1
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Samuels N, Shapira S, Ben-Arye E. Herb-antitumour drug interaction risks: retrospective integrative oncology study. BMJ Support Palliat Care 2024:spcare-2024-005098. [PMID: 39137966 DOI: 10.1136/spcare-2024-005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES The use of herbal medicine is widespread among oncology patients, with potentially negative interactions with anticancer drugs. This study identified herbal products being used among a cohort of oncology patients, assessing the risk for an herb-drug interaction. METHODS Herbal medicine use was examined among 42 oncology patients, identifying potential herb-drug interactions using four online sites. The risk for an interaction was scored using the Working Group on Pharmacotherapy and Drug Information of the Royal Dutch Association for the Advancement of Pharmacy (KNMP). RESULTS Most patients (62%) reported herbal medicine use, with 70 products identified; 8 herbs and 13 herbal formulas with unidentified components; and 24 anticancer drugs. Herbal medicine use was more prevalent among female patients (p=0.038), with only nine potential herb-drug interactions identified on at least one site. A maximal KNMP Score of 1 (ie, incomplete published case report) was found with only one interaction. CONCLUSIONS The risk for interactions between herbal products and anticancer drugs is difficult to predict, with online search engines providing limited and inconsistent information. Clinical implications of herb-antitumor drug interactions need to be better understood, enabling patients and their oncology healthcare providers to make informed decisions regarding their care.
Collapse
Affiliation(s)
- Noah Samuels
- Center for Integrative Complementary Medicine, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shir Shapira
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Ben-Arye
- Integrative Oncology Program, Oncology Service, Lin Medical Center, Haifa, Israel
- Faculty of Medicine, Family Medicine Program, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Sato T, Yagi A, Yamauchi M, Kumondai M, Sato Y, Kikuchi M, Maekawa M, Yamaguchi H, Abe T, Mano N. The Use of an Antioxidant Enables Accurate Evaluation of the Interaction of Curcumin on Organic Anion-Transporting Polypeptides 4C1 by Preventing Auto-Oxidation. Int J Mol Sci 2024; 25:991. [PMID: 38256064 PMCID: PMC10815578 DOI: 10.3390/ijms25020991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Flavonoids have garnered attention because of their beneficial bioactivities. However, some flavonoids reportedly interact with drugs via transporters and may induce adverse drug reactions. This study investigated the effects of food ingredients on organic anion-transporting polypeptide (OATP) 4C1, which handles uremic toxins and some drugs, to understand the safety profile of food ingredients in renal drug excretion. Twenty-eight food ingredients, including flavonoids, were screened. We used ascorbic acid (AA) to prevent curcumin oxidative degradation in our method. Twelve compounds, including apigenin, daidzein, fisetin, genistein, isorhamnetin, kaempferol, luteolin, morin, quercetin, curcumin, resveratrol, and ellagic acid, altered OATP4C1-mediated transport. Kaempferol and curcumin strongly inhibited OATP4C1, and the Ki values of kaempferol (AA(-)), curcumin (AA(-)), and curcumin (AA(+)) were 25.1, 52.2, and 23.5 µM, respectively. The kinetic analysis revealed that these compounds affected OATP4C1 transport in a competitive manner. Antioxidant supplementation was determined to benefit transporter interaction studies investigating the effects of curcumin because the concentration-dependent curve evidently shifted in the presence of AA. In this study, we elucidated the food-drug interaction via OATP4C1 and indicated the utility of antioxidant usage. Our findings will provide essential information regarding food-drug interactions for both clinical practice and the commercial development of supplements.
Collapse
Affiliation(s)
- Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Ayaka Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Minami Yamauchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
| | - Masafumi Kikuchi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Hospital, Yamagata 990-9585, Japan;
- Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan;
- Division of Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan; (M.K.); (Y.S.); (M.K.); (M.M.); (N.M.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
5
|
Chen JF, Liu F, Qiao MM, Shu HZ, Li XC, Peng C, Xiong L. Vasorelaxant effect of curcubisabolanin A isolated from Curcuma longa through the PI3K/Akt/eNOS signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115332. [PMID: 35525529 DOI: 10.1016/j.jep.2022.115332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma longa L. (Zingiberaceae) is a known blood-activating and stasis-removing traditional Chinese medicine and has relevant pharmacological properties. The rhizomes of C. longa have been used for the treatment of cardiovascular disease (CVD) in China. Previous studies have shown that sesquiterpenoids from C. longa have significant vasorelaxant effects, which are closely associated with the prevention and treatment of CVD. AIM OF THE STUDY To explore the sesquiterpenoids with vasorelaxant effects from C. longa and investigate the underlying mechanisms. MATERIALS AND METHODS The compound was isolated from C. longa by multiple chromatography technologies. Its structure was determined by extensive spectroscopic analyses, nuclear magnetic resonance (NMR) data calculations, electronic circular dichroism (ECD) data calculations, and optical rotation (OR) data calculations. The vasorelaxant effect of the isolated compound was evaluated by KCl- or phenylephrine (PHE)-inducing contraction of the rat thoracic aortic rings. Endothelial removal and L-NAME pretreatment experiments were used to verify the endothelium-dependent vasorelaxant effect of the isolated compound in rat thoracic aortic rings. NO production was monitored in human umbilical vein endothelial cells (HUVECs). Western blot was carried out in HUVECs to elucidate the potential mechanisms. RESULTS A new bisabolane-type sesquiterpenoid, curcubisabolanin A [(+)-(1S,7S,9E)-bisabola-2(3),4(15),9(10)-trien-11-ol], was isolated from the rhizomes of C. longa. curcubisabolanin A exhibited endothelium-dependent relaxation on rat thoracic aortic rings, while pre-treatment of intact aortic rings with an eNOS inhibitor (L-NAME) attenuated the vasorelaxant response of curcubisabolanin A. In addition, curcubisabolanin A induced intracellular NO production and significantly increased the levels of phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-Akt), and phosphorylated eNOS (p-eNOS) in HUVECs. LY294002 (a blocker of PI3K) and MK-2206 (a highly selective inhibitor of Akt) significantly decreased these effects of curcubisabolanin A. CONCLUSIONS These findings demonstrated that the vasorelaxant effect of curcubisabolanin A was partially endothelium-dependent and was related to regulation of NO production in vascular endothelial cells through the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Jin-Feng Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ming-Ming Qiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Zhen Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Cui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Kalluru H, Mallayasamy SR, Kondaveeti SS, Chandrasekhar V, Kalachaveedu M. Effect of turmeric supplementation on the pharmacokinetics of paclitaxel in breast cancer patients: A study with population pharmacokinetics approach. Phytother Res 2022; 36:1761-1769. [PMID: 35181963 DOI: 10.1002/ptr.7412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/09/2022]
Abstract
Turmeric is one of the most used herbal supplements among cancer patients. It reportedly modulates the function of CYP450 enzymes and drug transporters. This study investigates the effect of turmeric on the pharmacokinetics of paclitaxel in breast cancer patients. This is a prospective longitudinal study with 60 breast cancer patients on treatment with single-agent paclitaxel and turmeric. The patients were followed up for two consecutive chemotherapy cycles, and their blood samples were collected, first without turmeric (first cycle) and the next after a 21-day concomitant administration of 2 g/day turmeric (second cycle). Plasma samples were quantified for paclitaxel concentration using High Performance Liquid Chromatograph with UV detector (HPLC-UV) method. The sparse concentration-time data of paclitaxel were subjected to population pharmacokinetic modeling, and then noncompartmental analysis (NCA) was performed on the simulated data to estimate the pharmacokinetic parameters of paclitaxel, before and after turmeric supplementation, for comparisons. The population pharmacokinetic parameters of paclitaxel differed from before to after turmeric supplementation. NCA of simulated concentration-time profiles showed a statistically significant reduction of 7.7% and 12.1% in AUCinf and Cmax, respectively. Given the small magnitude of the changes in pharmacokinetic parameters, the observed changes are not clinically relevant. Thereby, turmeric at the recommended dose can be combined safely with paclitaxel.
