1
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
2
|
Das IJ, Bal T. pH factors in chronic wound and pH-responsive polysaccharide-based hydrogel dressings. Int J Biol Macromol 2024; 279:135118. [PMID: 39208902 DOI: 10.1016/j.ijbiomac.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds present a significant healthcare challenge marked by complexities such as persistent bleeding, inhibited cell proliferation, dysregulated inflammation, vulnerability to infection, and compromised tissue remodeling. Conventional wound dressings often prove inadequate in addressing the intricate requirements of chronic wound healing, leading to slow healing and heightened susceptibility to infections in patients with prolonged medical conditions. Bacterial biofilms in chronic wounds pose an additional challenge due to drug resistance. Advanced wound dressings have emerged as promising tools in expediting the healing process. Among these, pH-responsive polysaccharide-based hydrogels exhibit immense prospect by adapting their functions to dynamic wound conditions. Despite their potential, the current literature lacks a thorough review of these wound dressings. This review bridges this gap by meticulously examining factors related to chronic wounds, current strategies for healing, and the mechanisms and potential applications of pH-responsive hydrogel wound dressings as an emerging therapeutic solution. Special focus is given to their remarkable antibacterial properties and significant self-healing abilities. It further explores the pH-monitoring functions of these dressings, elucidating the associated pH indicators. This synthesis of knowledge aims to guide future research and development in the field of pH-responsive wound dressings, providing valuable insights into their potential applications in wound care.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
3
|
Zhao Z, Qin Z, Zhao T, Li Y, Hou Z, Hu H, Su X, Gao Y. Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release. Molecules 2024; 29:4952. [PMID: 39459320 PMCID: PMC11510199 DOI: 10.3390/molecules29204952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG-OH was first modified to obtain four-arm-PEG-succinimidyl glutarate (4-arm-PEG-SG), which formed the gelatin-PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zihao Qin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Tianqing Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yuanyuan Li
- School of Advanced Agricultural Science, Weifang University, Weifang 261061, China;
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China;
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China; (T.Z.); (H.H.); (X.S.); (Y.G.)
| |
Collapse
|
4
|
Ishikawa S, Yasuda T, Iwanaga Y, Sakai T. Gel-Gel Phase Separation in Clustered Poly(ethylene glycol) Hydrogel with Enhanced Hydrophobicity. ACS Macro Lett 2024; 13:1369-1375. [PMID: 39330972 DOI: 10.1021/acsmacrolett.4c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The development of hydrophobic poly(ethylene glycol) (PEG) hydrogels, which are typically hydrophilic, could significantly enhance their application as artificial extracellular matrices. In this study, we designed PEG hydrogels with enhanced hydrophobicity through gel-gel phase separation (GGPS), a phenomenon that uniquely enhances hydrophobicity under ambient conditions, and we elucidated the pivotal role of elasticity in this process. We hypothesized that increased elasticity would amplify GGPS, thereby improving the hydrophobicity and cell adhesion on PEG hydrogel surfaces, despite their inherent hydrophilicity. To test this hypothesis, we engineered dilute oligo-PEG gels via a two-step process, creating polymer networks from tetra-PEG clusters with multiple reaction points. These oligo-PEG gels exhibited significantly higher elasticity, turbidity, and shrinkage upon water immersion compared to dilute PEG gels. Detailed characterization through confocal laser scanning microscopy, rheological measurements, and cell adhesion assays revealed distinct biphasic structures, increased hydrophobicity, and enhanced cell attachability in the dilute oligo-PEG gels. Our findings confirm that elasticity is crucial for effective GGPS, providing a novel method for tailoring hydrogel properties without chemical modification. This research introduces a new paradigm for designing biomaterials with improved cell-scaffolding capabilities, offering significant potential for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takashi Yasuda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuhide Iwanaga
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Begum B, Koduru TS, Madni SN, Fathima Anjum N, Seetharaman S, Veeranna B, Gupta VK. Dual-Self-Crosslinking Effect of Alginate-Di-Aldehyde with Natural and Synthetic Co-Polymers as Injectable In Situ-Forming Biodegradable Hydrogel. Gels 2024; 10:649. [PMID: 39451302 PMCID: PMC11507163 DOI: 10.3390/gels10100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Injectable, in situ-forming hydrogels, both biocompatible and biodegradable, have garnered significant attention in tissue engineering due to their potential for creating adaptable scaffolds. The adaptability of these hydrogels, made from natural proteins and polysaccharides, opens up a world of possibilities. In this study, sodium alginate was used to synthesize alginate di-aldehyde (ADA) through periodate oxidation, resulting in a lower molecular weight and reduced viscosity, with different degrees of oxidation (54% and 70%). The dual-crosslinking mechanism produced an injectable in situ hydrogel. Initially, physical crosslinking occurred between ADA and borax via borax complexation, followed by chemical crosslinking with gelatin through a Schiff's base reaction, which takes place between the amino groups of gelatin and the aldehyde groups of ADA, without requiring an external crosslinking agent. The formation of Schiff's base was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. At the same time, the aldehyde groups in ADA were characterized using FT-IR, proton nuclear magnetic resonance (¹H NMR), and gel permeation chromatography (GPC), which determined its molecular weight. Furthermore, borax complexation was validated through boron-11 nuclear magnetic resonance (¹¹B NMR). The hydrogel formulation containing 70% ADA, polyethylene glycol (PEG), and 9% gelatin exhibited a decreased gelation time at physiological temperature, attributed to the increased gelatin content and higher degree of oxidation. Rheological analysis mirrored these findings, showing a correlation with gelation time. The swelling capacity was also enhanced due to the increased oxidation degree of PEG and the system's elevated gelatin content and hydrophilicity. The hydrogel demonstrated an average pore size of 40-60 µm and a compressive strength of 376.80 kPa. The lower molecular weight and varied pH conditions influenced its degradation behavior. Notably, the hydrogel's syringeability was deemed sufficient for practical applications, further enhancing its potential in tissue engineering. Given these properties, the 70% ADA/gelatin/PEG hydrogel is a promising candidate and a potential game-changer for injectable, self-crosslinking applications in tissue engineering. Its potential to revolutionize the field is inspiring and should motivate further exploration.
Collapse
Affiliation(s)
- Bushra Begum
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru 570015, India; (B.B.); (T.S.K.); (B.V.)
- Department of Pharmaceutics, Farooqia College of Pharmacy, Mysuru 570019, India;
| | - Trideva Sastri Koduru
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru 570015, India; (B.B.); (T.S.K.); (B.V.)
| | - Syeda Noor Madni
- Department of Pharmaceutics, Farooqia College of Pharmacy, Mysuru 570019, India;
| | - Noor Fathima Anjum
- Department of Pharmaceutical Chemistry, Farooqia College of Pharmacy, Mysuru 570015, India;
| | | | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru 570015, India; (B.B.); (T.S.K.); (B.V.)
| | - Vishal Kumar Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysuru 570015, India; (B.B.); (T.S.K.); (B.V.)
| |
Collapse
|
6
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
7
|
Cao H, Wang M, Ding J, Lin Y. Hydrogels: a promising therapeutic platform for inflammatory skin diseases treatment. J Mater Chem B 2024; 12:8007-8032. [PMID: 39045804 DOI: 10.1039/d4tb00887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Inflammatory skin diseases, such as psoriasis and atopic dermatitis, pose significant health challenges due to their long-lasting nature, potential for serious complications, and significant health risks, which requires treatments that are both effective and exhibit minimal side effects. Hydrogels offer an innovative solution due to their biocompatibility, tunability, controlled drug delivery capabilities, enhanced treatment adherence and minimized side effects risk. This review explores the mechanisms that guide the design of hydrogel therapeutic platforms from multiple perspectives, focusing on the components of hydrogels, their adjustable physical and chemical properties, and their interactions with cells and drugs to underscore their clinical potential. We also examine various therapeutic agents for psoriasis and atopic dermatitis that can be integrated into hydrogels, including traditional drugs, novel compounds targeting oxidative stress, small molecule drugs, biologics, and emerging therapies, offering insights into their mechanisms and advantages. Additionally, we review clinical trial data to evaluate the effectiveness and safety of hydrogel-based treatments in managing psoriasis and atopic dermatitis under complex disease conditions. Lastly, we discuss the current challenges and future opportunities for hydrogel therapeutics in treating psoriasis and atopic dermatitis, such as improving skin barrier penetration and developing multifunctional hydrogels, and highlight emerging opportunities to enhance long-term safety and stability.
