1
|
Mohan UR, Jacobs J. Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biol 2024; 22:e3002894. [PMID: 39453948 DOI: 10.1371/journal.pbio.3002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Invasive brain stimulation is used to treat individuals with episodic memory loss; however, studies to date report both enhancement and impairment of memory. This Essay discusses the sources of this variability, and suggests a path towards developing customized stimulation protocols for more consistent memory enhancement.
Collapse
Affiliation(s)
- Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States of America
- Department of Neurological Surgery, Columbia University, New York City, New York, United States of America
| |
Collapse
|
2
|
Leong VS, Yu J, Castor K, Al-Ezzi A, Arakaki X, Fonteh AN. Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer's Disease. Cells 2024; 13:970. [PMID: 38891102 PMCID: PMC11171970 DOI: 10.3390/cells13110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aβ42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aβ42/tau ratios (CH-NATs) and (2) pathological Aβ42/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~-0.74--0.96, p = 0.0001-0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82-0.95, p = 0.0003-0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = -0.96, p = 0.037 and r = -0.97, p = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies.
Collapse
Affiliation(s)
- Vincent Sonny Leong
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA (X.A.)
| | - Jiaquan Yu
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | - Katherine Castor
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | - Abdulhakim Al-Ezzi
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA (X.A.)
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA (X.A.)
| | - Alfred Nji Fonteh
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| |
Collapse
|
3
|
Dimitriadis SI, Routley B, Linden DEJ, Singh KD. Multiplexity of human brain oscillations as a personal brain signature. Hum Brain Mapp 2023; 44:5624-5640. [PMID: 37668332 PMCID: PMC10619372 DOI: 10.1002/hbm.26466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023] Open
Abstract
Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- Department of Clinical Psychology and PsychobiologyUniversity of BarcelonaBarcelonaSpain
| | - B. Routley
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| | - David E. J. Linden
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of MedicineCardiff UniversityCardiffWalesUK
- School for Mental Health and Neuroscience, Faculty of Health Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffWalesUK
| |
Collapse
|
4
|
Petrie J, Kowallis LR, Kamhout S, Bills KB, Adams D, Fleming DE, Brown BL, Steffensen SC. Gender-Specific Interactions in a Visual Object Recognition Task in Persons with Opioid Use Disorder. Biomedicines 2023; 11:2460. [PMID: 37760905 PMCID: PMC10525754 DOI: 10.3390/biomedicines11092460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Opioid use disorder (OUD)-associated overdose deaths have reached epidemic proportions worldwide over the past two decades, with death rates for men reported at twice the rate for women. Using a controlled, cross-sectional, age-matched (18-56 y) design to better understand the cognitive neuroscience of OUD, we evaluated the electroencephalographic (EEG) responses of male and female participants with OUD vs. age- and gender-matched non-OUD controls during a simple visual object recognition Go/No-Go task. Overall, women had significantly slower reaction times (RTs) than men. In addition, EEG N200 and P300 event-related potential (ERP) amplitudes for non-OUD controls were significantly larger for men, while their latencies were significantly shorter than for women. However, while N200 and P300 amplitudes were not significantly affected by OUD for either men or women in this task, latencies were also affected differentially in men vs. women with OUD. Accordingly, for both N200 and P300, male OUD participants exhibited longer latencies while female OUD participants exhibited shorter ones than in non-OUD controls. Additionally, robust oscillations were found in all participants during a feedback message associated with performance in the task. Although alpha and beta power during the feedback message were significantly greater for men than women overall, both alpha and beta oscillations exhibited significantly lower power in all participants with OUD. Taken together, these findings suggest important gender by OUD differences in cognitive processing and reflection of performance in this simple visual task.
Collapse
Affiliation(s)
- JoAnn Petrie
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Logan R. Kowallis
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Sarah Kamhout
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Kyle B. Bills
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
- Department of Neuroscience, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| | - Daniel Adams
- PhotoPharmics, Inc., 947 So, 500 E, Suite 100, American Fork, UT 84003, USA
| | - Donovan E. Fleming
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Bruce L. Brown
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
| | - Scott C. Steffensen
- Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (J.P.); (K.B.B.)
- Department of Neuroscience, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
5
|
The effect of ketamine and D-cycloserine on the high frequency resting EEG spectrum in humans. Psychopharmacology (Berl) 2023; 240:59-75. [PMID: 36401646 PMCID: PMC9816261 DOI: 10.1007/s00213-022-06272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
RATIONALE Preclinical studies indicate that high-frequency oscillations, above 100 Hz (HFO:100-170 Hz), are a potential translatable biomarker for pharmacological studies, with the rapid acting antidepressant ketamine increasing both gamma (40-100 Hz) and HFO. OBJECTIVES To assess the effect of the uncompetitive NMDA antagonist ketamine, and of D-cycloserine (DCS), which acts at the glycine site on NMDA receptors on HFO in humans. METHODS We carried out a partially double-blind, 4-way crossover study in 24 healthy male volunteers. Each participant received an oral tablet and an intravenous infusion on each of four study days. The oral treatment was either DCS (250 mg or 1000 mg) or placebo. The infusion contained 0.5 mg/kg ketamine or saline placebo. The four study conditions were therefore placebo-placebo, 250 mg DCS-placebo, 1000 mg DCS-placebo, or placebo-ketamine. RESULTS Compared with placebo, frontal midline HFO magnitude was increased by ketamine (p = 0.00014) and 1000 mg DCS (p = 0.013). Frontal gamma magnitude was also increased by both these treatments. However, at a midline parietal location, only HFO were increased by DCS, and not gamma, whilst ketamine increased both gamma and HFO at this location. Ketamine induced psychomimetic effects, as measured by the PSI scale, whereas DCS did not increase the total PSI score. The perceptual distortion subscale scores correlated with the posterior low gamma to frontal high beta ratio. CONCLUSIONS Our results suggest that, at high doses, a partial NMDA agonist (DCS) has similar effects on fast neural oscillations as an NMDA antagonist (ketamine). As HFO were induced without psychomimetic effects, they may prove a useful drug development target.