Collapse
Affiliation(s)
- Hindu Kalluru
- Department of Pharmacognosy, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Surulivel Rajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Satish Srinivas Kondaveeti
- Department of Radiation Oncology, Faculty of Medicine, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Vinodhini Chandrasekhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | - Mangathayaru Kalachaveedu
- Department of Pharmacognosy, Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Bolla L, Srivastava P, Ravichandiran V, Nanjappan SK. Cytochrome P450 and P-gp Mediated Herb-Drug Interactions and Molecular Docking Studies of Garcinol. MEMBRANES 2021; 11:992. [PMID: 34940493 PMCID: PMC8705362 DOI: 10.3390/membranes11120992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023]
Abstract
Garcinol is an active constituent of Garcinia indica and Garcinia cambogia. Recent studies have proven that garcinol has anti-inflammatory, anti-cancer, and anti-oxidant activities. The objective of this study was to evaluate the inhibitory effects of garcinol on the activities of the drug metabolizing cytochrome P450 (CYP) isozymes to predict potential herb-drug interactions with co-administered drugs. Garcinol was incubated with a mixture of rat liver microsomes and eight CYP probe substrate cocktail under optimized incubation conditions and the samples were analyzed using a validated method on LC-MS/MS. Garcinol showed strong inhibition with IC50 values of CYP1A2 (7.6 µM), CYP2C9 (8.0 µM), CYP2B6 (2.1 µM), CYP2D6 (9.5 µM), and CYP3A4 (5.1 µM), respectively, and moderate inhibition towards CYP2C19 (16.4 µM) and CYP2E1 (19.0 µM). Molecular docking studies were performed on garcinol against the active sites of CYP2B6 and CYP3A4 proteins. These results further confirmed that the inhibitory activity of garcinol occurred by occupying the active sites of these human CYPs and by making favorable interactions with its key residues. In-vivo CYP inhibition studies were carried out in Sprague-Dawley rats. These results suggest garcinol may cause herb-drug interactions, mediated by inhibition of CYPs involved in drug metabolism in-vivo by altering the pharmacokinetic parameters like AUC and Cmax in a clinically significant manner. Garcinol was found to upregulate the expression and activity of P-gp in western blotting study and P-gp inhibition study in-vivo. These findings give a clear understanding to predict potential herb-drug/drug-drug interactions of garcinol for safe clinical use in future.
Collapse
Affiliation(s)
- Lavanya Bolla
- Aragen Life Sciences Pvt. Ltd. (Formerly known as GVK Biosciences Pvt. Ltd.), IDA Nacharam, Hyderabad 500076, India; (L.B.); (P.S.)
| | - Pratima Srivastava
- Aragen Life Sciences Pvt. Ltd. (Formerly known as GVK Biosciences Pvt. Ltd.), IDA Nacharam, Hyderabad 500076, India; (L.B.); (P.S.)
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Satheesh Kumar Nanjappan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
8
|
Determination of effective concentrations of drug absorption enhancers using in vitro and ex vivo models. Eur J Pharm Sci 2021; 167:106028. [PMID: 34601070 DOI: 10.1016/j.ejps.2021.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Achievement of an effective concentration of the pharmaceutically active ingredient in the blood and/or at the target site is an important aspect in the formulation of drugs and therefore needs to be quantified. Any concentration above therapeutic levels can cause toxic effects whereas low concentrations can be sub-therapeutic. This paper investigated different concentrations of selected commercially sourced analytical-grade pure chemicals as potential drug absorption enhancers in vitro and ex vivo to determine the lowest effective concentrations for optimizing drug absorption in oral dosage forms. METHODS Recombinant cytochrome (CYP) 3A4 enzyme and recombinant p-glycoprotein membrane models were utilized for the investigation of in vitro inhibitory effects of drug absorption enhancers. Promega (2015) protocols were adopted for both assays. The everted porcine intestinal ex vivo model was employed for assessing effects of the drug absorption enhancers on the absorption of propranolol. RESULTS The lowest effective CYP3A4 inhibitory concentrations were observed for curcumin (75µM and 100 µM), quercetin (75 and 100 µM) and glycyrrhizic acid (50 µM) while the most effective p-glycoprotein (P-gp) inhibition concentrations were curcumin (10, 15, 25, 50, 75 and 100 µM), sinomenine (50, 75, and 100 µM), quercetin (75 and 100 µM) and naringin (50 µM). Additive effects were observed between combinations of quercetin (75 µM) and curcumin (100 µM); quercetin (75 µM) and curcumin (75 µM); quercetin (75 µM) and curcumin (50 µM), and quercetin (75 µM) with curcumin (10 µM), which increased the basal ex vivo absorption of propranolol from 1.24 ± 0.03 µg/mL to 5.19 ± 0.12 µg/mL, 4.17 ± 0.05 µg/mL, 3.86 ± 0.10 µg/mL, and 4.07± 0.05 µg/mL respectively, after 2 hours. CONCLUSION Incorporation of the drug absorption enhancers (e.g., curcumin and quercetin), at specific concentrations, in dosage forms could improve the bioavailability of the BCS Class III and IV drugs that are substrates of CYP3A4 and p-glycoprotein.
Collapse
|
9
|
Villegas C, Perez R, Sterner O, González-Chavarría I, Paz C. Curcuma as an adjuvant in colorectal cancer treatment. Life Sci 2021; 286:120043. [PMID: 34637800 DOI: 10.1016/j.lfs.2021.120043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide and mostly affects men. Around 20% of its incidence is by familiar disposition due to hereditary syndromes. The CRC treatment involves surgery and chemotherapy; however, the side effects of treatments and the fast emergence of drug resistance evidence the necessity to find more effective drugs. Curcumin is the main polyphenol pigment present in Curcuma longa, a plant widely used as healthy food with antioxidant properties. Curcumin has synergistic effects with antineoplastics such as 5-fluorouracil and oxaliplatin, as well anti-inflammatory drugs by inhibiting cyclooxygenase-2 and the Nuclear factor kappa B. Furthermore, curcumin shows anticancer properties by inhibition of the Wnt/β-catenin, Hedgehog, Notch, and the phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathways implicated in the progression of CRC. However, the consumption of pure curcumin is less suitable, as the absorption is poor, and the metabolism and excretion are high. Pharmacological formulations and essential oils of the plant improve the curcumin absorption, resulting in therapeutical dosages. Despite the evidence obtained in vitro and in vivo, clinical studies have not yet confirmed the therapeutic potential of curcumin against CRC. Here we reviewed the last scientific information that supports the consumption of curcumin as an adjuvant for CRC therapy.
Collapse
Affiliation(s)
- Cecilia Villegas
- Laboratory of Natural Products and Drug Discovery, Department of Basic Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Rebeca Perez
- Laboratory of Natural Products and Drug Discovery, Department of Basic Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Olov Sterner
- Division of Organic chemistry, Lund University, Lund, Sweden
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Paz
- Laboratory of Natural Products and Drug Discovery, Department of Basic Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
10
|
The Inhibitory Activity of Curcumin on P-Glycoprotein and Its Uptake by and Efflux from LS180 Cells Is Not Affected by Its Galenic Formulation. Antioxidants (Basel) 2021; 10:antiox10111826. [PMID: 34829695 PMCID: PMC8615263 DOI: 10.3390/antiox10111826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
The biological activities of curcumin in humans, including its antioxidative and anti-inflammatory functions, are limited by its naturally low bioavailability. Different formulation strategies have been developed, but the uptake of curcumin from these galenic formulations into and efflux from intestinal cells, which may be critical processes limiting bioavailability, have not been directly compared. Furthermore, little is known about their effect on P-glycoprotein activity, an important determinant of the pharmacokinetics of potentially co-administered drugs. P-glycoprotein activity was determined in LS180 cells, incubated with 30 or 60 µmol/L of curcumin in the form of seven different formulations or native curcuma extract for 1 h. All formulations inhibited P-glycoprotein activity at both concentrations. Curcumin uptake, after 1 h incubation of LS180 cells with the formulations (60 µmol/L), showed significant variability but no consistent effects. After 1 h pre-treatment with the formulations and further 8 h with curcumin-free medium, curcumin in cell culture supernatants, reflecting the efflux, differed between individual formulations, again without a clear effect. In conclusion, curcumin inhibits P-glycoprotein activity independently of its formulation. Its uptake by and efflux from intestinal cells was not significantly different between formulations, indicating that these processes are not important regulatory points for its bioavailability.
Collapse
|
11
|
Kefelegn GA, Desta B. Ximenia americana: Economic Importance, Medicinal Value, and Current Status in Ethiopia. ScientificWorldJournal 2021; 2021:8880021. [PMID: 33746636 PMCID: PMC7960047 DOI: 10.1155/2021/8880021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ximenia americana is one of the most valuable wild edible plants in the world. In different countries, it is utilized as food, medicine, an essential oil source, and the industrial component to other products. In Ethiopia, it was one of the most known and very important plants for a long period of time. It was utilized as food, a medicinal plant, and animal feed. It was also one of the most economically important and culturally valuable plants. But nowadays, it is not adequately available in the country due to deforestation problem in the years. In addition, its economic importance, current status, and medicinal roles are not well documented and understood. As for research studies, it is concluded that unless a collective effort is taken, the existence of this plant is under severe threat and needs to have some measures. This review article is aimed at addressing the abovelined topics in detail and to pinpoint and explain the importance and status of Ximenia americana.