Collapse
Affiliation(s)
- Huali Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
- Department of Dermatology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Jianwei Ding
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
8
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
9
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Sun W, Wu W, Dong X, Yu G. Frontier and hot topics in the application of hydrogel in the biomedical field: a bibliometric analysis based on CiteSpace. J Biol Eng 2024; 18:40. [PMID: 39044254 PMCID: PMC11267772 DOI: 10.1186/s13036-024-00435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Hydrogels are formed of crosslinked polymer chains arranged in three-dimensional (3D) networks. These chains have good water-containing capacity and are soft and malleable. Hydrogels have good biocompatibility due to their significant water content, flexible structure, and numerous holes. These characteristics make them analogous to biological tissues. Despite the publication of 8700 literature related to hydrogel biomedical applications in the past 52 years (1973 ~ 2024), studies on the use of hydrogels in biomedicine are few. To gain a comprehensive understanding of their current development status, research trends, and prospects in the biomedical application field, it is imperative to conduct a thorough retrospective analysis. In this study, we employ bibliometric analysis and CiteSpace software to quantitatively and visually analyze articles published in this field. Firstly, we provide a quantitative analysis of authorship and institutional publications over the past 52 years to elucidate the fundamental development status regarding hydrogel biomedical applications. Secondly, we did visual studies on terms that are high-frequency, explosive, keyword clustering, and so on, to understand the directionality and evolution of the main research hotspots during each period. Notably, our findings emphasize that fabricating hydrogels into wound healing-promoting dressings emerges as a prominent hotspot within the application field. We anticipate that this paper will inspire researchers with novel ideas for advancing hydrogel applications in biomedicine.
Collapse
Affiliation(s)
- Weiming Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Wendi Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Xiangli Dong
- Department of Psychosomatic Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Guohua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
11
|
Popov S, Paderin N, Chistiakova E, Sokolova A, Konyshev IV, Belozerov VS, Byvalov AA. Swelling, Protein Adsorption, and Biocompatibility of Pectin-Chitosan Hydrogels. Gels 2024; 10:472. [PMID: 39057495 PMCID: PMC11275652 DOI: 10.3390/gels10070472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The study aims to determine how chitosan impacts pectin hydrogel's ability to attach peritoneal leukocytes, activate complement, induce hemolysis, and adsorb blood proteins. The hydrogels PEC-Chi0, PEC-Chi25, PEC-Chi50, and PEC-Chi75 were prepared by placing a mixture solution of 4% pectin and 4% chitosan in a ratio of 4:0, 3:1, 2:2, and 1:3 in a solution of 1.0 M CaCl2. Chitosan was found to modify the mechanical properties of pectin-calcium hydrogels, such as hardness and cohesiveness-to-adhesiveness ratio. Chitosan in the pectin-calcium hydrogel caused pH-sensitive swelling in Hanks' solution. The PEC-Chi75 hydrogel was shown to adsorb serum proteins at pH 7.4 to a greater extent than other hydrogels. PEC-Chi75's strong adsorption capacity was related to lower peritoneal leukocyte adherence to its surface when compared to other hydrogels, showing improved biocompatibility. Using the optical tweezers approach, it was shown that the force of interaction between pectin-chitosan hydrogels and plasma proteins increased from 10 to 24 pN with increasing chitosan content from 0 to 75%. Thus, the properties of pectin-calcium hydrogel, which determine interactions with body tissues after implantation, are improved by the addition of chitosan, making pectin-chitosan hydrogel a promising candidate for smart biomaterial development.
Collapse
Affiliation(s)
- Sergey Popov
- Institute of Physiology of Federal Research Centre “Komi Science Centre of the Urals Branch of the Russian Academy of Sciences”, 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia; (N.P.); (E.C.); (A.S.); (I.V.K.); (V.S.B.); (A.A.B.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Chang CW, Dargaville BL, Momot KI, Hutmacher DW. An investigation of water status in gelatin methacrylate hydrogels by means of water relaxometry and differential scanning calorimetry. J Mater Chem B 2024; 12:6328-6341. [PMID: 38628083 DOI: 10.1039/d4tb00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The relationship between molecular structure and water dynamics is a fundamental yet often neglected subject in the field of hydrogels for drug delivery, bioprinting, as well as biomaterial science and tissue engineering & regenerative medicine (TE&RM). Water is a fundamental constituent of hydrogel systems and engages via hydrogen bonding with the macromolecular network. The methods and techniques to measure and reveal the phenomena and dynamics of water within hydrogels are still limited. In this work, differential scanning calorimetry (DSC) was used as a quantitative method to analyze freezable (including free and freezable bound) and non-freezable bound water within gelatin methacrylate (GelMA) hydrogels. Nuclear magnetic resonance (NMR) is a complementary method for the study of water behavior and can be used to measure the spin-relaxation of water hydrogen nuclei, which is related to water dynamics. In this research, nuclear magnetic resonance relaxometry was employed to investigate the molecular state of water in GelMA hydrogels using spin-lattice (T1) and spin-spin (T2) spin-relaxation time constants. The data displays a trend of increasing bound water content with increasing GelMA concentration. In addition, T2 values were further applied to calculate microviscosity and translational diffusion coefficients. Water relaxation under various chemical environments, including different media, temperatures, gelatin sources, as well as crosslinking effects, were also examined. These comprehensive physical data sets offer fundamental insight into biomolecule transport within the GelMA hydrogel system, which ultimately are important for drug delivery, bioprinting, as well as biomaterial science and TE&RM communities.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), QLD 4059, Australia
| | - Bronwin L Dargaville
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), QLD 4059, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), QLD 4059, Australia
| |
Collapse
|
13
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
14
|
Otto F, Froelich A. Microemulsion-Based Polymer Gels with Ketoprofen and Menthol: Physicochemical Properties and Drug Release Studies. Gels 2024; 10:435. [PMID: 39057458 PMCID: PMC11275338 DOI: 10.3390/gels10070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ketoprofen is a non-steroidal, anti-inflammatory drug frequently incorporated in topical dosage forms which are an interesting alternatives for oral formulations. However, due to the physiological barrier function of skin, topical formulations may require some approaches to improve drug permeation across the skin. In this study, ketoprofen-loaded microemulsion-based gels with the addition of menthol, commonly known for absorption-enhancing activity in dermal products, were investigated. The main objective of this study was to analyze the physicochemical properties of the obtained gels in terms of topical application and to investigate the correlation between the gel composition and its mechanical properties and the drug release process. Microemulsion composition was selected with the use of a pseudoternary plot and the selected systems were tested for electrical conductivity, viscosity, pH, and particle diameter. The polymer gels obtained with Carbopol® EZ-3 were subjected to rheological and textural studies, as well as the drug release experiment. The obtained results indicate that the presence of ketoprofen slightly decreased yield stress values. A stronger effect was exerted by menthol presence, even though it was independent of menthol concentration. A similar tendency was seen for hardness and adhesiveness, as tested in texture profile analysis. Sample cohesiveness and the drug release rate were independent of the gel composition.
Collapse
Affiliation(s)
- Filip Otto
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Technology, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Anna Froelich
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Technology, 3D Printing Division, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
15
|
Jaramillo V, Arévalo DF, González-Hernández M, Cortés MT, Perdomo-Arciniegas AM, Cruz JC, Muñoz-Camargo C. Conductive extracellular matrix derived/chitosan methacrylate/ graphene oxide-pegylated hybrid hydrogel for cell expansion. Front Bioeng Biotechnol 2024; 12:1398052. [PMID: 38952668 PMCID: PMC11215370 DOI: 10.3389/fbioe.2024.1398052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.
