: The threat imposed by dissemination of ESBL-producing non-typhoidal Salmonella spp. isolated from broilers was confirmed in the studied region. Continuous monitoring programs, application of biosecurity measures, and prudent prescription of antibiotics are warranted in order to prevent the introduction or dispersion of the ESBL-producing Salmonella.
Collapse
Affiliation(s)
- Ali Haeri
- Graduated from Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Elham Ahmadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
26
|
Monte DF, Lincopan N, Fedorka-Cray PJ, Landgraf M. Current insights on high priority antibiotic-resistant Salmonella enterica in food and foodstuffs: a review. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Amador P, Fernandes R, Prudêncio C, Duarte I. Prevalence of Antibiotic Resistance Genes in Multidrug-Resistant Enterobacteriaceae on Portuguese Livestock Manure. Antibiotics (Basel) 2019; 8:E23. [PMID: 30871244 PMCID: PMC6466527 DOI: 10.3390/antibiotics8010023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 01/03/2023] Open
Abstract
The exposure of both crop fields and humans to antibiotic-resistant bacteria in animal excreta is an emergent concern of the One Health initiative. This study assessed the contamination of livestock manure from poultry, pig, dairy farms and slaughterhouses in Portugal with resistance determinants. The resistance profiles of 331 Enterobacteriaceae isolates to eight β-lactam (amoxicillin, cefoxitin, cefotaxime, cefpirome, aztreonam, ceftazidime, imipenem and meropenem) and to five non-β-lactam antibiotics (tetracycline (TET), trimethoprim/sulfamethoxazole (SXT), ciprofloxacin (CIP), chloramphenicol (CHL) and gentamicin) was investigated. Forty-nine integron and non-β-lactam resistance genes were also screened for. Rates of resistance to the 13 antibiotics ranged from 80.8% to 0.6%. Multidrug resistance (MDR) rates were highest in pig farm samples (79%). Thirty different integron and resistance genes were identified. These were mainly associated with resistance to CHL (catI and catII), CIP (mainly, qnrS, qnrB and oqx), TET (mainly tet(A) and tet(M)) and SXT (mostly dfrIa group and sul3). In MDR isolates, integron presence and non-β-lactam resistance to TET, SXT and CHL were positively correlated. Overall, a high prevalence of MDR Enterobacteriaceae was found in livestock manure. The high gene diversity for antibiotic resistance identified in this study highlights the risk of MDR spread within the environment through manure use.
Collapse
Affiliation(s)
- Paula Amador
- Environment Department, Research Centre for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal.
| | - Ruben Fernandes
- Department Chemical Sciences and Biomolecules, School Allied Health Sciences, Polytechnic of Porto, 4200-072 Porto, Portugal.
| | - Cristina Prudêncio
- Department Chemical Sciences and Biomolecules, School Allied Health Sciences, Polytechnic of Porto, 4200-072 Porto, Portugal.
| | - Isabel Duarte
- Environment Department, Research Centre for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal.
| |
Collapse
|
28
|
Campos J, Mourão J, Peixe L, Antunes P. Non-typhoidal Salmonella in the Pig Production Chain: A Comprehensive Analysis of Its Impact on Human Health. Pathogens 2019; 8:E19. [PMID: 30700039 PMCID: PMC6470815 DOI: 10.3390/pathogens8010019] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonellosis remains one of the most frequent foodborne zoonosis, constituting a worldwide major public health concern. The most frequent sources of human infections are food products of animal origin, being pork meat one of the most relevant. Currently, particular pig food production well-adapted and persistent Salmonella enterica serotypes (e.g., Salmonella Typhimurium, Salmonella 1,4,[5],12:i:-, Salmonella Derby and Salmonella Rissen) are frequently reported associated with human infections in diverse industrialized countries. The dissemination of those clinically-relevant Salmonella serotypes/clones has been related to the intensification of pig production chain and to an increase in the international trade of pigs and pork meat. Those changes that occurred over the years along the food chain may act as food chain drivers leading to new problems and challenges, compromising the successful control of Salmonella. Among those, the emergence of antibiotic resistance in non-typhoidal Salmonella associated with antimicrobials use in the pig production chain is of special concern for public health. The transmission of pig-related multidrug-resistant Salmonella serotypes, clones and/or genetic elements carrying clinically-relevant antibiotic resistance genes, frequently associated with metal tolerance genes, from pigs and pork meat to humans, has been reported and highlights the contribution of different drivers to the antibiotic resistance burden. Gathered data strengthen the need for global mandatory interventions and strategies for effective Salmonella control and surveillance across the pig production chain. The purpose of this review was to provide an overview of the role of pig and pork meat in human salmonellosis at a global scale, highlighting the main factors contributing to the persistence and dissemination of clinically-relevant pig-related Salmonella serotypes and clones.