Collapse
|
6
|
Person-identifying brainprints are stably embedded in EEG mindprints. Sci Rep 2022; 12:17031. [PMID: 36220896 PMCID: PMC9553892 DOI: 10.1038/s41598-022-21384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Electroencephalography (EEG) signals measured under fixed conditions have been exploited as biometric identifiers. However, what contributes to the uniqueness of one's brain signals remains unclear. In the present research, we conducted a multi-task and multi-week EEG study with ten pairs of monozygotic (MZ) twins to examine the nature and components of person-identifiable brain signals. Through machine-learning analyses, we uncovered a person-identifying EEG component that served as "base signals" shared across tasks and weeks. Such task invariance and temporal stability suggest that these person-identifying EEG characteristics are more of structural brainprints than functional mindprints. Moreover, while these base signals were more similar within than between MZ twins, it was still possible to distinguish twin siblings, particularly using EEG signals coming primarily from late rather than early developed areas in the brain. Besides theoretical clarifications, the discovery of the EEG base signals has practical implications for privacy protection and the application of brain-computer interfaces.
Collapse
|
7
|
Lee JY, Jang JH, Choi AR, Chung SJ, Kim B, Park M, Oh S, Jung MH, Choi JS. Neuromodulatory Effect of Transcranial Direct Current Stimulation on Resting-State EEG Activity in Internet Gaming Disorder: A Randomized, Double-Blind, Sham-Controlled Parallel Group Trial. Cereb Cortex Commun 2021; 2:tgaa095. [PMID: 34296150 PMCID: PMC8152877 DOI: 10.1093/texcom/tgaa095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used as an adjunct therapy for psychiatric disorders; however, little is known about the underlying neurophysiological effects of tDCS in Internet gaming disorder (IGD). We investigated the effects of tDCS on cortical activity using resting-state electroencephalography (EEG) in patients with IGD. This randomized, double-blind, sham-controlled parallel group study of tDCS (ClinicalTrials.gov NCT03347643) included 31 IGD patients. Participants received 10 sessions (2 sessions per day for 5 consecutive days) of active repetitive tDCS (2 mA for 20 min per session) or sham stimulation. Anode/cathode electrodes were placed over the left and right dorsolateral prefrontal cortex, respectively. In total, 26 participants (active group n = 14; sham group n = 12) completed the trial. Resting-state EEG spectral activity (absolute power) and functional connectivity (coherence) were used to assess the effects of tDCS on cortical activity before stimulation and 1 month after the intervention. Active stimulation of tDCS suppressed increase of intra-hemispheric beta coherence after 1 month, which was observed in the sham group. The 1-month follow-up assessment revealed that absolute gamma power in the left parietal region was decreased in the active group relative to the sham group. Our findings suggest that repetitive tDCS stabilizes fast-wave activity in IGD.
Collapse
Affiliation(s)
- Ji-Yoon Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University Health Service Center, Seoul 08826, Republic of Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - A Ruem Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Sun Ju Chung
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Bomi Kim
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Minkyung Park
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Sohee Oh
- Medical Research Collaborating Center, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Myung Hun Jung
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul 07061, Republic of Korea.,Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
8
|
Boetzel C, Herrmann CS. Potential targets for the treatment of ADHD using transcranial electrical current stimulation. PROGRESS IN BRAIN RESEARCH 2021; 264:151-170. [PMID: 34167654 DOI: 10.1016/bs.pbr.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a psychiatric disease with a prevalence of 2%-7.5% among the population. It is characterized by three core symptoms: hyperactivity, impulsivity, and inattention. Although the majority of ADHD patients respond to a combination of psychotherapy and standard pharmacotherapy with Methylphenidate, there is a significant minority of patients that do not respond to these substances. Additionally, the treatment with Methylphenidate can cause a variety of side effects like insomnia, headache, decreased appetite, and xerostomia. It would be favorable to have an alternative treatment-option that could circumnavigate the shortcomings of traditional pharmacological treatments. Recent results show that transcranial electrical stimulation (tES) might offer a promising approach. Since research has shown that ADHD is associated with various alterations in brain activity, brain stimulation methods targeting different facets of neuronal functions are currently under investigation. In this article, we briefly review different tES techniques like transcranial random noise stimulation (tRNS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) and explain the modes of action of these brain stimulations. We will specifically focus on transcranial alternating current stimulation (tACS) as a potential method of treating ADHD.
Collapse
Affiliation(s)
- Cindy Boetzel
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing for All," Carl von Ossietzky University, Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, European Medical School, Cluster of Excellence "Hearing for All," Carl von Ossietzky University, Oldenburg, Germany; Neuroimaging Unit, European Medical School, Carl von Ossietzky University, Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany.
| |
Collapse
|
9
|
Llanos F, Xie Z, Chandrasekaran B. Biometric identification of listener identity from frequency following responses to speech. J Neural Eng 2019; 16:056004. [PMID: 31039552 DOI: 10.1088/1741-2552/ab1e01] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigate the biometric specificity of the frequency following response (FFR), an EEG marker of early auditory processing that reflects phase-locked activity from neural ensembles in the auditory cortex and subcortex (Chandrasekaran and Kraus 2010, Bidelman, 2015a, 2018, Coffey et al 2017b). Our objective is two-fold: demonstrate that the FFR contains information beyond stimulus properties and broad group-level markers, and to assess the practical viability of the FFR as a biometric across different sounds, auditory experiences, and recording days. APPROACH We trained the hidden Markov model (HMM) to decode listener identity from FFR spectro-temporal patterns across multiple frequency bands. Our dataset included FFRs from twenty native speakers of English or Mandarin Chinese (10 per group) listening to Mandarin Chinese tones across three EEG sessions separated by days. We decoded subject identity within the same auditory context (same tone and session) and across different stimuli and recording sessions. MAIN RESULTS The HMM decoded listeners for averaging sizes as small as one single FFR. However, model performance improved for larger averaging sizes (e.g. 25 FFRs), similarity in auditory context (same tone and day), and lack of familiarity with the sounds (i.e. native English relative to native Chinese listeners). Our results also revealed important biometric contributions from frequency bands in the cortical and subcortical EEG. SIGNIFICANCE Our study provides the first deep and systematic biometric characterization of the FFR and provides the basis for biometric identification systems incorporating this neural signal.