Collapse
Affiliation(s)
- Valentina Jaramillo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | - Daniel Felipe Arévalo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | | | - María T. Cortés
- Department of Chemistry, Universidad de los Andes, Bogotá, Colombia
| | - Ana María Perdomo-Arciniegas
- Cord Blood Bank (CBB) Research Group, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Juan C. Cruz
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | - Carolina Muñoz-Camargo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
16
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
17
|
Zhou Y, Huang H, Chen G, Yuan Q, Ren J, Wu J, Lin Y, Lin Z, Xu L. Promoting the healing of diabetic wounds with an antimicrobial gel containing AgNPs with anti-infective and anti-inflammatory properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1236-1257. [PMID: 38460114 DOI: 10.1080/09205063.2024.2324494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Diabetic wounds are prone to develop chronic wounds due to bacterial infection and persistent inflammatory response. However, traditional dressings are monofunctional, lack bioactive substances, have limited bacterial inhibition as well as difficulties in adhesion and retention. These limit the therapeutic efficacy of traditional dressings on diabetic wounds. Therefore, finding and developing efficient and safe wound dressings is currently an urgent clinical need. In this study, an antimicrobial gel loaded with silver nanoparticles (AgNPs) (referred to as AgNPs@QAC-CBM) was prepared by crosslinking quaternary ammonium chitosan (QAC) with carbomer (CBM) as a gel matrix. AgNPs@QAC-CBM exhibited a reticulated structure, strong adhesion, good stability, and remarkable bactericidal properties, killing 99.9% of Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa within 1 min. Furthermore, AgNPs@QAC-CBM improved the wound microenvironment and accelerated wound healing in diabetic mice by promoting tissue production and collagen deposition, inducing M2 macrophages, reducing pro-inflammatory factor secretion and increasing anti-inflammatory factor levels. Moreover, AgNPs@QAC-CBM was proven to be safe for use through skin irritation and cytotoxicity tests, as they did not cause any irritation or toxicity. To summarize, AgNPs@QAC-CBM showed promising potential in enhancing the diabetic wound healing process.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Haiyan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jingyuan Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiashen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuchun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhongning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
18
|
Zhong G, Lei P, Guo P, Yang Q, Duan Y, Zhang J, Qiu M, Gou K, Zhang C, Qu Y, Zeng R. A Photo-induced Cross-Linking Enhanced A and B Combined Multi-Functional Spray Hydrogel Instantly Protects and Promotes of Irregular Dynamic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309568. [PMID: 38461520 DOI: 10.1002/smll.202309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Indexed: 03/12/2024]
Abstract
Wounds in harsh environments can face long-term inflammation and persistent infection, which can slow healing. Wound spray is a product that can be rapidly applied to large and irregularly dynamic wounds, and can quickly form a protective film in situ to inhibit external environmental infection. In this study, a biodegradable A and B combined multi-functional spray hydrogel is developed with methacrylate-modified chitosan (CSMA1st) and ferulic acid (FA) as type A raw materials and oxidized Bletilla striata polysaccharide (OBSP) as type B raw materials. The precursor CSMA1st-FA/OBSP (CSOB-FA1st) hydrogel is formed by the self-cross-linking of dynamic Schiff base bonds, the CSMA-FA/OBSP (CSOB-FA) hydrogel is formed quickly after UV-vis light, so that the hydrogel fits with the wound. Rapid spraying and curing provide sufficient flexibility and rapidity for wounds and the hydrogel has good injectability, adhesive, and mechanical strength. In rats and miniature pigs, the A and B combined spray hydrogel can shrink wounds and promote healing of infected wounds, and promote the enrichment of fibrocyte populations. Therefore, the multifunctional spray hydrogel combined with A and B can protect irregular dynamic wounds, prevent wound infection and secondary injury, and be used for safe and effective wound treatment, which has a good prospect for development.
Collapse
Affiliation(s)
- Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pengkun Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kaijun Gou
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Chengdu, 610041, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Zeng
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China
- Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Chengdu, 610041, China
| |
Collapse
|
19
|
Klara J, Onak S, Kowalczyk A, Wójcik K, Lewandowska-Łańcucka J. Photocrosslinked gelatin/chondroitin sulfate/chitosan-based composites with tunable multifunctionality for bone tissue regeneration. Int J Biol Macromol 2024; 271:132675. [PMID: 38845259 DOI: 10.1016/j.ijbiomac.2024.132675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Novel hydrogel-based multifunctional systems prepared utilizing photocrosslinking and freeze-drying processes (PhotoCross/Freeze-dried) dedicated for bone tissue regeneration are presented. Fabricated materials, composed of methacrylated gelatin, chitosan, and chondroitin sulfate, possess interesting features including bioactivity, biocompatibility, as well as antibacterial activity. Importantly, their degradation and swellability might be easily tuned by playing with the biopolymeric content in the photocrosllinked systems. To broaden the potential application and deliver the therapeutic features, mesoporous silica particles functionalized with methacrylate moieties decorated with hydroxyapatite and loaded with the antiosteoporotic drug, alendronate, (MSP-MA-HAp-ALN) were dispersed within the biopolymeric sol and photocrosslinked. It was demonstrated that the obtained composites are characterized by a significantly extended degradation time, ensuring optimal conditions for balancing hybrids removal with the deposition of fresh bone. We have shown that attachment of MSP-MA-HAp-ALN to the polymeric matrix minimizes the initial burst effect and provides a prolonged release of ALN (up to 22 days). Moreover, the biological evaluation in vitro suggested the capability of the resulted systems to promote bone remodeling. Developed materials might potentially serve as scaffolds that after implantation will fill up bone defects of various origin (osteoporosis, tumour resection, accidents) providing the favourable conditions for bone regeneration and supporting the infections' treatment.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
20
|
Khairnar P, Phatale V, Shukla S, Tijani AO, Hedaoo A, Strauss J, Verana G, Vambhurkar G, Puri A, Srivastava S. Nanocarrier-Integrated Microneedles: Divulging the Potential of Novel Frontiers for Fostering the Management of Skin Ailments. Mol Pharm 2024; 21:2118-2147. [PMID: 38660711 DOI: 10.1021/acs.molpharmaceut.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Collapse
Affiliation(s)
- Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Akeemat O Tijani
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Gabrielle Verana
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee 37614, United States
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| |
Collapse
|
21
|
Liu B, Chen K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024; 10:262. [PMID: 38667681 PMCID: PMC11048949 DOI: 10.3390/gels10040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, with their distinctive three-dimensional networks of hydrophilic polymers, drive innovations across various biomedical applications. The ability of hydrogels to absorb and retain significant volumes of water, coupled with their structural integrity and responsiveness to environmental stimuli, renders them ideal for drug delivery, tissue engineering, and wound healing. This review delves into the classification of hydrogels based on cross-linking methods, providing insights into their synthesis, properties, and applications. We further discuss the recent advancements in hydrogel-based drug delivery systems, including oral, injectable, topical, and ocular approaches, highlighting their significance in enhancing therapeutic outcomes. Additionally, we address the challenges faced in the clinical translation of hydrogels and propose future directions for leveraging their potential in personalized medicine and regenerative healthcare solutions.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kuo Chen
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
22
|
Hameed H, Faheem S, Paiva-Santos AC, Sarwar HS, Jamshaid M. A Comprehensive Review of Hydrogel-Based Drug Delivery Systems: Classification, Properties, Recent Trends, and Applications. AAPS PharmSciTech 2024; 25:64. [PMID: 38514495 DOI: 10.1208/s12249-024-02786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
As adaptable biomaterials, hydrogels have shown great promise in several industries, which include the delivery of drugs, engineering of tissues, biosensing, and regenerative medicine. These hydrophilic polymer three-dimensional networks have special qualities like increased content of water, soft, flexible nature, as well as biocompatibility, which makes it excellent candidates for simulating the extracellular matrix and promoting cell development and tissue regeneration. With an emphasis on their design concepts, synthesis processes, and characterization procedures, this review paper offers a thorough overview of hydrogels. It covers the various hydrogel material types, such as natural polymers, synthetic polymers, and hybrid hydrogels, as well as their unique characteristics and uses. The improvements in hydrogel-based platforms for controlled drug delivery are examined. It also looks at recent advances in bioprinting methods that use hydrogels to create intricate tissue constructions with exquisite spatial control. The performance of hydrogels is explored through several variables, including mechanical properties, degradation behaviour, and biological interactions, with a focus on the significance of customizing hydrogel qualities for particular applications. This review paper also offers insights into future directions in hydrogel research, including those that promise to advance the discipline, such as stimuli-responsive hydrogels, self-healing hydrogels, and bioactive hydrogels. Generally, the objective of this review paper is to provide readers with a detailed grasp of hydrogels and all of their potential uses, making it an invaluable tool for scientists and researchers studying biomaterials and tissue engineering.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan.