Collapse
Affiliation(s)
- Joana Campos
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Joana Mourão
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Luísa Peixe
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Antunes
- UCIBIO@REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal; Rua Dr. Roberto Frias, 4200 Porto, Portugal.
| |
Collapse
|
29
|
Seo KW, Lee YJ. Prevalence and Characterization of β-Lactamases Genes and Class 1 Integrons in Multidrug-Resistant Escherichia coli Isolates from Chicken Meat in Korea. Microb Drug Resist 2018; 24:1599-1606. [PMID: 29927695 DOI: 10.1089/mdr.2018.0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance has become a serious public health threat throughout the world, and therapeutic options for several infectious diseases are currently limited by the presence of multidrug-resistant (MDR) bacteria. This study was designed to examine the drug resistance patterns, the prevalence of the β-lactamases, and class 1 integrons in MDR Escherichia coli isolates from chicken meat in Korea. Among 200 chicken meat samples, 101 isolates were observed to be positive for E. coli, of which 57 were identified as MDR E. coli. Among 57 MDR E. coli isolates, the prevalence of bla gene, blaCTX-M-1, blaCTX-M-14, and blaTEM-1, were identified in 2, 4, and 16 E. coli strains, respectively; only 1 E. coli strain had both, blaTEM-1 and blaCTX-M-1 genes. Twenty-one of the 57 MDR E. coli isolates also carried class 1 integrons, and 5 different gene cassette arrangements were found in 14 of the 21 class 1 integron-positive isolates. The β-lactamase-producing E. coli and integron-positive E. coli had significantly higher resistance to 16 antimicrobial drugs than the non-β-lactamase-producing E. coli and the integron-negative E. coli (p < 0.05). Our findings suggest that β-lactamase and class 1 integrons are widely distributed in E. coli isolates from chicken meat, and directly contribute to resistance to diverse antimicrobial agents. Therefore, continuous investigation of integron gene cassette arrays will provide useful information regarding antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Kwang Won Seo
- Department of Public Health, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Ju Lee
- Department of Public Health, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
30
|
Miao Z, Li S, Qin K, Zhou Y. Prevalence and Antimicrobial Resistance of Salmonella Isolates Recovered from Retail Pork in Major Village Markets in Tai'an Region, China. J Food Prot 2017; 80:1635-1640. [PMID: 28853630 DOI: 10.4315/0362-028x.jfp-17-019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The current study was undertaken to evaluate Salmonella contamination in retail pork at major village markets of the Tai'an region, China. In total, 200 retail pork samples were collected from four village markets between June 2015 and February 2016, of which 69 samples (34.5%) were determined to be positive for Salmonella. Eleven serotypes were identified from the 69 Salmonella isolates, and Salmonella Derby was the most common (18 of 69, 26.1%), followed by Typhimurium (17 of 69, 24.6%) and Meleagridis (11 of 69, 15.9%). Antimicrobial susceptibility testing showed that antimicrobial resistance against tetracycline was the most prevalent (42 of 69, 60.9%), but antimicrobial resistance against both ceftriaxone and cefotaxime was 1.4% (1 of 69) and 2.9% (2 of 69), respectively. Multilocus sequence typing revealed that the 69 Salmonella isolates were divided into 11 sequence types (STs), among which ST40 (18 of 69, 26.1%) was the most common, followed by ST34 (15 of 69, 21.7%) and ST64 (13 of 69, 18.8%). Collectively, retail pork at village markets in the Tai'an region has a high Salmonella contamination rate, and these isolates exhibit broad-spectrum antimicrobial resistance. However, the absence of a dominant ST demonstrates that the Salmonella isolates from retail pork may be of diverse origins.