Collapse
Affiliation(s)
- Fernando Llanos
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | | | | |
Collapse
|
10
|
Wang RWY, Chang WL, Chuang SW, Liu IN. Posterior cingulate cortex can be a regulatory modulator of the default mode network in task-negative state. Sci Rep 2019; 9:7565. [PMID: 31110251 PMCID: PMC6527685 DOI: 10.1038/s41598-019-43885-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, the regulation of brain networks and interactions between different brain regions have become important issues in neuroscience. Effective connectivity can be employed to understand the modulatory mechanisms of brain networks. Previous studies have used the task-positive mode to examine effective connectivity between brain regions and very few studies have considered the task-negative mode to explore effective connectivity using electroencephalography (EEG). In the present study, high-density EEG experiments were conducted in 85 participants to measure EEG effective connectivity in relevant default mode network (DMN) brain regions (i.e., the medial prefrontal cortex [mPFC], posterior cingulate cortex [PCC], precuneus, and right frontal and left occipital regions) to observe the effects of different task-negative modes (eyes-open/eyes-closed state) and personality traits (introversion/extroversion). The results showed that in the eyes-closed state, the PCC had significantly increased effective connectivity and played a prominent role as a regulatory modulator of outflow to other regions mediated by alpha rhythms. The mPFC was a regulatory modulator of outflow in the eyes-open state mediated by delta rhythms. The introvert group showed stronger co-modulations in the relevant DMN regions than the extrovert group.
Collapse
Affiliation(s)
- Regina W Y Wang
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan. .,The Department of Design, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.
| | - Wei-Li Chang
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.,Taiwan Building Technology Center, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| | - Shang-Wen Chuang
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.,Taiwan Building Technology Center, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| | - I-Ning Liu
- Design Perceptual Awareness Lab (D:PAL), National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan.,The Department of Design, National Taiwan University of Science and Technology (Taiwan Tech), Taipei, Taiwan
| |
Collapse
|
11
|
Meda SA, Narayanan B, Chorlian D, Meyers JL, Gelernter J, Hesselbrock V, Bauer L, Calhoun VD, Porjesz B, Pearlson GD. Multivariate Analyses Reveal Biological Components Related to Neuronal Signaling and Immunity Mediating Electroencephalograms Abnormalities in Alcohol-Dependent Individuals from the Collaborative Study on the Genetics of Alcoholism Cohort. Alcohol Clin Exp Res 2019; 43:1462-1477. [PMID: 31009096 DOI: 10.1111/acer.14063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The underlying molecular mechanisms associated with alcohol use disorder (AUD) risk have only been partially revealed using traditional approaches such as univariate genomewide association and linkage-based analyses. We therefore aimed to identify gene clusters related to Electroencephalograms (EEG) neurobiological phenotypes distinctive to individuals with AUD using a multivariate approach. METHODS The current project adopted a bimultivariate data-driven approach, parallel independent component analysis (para-ICA), to derive and explore significant genotype-phenotype associations in a case-control subset of the Collaborative Study on the Genetics of Alcoholism (COGA) dataset. Para-ICA subjects comprised N = 799 self-reported European Americans (367 controls and 432 AUD cases), recruited from COGA, who had undergone resting EEG and genotyping. Both EEG and genomewide single nucleotide polymorphism (SNP) data were preprocessed prior to being subjected to para-ICA in order to derive genotype-phenotype relationships. RESULTS From the data, 4 EEG frequency and 4 SNP components were estimated, with 2 significantly correlated EEG-genetic relationship pairs. The first such pair primarily represented theta activity, negatively correlated with a genetic cluster enriched for (but not limited to) ontologies/disease processes representing cell signaling, neurogenesis, transmembrane drug transportation, alcoholism, and lipid/cholesterol metabolism. The second component pair represented mainly alpha activity, positively correlated with a genetic cluster with ontologies similarly enriched as the first component. Disease-related enrichments for this component revealed heart and autoimmune disorders as top hits. Loading coefficients for both the alpha and theta components were significantly reduced in cases compared to controls. CONCLUSIONS Our data suggest plausible multifactorial genetic components, primarily enriched for neuronal/synaptic signaling/transmission, immunity, and neurogenesis, mediating low-frequency alpha and theta abnormalities in alcohol addiction.
Collapse
Affiliation(s)
- Shashwath A Meda
- Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut
| | - Balaji Narayanan
- Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut
| | - David Chorlian
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Jacquelyn L Meyers
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Lance Bauer
- Department of Psychiatry, UConn Health, Farmington, Connecticut
| | | | - Bernice Porjesz
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Hartford Hospital/IOL, Hartford, Connecticut.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
13
|
Cox R, Schapiro AC, Stickgold R. Variability and stability of large-scale cortical oscillation patterns. Netw Neurosci 2018; 2:481-512. [PMID: 30320295 PMCID: PMC6175693 DOI: 10.1162/netn_a_00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/26/2018] [Indexed: 11/08/2022] Open
Abstract
Individual differences in brain organization exist at many spatiotemporal scales and underlie the diversity of human thought and behavior. Oscillatory neural activity is crucial for these processes, but how such rhythms are expressed across the cortex within and across individuals is poorly understood. We conducted a systematic characterization of brain-wide activity across frequency bands and oscillatory features during rest and task execution. We found that oscillatory profiles exhibit sizable group-level similarities, indicating the presence of common templates of oscillatory organization. Nonetheless, well-defined subject-specific network profiles were discernible beyond the structure shared across individuals. These individualized patterns were sufficiently stable to recognize individuals several months later. Moreover, network structure of rhythmic activity varied considerably across distinct oscillatory frequencies and features, indicating the existence of several parallel information processing streams embedded in distributed electrophysiological activity. These findings suggest that network similarity analyses may be useful for understanding the role of large-scale brain oscillations in physiology and behavior. Neural oscillations are critical for the human brain’s ability to optimally respond to complex environmental input. However, relatively little is known about the network properties of these oscillatory rhythms. We used electroencephalography (EEG) to analyze large-scale brain wave patterns, focusing on multiple frequency bands and several key features of oscillatory communication. We show that networks defined in this manner are, in fact, distinct, suggesting that EEG activity encompasses multiple, parallel information processing streams. Remarkably, the same networks can be used to uniquely identify individuals over a period of approximately half a year, thus serving as neural fingerprints. These findings indicate that investigating oscillatory dynamics from a network perspective holds considerable promise as a tool to understand human cognition and behavior.