Collapse
Affiliation(s)
- Getachew Amare Kefelegn
- Department of Horticulture, College of Agriculture and Natural Resources Sciences, Debre Berhan University, P.O. Box: 445, Debre Berhan, Ethiopia
| | - Bizuayehu Desta
- Department of Horticulture, College of Agriculture and Natural Resources Sciences, Debre Berhan University, P.O. Box: 445, Debre Berhan, Ethiopia
| |
Collapse
|
12
|
Exploring Herbal Medicine Use during Palliative Cancer Care: The Integrative Physician as a Facilitator of Pharmacist-Patient-Oncologist Communication. Pharmaceuticals (Basel) 2020; 13:ph13120455. [PMID: 33322582 PMCID: PMC7763590 DOI: 10.3390/ph13120455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Oncology patients frequently use herbal and other forms of complementary medicine, often without the knowledge of oncologists, pharmacists, and other healthcare professionals responsible for their care. Oncology healthcare professionals may lack the knowledge needed to guide their patients on the safe and effective use of herbal medicinal products, a number of which have potentially harmful effects, which include direct toxicity and negative herb–drug interactions. The current review addresses the prevalence and expectations of oncology patients from herbal medicine, as well as evidence for the beneficial or harmful effects of this practice (potential and actual), especially when the herbal products are used in conjunction with anticancer agents. Models of integrative oncology care are described, in which open and effective communication among oncologists, pharmacists, and integrative physicians on the use of herbal medicine by their patients occurs. This collaboration provides patients with a nonjudgmental and multidisciplinary approach to integrative medicine, echoing their own health-belief models of care during conventional cancer treatments. The role of the integrative physician is to facilitate this process, working with oncologists and pharmacists in the fostering of patient-centered palliative care, while ensuring a safe and effective treatment environment. Case scenario: W. is a 56 year old female artist who was recently diagnosed with localized hormone receptor-positive breast cancer. Following lumpectomy and sentinel node dissection, she is scheduled to begin adjuvant chemotherapy with a regimen which will include adriamycin, cyclophosphamide, and paclitaxel (AC-T protocol). She is worried about developing peripheral neuropathy and its impact on her ability to paint, and she asks about a number of dietary supplements which she heard could prevent this from happening: omega-3, vitamin E, alpha-lipoic acid, and acetyl-l-carnithine. She is concerned, however, that the supplements may negatively interact with her chemotherapy regimen.
Collapse
|
13
|
Costa J, Almonti V, Cacopardo L, Poli D, Rapposelli S, Ahluwalia A. Investigating Curcumin/Intestinal Epithelium Interaction in a Millifluidic Bioreactor. Bioengineering (Basel) 2020; 7:bioengineering7030100. [PMID: 32858899 PMCID: PMC7552770 DOI: 10.3390/bioengineering7030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
Multidrug resistance is still an obstacle for chemotherapeutic treatments. One of the proteins involved in this phenomenon is the P-glycoprotein, P-gp, which is known to be responsible for the efflux of therapeutic substances from the cell cytoplasm. To date, the identification of a drug that can efficiently inhibit P-gp activity remains a challenge, nevertheless some studies have identified natural compounds suitable for that purpose. Amongst them, curcumin has shown an inhibitory effect on the protein in in vitro studies using Caco-2 cells. To understand if flow can modulate the influence of curcumin on the protein's activity, we studied the uptake of a P-gp substrate under static and dynamic conditions. Caco-2 cells were cultured in bioreactors and in Transwells and the basolateral transport of rhodamine-123 was assessed in the two systems as a function of the P-gp activity. Experiments were performed with and without pre-treatment of the cells with an extract of curcumin or an arylmethyloxy-phenyl derivative to evaluate the inhibitory effect of the natural substance with respect to a synthetic compound. The results indicated that the P-gp activity of the cells cultured in the bioreactors was intrinsically lower, and that the effect of both natural and synthetic inhibitors was up modulated by the presence of flow. Our study underlies the fact that the use of more sophisticated and physiologically relevant in vitro models can bring new insights on the therapeutic effects of natural substances such as curcumin.
Collapse
Affiliation(s)
- Joana Costa
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy; (L.C.); (D.P.); (A.A.)
- Correspondence:
| | - Vanessa Almonti
- LARF-DIMES, Department of Experimental Medicine, University of Genoa, 16126 Genoa, Italy;
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy;
| | - Ludovica Cacopardo
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy; (L.C.); (D.P.); (A.A.)
| | - Daniele Poli
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy; (L.C.); (D.P.); (A.A.)
| | - Simona Rapposelli
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy;
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Arti Ahluwalia
- Research Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy; (L.C.); (D.P.); (A.A.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy;
| |
Collapse
|
14
|
The Application of Nanotechnology in the Codelivery of Active Constituents of Plants and Chemotherapeutics for Overcoming Physiological Barriers during Antitumor Treatment. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9083068. [PMID: 31915707 PMCID: PMC6930735 DOI: 10.1155/2019/9083068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
Antitumor therapy using a combination of drugs has shown increased clinical efficacy. Active constituents derived from plants can offer several advantages, such as high efficiacy, low toxicity, extensive effects, and multiple targets. At present, the combination of plants' active constituents and chemotherapeutic drugs has attracted increased attention. Nanodrug delivery systems (NDDSs) have been widely used in tumor-targeted therapy because of their efficacy of delivering antitumor drugs. The in vivo process of tumor-targeted NDDSs has several steps. They include blood circulation, tumor accumulation and penetration, target cell internalization and uptake, and drug release and drug response. In each step, NDDSs encounter multiple barriers that prevent their effective delivery to target sites. Studies have been performed to find alternative strategies to overcome these barriers. We reviewed the recent progress of codelivery of active constituents of plants and chemotherapeutics using NDDSs. Progress into transversing the physiological barriers for more effective in vivo antitumor delivery will be discussed in this review.
Collapse
|
15
|
Gao B, Yang F, Chen W, Li R, Hu X, Liang Y, Li D. Multidrug resistance affects the prognosis of primary epithelial ovarian cancer. Oncol Lett 2019; 18:4262-4269. [PMID: 31579424 DOI: 10.3892/ol.2019.10745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/15/2019] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant tumor cells can tolerate different structures, functions and antidrug action mechanisms, therefore, allowing these cells to respond to various structurally unrelated mechanisms of different chemotherapy drugs and to exhibit cross-resistance. The present study aimed to investigate the role of Multi-drug resistance gene (MDR1), Placental glutathione S-transferase-P1 (GSTP1), Lung resistance protein (LRP) and Ras association domain family member 1 (RASSF1A) in primary epithelial ovarian cancer (PEOC). The mRNA (protein) expression levels of MDR1, product P glycoprotein, LRP and GSTP1 were evaluated with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis in all tissue samples, ovarian cancer cell line A2780 and A2780/DDP. Methylation-specific PCR (MSP) was used to detect RASSF1A gene methylation in all tissue samples. The resistance genes/proteins were either poorly or not expressed in A2780, however were highly expressed in A2780/DDP cell line. The expression of resistance genes/proteins decreased following different concentrations of zebularine-stimulated A2780/DDP. Hypermethylation and low expression of RASSF1A gene were detected in PEOC and A2780/DDP. Subsequent to being exposed to different concentrations of zebularine-stimulated A2780/DDP, the RASSF1A methylation level was decreased, while the unmethylation level was increased. The expression of RASSF1A gene/protein was gradually restored, and the gene/protein expression was enhanced with the increase in drug concentration. Multivariate logistic regression indicated that the expression level of gene LRP and GSTP1 was a risk factor for PEOC prognosis. Furthermore, the expression of LRP and GSTP1 in the negative-group survival curves was higher compared with the positive group. High expression of resistance genes may serve an important role in cancer primary resistance. Low expression caused by hyper-methylation of RASSF1A gene may serve an important role in cancer-acquired resistance in PEOC. The present study suggested that resistant gene expression may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Bo Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, P.R. China.,Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fengmei Yang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei Chen
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Rui Li
- Department of Medical Office, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiuxue Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yong Liang
- Department of Anesthesiology, Ren-ming Hospital of Yun-xi, Shiyan, Hubei 442000, P.R. China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, P.R. China
| |
Collapse
|
16
|
Wang Y, Zuo Y, Deng S, Zhu F, Liu Q, Wang R, Li T, Cai H, Wan X, Xie Z, Xie Z, Li D. Using Caffeine and Free Amino Acids To Enhance the Transepithelial Transport of Catechins in Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5477-5485. [PMID: 30983343 DOI: 10.1021/acs.jafc.9b01701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catechins are well-known to possess health-promoting functions. The interaction of the catechins with other components in tea could alter their absorption and efflux. This study investigated whether the absorption of catechins is affected by caffeine and amino acids using the Caco-2 monolayer cell model. We found that (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC) were all actively effluxed. Co-transportation of EGCG, ECG, or EC with caffeine, theanine, serine, or glycine increased their apparent permeability coefficient [ Papp(AP-BL)] value by 3.42-5.40- fold, 1.19-5.75-fold, and 1.55-8.01-fold, respectively. Meanwhile, their efflux ratio values were significantly decreased. Moreover, the expression of multi-drug resistance protein 2 (MRP2) after 3 h of incubation with either 50 μM EGCG or 50 μM EC was elevated by 1.58- and 2.98-fold, respectively, while 50 μM ECG had no significantly effects. In addition, the expression of P-glycoprotein (P-gp) after treatment with either 50 μM EGCG, 50 μM ECG, or 50 μM EC was enhanced by 1.53-, 1.63-, and 1.80-fold, respectively. The addition of either caffeine or any one of the three amino acids decreased the expression of both MRP2 and P-gp induced by EGCG, and the expression of P-gp induced by ECG or EC also decreased. In contrast, only glycine decreased the expression of MRP2 induced by EC. Taken together, our data indicated that caffeine and theanine, glycine, or serine in tea might increase the absorption of catechins by the selectively suppressed expression of the efflux transporters induced by catechins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zijian Xie