Collapse
Affiliation(s)
| | - Song Li
- 2 College of Basic Medicine, and
| | - Kun Qin
- 3 College of Chemistry and Pharmaceutical Engineering, Taishan Medical University, Tai'an 271000, People's Republic of China
| | - Yufa Zhou
- 4 Disease Controlling Center, Veterinary Bureau of Daiyue, Tai'an 271000, People's Republic of China
| |
Collapse
|
31
|
Salem WM, Shibat El-Hamed DMW, Sayed WF, Elamary RB. Alterations in virulence and antibiotic resistant genes of multidrug-resistant Salmonella serovars isolated from poultry: The bactericidal efficacy of Allium sativum. Microb Pathog 2017; 108:91-100. [PMID: 28479511 DOI: 10.1016/j.micpath.2017.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- W M Salem
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt.
| | | | - W F Sayed
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt
| | - R B Elamary
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt
| |
Collapse
|
32
|
Trongjit S, Angkititrakul S, Tuttle RE, Poungseree J, Padungtod P, Chuanchuen R. Prevalence and antimicrobial resistance in Salmonella enterica isolated from broiler chickens, pigs and meat products in Thailand-Cambodia border provinces. Microbiol Immunol 2017; 61:23-33. [PMID: 28042666 DOI: 10.1111/1348-0421.12462] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/12/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
This study aimed to examine the prevalence and antimicrobial resistance (AMR) of Salmonella isolates from broiler chickens, pigs and their associated meat products in the Thailand-Cambodia border provinces. A total of 941 samples were collected from pigs and broiler chickens at slaughter houses and from carcasses at local fresh markets in Sa Kaeo, Thailand (n = 554) and Banteay Meanchey, Cambodia (n = 387) in 2014 and 2015. From these samples, 345 Salmonella isolates were collected from Sa Keao (n = 145; 23%) and Banteay Meanchey (n = 200; 47%) and assayed for antimicrobial susceptibility, class 1 integrons and extended-spectrum β-lactamase (ESBL) genes. Serovars Typhimurium (29%) and Rissen (29%) were the most common serotypes found in Thai and Cambodian isolates, respectively. Multidrug resistance was detected in 34% and 52% of isolates from Sa Keao and Banteay Meanchey, respectively. The majority of the Thai isolates were resistant to ampicillin (72.4%), whereas most Cambodian isolates were resistant to sulfamethoxazole (71%). Eleven isolates from Sa Keao and 44 from Banteay Meanchey carried class 1 integrons comprising resistance gene cassettes. The most common gene cassette array was dfrA12-aadA2 (61.1%). Six isolates were ESBL producers. The β-lactamase genes found included blaTEM-1 , blaCTX-M-55 and blaCMY-2 . Some of these class 1 integrons and ESBL genes were located on conjugative plasmid. In conclusion, multidrug-resistant Salmonella are common in pigs, chickens and their products in the Thailand-Cambodia border provinces. Our findings indicate that class 1 integrons play a role in spread of AMR in the strains in this study.