Collapse
Affiliation(s)
- Roy Cox
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| | - Anna C Schapiro
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| |
Collapse
|
14
|
Affan RO, Huang S, Cruz SM, Holcomb LA, Nguyen E, Marinkovic K. High-intensity binge drinking is associated with alterations in spontaneous neural oscillations in young adults. Alcohol 2018; 70:51-60. [PMID: 29778070 DOI: 10.1016/j.alcohol.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/07/2023]
Abstract
Heavy episodic alcohol consumption (also termed binge drinking) contributes to a wide range of health and cognitive deficits, but the associated brain-based indices are poorly understood. The current study used electroencephalography (EEG) to examine spontaneous neural oscillations in young adults as a function of quantity, frequency, and the pattern of their alcohol consumption. Sixty-one young adults (23.4 ± 3.4 years of age) were assigned to binge drinking (BD) and light drinking (LD) groups that were equated on gender, race/ethnic identity, age, educational background, and family history of alcoholism. EEG activity was recorded during eyes-open and eyes-closed resting conditions. Each participant's alpha peak frequency (APF) was used to calculate absolute power in individualized theta and alpha frequency bands, with a canonical frequency range used for beta. APF was slower by 0.7 Hz in BD, especially in individuals engaging in high-intensity drinking, but there were no changes in alpha power. BD also exhibited higher frontal theta and beta power than LD. Alpha slowing and increased theta power in BD remained after accounting for depression, anxiety, and personality characteristics, while elevated beta power covaried with sensation seeking. Furthermore, APF slowing and theta power correlated with various measures of alcohol consumption, including binge episodes and blackouts, but not with measures of working and episodic memory, cognitive flexibility, processing speed, or personality variables, suggesting that these physiological changes may be modulated by high-intensity alcohol intake. These results are consistent with studies of alcohol-use disorder (AUD) and support the hypothesis that binge drinking is a transitional stage toward alcohol dependence. The observed thalamocortical dysrhythmia may be indicative of an excitatory-inhibitory imbalance in BD and may potentially serve as an index of the progressive development of AUD, with a goal of informing possible interventions to minimize alcohol's deleterious effects on the brain.
Collapse
|
15
|
Tenke CE, Kayser J, Alvarenga JE, Abraham KS, Warner V, Talati A, Weissman MM, Bruder GE. Temporal stability of posterior EEG alpha over twelve years. Clin Neurophysiol 2018; 129:1410-1417. [PMID: 29729597 DOI: 10.1016/j.clinph.2018.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We previously identified posterior EEG alpha as a potential biomarker for antidepressant treatment response. To meet the definition of a trait biomarker or endophenotype, it should be independent of the course of depression. Accordingly, this report evaluated the temporal stability of posterior EEG alpha at rest. METHODS Resting EEG was recorded from 70 participants (29 male; 46 adults), during testing sessions separated by 12 ± 1.1 years. EEG alpha was identified, separated and quantified using reference-free methods that combine current source density (CSD) with principal components analysis (PCA). Measures of overall (eyes closed-plus-open) and net (eyes closed-minus-open) posterior alpha amplitude and asymmetry were compared across testing sessions. RESULTS Overall alpha was stable for the full sample (Spearman-Brown [rSB] = .834, Pearson's r = .718), and showed excellent reliability for adults (rSB = .918; r = 0.848). Net alpha showed acceptable reliability for adults (rSB = .750; r = .600). Hemispheric asymmetries (right-minus-left hemisphere) of posterior overall alpha showed significant correlations, but revealed acceptable reliability only for adults (rSB = .728; r = .573). Findings were highly comparable between 29 male and 41 female participants. CONCLUSIONS Overall posterior EEG alpha amplitude is reliable over long time intervals in adults. SIGNIFICANCE The temporal stability of posterior EEG alpha oscillations at rest over long time intervals is indicative of an individual trait.
Collapse
Affiliation(s)
- Craig E Tenke
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Jürgen Kayser
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, USA.
| | - Jorge E Alvarenga
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Karen S Abraham
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Virginia Warner
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA; Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ardesheer Talati
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, USA; Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Myrna M Weissman
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, USA; Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gerard E Bruder
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
16
|
Electroencephalographic feature evaluation for improving personal authentication performance. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.01.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Park S, Ryu H, Lee JY, Choi A, Kim DJ, Kim SN, Choi JS. Longitudinal Changes in Neural Connectivity in Patients With Internet Gaming Disorder: A Resting-State EEG Coherence Study. Front Psychiatry 2018; 9:252. [PMID: 29930524 PMCID: PMC5999751 DOI: 10.3389/fpsyt.2018.00252] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/23/2018] [Indexed: 01/25/2023] Open
Abstract
Aims: The present study investigated neural connectivity associated with treatment responses in patients with Internet gaming disorder (IGD) using resting-state electroencephalography (EEG) coherence analyses. Methods: We included 30 patients with IGD and 32 healthy control subjects (HCs). Of the IGD patients, 18 completed an outpatient treatment that included pharmacotherapy with selective serotonin reuptake inhibitors for 6 months. Resting-state EEG coherence and self-report questionnaires were used to evaluate clinical and psychological features pre- and post-treatment, and data were analyzed using generalized estimating equations. Results: Compared with HCs, patients with IGD showed increased beta and gamma intrahemispheric coherence and increased delta intrahemispheric coherence of the right hemisphere at baseline. After 6 months of outpatient management, patients with IGD exhibited improvements in IGD symptoms compared with baseline, but they continued to show increased beta and gamma intrahemispheric coherence compared with that of HCs. No significant EEG coherence changes between the pre- and post-treatment assessments were detected in any band in the IGD group. Conclusion: These findings suggest that significantly greater intrahemispheric fast-frequency coherence may be an important neurophysiological trait marker of patients with IGD.