- Marshall Institute for Interdisciplinary Research , Marshall University , 1 John Marshall Drive , Huntington , West Virginia 25755 , United States
| | | | | |
Collapse
|
17
|
Impact of Curcumin (with or without Piperine) on the Pharmacokinetics of Tamoxifen. Cancers (Basel) 2019; 11:cancers11030403. [PMID: 30909366 PMCID: PMC6468355 DOI: 10.3390/cancers11030403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Tamoxifen is a prodrug that is primarily metabolized into the pharmacologically active metabolite endoxifen and eventually into inactive metabolites. The herb curcumin may increase endoxifen exposure by affecting phase II metabolism. We compared endoxifen and tamoxifen exposure in breast cancer patients with or without curcumin, and with addition of the bio-enhancer piperine. Tamoxifen (20⁻30mg per day (q.d.)) was either given alone, or combined with curcumin (1200 mg three times daily (t.i.d.)) +/- piperine (10 mg t.i.d.). The primary endpoint of this study was the difference in geometric means for the area under the curve (AUC) of endoxifen. Genotyping was performed to determine CYP2D6 and CYP3A4 phenotypes. The endoxifen AUC0⁻24h decreased with 7.7% (95%CI: -15.4 to 0.7%; p = 0.07) with curcumin and 12.4% (95%CI: -21.9 to -1.9%; p = 0.02) with curcumin and piperine, compared to tamoxifen alone. Tamoxifen AUC0⁻24h showed similar results. For patients with an extensive CYP2D6 metabolism phenotype (EM), effects were more pronounced than for intermediate CYP2D6 metabolizers (IMs). In conclusion, the exposure to tamoxifen and endoxifen was significantly decreased by concomitant use of curcumin (+/- piperine). Therefore, co-treatment with curcumin could lower endoxifen concentrations below the threshold for efficacy (potentially 20⁻40% of the patients), especially in EM patients.
Collapse
|
18
|
Yang F, Gao B, Chen W, Du E, Liang Y, Hu X, Yang X. Expression of resistance gene and prognosis of chemotherapy in primary epithelial ovarian cancer. Medicine (Baltimore) 2018; 97:e12364. [PMID: 30313031 PMCID: PMC6203479 DOI: 10.1097/md.0000000000012364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sensitivity of tumor cells to chemotherapy drugs may become attenuated accounts for various reasons. Reduced drug sensitivity may cause the failure of chemotherapy and affect the prognosis of patients with cancer. This study investigates the relationship between the expression levels of lung resistance protein (LRP) and placental glutathione S-transferase-P1 (GSTP1), the resistance of primary epithelial ovarian cancer (PEOC) to chemotherapy, and the prognosis of patients with platinum drug-resistant PEOC.Quantitative PCR (QT-PCR) was used to detect the mRNA level of the resistance genes LRP, GSTP1 in all tissue and cell lines.The expression levels of resistance gene (LRP, GSTP1) in PEOC were the highest, followed by borderline adenoma tissues, and the lowest levels found in benign tumor tissues, the difference of genes expression between different tissues was statistically significant; the difference between the expression rates and relative expression level of drug resistance genes was statistically significant in platinum sensitive group compare with the platinum resistant group. The difference between resistant gene negative-expression and positive-expression of chemotherapy efficiency, disease free survival time, and recurrence time were statistically significant. The resistant genes expression in the PEOC patients of the negative-group survival curves was higher than that in the positive group. With ascites non-cellular component (ANCC) stimulated SKOV3 cells, the cell proliferation inhibition rate (CPIR) increased, and with ANCC stimulated SKOV3/DDP, the expression of LRP and GSTP1 also increased.ANCC may promote the expression of drug resistance genes, and the expression of genes may predict the poorly prognosis of epithelial ovarian cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Drug Resistance, Neoplasm/physiology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Glutathione S-Transferase pi/genetics
- Glutathione S-Transferase pi/metabolism
- Humans
- Middle Aged
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/mortality
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Platinum Compounds/therapeutic use
- Prognosis
- Real-Time Polymerase Chain Reaction
- Survival Analysis
- Vault Ribonucleoprotein Particles/genetics
- Vault Ribonucleoprotein Particles/metabolism
Collapse
Affiliation(s)
- Fengmei Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi
- Department of Obstetrics and Gynecology
| | - Bo Gao
- Department of Laboratory Medicine
| | - Wei Chen
- Department of Laboratory Medicine
| | - Enfu Du
- Department of Radiology, Taihe Hospital, Hubei University of Medicine
| | - Yong Liang
- Department of Anesthesiology, Ren-ming Hospital of Yun-xi, Shiyan, Hubei, P.R. China
| | | | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi
| |
Collapse
|
19
|
Mohajeri M, Behnam B, Cicero AFG, Sahebkar A. Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol 2017; 233:3552-3577. [PMID: 29034472 DOI: 10.1002/jcp.26212] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Aflatoxicosis is a deleterious medical condition that results from aflatoxins (AFs) or ochratoxins (OTs). Contamination with these toxins exerts detrimental effects on the liver, kidneys, reproductive organs, and also on immunological and cardiovascular systems. Aflatoxicosis is closely associated with overproduction of reactive oxygen species (ROS) as key contributors to oxidative and nitrosative stress responses, and subsequent damages to lipids, proteins, RNA, and DNA. The main target organ for AF toxicity is the liver, where DNA adducts, degranulation of endoplasmic reticulum, increased hepatic lipid peroxide, GSH depletion, mitochondrial dysfunction, and reduction of enzymatic and non-enzymatic antioxidants are manifestations of aflatoxicosis. Curcuma longa L. (turmeric) is a medicinal plant widely utilized all over the world for culinary and phytomedical purposes. Considering the antioxidant characteristic of curcumin, the main active component of turmeric, this review is intended to critically summarize the available evidence supporting possible effectiveness of curcumin against aflatoxicosis. Curcumin can serve as a promising candidate for attenuation of the adverse consequences of aflatoxicosis, acting mainly through intrinsic antioxidant effects aroused from its structure, modulation of the immune system as reflected by interleukin-1β and transforming growth factor-β, and interfering with AF's biotransformation by cytochrome P450 isoenzymes CYP1A, CYP3A, CYP2A, CYP2B, and CYP2C.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Bahramsoltani R, Rahimi R, Farzaei MH. Pharmacokinetic interactions of curcuminoids with conventional drugs: A review. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:1-12. [PMID: 28734960 DOI: 10.1016/j.jep.2017.07.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb-drug interactions are of great concern in health practices. Curcumin is a natural polyphenol extracted from turmeric, a spice widely used all over the world. Curcumin is clinically used due to its acceptable safety profile and therapeutic efficacy. AIM OF THE STUDY Current paper aims to highlight the effect of curcumin on concomitantly used drugs. METHODS Electronic databases including PubMed, Scopus and Science Direct were searched with the keywords "curcumin" in the title/abstract and "drug interaction," "drug metabolism," "cytochrome," "P-glycoprotein" and "P450" in the whole text. RESULTS Curcumin can induce pharmacokinetic alterations such as changes in Cmax and AUC when concomitantly used with pharmacological agents like cardiovascular drugs, antidepressants, anticoagulants, antibiotics, chemotherapeutic agents, and antihistamines. The underlying mechanisms of these interactions include inhibition of cytochrome (CYP) isoenzymes and P-glycoprotein. There is only one clinical trial which proved a significant alteration of conventional drugs in concomitant use with curcumin indicating the need for further human studies. CONCLUSIONS Although in vitro and in vivo studies do not provide enough evidence to judge the clinical drug interactions of curcumin, physicians must remain cautious and avoid drug combinations which may lead to curcumin-drug interactions.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| |
Collapse
|
21
|
Zeng Z, Shen ZL, Zhai S, Xu JL, Liang H, Shen Q, Li QY. Transport of curcumin derivatives in Caco-2 cell monolayers. Eur J Pharm Biopharm 2017; 117:123-131. [DOI: 10.1016/j.ejpb.2017.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 01/18/2023]
|
22
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
23
|
Chanburee S, Tiyaboonchai W. Enhanced intestinal absorption of curcumin in Caco-2 cell monolayer using mucoadhesive nanostructured lipid carriers. J Biomed Mater Res B Appl Biomater 2017; 106:734-741. [DOI: 10.1002/jbm.b.33884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Sanipon Chanburee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences; Naresuan University; Phitsanulok 65000 Thailand
- The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on High Education, Ministry of Education; Phitsanulok Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences; Naresuan University; Phitsanulok 65000 Thailand
- The Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on High Education, Ministry of Education; Phitsanulok Thailand
- The Center of Excellence in Medical Biotechnology, Naresuan University; Phitsanulok 65000 Thailand
| |
Collapse
|
24
|
Sun X, Luo Y, Huang L, Yu BY, Tian J. A peptide-decorated and curcumin-loaded mesoporous silica nanomedicine for effectively overcoming multidrug resistance in cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra01128h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A robust peptide-functionalized mesoporous silica nanomedicine loading with curcumin and doxorubicin (DOX/CUR@MSN-Pep) has been successfully constructed to effectively overcome multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Xian Sun
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Yingping Luo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Liwei Huang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- Department of Complex Prescription of TCM
- China Pharmaceutical University
- Nanjing 211198
| |
Collapse
|
25
|
Improvement of Transmembrane Transport Mechanism Study of Imperatorin on P-Glycoprotein-Mediated Drug Transport. Molecules 2016; 21:molecules21121606. [PMID: 27886150 PMCID: PMC6274566 DOI: 10.3390/molecules21121606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.