Collapse
Affiliation(s)
- Suthathip Trongjit
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330
| | - Sunpetch Angkititrakul
- Research Group for Prevention Technology in Livestock, Faculty of Veterinary Medicine, Khon Kaen University, Khon Khan 40000 Thailand
| | - R Emerson Tuttle
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000 Thailand
| | - Jiratchaya Poungseree
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330
| | - Pawin Padungtod
- Division of Global Health Protection, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000 Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330
| |
Collapse
|
33
|
Biochemical characterization of CTX-M-166, a new CTX-M β-lactamase produced by a commensal Escherichia coli isolate. J Antibiot (Tokyo) 2017; 70:809-810. [PMID: 28377638 DOI: 10.1038/ja.2017.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/20/2017] [Accepted: 02/28/2017] [Indexed: 11/08/2022]
|
34
|
Jones-Dias D, Clemente L, Moura IB, Sampaio DA, Albuquerque T, Vieira L, Manageiro V, Caniça M. Draft Genomic Analysis of an Avian Multidrug Resistant Morganella morganii Isolate Carrying qnrD1. Front Microbiol 2016; 7:1660. [PMID: 27826290 PMCID: PMC5078487 DOI: 10.3389/fmicb.2016.01660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/05/2016] [Indexed: 11/13/2022] Open
Abstract
Morganella morganii is a commensal bacterium and opportunistic pathogen often present in the gut of humans and animals. We report the 4.3 Mbp draft genome sequence of a M. morganii isolated in association with an Escherichia coli from broilers in Portugal that showed macroscopic lesions consistent with colisepticemia. The analysis of the genome matched the multidrug resistance phenotype and enabled the identification of several clinically important and potentially mobile acquired antibiotic resistance genes, including the plasmid-mediated quinolone resistance determinant qnrD1. Mobile genetic elements, prophages, and pathogenicity factors were also detected, improving our understanding toward this human and animal opportunistic pathogen.
Collapse
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo JorgeLisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto UniversityOporto, Portugal
| | - Lurdes Clemente
- Microbiology and Mycology Laboratory, Instituto Nacional de Investigação Agrária e Veterinária Lisbon, Portugal
| | - Inês B Moura
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo JorgeLisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto UniversityOporto, Portugal
| | - Daniel A Sampaio
- Innovation and Technology Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge Lisbon, Portugal
| | - Teresa Albuquerque
- Microbiology and Mycology Laboratory, Instituto Nacional de Investigação Agrária e Veterinária Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo JorgeLisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto UniversityOporto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge Lisbon, Portugal
| |
Collapse
|
35
|
Fernández J, García V, Bances M, Rodicio MR. CTX-M-14 production by a clinical isolate of the European clone of Salmonella enterica 4,[5],12:i. J Glob Antimicrob Resist 2016; 7:130-131. [PMID: 27771596 DOI: 10.1016/j.jgar.2016.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/27/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Section of Microbiology, University of Oviedo, School of Medicine, Julián Clavería 6, 33006 Oviedo, Spain; Service of Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Vanesa García
- Department of Functional Biology, Section of Microbiology, University of Oviedo, School of Medicine, Julián Clavería 6, 33006 Oviedo, Spain
| | - Margarita Bances
- Laboratorio de Salud Pública, Consejería de Sanidad, Oviedo, Spain
| | - M Rosario Rodicio
- Department of Functional Biology, Section of Microbiology, University of Oviedo, School of Medicine, Julián Clavería 6, 33006 Oviedo, Spain.
| |
Collapse
|
36
|
Lee SK, Choi D, Kim HS, Kim DH, Seo KH. Prevalence, Seasonal Occurrence, and Antimicrobial Resistance of Salmonella spp. Isolates Recovered from Chicken Carcasses Sampled at Major Poultry Processing Plants of South Korea. Foodborne Pathog Dis 2016; 13:544-550. [DOI: 10.1089/fpd.2016.2144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soo-Kyoung Lee
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - Dasom Choi
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Hong-Seok Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
37
|
Jones-Dias D, Clemente L, Egas C, Froufe H, Sampaio DA, Vieira L, Fookes M, Thomson NR, Manageiro V, Caniça M. Salmonella Enteritidis Isolate Harboring Multiple Efflux Pumps and Pathogenicity Factors, Shows Absence of O Antigen Polymerase Gene. Front Microbiol 2016; 7:1130. [PMID: 27536269 PMCID: PMC4971094 DOI: 10.3389/fmicb.2016.01130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of PortoPorto, Portugal