Collapse
Affiliation(s)
- Sunyoung Park
- Department of Psychiatry SMG-SMU Boramae Medical Center, Seoul, South Korea
| | - Hyera Ryu
- Department of Psychiatry SMG-SMU Boramae Medical Center, Seoul, South Korea
| | - Ji-Yoon Lee
- Department of Psychiatry SMG-SMU Boramae Medical Center, Seoul, South Korea
| | - Aruem Choi
- Department of Psychiatry SMG-SMU Boramae Medical Center, Seoul, South Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine Catholic University of Korea, Seoul, South Korea
| | - Sung Nyun Kim
- Department of Psychiatry Seoul Medical Center, Seoul, South Korea
| | - Jung-Seok Choi
- Department of Psychiatry SMG-SMU Boramae Medical Center, Seoul, South Korea.,Department of Psychiatry and Behavioral Science Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Frequency-specific genetic influence on inferior parietal lobule activation commonly observed during action observation and execution. Sci Rep 2017; 7:17660. [PMID: 29247177 PMCID: PMC5732255 DOI: 10.1038/s41598-017-17662-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/29/2017] [Indexed: 11/26/2022] Open
Abstract
Brain activity relating to recognition of action varies among subjects. These differences have been hypothesised to originate from genetic and environmental factors although the extent of their effect remains unclear. Effects of these factors on brain activity during action recognition were evaluated by comparing magnetoencephalography (MEG) signals in twins. MEG signals of 20 pairs of elderly monozygotic twins and 11 pairs of elderly dizygotic twins were recorded while they observed finger movements and copied them. Beamformer and group statistical analyses were performed to evaluate spatiotemporal differences in cortical activities. Significant event-related desynchronisation (ERD) of the β band (13–25 Hz) at the left inferior parietal lobule (IPL) was observed for both action observation and execution. Moreover, β-band ERD at the left IPL during action observation was significantly better correlated among monozygotic twins compared to unrelated pairs (Z-test, p = 0.027). β-band ERD heritability at the left IPL was 67% in an ACE model. These results demonstrate that β-band ERD at the IPL, which is commonly observed during action recognition and execution, is affected by genetic rather than environmental factors. The effect of genetic factors on the cortical activity of action recognition may depend on anatomical location and frequency characteristics.
Collapse
|
19
|
A P300 potential evaluation wavelet method comparing individuals with high and low risk for alcoholism. Neural Comput Appl 2017. [DOI: 10.1007/s00521-016-2225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
DelPozo-Banos M, Travieso CM, Alonso JB, John A. Evidence of a Task-Independent Neural Signature in the Spectral Shape of the Electroencephalogram. Int J Neural Syst 2017; 28:1750035. [PMID: 28835183 DOI: 10.1142/s0129065717500356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic and neurophysiological studies of electroencephalogram (EEG) have shown that an individual's brain activity during a given cognitive task is, to some extent, determined by their genes. In fact, the field of biometrics has successfully used this property to build systems capable of identifying users from their neural activity. These studies have always been carried out in isolated conditions, such as relaxing with eyes closed, identifying visual targets or solving mathematical operations. Here we show for the first time that the neural signature extracted from the spectral shape of the EEG is to a large extent independent of the recorded cognitive task and experimental condition. In addition, we propose to use this task-independent neural signature for more precise biometric identity verification. We present two systems: one based on real cepstrums and one based on linear predictive coefficients. We obtained verification accuracies above 89% on 4 of the 6 databases used. We anticipate this finding will create a new set of experimental possibilities within many brain research fields, such as the study of neuroplasticity, neurodegenerative diseases and brain machine interfaces, as well as the mentioned genetic, neurophysiological and biometric studies. Furthermore, the proposed biometric approach represents an important advance towards real world deployments of this new technology.
Collapse
Affiliation(s)
- Marcos DelPozo-Banos
- * Division of Digital Signal Processing, IDeTIC, University of Las Palmas de Gran Canaria, Las Palmas 35017, Spain.,† College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Carlos M Travieso
- * Division of Digital Signal Processing, IDeTIC, University of Las Palmas de Gran Canaria, Las Palmas 35017, Spain
| | - Jesus B Alonso
- * Division of Digital Signal Processing, IDeTIC, University of Las Palmas de Gran Canaria, Las Palmas 35017, Spain
| | - Ann John
- † College of Medicine, Swansea University, Swansea, SA2 8PP, Wales, UK
| |
Collapse
|
21
|
Amodeo LR, Wills DN, Ehlers CL. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents. Behav Brain Res 2017; 330:25-29. [PMID: 28495609 DOI: 10.1016/j.bbr.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication.
Collapse
Affiliation(s)
- Leslie R Amodeo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA
| | - Derek N Wills
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA.
| |
Collapse
|
22
|
Kamarajan C, Pandey AK, Chorlian DB, Manz N, Stimus AT, Edenberg HJ, Wetherill L, Schuckit M, Wang JC, Kuperman S, Kramer J, Tischfield JA, Porjesz B. A KCNJ6 gene polymorphism modulates theta oscillations during reward processing. Int J Psychophysiol 2017; 115:13-23. [PMID: 27993610 PMCID: PMC5392377 DOI: 10.1016/j.ijpsycho.2016.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
Event related oscillations (EROs) are heritable measures of neurocognitive function that have served as useful phenotype in genetic research. A recent family genome-wide association study (GWAS) by the Collaborative Study on the Genetics of Alcoholism (COGA) found that theta EROs during visual target detection were associated at genome-wide levels with several single nucleotide polymorphisms (SNPs), including a synonymous SNP, rs702859, in the KCNJ6 gene that encodes GIRK2, a G-protein inward rectifying potassium channel that regulates excitability of neuronal networks. The present study examined the effect of the KCNJ6 SNP (rs702859), previously associated with theta ERO to targets in a visual oddball task, on theta EROs during reward processing in a monetary gambling task. The participants were 1601 adolescent and young adult offspring within the age-range of 17-25years (800 males and 801 females) from high-dense alcoholism families as well as control families of the COGA prospective study. Theta ERO power (3.5-7.5Hz, 200-500ms post-stimulus) was compared across genotype groups. ERO theta power at central and parietal regions increased as a function of the minor allele (A) dose in the genotype (AA>AG>GG) in both loss and gain conditions. These findings indicate that variations in the KCNJ6 SNP influence magnitude of theta oscillations at posterior loci during the evaluation of loss and gain, reflecting a genetic influence on neuronal circuits involved in reward-processing. Increased theta power as a function of minor allele dose suggests more efficient cognitive processing in those carrying the minor allele of the KCNJ6 SNPs. Future studies are needed to determine the implications of these genetic effects on posterior theta EROs as possible "protective" factors, or as indices of delays in brain maturation (i.e., lack of frontalization).