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
23
|
Li P, Jia X, Sun Z, Tang J, Ji Q, Ma X. Conductive interpenetrating network organohydrogels of gellan gum/polypyrrole with weather-tolerance, piezoresistive sensing and shape-memory capability. Int J Biol Macromol 2024; 262:130215. [PMID: 38365141 DOI: 10.1016/j.ijbiomac.2024.130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
To develop ecofriendly multifunctional gel materials for sustainable flexible electronic devices, composite organohydrogels of gellan gum (GG) and polypyrrole (PPy) with an interpenetrating network structure (IPN-GG/PPy organohydrogels) were developed first time, through fabrication of GG organohydrogels followed by in-situ oxidation polymerization of pyrrole inside. Combination of water with glycerol can not only impart environment-stability to GG hydrogels but promote the mechanics remarkably, with the compressive strength amplified by 1250 % from 0.02 to 0.27 MPa. Incorporation of PPy confers electrical conductivity to the GG organohydrogel as well as promoting the mechanical performance further. The maximum conductivity of the IPN-GG/PPy organohydrogels reached 1.2 mS/cm at 25 °C, and retained at 0.6 mS/cm under -20 °C and 0.56 mS/cm after 7 days' exposure in 25 °C and 60 % RH. The compression strength of that with the maximum conductivity increases by 170 % from 0.27 to 0.73 MPa. The excellent conductivity and mechanical properties endow the IPN-GG/PPy organohydrogels good piezoresistive strain/pressure sensing behavior. Moreover, the thermo-reversible GG network bestows them shape-memory capability. The multifunctionality and intrinsic eco-friendliness is favorable for sustainable application in fields such as flexible electronics, soft robotics and artificial intelligence, competent in motion recognition, physiological signal monitoring, intelligent actuation.
Collapse
Affiliation(s)
- Panpan Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xinyu Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zhaolong Sun
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Quan Ji
- Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Xiaomei Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China; Institute of Marine Biobased Materials, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
24
|
Wu Y, Liu P, Liao Q, Jin T, Wu Z, Guomin W, Wang H, Chu PK. Cotton Fibers with a Lactic Acid-Like Surface for Re-establishment of Protective Lactobacillus Microbiota by Selectively Inhibiting Vaginal Pathogens. Adv Healthc Mater 2024; 13:e2302736. [PMID: 38061349 DOI: 10.1002/adhm.202302736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Failure to reconstruct the Lactobacillus microbiota is the major reason for the recurrence of vaginal infection. However, most empiric therapies focus on the efficacy of pathogen elimination but do not sufficiently consider the viability of Lactobacillus. Herein, cotton fibers with a lactic acid-like surface (LC) are fabricated by NaIO4 oxidation and L-isoserine grafting. The lactic acid analog chain ends and imine structure of LC can penetrate cell walls to cause protein cleavage in Escherichia coli and Candida albicans and inhibit vaginal pathogens. Meanwhile, the viability of Lactobacillus acidophilus is unaffected by the LC treatment, thus revealing a selective way to suppress pathogens as well as provide a positive route to re-establish protective microbiota in the vaginal tract. Moreover, LC has excellent properties such as good biosafety, antiadhesion, water absorption, and weight retention. The strategy proposed here not only is practical, but also provides insights into the treatment of vaginal infections.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Jin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- School of Nuclear Science and Technology and CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, 230026, China
| | - Zhengwei Wu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Wang Guomin
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
25
|
Lee ALZ, Balakrishnan N, Ng JY, Liu S, Ong ZY, Wang Y, Gao S, Yang YY. Injectable Hydrogels Prepared Using Novel Synthetic Short Peptides with Defined Structure and Gelatin as Scaffolds to Support Cell and Tissue Growth. Adv Healthc Mater 2024; 13:e2302786. [PMID: 37837308 DOI: 10.1002/adhm.202302786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Animal-derived basement-membrane matrices such as Geltrex are used to grow cells and tissues. Particularly, these are commonly applied to support tumor growth in animals for cancer research. However, a material derived from an animal source has an undefined composition, and may thus have unavoidable batch-to-batch variation in properties. To overcome these issues, a series of synthetic short peptides to form hydrogels is designed in combination with gelatin to promote cell adhesion and growth. The peptides have sequences of (X1Y1X2Y2)2 , where X1 and X2 are hydrophobic residues, while Y1 and Y2 are hydrophilic residues. The peptides spontaneously fold and self-assemble into a β-sheet secondary structure upon contact with salts, and then aggregate to form hydrophilic networks of hydrogels. Hybrid hydrogels formed by mixing the peptide IEVEIRVK (IVK8) with gelatin are injectable and enzymatically degradable. The hybrid hydrogels at optimal compositions support SW480 and HepG2 tumor spheroid growth in vitro as effectively as Geltrex. More importantly, the peptide/gelatin hydrogels support tumor growth in a SW480 human colorectal adenocarcinoma xenograft mouse model. Altogether, the results illustrate that the synthetic peptide/gelatin hybrid hydrogel is a promising scaffold that can be used to support cell and tissue growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Ashlynn Ling Zhi Lee
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Nithiyaa Balakrishnan
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - Jian Yao Ng
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Zhan Yuin Ong
- School of Physics and Astronomy, St. James's University of Leeds, Leeds, LS2 9JT, UK
- Leeds Institute of Medical Research, St. James's University of Leeds, Leeds, LS2 9JT, UK
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| |
Collapse
|
26
|
Abune L, Wen C, Lee K, Wang X, Ravnic D, Wang Y. Elastic Macroporous Matrix-Supported In Situ Formation of Injectable Extracellular Matrix-Like Hydrogel for Carrying Growth Factors and Living Cells. Macromol Biosci 2024; 24:e2300475. [PMID: 37955619 PMCID: PMC10939927 DOI: 10.1002/mabi.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Hydrogels loaded with biologics hold great potential for various biomedical applications such as regenerative medicine. However, biologics may lose bioactivity during hydrogel preparation, shipping, and storage. While many injectable hydrogels do not have this issue, they face a dilemma between fast gelation causing the difficulty of injection and slow gelation causing the escape of solutions from an injection site. The purpose of this study is to develop an affinity hydrogel by integrating a pre-formed elastic macroporous matrix and an injectable hydrogel. The data shows that the macroporous hydrogel matrix can hold a large volume of solutions for the formation of in situ injectable hydrogels loaded with growth factors or living cells. The cells can proliferate in the composite hydrogels. The growth factors can be stably sequestered and sustainably released due to the presence of aptamers. When both living cells and growth factors are loaded together into the hydrogels, cells can proliferate under culture conditions with a reduced serum level. Therefore, a macroporous and elastic matrix-supported formation of aptamer-functionalized injectable hydrogels is a promising method for developing the carriers of biologics.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Connie Wen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kyungsene Lee
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xuelin Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dino Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
27
|
Raeisi A, Farjadian F. Commercial hydrogel product for drug delivery based on route of administration. Front Chem 2024; 12:1336717. [PMID: 38476651 PMCID: PMC10927762 DOI: 10.3389/fchem.2024.1336717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Hydrogels are hydrophilic, three-dimensional, cross-linked polymers that absorb significant amounts of biological fluids or water. Hydrogels possess several favorable properties, including flexibility, stimulus-responsiveness, versatility, and structural composition. They can be categorized according to their sources, synthesis route, response to stimulus, and application. Controlling the cross-link density matrix and the hydrogels' attraction to water while they're swelling makes it easy to change their porous structure, which makes them ideal for drug delivery. Hydrogel in drug delivery can be achieved by various routes involving injectable, oral, buccal, vaginal, ocular, and transdermal administration routes. The hydrogel market is expected to grow from its 2019 valuation of USD 22.1 billion to USD 31.4 billion by 2027. Commercial hydrogels are helpful for various drug delivery applications, such as transdermal patches with controlled release characteristics, stimuli-responsive hydrogels for oral administration, and localized delivery via parenteral means. Here, we are mainly focused on the commercial hydrogel products used for drug delivery based on the described route of administration.