| | - Lurdes Clemente
- Microbiology and Mycology Laboratory, Instituto Nacional de Investigação Agrária e VeterináriaLisbon, Portugal
| | - Conceição Egas
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Hugo Froufe
- Biocant, Parque Tecnológico de CantanhedeCantanhede, Portugal
| | - Daniel A. Sampaio
- Innovation and Technology Unit, Human Genetics Department, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Human Genetics Department, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, UK
| | | | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of PortoPorto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA)Lisbon, Portugal
| |
Collapse
|
38
|
García-Fierro R, Montero I, Bances M, González-Hevia MÁ, Rodicio MR. Antimicrobial Drug Resistance and Molecular Typing ofSalmonella entericaSerovar Rissen from Different Sources. Microb Drug Resist 2016; 22:211-7. [DOI: 10.1089/mdr.2015.0161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Raquel García-Fierro
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Ignacio Montero
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Margarita Bances
- Laboratorio de Salud Pública, Consejería de Sanidad, Oviedo, Spain
| | | | - María Rosario Rodicio
- Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
39
|
Lee SK, Choi D, Chon JW, Seo KH. Resistance of Strains Producing Extended-Spectrum β-Lactamases AmongSalmonellafrom Duck Carcasses at Slaughterhouses in Three Major Provinces of South Korea. Foodborne Pathog Dis 2016; 13:135-41. [DOI: 10.1089/fpd.2015.2042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Soo Kyoung Lee
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dasom Choi
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung Whan Chon
- Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Kun Ho Seo
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Multidrug resistance and ESBL-producing Salmonella spp. isolated from broiler processing plants. Braz J Microbiol 2016; 47:191-5. [PMID: 26887244 PMCID: PMC4822755 DOI: 10.1016/j.bjm.2015.11.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/24/2015] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the occurrence of multidrug-resistant, extended spectrum beta-lactamase (ESBL) producing Salmonella spp. isolated from conveyor belts of broiler cutting rooms in Brazilian broiler processing plants. Ninety-eight strains of Salmonella spp. were analyzed. Multidrug resistance was determined by the disk diffusion test and the susceptibility of the isolated bacteria was evaluated against 18 antimicrobials from seven different classes. The double disk diffusion test was used to evaluate ESBL production. Of the 98 strains tested, 84 were multidrug resistant. The highest rates of resistance were against nalidixic acid (95%), tetracycline (91%), and the beta-lactams: ampicillin and cefachlor (45%), followed by streptomycin and gentamicin with 19% and 15% of strain resistance, respectively. By contrast, 97% of the strains were sensitive to chloramphenicol. 45% of the strains were positive for the presence of ESBL activity. In this study, high rates of multidrug resistance and ESBL production were observed in Salmonella spp.
Collapse
|
41
|
Salmonellosis: the role of poultry meat. Clin Microbiol Infect 2015; 22:110-121. [PMID: 26708671 DOI: 10.1016/j.cmi.2015.12.004] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Salmonellosis remains one of the most frequent food-borne zoonoses, constituting a worldwide major public health concern. Currently, at a global level, the main sources of infection for humans include meat products, including the consumption of contaminated poultry meat, in spite of the success of Salmonella control measures implemented in food-animal production of industrialized countries. In recent years, a shift in Salmonella serotypes related to poultry and poultry production has been reported in diverse geographical regions, being particularly associated with the spread of certain well-adapted clones. Moreover, antimicrobial resistance in non-typhoidal Salmonella is considered one of the major public health threats related with food-animal production, including the poultry production chain and poultry meat, which is an additional concern in the management of salmonellosis. The circulation of the same multidrug-resistant Salmonella clones and/or identical mobile genetic elements encoding antibiotic resistance genes from poultry to humans highlights this scenario. The purpose of this review was to provide an overview of the role of poultry meat on salmonellosis at a global scale and the main problems that could hinder the success of Salmonella control measures at animal production level. With the increasing globalization of foodstuffs like poultry meat, new problems and challenges might arise regarding salmonellosis control, making new integrated intervention strategies necessary along the food chain.