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| | - Ashwini K Pandey
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Niklas Manz
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Arthur T Stimus
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Leah Wetherill
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marc Schuckit
- University of California San Diego Medical Center, San Diego, CA, USA
| | | | | | | | | | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
23
|
Fluid Intelligence and the Cross-Frequency Coupling of Neuronal Oscillations. SPANISH JOURNAL OF PSYCHOLOGY 2016; 19:E91. [PMID: 27919297 DOI: 10.1017/sjp.2016.86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several existing theoretical models predict that the individual capacity of working memory and abstract reasoning (fluid intelligence) strongly depends on certain features of neuronal oscillations, especially their cross-frequency coupling. Empirical evidence supporting these predictions is still scarce, but it makes the future studies on oscillatory coupling a promising line of research that can uncover the physiological underpinnings of fluid intelligence. Cross-frequency coupling may serve as the optimal level of description of neurocognitive processes, integrating their genetic, structural, neurochemical, and bioelectrical underlying factors with explanations in terms of cognitive operations driven by neuronal oscillations.
Collapse
|
24
|
Najjar R, Brooker RJ. Delta-beta coupling is associated with paternal caregiving behaviors during preschool. Int J Psychophysiol 2016; 112:31-39. [PMID: 27884692 DOI: 10.1016/j.ijpsycho.2016.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 01/12/2023]
Abstract
Neural systems that index self-regulation have been associated with mental health outcomes, including risk for anxiety problems, from early in life. Yet, little is known about the environmental factors that may impact the development of neural systems of regulation. Behavioral work suggests that sensitive parenting, or parents' ability to correctly interpret and respond to children's signals, supports the development of regulation. Conversely, harsh parenting, or uninvolved or punitive parent behaviors, is thought to compromise developing regulatory systems. We recorded preschoolers' baseline electroencephalography (EEG) and tested whether individual differences in delta-beta coupling were linked to sensitive or harsh parenting behaviors in mothers and fathers. Using Fisher's r-to-z transform, we found that preschoolers whose fathers were low (vs. high) in harsh parenting showed greater coupling at parietal electrode sites (z=2.66, p=0.00); preschoolers whose fathers were high (vs. low) in harsh parenting showed greater coupling at frontal electrode sites (z=-2.14, p=0.02). Heightened coupling at frontal electrodes was also visible for children who showed high (vs. low) levels of social fear (z=-2.11, p=0.02), suggesting that enhanced frontal coupling may be associated with increased risk for anxiety problems. No differences in coupling were seen based on levels of sensitive parenting behaviors in mothers or fathers. Results provide initial evidence that harsh parenting behaviors in fathers are associated with differences in a general index of neural regulation in preschoolers, which may have implications for the development of social fear in early life.
Collapse
Affiliation(s)
- Reema Najjar
- Montana State University, 213 AJM Johnson Hall, Bozeman, MT 59717, USA.
| | - Rebecca J Brooker
- Montana State University, 213 AJM Johnson Hall, Bozeman, MT 59717, USA.
| |
Collapse
|
25
|
Araki T, Hirata M, Yanagisawa T, Sugata H, Onishi M, Watanabe Y, Ogata S, Honda C, Hayakawa K, Yorifuji S. Language-related cerebral oscillatory changes are influenced equally by genetic and environmental factors. Neuroimage 2016; 142:241-247. [PMID: 27241483 DOI: 10.1016/j.neuroimage.2016.05.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/14/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Twin studies have suggested that there are genetic influences on inter-individual variation in terms of verbal abilities, and candidate genes have been identified by genome-wide association studies. However, the brain activities under genetic influence during linguistic processing remain unclear. In this study, we investigated neuromagnetic activities during a language task in a group of 28 monozygotic (MZ) and 12 dizygotic (DZ) adult twin pairs. We examined the spatio-temporal distribution of the event-related desynchronizations (ERDs) in the low gamma band (25-50Hz) using beamformer analyses and time-frequency analyses. Heritability was evaluated by comparing the respective MZ and DZ correlations. The genetic and environmental contributions were then estimated by structural equation modeling (SEM). We found that the peaks of the low gamma ERDs were localized to the left frontal area. The power of low gamma ERDs in this area exhibited higher similarity between MZ twins than that between DZ twins. SEM estimated the genetic contribution as approximately 50%. In addition, these powers were negatively correlated with the behavioral verbal scores. These results improve our understanding of how genetic and environmental factors influence cerebral activities during linguistic processes.