Collapse
Affiliation(s)
- Amin Raeisi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
28
|
Alhulaybi ZA, Dubdub I. Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers (Basel) 2024; 16:629. [PMID: 38475312 DOI: 10.3390/polym16050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thermogravimetric Analysis (TGA) serves a pivotal technique for evaluating the thermal behavior of Polyvinyl alcohol (PVA), a polymer extensively utilized in the production of fibers, films, and membranes. This paper targets the kinetics of PVA thermal degradation using high three heating rate range 20, 30, and 40 K min-1. The kinetic study was performed using six model-free methods: Freidman (FR), Flynn-Wall-Qzawa (FWO), Kissinger-Akahira-Sunose (KAS), Starink (STK), Kissinger (K), and Vyazovkin (VY) for the determination of the activation energy (Ea). TGA showed two reaction stages: the main one at 550-750 K and the second with 700-810 K. But only the first step has been considered in calculating Ea. The average activation energy values for the conversion range (0.1-0.7) are between minimum 104 kJ mol-1 by VY to maximum 199 kJ mol-1 by FR. Model-fitting has been applied by combing Coats-Redfern (CR) with the master plot (Criado's) to identify the most convenient reaction mechanism. Ea values gained by the above six models were very similar with the average value of (126 kJ mol-1) by CR. The reaction order models-Second order (F2) was recommended as the best mechanism reaction for PVA pyrolysis. Mechanisms were confirmed by the compensation effect. Finally, (∆H, ∆G, and ∆S) parameters were presented and proved that the reaction is endothermic.
Collapse
Affiliation(s)
| | - Ibrahim Dubdub
- Chemical Engineering Department, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
29
|
Sun R, Xia Q, Sun Y. A Novel Strategy for Topical Administration by Combining Chitosan Hydrogel Beads with Nanostructured Lipid Carriers: Preparation, Characterization, and Evaluation. Gels 2024; 10:160. [PMID: 38534578 DOI: 10.3390/gels10030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The objective of the present study was to develop and evaluate NLC-chitosan hydrogel beads for topical administration. The feasibility of the preparation technology was verified by investigating various formulation factors and the impact of chitosan hydrogel beads on the NLC. The encapsulation efficiency of NLC-chitosan hydrogel beads was above 95% in optimized process conditions. The physical characterization of the NLC-chitosan hydrogel beads showed that the NLC was distributed within the network of the chitosan hydrogel beads. Furthermore, the incorporation of NLC into the chitosan hydrogel beads was related to the electrostatic interaction between the surface of the NLC and chitosan, which influenced the lipid ordering degree of the NLC and contributed to the stability. The stability studies showed that the retention rate of quercetin in the NLC-chitosan hydrogel beads was 88.63 ± 2.57% after 10 months of storage under natural daylight. An in vitro permeation study showed that NLC-chitosan hydrogel beads exhibited superior ability in enhancing skin permeation by hydrophobic active ingredients compared to the NLC and significantly increased skin accumulation. These studies demonstrated that the use of NLC-chitosan hydrogel beads might be a promising strategy for the delivery of hydrophobic active ingredients in topical administration.
Collapse
Affiliation(s)
- Rui Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, China
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yufeng Sun
- Department of Pathology, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
30
|
Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. Int J Mol Sci 2024; 25:1982. [PMID: 38396661 PMCID: PMC10888449 DOI: 10.3390/ijms25041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The skin is subject to damage from the surrounding environment. The repair of skin wounds can be very challenging due to several factors such as severe injuries, concomitant infections, or comorbidities such as diabetes. Different drugs and wound dressings have been used to treat skin wounds. Tissue engineering, a novel therapeutic approach, revolutionized the treatment and regeneration of challenging tissue damage. This field includes the use of synthetic and natural biomaterials that support the growth of tissues or organs outside the body. Accordingly, the demand for polymer-based therapeutic strategies for skin tissue defects is significantly increasing. Among the various 3D scaffolds used in tissue engineering, hydrogel scaffolds have gained special significance due to their unique properties such as natural mimicry of the extracellular matrix (ECM), moisture retention, porosity, biocompatibility, biodegradability, and biocompatibility properties. First, this article delineates the process of wound healing and conventional methods of treating wounds. It then presents an examination of the structure and manufacturing methods of hydrogels, followed by an analysis of their crucial characteristics in healing skin wounds and the most recent advancements in using hydrogel dressings for this purpose. Finally, it discusses the potential future advancements in hydrogel materials within the realm of wound healing.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran;
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| |
Collapse
|
31
|
Ying X, Yu C, Yang W, Ye L, Sun R, Gu T, Fan S, Yao S. The transformation of multifunctional bio-patch to hydrogel on skin wounds for efficient scarless wound healing. Mater Today Bio 2024; 24:100901. [PMID: 38188643 PMCID: PMC10770564 DOI: 10.1016/j.mtbio.2023.100901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024] Open
Abstract
Hydrogels have been widely used in various biomedical applications, including skin regeneration and tissue repair. However, the capability of certain hydrogels to absorb exudate or blood from surrounding wounds, coupled with the challenge in their long-term storage to prevent bacterial growth, can pose limitations to their efficacy in biological applications. To address these challenges, the development of a multifunctional aloin-arginine-alginate (short for 3A) bio-patch capable of transforming into a hydrogel upon absorbing exudate or blood from neighboring wounds for cutaneous regeneration is proposed. The 3A bio-patch exhibits outstanding features, including an excellent porous structure, swelling properties, and biodegradability. These characteristics allow for the rapid absorption of wound exudates and subsequent transformation into a hydrogel that is suitable for treating skin wounds. Furthermore, the 3A bio-patch exhibits remarkable antibacterial and anti-inflammatory properties, leading to accelerated wound healing and scarless repair in vivo. This study presents a novel approach to the development of cutaneous wound dressing materials.
Collapse
Affiliation(s)
- Xiaozhang Ying
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 310003, China
| | - Congcong Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Rongtai Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| | - Shasha Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration, Translational Research of Zhejiang Province, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
32
|
Taghizadeh S, Tayebi L, Akbarzadeh M, Lohrasbi P, Savardashtaki A. Magnetic hydrogel applications in articular cartilage tissue engineering. J Biomed Mater Res A 2024; 112:260-275. [PMID: 37750666 DOI: 10.1002/jbm.a.37620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Articular cartilage defects afflict millions of individuals worldwide, presenting a significant challenge due to the tissue's limited self-repair capability and anisotropic nature. Hydrogel-based biomaterials have emerged as promising candidates for scaffold production in artificial cartilage construction, owing to their water-rich composition, biocompatibility, and tunable properties. Nevertheless, conventional hydrogels typically lack the anisotropic structure inherent to natural cartilage, impeding their clinical and preclinical applications. Recent advancements in tissue engineering (TE) have introduced magnetically responsive hydrogels, a type of intelligent hydrogel that can be remotely controlled using an external magnetic field. These innovative materials offer a means to create the desired anisotropic architecture required for successful cartilage TE. In this review, we first explore conventional techniques employed for cartilage repair and subsequently delve into recent breakthroughs in the application and utilization of magnetic hydrogels across various aspects of articular cartilage TE.
Collapse
Affiliation(s)
- Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Majid Akbarzadeh
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Pawłowska S, Cysewska K, Ziai Y, Karczewski J, Jasiński P, Molin S. Influence of conductive carbon and MnCo 2O 4 on morphological and electrical properties of hydrogels for electrochemical energy conversion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:57-70. [PMID: 38229679 PMCID: PMC10790649 DOI: 10.3762/bjnano.15.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
In this work, a strategy for one-stage synthesis of polymer composites based on PNIPAAm hydrogel was presented. Both conductive particles in the form of conductive carbon black (cCB) and MnCo2O4 (MCO) spinel particles were suspended in the three-dimensional structure of the hydrogel. The MCO particles in the resulting hydrogel composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials were tested in terms of their electrical properties, showing that an increase in the concentration of conductive particles in the hydrogel structure translates into a lowering of the impedance modulus and an increase in the double-layer capacitance of the electrode. This, in turn, resulted in a higher catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach.