Collapse
|
26
|
Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol. Molecules 2016; 21:molecules21101386. [PMID: 27763524 PMCID: PMC6274229 DOI: 10.3390/molecules21101386] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/12/2016] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 (w/w/w). The solubility and dissolution rate of the curcumin solid dispersion markedly improved compared with those of curcumin powder and a physical mixture of curcumin, TPGS, and mannitol. About 90% of the curcumin was released from the solid dispersion formulation within 10 min. After administering the formulation orally to rats, higher plasma concentrations of curcumin were observed, with increases in the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of 86- and 65-fold, respectively, compared with those of curcumin powder. The solid dispersion formulation effectively increased intestinal permeability and inhibited P-gp function. These effects increased the anti-proliferative effect of curcumin in MDA-MB-231 breast cancer cells. Moreover, 2 h incubation with curcumin powder, solid dispersion formulation, and its physical mixture resulted in differential cytotoxic effect of paclitaxel in P-gp overexpressed LLC-PK1-P-gp and MDA-MB-231 cells through the inhibition of P-gp-mediated paclitaxel efflux. In conclusion, compared with curcumin, a solid dispersion formulation of curcumin with TPGS and mannitol could be a promising option for enhancing the oral bioavailability and efficacy of curcumin through increased solubility, dissolution rate, cell permeability, and P-gp modulation.
Collapse
|
27
|
Sarisozen C, Dhokai S, Tsikudo EG, Luther E, Rachman IM, Torchilin VP. Nanomedicine based curcumin and doxorubicin combination treatment of glioblastoma with scFv-targeted micelles: In vitro evaluation on 2D and 3D tumor models. Eur J Pharm Biopharm 2016; 108:54-67. [PMID: 27569031 DOI: 10.1016/j.ejpb.2016.08.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/09/2016] [Accepted: 08/21/2016] [Indexed: 11/29/2022]
Abstract
NF-κB is strongly associated with poor prognosis of different cancer types and an important factor responsible for the malignant phenotype of glioblastoma. Overcoming chemotherapy-induced resistance caused by activation of PI3K/Akt and NF-κB pathways is crucial for successful glioblastoma therapy. We developed an all-in-one nanomedicine formulation for co-delivery of a chemotherapeutic agent (topoisomerase II inhibitor, doxorubicin) and a multidrug resistance modulator (NF-κB inhibitor, curcumin) for treatment of glioblastoma due to their synergism. Both agents were incorporated into PEG-PE-based polymeric micelles. The glucose transporter-1 (GLUT1) is overexpressed in many tumors including glioblastoma. The micellar system was decorated with GLUT1 antibody single chain fragment variable (scFv) as the ligand to promote blood brain barrier transport and glioblastoma targeting. The combination treatment was synergistic (combination index, CI of 0.73) against U87MG glioblastoma cells. This synergism was improved by micellar encapsulation (CI: 0.63) and further so with GLUT1 targeting (CI: 0.46). Compared to non-targeted micelles, GLUT1 scFv surface modification increased the association of micelles (>20%, P<0.01) and the nuclear localization of doxorubicin (∼3-fold) in U87MGcells, which also translated into enhanced cytotoxicity. The increased caspase 3/7 activation by targeted micelles indicates successful apoptosis enhancement by combinatory treatment. Moreover, GLUT1 targeted micelles resulted in deeper penetration into the 3D spheroid model. The increased efficacy of combination nanoformulations on the spheroids compared to a single agent loaded, or to non-targeted formulations, reinforces the rationale for selection of this combination and successful utilization of GLUT1 scFv as a targeting agent for glioblastoma treatment.
Collapse
Affiliation(s)
- Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Shekhar Dhokai
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Edcar G Tsikudo
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
28
|
Ni J, Tian F, Dahmani FZ, Yang H, Yue D, He S, Zhou J, Yao J. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs. Drug Deliv 2016; 23:3424-3435. [PMID: 27198856 DOI: 10.1080/10717544.2016.1189625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The low oral bioavailability of numerous drugs has been mostly attributed to the significant effect of P-gp-mediated efflux on intestinal drug transport. Herein, we developed mixed polymeric micelles (MPMs) comprised of curcumin-carboxymethyl chitosan (CNC) conjugate, as a potential inhibitor of P-gp-mediated efflux and gastrointestinal absorption enhancer, and low-molecular-weight heparin-all-trans-retinoid acid (LHR) conjugate, as loading material, with the aim to improve the oral absorption of P-gp substrate drugs. CNC conjugate was synthesized by chemical bonding of curcumin (Cur) and carboxymethyl chitosan (CMCS) taking advantage of the inhibition of intestinal P-gp-mediated secretion by Cur and the intestinal absorption enhancement by CMCS. The chemical structure of CNC conjugate was characterized by 1H NMR with a degree of substitution of Cur of 4.52-10.20%. More importantly, CNC conjugate markedly improved the stability of Cur in physiological pH. Cyclosporine A-loaded CNC/LHR MPMs (CsA-CNC/LHR MPMs) were prepared by dialysis method, with high drug loading 25.45% and nanoscaled particle size (∼200 nm). In situ single-pass perfusion studies in rats showed that both CsA + CNC mixture and CsA-CNC/LHR MPMs achieved significantly higher Ka and Peff than CsA suspension in the duodenum and jejunum segments (p < 0.01), which was comparable to verapamil coperfusion effect. Similarly, CsA + CNC mixture and CsA-CNC/LHR MPMs significantly increased the oral bioavailability of CsA as compared to CsA suspension. These results suggest that CNC conjugate might be considered as a promising gastrointestinal absorption enhancer, while CNC/LHR MPMs had the potential to improve the oral absorption of P-gp substrate drugs.