Collapse
Affiliation(s)
- Toshihiko Araki
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Medical Technology, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Masayuki Hirata
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Takufumi Yanagisawa
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hisato Sugata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Faculty of Welfare and Health Science, Oita University, Dannoharu, Oita, Japan
| | - Mai Onishi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soshiro Ogata
- Department of Health Promotion Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Chika Honda
- Center for Twin Research, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | - Kazuo Hayakawa
- Mie Prefectural College of Nursing, Tsu, Mie 514-0116, Japan
| | - Shiro Yorifuji
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
26
|
Lackner N, Unterrainer HF, Skliris D, Wood G, Wallner-Liebmann SJ, Neuper C, Gruzelier JH. The Effectiveness of Visual Short-Time Neurofeedback on Brain Activity and Clinical Characteristics in Alcohol Use Disorders: Practical Issues and Results. Clin EEG Neurosci 2016; 47:188-95. [PMID: 26415612 DOI: 10.1177/1550059415605686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/03/2015] [Indexed: 11/17/2022]
Abstract
The present study was carried out to examine the efficacy of alpha/theta neurofeedback (NF) with a new visual paradigm in a cohort of alcohol use disordered (AUD) patients (n = 25) treated in an Austrian therapeutic community center. The experimental study design focused on changes in absolute and relative resting EEG band power as well as in clinical variables, including depression (Beck Depresion Inventory [BDI-V]), psychiatric symptoms (Brief Symptom Inventory [BSI], coping (Freiburg Questionnaire on Coping with Illness [FKV-lis]), psychotherapy motivation (Therapy Motivation Questionnaire [FPTM-23]), sense of coherence (Sense of Coherence Scale [SOC-13]), posttraumatic growth (Posttraumatic Growth Inventory [PPR]), and alcohol cravings (Alcohol Craving Questionnaire [ACQ]). For measuring training effects, participants were randomly allocated to 2 groups: an experimental group (EG, n = 13) and a control group (CG, n = 12). Patients in EG received 12 sessions of visual NF training over a period of 6 weeks to enhance alpha (8-12 Hz) and theta (4-7 Hz) frequency band power in addition to the standard treatment program of the rehabilitation center. Participants in CG received no additional NF intervention. The multivariate analysis of covariance (MANCOVA) showed a change by trend in absolute alpha and theta power in the EG. Even though no MANCOVA effects were found in the clinical scales, AUD patients reported increasing control of their brain activity during the course of NF. However, changes in several clinical scales (BDI-V, BSI, FKV-lis, PPR) from pre- to posttest were observed only in the EG contrary to the CG. The findings of this pilot study provide first evidence for the practicality and effectiveness of visual short-term NF as an additive intervention in the therapeutic community.
Collapse
Affiliation(s)
- Nina Lackner
- University Clinic of Psychiatry, Medical University Graz, Graz, Austria Department of Neuropsychology, Karl-Franzens University, Graz, Austria
| | - Human F Unterrainer
- University Clinic of Psychiatry, Medical University Graz, Graz, Austria Center for Integrative Addiction Research, Vienna, Austria
| | - Dimitris Skliris
- Department of Neuropsychology, Karl-Franzens University, Graz, Austria
| | - Guilherme Wood
- Department of Neuropsychology, Karl-Franzens University, Graz, Austria
| | | | - Christa Neuper
- Department of Neuropsychology, Karl-Franzens University, Graz, Austria
| | - John H Gruzelier
- Psychology Department, Goldsmiths, University of London, London, UK
| |
Collapse
|
27
|
Başar E, Düzgün A. The brain as a working syncytium and memory as a continuum in a hyper timespace: Oscillations lead to a new model. Int J Psychophysiol 2016; 103:199-214. [DOI: 10.1016/j.ijpsycho.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Kamarajan C, Pandey AK, Chorlian DB, Manz N, Stimus AT, Bauer LO, Hesselbrock VM, Schuckit MA, Kuperman S, Kramer J, Porjesz B. Reward processing deficits and impulsivity in high-risk offspring of alcoholics: A study of event-related potentials during a monetary gambling task. Int J Psychophysiol 2015; 98:182-200. [PMID: 26388585 PMCID: PMC4898464 DOI: 10.1016/j.ijpsycho.2015.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. The goal of the present study is to elucidate reward processing deficits, externalizing disorders, and impulsivity as elicited by electrophysiological, clinical and behavioral measures in subjects at high risk for alcoholism from families densely affected by alcoholism in the context of brain maturation across age groups and gender. METHODS Event-related potentials (ERPs) and current source density (CSD) during a monetary gambling task (MGT) were measured in 12-25 year old offspring (N=1864) of families in the Collaborative Study on the Genetics of Alcoholism (COGA) Prospective study; the high risk (HR, N=1569) subjects were from families densely affected with alcoholism and the low risk (LR, N=295) subjects were from community families. Externalizing disorders and impulsivity scores were also compared between LR and HR groups. RESULTS HR offspring from older (16-25 years) male and younger (12-15 years) female subgroups showed lower P3 amplitude than LR subjects. The amplitude decrement was most prominent in HR males during the loss condition. Overall, P3 amplitude increase at anterior sites and decrease at posterior areas were seen in older compared to younger subjects, suggesting frontalization during brain maturation. The HR subgroups also exhibited hypofrontality manifested as weaker CSD activity during both loss and gain conditions at frontal regions. Further, the HR subjects had higher impulsivity scores and increased prevalence of externalizing disorders. P3 amplitudes during the gain condition were negatively correlated with impulsivity scores. CONCLUSIONS Older male and younger female HR offspring, compared to their LR counterparts, manifested reward processing deficits as indexed by lower P3 amplitude and weaker CSD activity, along with higher prevalence of externalizing disorders and higher impulsivity scores. SIGNIFICANCE Reward related P3 is a valuable measure reflecting neurocognitive dysfunction in subjects at risk for alcoholism, as well as to characterize reward processing and brain maturation across gender and age group.
Collapse
Affiliation(s)
| | | | | | - Niklas Manz
- SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | - Lance O Bauer
- University of Connecticut Health Center, Farmington, CT, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ehlers CL, Wills DN, Phillips E, Havstad J. Low voltage alpha EEG phenotype is associated with reduced amplitudes of alpha event-related oscillations, increased cortical phase synchrony, and a low level of response to alcohol. Int J Psychophysiol 2015; 98:65-75. [PMID: 26151497 PMCID: PMC4579005 DOI: 10.1016/j.ijpsycho.2015.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Low voltage EEG (LVEEG) is a heritable phenotype that differs depending on ancestral heritage, yet its impact on brain networks and cognition remain relatively unexplored. In this study we assessed energy and task related phase locking of event-related oscillation (EROs), behavioral responses, measures of IQ and personality, and expected responses to alcohol in a large sample of individuals with LVEEG compared to those with higher voltage variants. Participants (n=762) were recruited from a Native American community and completed a diagnostic interview, the Quick Test, the Subjective High Assessment Scale Expectation Version (SHAS-E) and the Maudsley Personality Inventory. Clinical and spectral analyzed EEGs were collected for determination of the presence of a LVEEG variant. EROs were generated using a facial expression recognition task. Participants with LVEEG (n=451) were significantly more likely to be older, married and have higher degrees of Native American heritage but did not differ in gender, income or education. Individuals with LVEEG were also found to have decreased energy in their alpha EROs, increased phase locking between stimulus trials, and increased phase-locking between cortical brain areas. No significant differences in the cognitive tests, personality variables or alcohol dependence or anxiety diagnoses were found, however, individuals with LVEEG did report a larger number of drinks ever consumed in a 24-h period and a less intense expected response to alcohol. These data suggest that alpha power in the resting EEG is highly associated with energy and cortical connectivity measures generated by event-related stimuli, as well as potentially increased risk for alcohol use.