Collapse
Affiliation(s)
- Sylwia Pawłowska
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Karolina Cysewska
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Yasamin Ziai
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Piotr Jasiński
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| | - Sebastian Molin
- Faculty of Electronics, Telecommunications and Informatics, and Advanced Materials Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
34
|
Fani N, Moradi M, Zavari R, Parvizpour F, Soltani A, Arabpour Z, Jafarian A. Current Advances in Wound Healing and Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:277-291. [PMID: 36856176 DOI: 10.2174/1574888x18666230301140659] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023]
Abstract
Treating chronic wounds is a common and costly challenge worldwide. More advanced treatments are needed to improve wound healing and prevent severe complications such as infection and amputation. Like other medical fields, there have been advances in new technologies promoting wound healing potential. Regenerative medicine as a new method has aroused hope in treating chronic wounds. The technology improving wound healing includes using customizable matrices based on synthetic and natural polymers, different types of autologous and allogeneic cells at different differentiation phases, small molecules, peptides, and proteins as a growth factor, RNA interference, and gene therapy. In the last decade, various types of wound dressings have been designed. Emerging dressings include a variety of interactive/ bioactive dressings and tissue-engineering skin options. However, there is still no suitable and effective dressing to treat all chronic wounds. This article reviews different wounds and common treatments, advanced technologies and wound dressings, the advanced wound care market, and some interactive/bioactive wound dressings in the market.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Moradi
- MD-MPH Iran University of Medical Sciences, Tehran, Iran
| | - Roxana Zavari
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Adele Soltani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| | - Zohreh Arabpour
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Jafarian
- Iranian Tissue Bank & Research Center, Gene, Cell & Tissue Institute; Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Mittal RK, Mishra R, Uddin R, Sharma V. Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications. Curr Pharm Biotechnol 2024; 25:1436-1451. [PMID: 38288792 DOI: 10.2174/0113892010281021231229100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 07/23/2024]
Abstract
OBJECTIVE The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies. METHODS Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance. RESULTS The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine. CONCLUSION In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
Collapse
Affiliation(s)
- Ravi K Mittal
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| | - Raghav Mishra
- Lloyd School of Pharmacy, Knowledge Park II, Greater Noida-201306, Uttar Pradesh, India
- GLA University, Mathura-281406, Uttar Pradesh, India
| | - Rehan Uddin
- Sir Madanlal Institute of Pharmacy, Etawah-206001 Uttar Pradesh, India
| | - Vikram Sharma
- Galgotias College of Pharmacy, Greater Noida, 201310, Uttar Pradesh, India
| |
Collapse
|
36
|
Ijaz F, Tahir HM, Ali S, Ali A, Khan HA, Muzamil A, Manzoor HH, Qayyum KA. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127362. [PMID: 37827396 DOI: 10.1016/j.ijbiomac.2023.127362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The need for biocompatible drug carriers has been significantly increased from the past few years. Researchers show great interest in the development of more versatile and sophisticated biomaterials based drug carriers. Hydrogels are beneficial drug carriers and easily release the controlled amount of drug at target site due to its tunable structure. The hydrogels made-up of potent biological macromolecules including collagen, gelatin, fibrin, elastin, fibroin, chitosan, starch, alginate, agarose and carrageenan have been proven as versatile biomaterials. These are three-dimensional polymeric networks, synthesized by crosslinking of hydrophilic polymers. The biological macromolecules based hydrogels containing therapeutic substances are used in a wide range of biomedical applications including wound healing, tissue engineering, cosmetics and contact lenses. However, many aspects related to hydrogels such as the mechanism of cross-linking and molecular entanglement are not clear. So, there is a need to do more research and exploration toward the extensive and cost-effective use of hydrogels. The present review article elaborately discusses the biomolecules based hydrogels and their possible biomedical applications in different fields.
Collapse
Affiliation(s)
- Fatima Ijaz
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | | | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | | | | |
Collapse
|
37
|
Anbardan MA, Alipour S, Mahdavinia GR, Rezaei PF. Synthesis of magnetic chitosan/hyaluronic acid/κ-carrageenan nanocarriers for drug delivery. Int J Biol Macromol 2023; 253:126805. [PMID: 37689291 DOI: 10.1016/j.ijbiomac.2023.126805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The magnetic nanocarriers containing chitosan/hyaluronic acid complexed with κ-carrageenan were synthesized by solution method, as the drug delivery system. Doxorubicin (DOX) was used as the model drug. Characterization assessments were performed to identify the functional groups, determine the structure and morphology, and magnetic properties of nanodelivery system. Furthermore, their impacts on MCF-7 and MDA-MB-237 cell lines were evaluated by MTT assay. Analyses confirm polymers physical interaction, chemical bonding in the structure, moreover presence of spherical shape magnetic nanoparticles in the 100-150 nm range. The DOX loading was 74.1 ± 2.5 %. Results indicate that the drug loading was raised to 83.0±2.2 % by increasing the amount of κ-carrageenan in specimens. The swelling of samples in the acidic environment (e.g. pH 5.5) was verified by the Dynamic Light Scattering analysis. Consequently, pH stimulus-responsive drug release in the sustained stream and a considerable amount of DOX release (84±3.1 %) was detected as compared to a higher pH medium (27±1.5 % at pH 7.4). According to the MTT assay results, MNPs showed no inhibitory effect on both cell lines. Also, 10 and 15 μg/ml of MNPs-DOX was considered as IC50 value on MDA-MB-237 and MCF-7 cells, respectively. The DOX 25 μg/ml caused 50 % antiproliferative activity in both cell lines.
Collapse
Affiliation(s)
- Maghsoud Amirfarhangi Anbardan
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 83111-55181, Maragheh, Iran
| | - Siamak Alipour
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, P.O. Box 83111-55181, Maragheh, Iran.
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
| | - Parisa Fathi Rezaei
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, P.O. Box 83111-55181, Maragheh, Iran
| |
Collapse
|
38
|
Ishikawa S, Sakai T. One-Pot Approach to Synthesize Tough and Cell Adhesive Double-Network Hydrogels Consisting of Fully Synthetic Materials of Self-Assembling Peptide and Poly(ethylene glycol). ACS APPLIED BIO MATERIALS 2023; 6:5282-5289. [PMID: 37862142 DOI: 10.1021/acsabm.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Hydrogels with a double network (DN) structure are compelling biomaterials, holding potential for use as artificial extracellular matrices. Generally, the DN approach imparts hydrogels with high mechanical strength and cell-adhesive properties. However, achieving this often demands a complex multistep process involving potentially hazardous free-radical polymerization, which can result in toxicity. This limits their broad biological applications. In this work, we introduce a straightforward yet biocompatible method to fabricate tough and cell-adhesive DN hydrogels using entirely synthetic materials: the self-assembling peptide (RADA16) and poly(ethylene glycol) (PEG). An in situ mixing of these components leads to the sequential formation of DN hydrogels─first through the self-assembly of the RADA16 peptide and then via chemical cross-linking between PEG molecules. Hydrogels produced this way exhibited up to a 10-fold increase in fracture energy, and cells seeded on their surfaces showcased good attachment. Our design underscores the efficacy of the DN approach and the promising applications of peptides in tissue engineering.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takamasa Sakai
- Department of Chemistry & Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Mehta P, Sharma M, Devi M. Hydrogels: An overview of its classifications, properties, and applications. J Mech Behav Biomed Mater 2023; 147:106145. [PMID: 37797557 DOI: 10.1016/j.jmbbm.2023.106145] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The review paper starts with the introduction to hydrogels along with broad literature survey covering different modes of synthesis including high energy radiation methods. After that, paper covered broad classification of the hydrogels depending upon the basis of their source of origin, method of synthesis, type of cross-linking present and ionic charges on bound groups. Another advanced category response triggered hydrogels, which includes pH, temperature, electro, and light and substrate responsive hydrogels was also studied. Presented paper summarises chemical structure, properties, and synthesis of different kinds of hydrogels. Main focus was given to the preparation super absorbents such as: Semi-interpenetrating networks (semi-IPNs), Interpenetrating networks (IPNs) and cross-linked binary graft copolymers (BGCPs). The weak mechanical properties and easy degradation limit the uses of bio-based -hydrogels in biomedical field. Their properties can be improved through different chemical and physical methods. These methods were also discussed in the current research paper. Also, it includes development of hydrogels as controlled drug delivery devices, as implants and biomaterials to replace malfunctioned body parts along with their use in several other applications listed in the literature. Literature survey on the application of hydrogels in different fields like biomedical, nano-biotechnology, tissue engineering, drug delivery and agriculture was also carried out.