Collapse
Affiliation(s)
- Jiang Ni
- a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing , Jiangsu , China and
| | - Fengchun Tian
- a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing , Jiangsu , China and
| | - Fatima Zohra Dahmani
- a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing , Jiangsu , China and
| | - Hui Yang
- a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing , Jiangsu , China and
| | - Deren Yue
- b Shandong Dyne Marine Biopharmaceutical Co, Ltd , Beijing , China
| | - Shuwang He
- b Shandong Dyne Marine Biopharmaceutical Co, Ltd , Beijing , China
| | - Jianping Zhou
- a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing , Jiangsu , China and
| | - Jing Yao
- a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University , Nanjing , Jiangsu , China and
| |
Collapse
|
29
|
Baharuddin P, Satar N, Fakiruddin KS, Zakaria N, Lim MN, Yusoff NM, Zakaria Z, Yahaya BH. Curcumin improves the efficacy of cisplatin by targeting cancer stem-like cells through p21 and cyclin D1-mediated tumour cell inhibition in non-small cell lung cancer cell lines. Oncol Rep 2015; 35:13-25. [PMID: 26531053 PMCID: PMC4699625 DOI: 10.3892/or.2015.4371] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 01/16/2023] Open
Abstract
Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10–40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
Collapse
Affiliation(s)
- Puteri Baharuddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Jalan Pahang, Kuala Lumpur 50588, Malaysia
| | - Nazilah Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| | - Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Jalan Pahang, Kuala Lumpur 50588, Malaysia
| | - Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Jalan Pahang, Kuala Lumpur 50588, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), Jalan Pahang, Kuala Lumpur 50588, Malaysia
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), University Sains Malaysia, Kepala Batas, Penang 13200, Malaysia
| |
Collapse
|
30
|
Memvanga PB, Tona GL, Mesia GK, Lusakibanza MM, Cimanga RK. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. JOURNAL OF ETHNOPHARMACOLOGY 2015; 169:76-98. [PMID: 25862959 DOI: 10.1016/j.jep.2015.03.075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria is the most prevalent parasitic disease and the foremost cause of morbidity and mortality in the Democratic Republic of Congo. For the management of this disease, a large Congolese population recourses to traditional medicinal plants. To date the efficacy and safety of many of these plants have been validated scientifically in rodent malaria models. In order to generate scientific evidence of traditional remedies used in the Democratic Republic of Congo for the management of malaria, and show the potential of Congolese plants as a major source of antimalarial drugs, this review highlights the antiplasmodial and toxicological properties of the Congolese antimalarial plants investigated during the period of 1999-2014. In doing so, a useful resource for further complementary investigations is presented. Furthermore, this review may pave the way for the research and development of several available and affordable antimalarial phytomedicines. MATERIALS AND METHODS In order to get information on the different studies, a Google Scholar and PubMed literature search was performed using keywords (malaria, Congolese, medicinal plants, antiplasmodial/antimalarial activity, and toxicity). Data from non-indexed journals, Master and Doctoral dissertations were also collected. RESULTS Approximately 120 extracts and fractions obtained from Congolese medicinal plants showed pronounced or good antiplasmodial activity. A number of compounds with interesting antiplasmodial properties were also isolated and identified. Some of these compounds constituted new scaffolds for the synthesis of promising antimalarial drugs. Interestingly, most of these extracts and compounds possessed high selective activity against Plasmodium parasites compared to mammalian cells. The efficacy and safety of several plant-derived products was confirmed in mice, and a good correlation was observed between in vitro and in vivo antimalarial activity. The formulation of several plant-derived products also led to some clinical trials and license of three plant-derived drugs (Manalaria(®), Nsansiphos(®), and Quinine Pharmakina(®)). CONCLUSION The obtained results partly justify and support the use of various medicinal plants to treat malaria in folk medicine in the Democratic Republic of Congo. Antimalarial plants used in Congolese traditional medicine represent an important source for the discovery and development of new antimalarial agents. However, in order to ensure the integration of a larger number of plant-derived products in the Congolese healthcare system, some parameters and trends should be considered in further researches, in agreement with the objectives of the "Traditional Medicine Strategy" proposed by the World Health Organization in 2013. These include evaluation of geographical and seasonal variation, investigation of reproductive biology, assessment of prophylactic antimalarial activity, evaluation of natural products as adjuvant antioxidant therapy for malaria, development of plant-based combination therapies and monitoring of herbal medicines in pharmacovigilance systems.
Collapse
Affiliation(s)
- Patrick B Memvanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drugs Development, B.P. 212 Kinshasa XI, Democratic Republic of Congo.
| | - Gaston L Tona
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Gauthier K Mesia
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Mariano M Lusakibanza
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacology and Therapeutics, B.P. 212 Kinshasa XI, Democratic Republic of Congo
| | - Richard K Cimanga
- University of Kinshasa, Faculty of Pharmaceutical Sciences, Laboratory of Pharmacognosy, B.P. 212 Kinshasa XI, Democratic Republic of Congo; University of Antwerp, Department of Pharmaceutical Sciences, Laboratory of Pharmacognosy and Pharmaceutical Analysis, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
31
|
Pharmacokinetic interactions of herbs with cytochrome p450 and p-glycoprotein. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:736431. [PMID: 25632290 PMCID: PMC4302358 DOI: 10.1155/2015/736431] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/20/2014] [Accepted: 12/20/2014] [Indexed: 11/17/2022]
Abstract
The concurrent use of drugs and herbal products is becoming increasingly prevalent over the last decade. Several herbal products have been known to modulate cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) which are recognized as representative drug metabolizing enzymes and drug transporter, respectively. Thus, a summary of knowledge on the modulation of CYP and P-gp by commonly used herbs can provide robust fundamentals for optimizing CYP and/or P-gp substrate drug-based therapy. Herein, we review ten popular medicinal and/or dietary herbs as perpetrators of CYP- and P-gp-mediated pharmacokinetic herb-drug interactions. The main focus is placed on previous works on the ability of herbal extracts and their phytochemicals to modulate the expression and function of CYP and P-gp in several in vitro and in vivo animal and human systems.
Collapse
|
32
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2014; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
33
|
Ezuruike UF, Prieto JM. The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:857-924. [PMID: 24929108 DOI: 10.1016/j.jep.2014.05.055] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of diabetes is on a steady increase worldwide and it is now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on the available evidence on the species׳ pharmacology and safety, we highlight ways in which their therapeutic potential can be properly harnessed for possible integration into the country׳s healthcare system. MATERIALS AND METHODS Ethnobotanical information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants used in diabetes management, in which the place of use and/or sample collection was identified as Nigeria. 'Diabetes' and 'Nigeria' were used as keywords for the primary searches; and then 'Plant name - accepted or synonyms', 'Constituents', 'Drug interaction' and/or 'Toxicity' for the secondary searches. RESULTS The hypoglycemic effect of over a hundred out of the 115 plants reviewed in this paper is backed by preclinical experimental evidence, either in vivo or in vitro. One-third of the plants have been studied for their mechanism of action, while isolation of the bioactive constituent(s) has been accomplished for twenty three plants. Some plants showed specific organ toxicity, mostly nephrotoxic or hepatotoxic, with direct effects on the levels of some liver function enzymes. Twenty eight plants have been identified as in vitro modulators of P-glycoprotein and/or one or more of the cytochrome P450 enzymes, while eleven plants altered the levels of phase 2 metabolic enzymes, chiefly glutathione, with the potential to alter the pharmacokinetics of co-administered drugs. CONCLUSION This review, therefore, provides a useful resource to enable a thorough assessment of the profile of plants used in diabetes management so as to ensure a more rational use. By anticipating potential toxicities or possible herb-drug interactions, significant risks which would otherwise represent a burden on the country׳s healthcare system can be avoided.
Collapse
Affiliation(s)
- Udoamaka F Ezuruike
- Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom.
| | - Jose M Prieto
- Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom.