Collapse
|
42
|
Choi D, Chon JW, Kim HS, Kim DH, Lim JS, Yim JH, Seo KH. Incidence, Antimicrobial Resistance, and Molecular Characteristics of Nontyphoidal Salmonella Including Extended-Spectrum β-Lactamase Producers in Retail Chicken Meat. J Food Prot 2015; 78:1932-7. [PMID: 26555514 DOI: 10.4315/0362-028x.jfp-15-145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was undertaken to determine the prevalence of Salmonella in 100 chicken carcass samples from five integrated broiler operation brands in Korea. Serotypes, antibiotic resistance patterns, extended-spectrum β-lactamase (ESBL) genotype, and clonal divergence using multilocus sequence typing of the isolated strains were analyzed. A total of 42 chicken samples were contaminated with nontyphoidal Salmonella (NTS) isolates: 16 isolates (38%) were Salmonella Virchow, 9 (21%) were Salmonella Bareilly, and 8 (19%) were Salmonella Infantis. A multidrug resistance (MDR; resistant to more than three classes of antibiotics) phenotype was observed in 29% of the isolates, which were resistant to five or more classes of antibiotics. The dominant MDR type was resistance to classes of penicillin, cephalosporins, aminoglycosides, quinolones, and tetracyclines. All the MDR isolates were positive for ESBL producers, and all but one (with the CTX-M-1 genotype) had the CTX-M-15 genotype. Multilocus sequence typing of the isolates revealed ST16 as the dominant sequence type; Salmonella Virchow, Salmonella Infantis, and Salmonella Richmond were all ST16, indicating a close genetic relationship between these serovars. This is the first study in Korea showing the CTX-M-1 type of NTS and the prevalence of ESBL-producing strains among NTS isolated from retail chicken meat. Our findings suggest that MDR Salmonella contamination is widely prevalent in retail chicken meat, and consumption of inadequately cooked products could lead to dissemination of NTS, which is hazardous to human health.
Collapse
Affiliation(s)
- Dasom Choi
- Center for Food Safety, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung-Whan Chon
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Microbiology, Jefferson, Arkansas 72079, USA
| | - Hong-Seok Kim
- Center for Food Safety, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Dong-Hyeon Kim
- Center for Food Safety, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jong-Soo Lim
- Center for Food Safety, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jin-Hyeok Yim
- Center for Food Safety, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kun-Ho Seo
- Center for Food Safety, College of Veterinary Medicine, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
43
|
Changkaew K, Intarapuk A, Utrarachkij F, Nakajima C, Suthienkul O, Suzuki Y. Antimicrobial Resistance, Extended-Spectrum β-Lactamase Productivity, and Class 1 Integrons in Escherichia coli from Healthy Swine. J Food Prot 2015; 78:1442-50. [PMID: 26219356 DOI: 10.4315/0362-028x.jfp-14-445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)-producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.
Collapse
Affiliation(s)
- Kanjana Changkaew
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Apiradee Intarapuk
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Fuangfa Utrarachkij
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Global Station for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
44
|
Lim JS, Choi DS, Kim YJ, Chon JW, Kim HS, Park HJ, Moon JS, Wee SH, Seo KH. Characterization of Escherichia coli-Producing Extended-Spectrum β-Lactamase (ESBL) Isolated from Chicken Slaughterhouses in South Korea. Foodborne Pathog Dis 2015. [PMID: 26219023 DOI: 10.1089/fpd.2014.1921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In South Korea, few reports have indicated the occurrence and characteristics of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli in food-producing animals, particularly in poultry slaughterhouses. In this study, we investigated the occurrence and antibiotic resistance of ESBL-producing E. coli from whole chicken carcasses (n=156) and fecal samples (n=39) of chickens obtained from 2 slaughterhouses. Each sample enriched in buffered peptone water was cultured on MacConkey agar with 2 mg/L cefotaxime and ESBL agar. ESBL production and antibiotic susceptibility were determined using the Trek Diagnostics system. The ESBL genotypes were determined by polymerase chain reaction (PCR) using the bla(SHV), bla(TEM), and bla(CTX-M) gene sequences. Subtyping using a repetitive sequence-based PCR system (DiversiLab™) and multilocus sequence typing (MLST) were used to assess the interspecific biodiversity of isolates. Sixty-two ESBL-producing E. coli isolates were obtained from 156 samples (39.7%). No bla(SHV) genes were detected in any of the isolates, whereas all contained the bla(TEM) gene. Twenty-five strains (40.3%) harbored the CTX-M group 1 gene. The most prevalent MLST sequence type (ST) was ST 93 (14.5%), followed by ST 117 (9.7%) and ST 2303 (8.1%). This study reveals a high occurrence and β-lactams resistance rate of E. coli in fecal samples and whole chickens collected from slaughterhouses in South Korea.