Collapse
Affiliation(s)
- Preeti Mehta
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| | - Monika Sharma
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| | - Meena Devi
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| |
Collapse
|
40
|
Amaral KR, Silva AS, Santos LF, Castanheira EJ, Mendes MC, Costa DCS, Rodrigues JMM, Marto J, Mano JF. Biomimetic Adhesive Micropatterned Hydrogel Patches for Drug Release. Adv Healthc Mater 2023; 12:e2301513. [PMID: 37515450 DOI: 10.1002/adhm.202301513] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The optimized physical adhesion between bees' leg hairs and pollen grains-whereby the latter's diameter aligns with the spacing between the hairs-has previously inspired the development of a biomimetic drug dressing. Combining this optimized process with the improved natural mussels' adhesion in wet environments in a dual biomimetic process, it is herein proposed the fabrication of a natural-derived micropatterned hydrogel patch of methacrylated laminarin (LAM-MET), with enriched drug content and improved adhesiveness, suitable for applications like wound healing. Enhanced adhesion is accomplished by modifying LAM-MET with hydroxypyridinone groups, following the patch microfabrication by soft lithography and UV/vis-irradiation, resulting in a membrane with micropillars with a high aspect ratio. Following the biomimetics rational, a drug patch is engineered by combining the microfabricated dressing with drug particles milled to fit the spaces between pillars. Controlled drug release is achieved, together with inherent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa, and enhanced biocompatibility using the bare micropatterned patches. This new class of biomimetic dressings overcomes the challenges of current patches, like poor mechanical properties and biocompatibility, limited adhesiveness and drug dosage, and lack of prolonged antimicrobial activity, opening new insights for the development of high drug-loaded dressings with improved patient compliance.
Collapse
Affiliation(s)
- Katia R Amaral
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A Sofia Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lúcia F Santos
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Edgar J Castanheira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria C Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Dora C S Costa
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João M M Rodrigues
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, 1649-003, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
41
|
Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res 2023; 24:242. [PMID: 37798767 PMCID: PMC10552248 DOI: 10.1186/s12931-023-02548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Fama Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Safiya Al Yazeedi
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
42
|
de Paiva Narciso N, Navarro RS, Gilchrist A, Trigo MLM, Rodriguez GA, Heilshorn SC. Design Parameters for Injectable Biopolymeric Hydrogels with Dynamic Covalent Chemistry Crosslinks. Adv Healthc Mater 2023; 12:e2301265. [PMID: 37389811 PMCID: PMC10638947 DOI: 10.1002/adhm.202301265] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
Dynamic covalent chemistry (DCC) crosslinks can form hydrogels with tunable mechanical properties permissive to injectability and self-healing. However, not all hydrogels with transient crosslinks are easily extrudable. For this reason, two additional design parameters must be considered when formulating DCC-crosslinked hydrogels: 1) degree of functionalization (DoF) and 2) polymer molecular weight (MW). To investigate these parameters, hydrogels comprised of two recombinant biopolymers: 1) a hyaluronic acid (HA) modified with benzaldehyde and 2) an elastin-like protein (ELP) modified with hydrazine (ELP-HYD), are formulated. Several hydrogel families are synthesized with distinct HA MW and DoF while keeping the ELP-HYD component constant. The resulting hydrogels have a range of stiffnesses, G' ≈ 10-1000 Pa, and extrudability, which is attributed to the combined effects of DCC crosslinks and polymer entanglements. In general, lower MW formulations require lower forces for injectability, regardless of stiffness. Higher DoF formulations exhibit more rapid self-healing. Gel extrusion through a cannula (2 m length, 0.25 mm diameter) demonstrates the potential for minimally invasive delivery for future biomedical applications. In summary, this work highlights additional parameters that influence the injectability and network formation of DCC-crosslinked hydrogels and aims to guide future design of injectable hydrogels.
Collapse
Affiliation(s)
| | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Aidan Gilchrist
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Miriam L. M. Trigo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Chin CL, Huang LJ, Lu ZX, Weng WC, Chao L. Using the Water Absorption Ability of Dried Hydrogels to Form Hydrogel-Supported Lipid Bilayers. Gels 2023; 9:751. [PMID: 37754432 PMCID: PMC10530932 DOI: 10.3390/gels9090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
The formation of supported lipid bilayers (SLBs) on hydrogels can act as a biocompatible anti-fouling interface. However, generating continuous and mobile SLBs on materials other than conventional glass or mica remains a significant challenge. The interaction between lipid membrane vesicles and a typical hydrogel is usually insufficient to induce membrane vesicle rupture and form a planar lipid membrane. In this study, we demonstrate that the water absorption ability of a dried polyacrylamide (PAAm) hydrogel could serve as a driving force to facilitate the formation of the hydrogel-SLBs. The absorption driving force vanishes after the hydrogels are fully hydrated, leaving no extra interaction hindering lipid lateral mobility in the formed SLBs. Our fluorescence recovery after photobleaching (FRAP) results show that SLBs only form on hydrogels with adequate absorption abilities. Moreover, we discovered that exposure to oxygen during drying could lead to the formation of an oxidized crust on the PAAm hydrogel surface, impeding SLB formation. Therefore, minimizing oxygen exposure during drying is crucial to achieving high-quality hydrogel surfaces for SLB formation. This water absorption method enables the straightforward fabrication of hydrogel-SLBs without the need for additional substrates or charges, thereby expanding their potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
44
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
45
|
Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front Bioeng Biotechnol 2023; 11:1270364. [PMID: 37781530 PMCID: PMC10540072 DOI: 10.3389/fbioe.2023.1270364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Over the past several decades, there has been significant growth in the design and development of more efficient and advanced biomaterials based on non-cellulosic biological macromolecules. In this context, hydrogels based on stimuli-responsive non-cellulosic biological macromolecules have garnered significant attention because of their intrinsic physicochemical properties, biological characteristics, and sustainability. Due to their capacity to adapt to physiological pHs with rapid and reversible changes, several researchers have investigated pH-responsive-based non-cellulosic polymers from various materials. pH-responsive hydrogels release therapeutic substances in response to pH changes, providing tailored administration, fewer side effects, and improved treatment efficacy while reducing tissue damage. Because of these qualities, they have been shown to be useful in a wide variety of applications, including the administration of chemotherapeutic drugs, biological material, and natural components. The pH-sensitive biopolymers that are utilized most frequently include chitosan, alginate, hyaluronic acid, guar gum, and dextran. In this review article, the emphasis is placed on pH stimuli-responsive materials that are based on biological macromolecules for the purposes of drug administration.
Collapse
Affiliation(s)
- Udaykumar Vegad
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Megha Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Sanjay Chauhan
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
46
|
Hachimi Alaoui C, Réthoré G, Weiss P, Fatimi A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int J Mol Sci 2023; 24:13493. [PMID: 37686299 PMCID: PMC10487582 DOI: 10.3390/ijms241713493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Different techniques have been developed to overcome the recalcitrant nature of lignocellulosic biomass and extract lignin biopolymer. Lignin has gained considerable interest owing to its attractive properties. These properties may be more beneficial when including lignin in the preparation of highly desired value-added products, including hydrogels. Lignin biopolymer, as one of the three major components of lignocellulosic biomaterials, has attracted significant interest in the biomedical field due to its biocompatibility, biodegradability, and antioxidant and antimicrobial activities. Its valorization by developing new hydrogels has increased in recent years. Furthermore, lignin-based hydrogels have shown great potential for various biomedical applications, and their copolymerization with other polymers and biopolymers further expands their possibilities. In this regard, lignin-based hydrogels can be synthesized by a variety of methods, including but not limited to interpenetrating polymer networks and polymerization, crosslinking copolymerization, crosslinking grafted lignin and monomers, atom transfer radical polymerization, and reversible addition-fragmentation transfer polymerization. As an example, the crosslinking mechanism of lignin-chitosan-poly(vinyl alcohol) (PVA) hydrogel involves active groups of lignin such as hydroxyl, carboxyl, and sulfonic groups that can form hydrogen bonds (with groups in the chemical structures of chitosan and/or PVA) and ionic bonds (with groups in the chemical structures of chitosan and/or PVA). The aim of this review paper is to provide a comprehensive overview of lignin-based hydrogels and their applications, focusing on the preparation and properties of lignin-based hydrogels and the biomedical applications of these hydrogels. In addition, we explore their potential in wound healing, drug delivery systems, and 3D bioprinting, showcasing the unique properties of lignin-based hydrogels that enable their successful utilization in these areas. Finally, we discuss future trends in the field and draw conclusions based on the findings presented.