| |
Collapse
|
34
|
Rosa A, Atzeri A, Deiana M, Melis MP, Incani A, Minassi A, Cabboi B, Appendino G. Prenylation preserves antioxidant properties and effect on cell viability of the natural dietary phenol curcumin. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Memvanga PB, Coco R, Préat V. An oral malaria therapy: Curcumin-loaded lipid-based drug delivery systems combined with β-arteether. J Control Release 2013; 172:904-13. [DOI: 10.1016/j.jconrel.2013.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 01/04/2023]
|
36
|
Effects of rhinacanthin-C on function and expression of drug efflux transporters in Caco-2 cells. Fitoterapia 2013; 89:80-5. [DOI: 10.1016/j.fitote.2013.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 01/30/2023]
|
37
|
Man S, Li Y, Fan W, Gao W, Liu Z, Li N, Zhang Y, Liu C. Curcuma increasing antitumor effect of Rhizoma paridis saponins through absorptive enhancement of paridis saponins. Int J Pharm 2013; 454:296-301. [DOI: 10.1016/j.ijpharm.2013.06.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/14/2013] [Accepted: 06/29/2013] [Indexed: 11/15/2022]
|
38
|
Liang Y, Zhou Y, Zhang J, Liu Y, Guan T, Wang Y, Xing L, Rao T, Zhou L, Hao K, Xie L, Wang GJ. In vitro to in vivo evidence of the inhibitor characteristics of Schisandra lignans toward P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:1030-1038. [PMID: 23731657 DOI: 10.1016/j.phymed.2013.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/19/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
Concomitant administration of herbal medicines with drugs that are P-glycoprotein (P-gp) substrates may produce significant herb-drug interactions. The purpose of this study was to evaluate the effects of Schisandra lignans extract (SLE) on P-gp thoroughly in vitro and in vivo, and to investigate the possible P-gp-based herb-drug interactions. In the in vitro experiments, the effect of SLE on the uptake and transport for P-gp substrates in Caco-2, LLC-PK1 and L-MDR1 cells were carefully investigated. Verapamil, a known P-gp inhibitor, was used as a positive control drug. Results shown that, 10 μM verapamil and SLE (0.5, 2.0, and 10.0 μg/ml) were observed to significantly enhance the uptake and inhibit the efflux ratio of P-gp substrates in Caco-2 and L-MDR1 cells. In vivo experiments showed that single-dose SLE at 500 mg/kg could increase the area under the plasma concentration time curve of digoxin and vincrisine significantly without affecting terminal elimination half-time. Long-term treatment with SLE for continuous 10 days could also increase the absorption of P-gp substrates with greatly down regulation of P-gp expression in rat intestinal and brain tissues. In conclusion, SLE was a strong P-gp inhibitor, which indicated a potential herb-drug interaction when SLE was co-administered with P-gp substrate drugs.
Collapse
Affiliation(s)
- Yan Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morisaki T, Hou XL, Takahashi K, Takahashi K. Baicalin pharmacokinetic profile of absorption process using novel in-vitro model: cytochrome P450 3A4-induced Caco-2 cell monolayers combined with rat intestinal rinse fluids. J Pharm Pharmacol 2013; 65:1526-35. [DOI: 10.1111/jphp.12127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/04/2013] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
This study was designed to investigate baicalin (BG) pharmacokinetic profile in absorption process using a new model and evaluate the potentiality as a new model.
Methods
The effects of BG on intestinal cytochrome P450 3A4 (CYP3A) protein/mRNA expression, activity and permeability glycoprotein (P-gp) were evaluated in CYP3A4-induced Caco-2 cell monolayers or rats. Intestinal rinse fluids (IF) were obtained from rat were added to modified Caco-2 monolayers.
Key findings
Orally administered BG (7 days pretreatment) inhibited intestinal CYP3A activity and protein expression. Baicalein (B) converted from BG by IF was detected in the upper jejunum in a portion-dependent manner. Subsequently, most BG were converted to B in the caecum. In modified Caco-2 monolayers, BG exhibited no effect on CYP3A4 activity or mRNA, whereas B and BG treated with IF inhibited CYP3A4 transcription and activity.
Conclusions
Intestinal CYP3A was inhibited following oral administration of BG to rat. Correspondingly, BG-mediated CYP3A inhibition was shown in vitro using modified Caco-2 monolayers treated with IF. Hence, in-vivo intestinal absorption pharmacokinetic was reproduced in vitro. IF is a key determinant of intestinal absorption, and it facilitated inhibition of CYP3A by B, not BG.
Collapse
Affiliation(s)
- Tomoko Morisaki
- Department of Applied Pharmacognosy, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Xiao-Long Hou
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan
| | - Kyoko Takahashi
- Basic Research Group for the Assembly and Preservation of Primary Materials, The Museum of Osaka University, Osaka, Japan
| | - Koichi Takahashi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan
| |
Collapse
|
40
|
Sukhaphirom N, Vardhanabhuti N, Chirdchupunseree H, Pramyothin P, Jianmongkol S. Phyllanthin and hypophyllanthin inhibit function of P-gp but not MRP2 in Caco-2 cells. J Pharm Pharmacol 2013; 65:292-9. [PMID: 23278697 DOI: 10.1111/j.2042-7158.2012.01593.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 08/12/2012] [Indexed: 12/16/2023]
Abstract
OBJECTIVES The purposes of this study were to investigate the inhibitory effects of two lignans, phyllanthin and hypophyllanthin, on the function of P-glycoprotein (P-gp) and multidrug resistance protein 2 (MRP2), using the in-vitro model of Caco-2 cells. In addition, the effect of prolonged exposure to these two compounds on the expression of active P-gp was also determined. METHODS The activity of P-gp and MRP2 was determined in the uptake assays by monitoring the intracellular accumulation of their specific substrates (calcein acetoxymethyl ester and 5(6)-carboxy-2',7'-dichlorofluorescein diacetate, respectively) with fluorescence spectroscopy. KEY FINDINGS Hypophyllanthin and phyllanthin inhibited P-gp function with comparable potencies, but neither compound affected MRP2 activity. When the lignans were washed out before addition of substrate, the inhibitory action of both compounds against P-gp function was lost. These results suggested the reversibility of the inhibition. Moreover, prolonged exposure of the Caco-2 cells to both lignans (up to 7 days) had no effect on P-gp function. CONCLUSIONS Phyllanthin and hypophyllanthin directly inhibited P-gp activity and did not interfere with MRP2 activity. It was likely that both phyllanthin and hypophyllanthin could reversibly inhibit P-gp function.
Collapse
|
41
|
In vitro effect of quercetin on human gastric carcinoma: Targeting cancer cells death and MDR. Food Chem Toxicol 2012; 50:3375-83. [DOI: 10.1016/j.fct.2012.06.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/21/2012] [Accepted: 06/24/2012] [Indexed: 11/18/2022]
|
42
|
Liu AC, Zhao LX, Xing J, Liu T, Du FY, Lou HX. Pre-treatment with curcumin enhances plasma concentrations of losartan and its metabolite EXP3174 in rats. Biol Pharm Bull 2012; 35:145-50. [PMID: 22293343 DOI: 10.1248/bpb.35.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study was carried out in the Wistar rats to investigate the effect of curcumin pre-treatment on the pharmacokinetics of the hypertension-treating drug losartan and its metabolite EXP3174 following single oral administration. In the treatment group, rats were gavaged with losartan 10 mg/kg after repeat oral doses of curcumin (100 mg/kg, for 7 d), while rats in the control group were administrated only with the same dose losartan. The results showed that curcumin significantly increased the plasma concentrations of losartan and its metabolite EXP3174. The present study implicated the existence of herb-drug interaction between curcumin and losartan, and further evaluation of the possible interaction during curcumin administration needs to be considered.
Collapse
Affiliation(s)
- An-Chang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | | | | | | | | | | |
Collapse
|
43
|
He X, Mo L, Li ZY, Tan ZR, Chen Y, Ouyang DS. Effects of curcumin on the pharmacokinetics of talinolol in human withABCB1polymorphism. Xenobiotica 2012; 42:1248-54. [DOI: 10.3109/00498254.2012.697590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Wink M, Ashour ML, El-Readi MZ. Secondary Metabolites from Plants Inhibiting ABC Transporters and Reversing Resistance of Cancer Cells and Microbes to Cytotoxic and Antimicrobial Agents. Front Microbiol 2012; 3:130. [PMID: 22536197 PMCID: PMC3332394 DOI: 10.3389/fmicb.2012.00130] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022] Open
Abstract
Fungal, bacterial, and cancer cells can develop resistance against antifungal, antibacterial, or anticancer agents. Mechanisms of resistance are complex and often multifactorial. Mechanisms include: (1) Activation of ATP-binding cassette (ABC) transporters, such as P-gp, which pump out lipophilic compounds that have entered a cell, (2) Activation of cytochrome p450 oxidases which can oxidize lipophilic agents to make them more hydrophilic and accessible for conjugation reaction with glucuronic acid, sulfate, or amino acids, and (3) Activation of glutathione transferase, which can conjugate xenobiotics. This review summarizes the evidence that secondary metabolites (SM) of plants, such as alkaloids, phenolics, and terpenoids can interfere with ABC transporters in cancer cells, parasites, bacteria, and fungi. Among the active natural products several lipophilic terpenoids [monoterpenes, diterpenes, triterpenes (including saponins), steroids (including cardiac glycosides), and tetraterpenes] but also some alkaloids (isoquinoline, protoberberine, quinoline, indole, monoterpene indole, and steroidal alkaloids) function probably as competitive inhibitors of P-gp, multiple resistance-associated protein 1, and Breast cancer resistance protein in cancer cells, or efflux pumps in bacteria (NorA) and fungi. More polar phenolics (phenolic acids, flavonoids, catechins, chalcones, xanthones, stilbenes, anthocyanins, tannins, anthraquinones, and naphthoquinones) directly inhibit proteins forming several hydrogen and ionic bonds and thus disturbing the 3D structure of the transporters. The natural products may be interesting in medicine or agriculture as they can enhance the activity of active chemotherapeutics or pesticides or even reverse multidrug resistance, at least partially, of adapted and resistant cells. If these SM are applied in combination with a cytotoxic or antimicrobial agent, they may reverse resistance in a synergistic fashion.