Collapse
Affiliation(s)
- Jong-Soo Lim
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Da-Som Choi
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Young-Jo Kim
- 2 Ministry of Food and Drug Safety, Food and Drug Administration , Cheongwon, Korea
| | - Jung-Whan Chon
- 3 Department of Animal Science and Technology, Konkuk University , Seoul, Korea
| | - Hong-Seok Kim
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| | - Hyun-Jung Park
- 2 Ministry of Food and Drug Safety, Food and Drug Administration , Cheongwon, Korea
| | - Jin-San Moon
- 4 Animal and Plant Quarantine Agency , Anyang, Gyeonggi, Korea
| | - Sung-Hwan Wee
- 4 Animal and Plant Quarantine Agency , Anyang, Gyeonggi, Korea
| | - Kun-Ho Seo
- 1 KU Center for Food Safety, College of Veterinary Medicine, Konkuk University , Seoul, Korea
| |
Collapse
|
45
|
Mir IA, Kashyap SK, Maherchandani S. Isolation, serotype diversity and antibiogram of Salmonella enterica isolated from different species of poultry in India. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
46
|
Colobatiu L, Tabaran A, Flonta M, Oniga O, Mirel S, Mihaiu M. First description of plasmid-mediated quinolone resistance determinants and β-lactamase encoding genes in non-typhoidal Salmonella isolated from humans, one companion animal and food in Romania. Gut Pathog 2015; 7:16. [PMID: 26120367 PMCID: PMC4482042 DOI: 10.1186/s13099-015-0063-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/16/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Gastroenteritis attributable to Salmonella enterica and the continuous increase in antimicrobial resistance of this gut pathogen, which compromises the use of previously effective treatments, is of great concern for public health. This study was conducted in order to investigate the presence of plasmid-mediated quinolone resistance (PMQR) determinants and β-lactamase-encoding genes, in S. enterica, isolated from humans, one companion animal and food. Moreover, the study aimed to identify potential vehicles of transmission of resistant strains to humans, with focus on food products (meat). METHODS A total of 20 S. enterica isolates recovered from food (chicken and pork meat), one companion animal and humans (stool samples), were examined for their serotype, antimicrobial susceptibility and the presence of PMQR and β-lactamase-encoding genes. Moreover, the genetic relatedness of nine Salmonella Infantis and ten Salmonella Enteritidis isolates was analyzed by pulsed-field gel electrophoresis (PFGE). RESULTS Among all isolates, 15 (75%) were multidrug-resistant (MDR) and the majority of them proved to be resistant to nalidixic acid and fluoroquinolones (FQs) (ciprofloxacin and levofloxacin). Twelve isolates (60%) harboured at least one PMQR gene [qnrA, qnrB, qnrS, aac (6')-Ib-cr or qepA] while seven isolates (35%) carried at least one β-lactamase-encoding gene (bla TEM, bla PSE-1, bla SHV or bla CTX-M). Moreover, two or more PMQR or β-lactamase-encoding genes co-existed in a single S. enterica isolate. A number of nine Salmonella Infantis, as well as the majority of Salmonella Enteritidis isolates analyzed by PFGE proved to be closely related. CONCLUSIONS The study demonstrated the co-existence of PMQR and β-lactamase-encoding genes among the Salmonella isolates recovered and confirmed that multiple mechanisms might be involved in the acquisition and spread of resistance determinants. The close genetic relatedness between the clinical and foodborne S. enterica isolates, suggested that chicken meat might be a possible cause of human salmonellosis in our country, during the study period. Results of this study might improve understanding of the antimicrobial resistance mechanisms and transmission dynamics of Salmonella spp. Here, we report for the first time the presence of PMQR and β-lactamase-encoding genes in S. enterica isolates, recovered from humans, one companion animal and food, in Romania.