Collapse
Affiliation(s)
- Chaymaa Hachimi Alaoui
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
- Nantes Université, Oniris, Univ Angers, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France
| | - Gildas Réthoré
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Pierre Weiss
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
| |
Collapse
|
47
|
Jin S, Newton MAA, Cheng H, Zhang Q, Gao W, Zheng Y, Lu Z, Dai Z, Zhu J. Progress of Hydrogel Dressings with Wound Monitoring and Treatment Functions. Gels 2023; 9:694. [PMID: 37754375 PMCID: PMC10528853 DOI: 10.3390/gels9090694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels are widely used in wound dressings due to their moisturizing properties and biocompatibility. However, traditional hydrogel dressings cannot monitor wounds and provide accurate treatment. Recent advancements focus on hydrogel dressings with integrated monitoring and treatment functions, using sensors or intelligent materials to detect changes in the wound microenvironment. These dressings enable responsive treatment to promote wound healing. They can carry out responsive dynamic treatment in time to effectively promote wound healing. However, there is still a lack of comprehensive reviews of hydrogel wound dressings that incorporate both wound micro-environment monitoring and treatment functions. Therefore, this review categorizes hydrogel dressings according to wound types and examines their current status, progress, challenges, and future trends. It discusses various wound types, including infected wounds, burns, and diabetic and pressure ulcers, and explores the wound healing process. The review presents hydrogel dressings that monitor wound conditions and provide tailored treatment, such as pH-sensitive, temperature-sensitive, glucose-sensitive, pressure-sensitive, and nano-composite hydrogel dressings. Challenges include developing dressings that meet the standards of excellent biocompatibility, improving monitoring accuracy and sensitivity, and overcoming obstacles to production and commercialization. Furthermore, it provides the current status, progress, challenges, and future trends in this field, aiming to give a clear view of its past, present, and future.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zan Lu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| |
Collapse
|
48
|
Beschastnov VV, Egorikhina MN, Tulupov AA, Pogodin IE, Orlinskaya NY, Antoshina VV, Shirokova IY, Ryabkov MG. Immobilization of Bacteriophages in Ex Tempore Hydrogel for the Treatment of Burn Wound Infection. Gels 2023; 9:625. [PMID: 37623080 PMCID: PMC10453372 DOI: 10.3390/gels9080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The resistance of bacteria to antibiotics is a major problem for anti-bacterial therapy. This problem may be solved by using bacteriophages-viruses that can attack and destroy bacteria, including antibiotic-resistant ones. In this article, the authors compared the efficacy of topical bacteriophage therapy and systemic antibiotic therapy in the treatment of wound infections caused by ESKAPE pathogens in patients with limited (less than 5% of the body surface) full-thickness burns. Patients in the study group (n = 30) were treated with PVA-based hydrogel dressings saturated ex tempore with a bacteriophage suspension characterized by its lytic activity against the bacteria colonizing the wound. Patients in the control group (n = 30) were treated using etiotropic systemic antibiotic therapy, and the wounds were covered with gauze bandages soaked in an aqueous solution of povidone-iodine. An assessment of the decrease in the level of bacterial contamination of the recipient wounds in both groups was conducted after 7 days, and after that, free skin grafting was performed. On day 14 after free skin grafting, patients in both groups underwent incisional biopsy. The study group demonstrated an increase in the indices of proliferative activity (Ki-67), and angiogenesis (CD-31, VEGF) in the area of engraftment of the split-thickness skin grafts. The results indicate that PVA-based hydrogel wound dressings can be used as bacteriophage carriers for local antimicrobial therapy ahead of free skin grafting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maksim G. Ryabkov
- University Clinic, Privolzhsky Research Medical University, Nizhny Novgorod 603155, Russia; (V.V.B.); (M.N.E.); (A.A.T.); (I.E.P.); (N.Y.O.); (V.V.A.); (I.Y.S.)
| |
Collapse
|
49
|
Tawagi E, Ung T, Cheng HLM, Santerre JP. Arrhenius-model-based degradable oligourethane hydrogels for controlled growth factor release. Acta Biomater 2023; 166:167-186. [PMID: 37207744 DOI: 10.1016/j.actbio.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Biodegradable hydrogels are growing in demand to enable the delivery of biomolecules (e.g. growth factors) for regenerative medicine. This research investigated the resorption of an oligourethane/polyacrylic acid hydrogel, a biodegradable hydrogel which supports tissue regeneration. The Arrhenius model was used to characterize the resorption of the polymeric gels in relevant in vitro conditions, and the Flory-Rehner equation was used to correlate the volumetric swelling ratio with the extent of degradation. The study found that the swelling rate of the hydrogel follows the Arrhenius model at elevated temperatures, estimating degradation time in saline solution at 37°C to be between 5 and 13 months, serving as a preliminary approximation of degradation in vivo. The degradation products had low cytotoxicity towards endothelial cells, and the hydrogel supported stromal cell proliferation. Additionally, the hydrogels were able to release growth factors and maintain the biomolecules' bioactivity towards cell proliferation. The study of the vascular endothelial growth factor (VEGF) release from the hydrogel used a diffusion process model, showing that the electrostatic attraction between VEGF and the anionic hydrogel allowed for controlled and sustained VEGF release over three weeks. In a rat subcutaneous implant model, a selected hydrogel with desired degradation rates exhibited minimal foreign body response and supported M2a macrophage phenotype, and vascularization. The low M1 and high M2a macrophage phenotypes within the implants were associated with tissue integration. This research supports the use of oligourethane/polyacrylic acid hydrogels as a promising material for delivering growth factors and supporting tissue regeneration. STATEMENT OF SIGNIFICANCE: There is a need for degradable elastomeric hydrogels that can support the formation of soft tissues and minimize long-term foreign body responses. An Arrhenius model was used to estimate the relative breakdown of hydrogels, in-vitro. The results demonstrate that hydrogels made from a combination of poly(acrylic acid) and oligo-urethane diacrylates can be designed to resorb over defined periods ranging from months to years depending on the chemical formulation prescribed by the model. The hydrogel formulations also provided for different release profiles of growth factors, relevant to tissue regeneration. In-vivo, these hydrogels had minimal inflammatory effects and showed evidence of integration into the surrounding tissue. The hydrogel approach can help the field design a broader range of biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Eric Tawagi
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Trevor Ung
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - J Paul Santerre
- Institute of Biomedical Engineering, University of Toronto, 661 University Avenue, 14th Floor, Room 1435, Toronto, ON M5G 1M1, Canada; Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Pan J, Liao H, Gong G, He Y, Wang Q, Qin L, Zhang Y, Ejima H, Tardy BL, Richardson JJ, Shang J, Rojas OJ, Zeng Y, Guo J. Supramolecular nanoarchitectonics of phenolic-based nanofiller for controlled diffusion of versatile drugs in hydrogels. J Control Release 2023; 360:433-446. [PMID: 37422124 DOI: 10.1016/j.jconrel.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/09/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Drug-dependent design of hydrogels is currently required for engineering the controlled release of therapeutics, which is a major contributor to the technical challenges relating to the clinical translation of hydrogel-drug systems. Herein, by integrating supramolecular phenolic-based nanofillers (SPFs) into hydrogel microstructures we developed a facile strategy to endow a range of clinically relevant hydrogels with controlled release properties for diverse therapeutic agents. The assembly of multiscale SPF aggregates leads to tunable mesh size and multiple dynamic interactions between SPF aggregates and drugs, which relaxes the available choices of drugs and hydrogels. This simple approach allowed for the controlled release of 12 representative drugs evaluated with 8 commonly used hydrogels. Moreover, the anesthetic drug lidocaine was loaded into SPF-integrated alginate hydrogel and demonstrated sustained release for 14 days in vivo, validating the potential for long-term anesthesia in patients.
Collapse
Affiliation(s)
- Jiezhou Pan
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haotian Liao
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qin Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610065, China
| | - Lang Qin
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaoyao Zhang
- Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hirotaka Ejima
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Blaise L Tardy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Joseph J Richardson
- Department of Chemical and Environmental Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jiaojiao Shang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|