Collapse
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm 2012; 426:193-201. [PMID: 22274587 DOI: 10.1016/j.ijpharm.2012.01.020] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/27/2011] [Accepted: 01/09/2012] [Indexed: 12/21/2022]
Abstract
Co-encapsulated doxorubicin (DOX) and curcumin (CUR) in poly(butyl cyanoacrylate) nanoparticles (PBCA-NPs) were prepared with emulsion polymerization and interfacial polymerization. The mean particle size and mean zeta potential of CUR-DOX-PBCA-NPs were 133 ± 5.34 nm in diameter and +32.23 ± 4.56 mV, respectively. The entrapment efficiencies of doxorubicin and curcumin were 49.98 ± 3.32% and 94.52 ± 3.14%, respectively. Anticancer activities and reversal efficacy of the formulations and various combination approaches were assessed using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyltetrazolium bromide assay and western blotting. The results showed that the dual-agent loaded PBCA-NPs system had the similar cytotoxicity to co-administration of two single-agent loaded PBCA-NPs (DOX-PBCA-NPs+CUR-PBCA-NPs), which was slightly higher than that of the free drug combination (DOX+CUR) and one free drug/another agent loaded PBCA-NPs combination (DOX+CUR-PBCA-NPs or CUR+DOX-PBCA-NPs). The simultaneous administration of doxorubicin and curcumin achieved the highest reversal efficacy and down-regulation of P-glycoprotein in MCF-7/ADR cell lines, an MCF-7 breast carcer cell line resistant to adriamycin. Multidrug resistance can be enhanced by combination delivery of encapsulated cytotoxic drugs and reversal agents.
Collapse
|
46
|
Yue GGL, Cheng SW, Yu H, Xu ZS, Lee JKM, Hon PM, Lee MYH, Kennelly EJ, Deng G, Yeung SK, Cassileth BR, Fung KP, Leung PC, Lau CBS. The role of turmerones on curcumin transportation and P-glycoprotein activities in intestinal Caco-2 cells. J Med Food 2011; 15:242-52. [PMID: 22181075 DOI: 10.1089/jmf.2011.1845] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases.
Collapse
Affiliation(s)
- Grace G L Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Li Y, Revalde JL, Reid G, Paxton JW. Interactions of dietary phytochemicals with ABC transporters: possible implications for drug disposition and multidrug resistance in cancer. Drug Metab Rev 2011; 42:590-611. [PMID: 20433315 DOI: 10.3109/03602531003758690] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Common foods, such as fruits and vegetables, contain a large variety of secondary metabolites known as phytochemicals, many of which have been associated with health benefits. However, there is a limited knowledge of the processes by which these, mainly charged, phytochemicals (and/or their metabolites) are absorbed into the body, reach their biological target, and how they are eliminated. Recent studies have indicated that some of these phytochemicals are substrates and modulators of specific members of the superfamily of ABC transporting proteins. In this review, we present the reported interactions between the different classes of phytochemicals and ABC transporters and the mechanism by which they modulate the activity of these transporters. We also discuss the implications that such interactions may have on the pharmacokinetics of xenobiotics and the possible role of phytochemicals in the reversal of multidrug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
48
|
Zhu XY, Cheng GL, Liu FH, Yu J, Wang YJ, Yu TQ, Xu JQ, Wang M. Taguchi approach for anti-heat stress prescription compatibility in mice spleen lymphocytes in vitro. Arch Pharm Res 2011; 34:1125-33. [PMID: 21811919 DOI: 10.1007/s12272-011-0710-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/20/2009] [Accepted: 11/26/2010] [Indexed: 11/29/2022]
Abstract
Heat stress (HS) may induce immunosuppression as well as inhibit the proliferation of lymphocytes. This study evaluated the effects on immune function of our prescription on splenic lymphocytes under HS as well as its compatibility. The effects of four herbal extracts from Agastache rugosa, Atractylodes lancea, Cortex Phellodendri, and Gypsum Fibrosum on heat treated splenic lymphocytes were investigated and the compatibility of the prescription was also explored by using the Taguchi method. This study revealed changes in proliferation by traditional Chinese medicines of splenic lymphocytes after HS. Proliferation in the HS group was significantly lower than the control group. Under HS, the effects of higher concentrations of Agastache rugosa (100 and 200 μg/mL), Atractylodes lancea (100 and 200 μg/mL), Cortex Phellodendri (50 and 100 μg/mL) and Gypsum Fibrosum (100 and 200 μg/mL) caused a significant increase on ConA/LPS-induced proliferation of lymphocytes than lower concentrations. We, therefore, conclude that the prescription of traditional Chinese medicines may recover splenic lymphocytes from the immunosuppression induced by HS. The Taguchi design, which allows rapid and high efficiency for the selection of the best conditions for our prescription on HS-treated splenic lymphocytes, demonstrated that Agastache rugosa (200 μg/mL), Atractylodes lancea (200 μg/mL), Cortex Phellodendri (100 μg/mL) and Gypsum Fibrosum (100 μg/mL) were the optimal conditions for the prescription. The validation experiment confirmed that our composition in optimum extraction conditions enhanced effects on ConA or LPS-stimulated lymphocytes under HS. The results showed that the Taguchi optimization approach is a suitable method for optimization of the composition of prescription.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- TCVM Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wakuda H, Nejime N, Tada Y, Kagota S, Fahmi OA, Umegaki K, Yamada S, Shinozuka K. A novel method using confocal laser scanning microscopy for sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells. ACTA ACUST UNITED AC 2011; 63:1015-21. [PMID: 21718284 DOI: 10.1111/j.2042-7158.2011.01294.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to use time-lapse confocal laser scanning microscopy to establish a more sensitive and specific method for evaluating P-glycoprotein activity in Caco-2 cells. METHODS The change in the fluorescence of residual rhodamine 123 at the apical and central regions of Caco-2 cells was measured in the presence of digoxin or St John's wort by using time-lapse confocal laser scanning microscopy. The data were compared with measurements made using conventional techniques, a fluorescence microplate reader and a fluorescence microscope. KEY FINDINGS The percentage decrease of rhodamine 123 caused by 10 µm digoxin or 0.1 µg/ml St John's wort was significantly larger in the apical region of the Caco-2 cell than in the central region or in the whole cell. The digoxin-induced inhibition in the apical region as measured by time-lapse confocal laser scanning microscopy was greater than that measured in the whole cell by a microplate reader or a fluorescence microscope. CONCLUSIONS The assay of residual rhodamine 123 in the apical region of Caco-2 cells by confocal laser scanning microscopy was more sensitive than the conventional methods using a microplate reader or fluorescence microscopy. It will be a valuable screening tool for studying both the inhibition and induction of P-glycoprotein activity.
Collapse
Affiliation(s)
- Hirokazu Wakuda
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chem 2011; 129:1045-53. [PMID: 25212335 DOI: 10.1016/j.foodchem.2011.05.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/18/2011] [Accepted: 05/18/2011] [Indexed: 12/19/2022]
Abstract
The antioxidant activity of several honeys was evaluated considering the different contribution of entire samples. The strawberry tree honey emerged as the richest in total phenols and the most active honey in the DPPH and FRAP tests, and could protect cholesterol against oxidative degradation (140°C). Homogentisic acid (2,5-dihydroxyphenylacetic acid, HGA), the main phenolic compound from strawberry tree honey, showed interesting antioxidant and antiradical activities, and protective effect against thermal-cholesterol degradation, comparable to those of well known antioxidants. Moreover, the pre-treatment with HGA significantly preserved liposomes and LDL from Cu(2+)-induced oxidative damage at 37°C for 2h, inhibiting the reduction of polyunsaturated fatty acids and cholesterol and the increase of their oxidative products. This phenol had no toxic effect in human intestinal epithelial Caco-2 cells within the concentration range tested (5-1000μM). HGA was able to pass through the Caco-2 monolayers, the apparent permeability coefficients (Papp) in the apical-to-basolateral and basolateral-to-apical direction were 3.48±1.22×10(-6) and 2.18±0.34×10(-6)cm/s, respectively, suggesting a passive diffusion pathway as the dominating process. The results of the work qualify HGA as natural antioxidant, able to exert a significant in vitro protective effect and to contribute to the strawberry tree honey antioxidant activity.
Collapse
|