Collapse
Affiliation(s)
- Liora Colobatiu
- />Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Tabaran
- />Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mirela Flonta
- />Infectious Diseases Hospital, Cluj-Napoca, Romania
| | - Ovidiu Oniga
- />Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Mirel
- />Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marian Mihaiu
- />Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|
48
|
Clemente L, Manageiro V, Jones-Dias D, Correia I, Themudo P, Albuquerque T, Geraldes M, Matos F, Almendra C, Ferreira E, Caniça M. Antimicrobial susceptibility and oxymino-β-lactam resistance mechanisms in Salmonella enterica and Escherichia coli isolates from different animal sources. Res Microbiol 2015; 166:574-83. [PMID: 26054292 DOI: 10.1016/j.resmic.2015.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 11/16/2022]
Abstract
The impact of extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (PMAβs) of animal origin has been a public health concern. In this study, 562 Salmonella enterica and 598 Escherichia coli isolates recovered from different animal species and food products were tested for antimicrobial resistance. Detection of ESBL-, PMAβ-, plasmid-mediated quinolone resistance (PMQR)-encoding genes and integrons was performed in isolates showing non-wild-type phenotypes. Susceptibility profiles of Salmonella spp. isolates differed according to serotype and origin of the isolates. The occurrence of cefotaxime non-wild-type isolates was higher in pets than in other groups. In nine Salmonella isolates, blaCTX-M (n = 4), blaSHV-12 (n = 1), blaTEM-1 (n = 2) and blaCMY-2 (n = 2) were identified. No PMQR-encoding genes were found. In 47 E. coli isolates, blaCTX-M (n = 15), blaSHV-12 (n = 2), blaCMY-2 (n = 6), blaTEM-type (n = 28) and PMQR-encoding genes qnrB (n = 2), qnrS (n = 1) and aac(6')-Ib-cr (n = 6) were detected. To the best of our knowledge, this study is the first to describe the presence of blaCMY-2 (n = 2) and blaSHV-12 (n = 1) genes among S. enterica from broilers in Portugal. This study highlights the fact that animals may act as important reservoirs of isolates carrying ESBL-, PMAβ- and PMQR-encoding genes that might be transferred to humans through direct contact or via the food chain.
Collapse
Affiliation(s)
- Lurdes Clemente
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Estrada de Benfica, 701, 1549-011, Lisbon, Portugal.
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Center for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal.
| | - Daniela Jones-Dias
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Center for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal.
| | - Ivone Correia
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Estrada de Benfica, 701, 1549-011, Lisbon, Portugal.
| | - Patricia Themudo
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Estrada de Benfica, 701, 1549-011, Lisbon, Portugal.
| | - Teresa Albuquerque
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Estrada de Benfica, 701, 1549-011, Lisbon, Portugal.
| | - Margarida Geraldes
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Rua dos Lagidos, 4485-655, Vairão, Portugal.
| | - Filipa Matos
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Rua dos Lagidos, 4485-655, Vairão, Portugal.
| | - Cláudia Almendra
- INIAV - National Institute for Agrarian and Veterinary Research, Microbiology and Mycology Laboratory, Rua dos Lagidos, 4485-655, Vairão, Portugal.
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Center for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal.
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Center for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Oporto, Oporto, Portugal.
| |
Collapse
|
49
|
Thavanathan J, Huang NM, Thong KL. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Int J Nanomedicine 2015; 10:2711-22. [PMID: 25897217 PMCID: PMC4396418 DOI: 10.2147/ijn.s74753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles–conjugated DNA probe onto the surface of the secondary graphene oxide–conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 μM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization.
Collapse
Affiliation(s)
- Jeevan Thavanathan
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Nay Ming Huang
- Low Dimension Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Chon JW, Jung HI, Kuk M, Kim YJ, Seo KH, Kim SK. High Occurrence of Extended-Spectrum β-Lactamase-ProducingSalmonellain Broiler Carcasses from Poultry Slaughterhouses in South Korea. Foodborne Pathog Dis 2015; 12:190-6. [DOI: 10.1089/fpd.2014.1847] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jung-Whan Chon
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hae-In Jung
- Department of Animal Science and Technology, College of Animal Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Min Kuk
- Department of Animal Science and Technology, College of Animal Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Young-Ji Kim
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kun-Ho Seo
- KU Center for Food Safety, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Soo-Ki Kim
- Department of Animal Science and Technology, College of Animal Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|