Collapse
Affiliation(s)
- Cindy L Ehlers
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States.
| | - Derek N Wills
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States
| | - Evelyn Phillips
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States
| | - James Havstad
- The Scripps Research Institute, 10550 North Torrey Pines Rd., SP30-1501, La Jolla, CA, United States
| |
Collapse
|
30
|
Agrawal A, Bogdan R. Risky Business: Pathways to Progress in Biologically Informed Studies of Psychopathology. PSYCHOLOGICAL INQUIRY 2015; 26:231-238. [PMID: 27114696 DOI: 10.1080/1047840x.2015.1039930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, 660 S. Euclid, CB 8134, Saint Louis, MO 63110
| | - Ryan Bogdan
- Washington University in St. Louis, Department of Psychology, CB 1125, One Brookings Drive, Saint Louis, MO 63130
| |
Collapse
|
31
|
Sanchez-Alavez M, Ehlers CL. Event-related oscillations (ERO) during an active discrimination task: Effects of lesions of the nucleus basalis magnocellularis. Int J Psychophysiol 2015; 103:53-61. [PMID: 25660307 DOI: 10.1016/j.ijpsycho.2015.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cholinergic system in the brain is involved in attentional processes that are engaged for the identification and selection of relevant information in the environment and the formation of new stimulus associations. In the present study we determined the effects of cholinergic lesions of nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs) generated in an auditory active discrimination task in rats. Rats were trained to press a lever to begin a series of 1kHz tones and to release the lever upon hearing a 2kHz tone. A time-frequency based representation was used to determine ERO energy and phase synchronization (phase lock index, PLI) across trials, recorded within frontal cortical structures. Lesions in NBM produced by an infusion of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) resulted in (1) a reduction of the number of correct behavioral responses in the active discrimination task, (2) an increase in ERO energy in the delta frequency bands, (3) an increase in theta, alpha and beta ERO energy in the N1, P3a and P3b regions of interest (ROI), and (4) an increase in PLI in the theta frequency band in the N1 ROIs. These studies suggest that the NBM cholinergic system is involved in maintaining the synchronization/phase resetting of oscillations in different frequencies in response to the presentation of the target stimuli in an active discrimination task.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Abstract
Alcohol use and alcohol use disorders are substantially heritable. Variants in genes coding for alcohol metabolic enzymes have long been known to influence consumption. More recent studies in family-based samples have implicated GABRA2, nicotinic receptor genes such as CHRNB3, and a number of other specific single genes as associated with alcohol use disorders. The growing use of genetic analyses, in particular studies using polygenic risk scores; neurobiologic pathways; and methods for quantifying gene × gene and gene × environment interactions have also contributed to an evolving understanding of the genetic architecture of alcohol use disorders. Additionally, the study of behavioral traits associated with alcohol dependence such as impulsivity and sensation seeking, and the influences of demographic factors (i.e., sex and ethnicity) have significantly enhanced the genetics of alcoholism literature. This article provides a brief overview of the current topically relevant findings in the field to date and includes areas of research still requiring attention.
Collapse
|
33
|
Morenko A. Brain processes during the perception of sensory signals in men with high and low output α-frequencies. Ann Neurosci 2014; 21:144-9. [PMID: 25452675 PMCID: PMC4248477 DOI: 10.5214/ans.0972.7531.210406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/13/2014] [Accepted: 09/02/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Human functional capabilities largely depend upon genetic qualities of person's nervous system. The registration of the spontaneous electroencephalogram (EEG) is among the physiological technigues allowing making a direct estimation of specific features of the nervous system, in particular, the human brain activity. PURPOSE The study is devoted to the investigation of brain processes in men with high and low levels of individual α-frequency determined in a quiescent state during the perception of sensory signals. METHODS A test group consisting of 104 right-hand healthy men from the ages of 19 to 21 was divided into two groups according to the magnitude of their individual α- frequency (IAF) median - groups with high (n = 53, IA ≥ 10,04 Hz) and low (n = 51, IAF≤10,03 Hz) levels of IAF. The power and coherence of the electrical activity of the cerebral cortex as well as inter group differences were evaluated in a quiescent state and during the perception of sensory signals by Subjects. RESULTS A localized power increase of the EEG α1-waves are registered in frontal areas, β1, β2- oscillations - in the anterior cortex, γ- activity - around the scalp and its decrease is present in the posterior temporal, parietal and occipital cortex leads, especially in the α- and β- frequency spectrum during the perception of sensory signals in men with a high IAF. The generalized depression of the θ-, α- and β- activity of the cortex is fixed in individuals with a low IAF while the expression of γ- waves is more local. The generalized increase of data in EEG coherence fluctuations throughout the frequency spectrum of the EEG in the cortex is set in all Subjects. The dextrocerebral preponderance is observable in posterior structures of the Subjects' right hemisphere. A localized decrease of the coherence concerning θ-, α1-, α3-, β- and γ- oscillations are traced in the frontal and anterior temporal areas of the left hemisphere. CONCLUSION We are of the opinion that the establishment of such common factors in the studied groups is an important step towards the release of the clear prognostic criteria for the functionality of men in the sensory area according to the congenital features of brain function.
Collapse
Affiliation(s)
- Alevtyna Morenko
- Lesia Ukrainka Eastern European National University, 13 Voli Avenue, Lutsk, UKRAINE 43000
| |
Collapse
|
34
|
Araki T, Hirata M, Sugata H, Yanagisawa T, Onishi M, Watanabe Y, Omura K, Honda C, Hayakawa K, Yorifuji S. Genetic and environmental influences on motor function: a magnetoencephalographic study of twins. Front Hum Neurosci 2014; 8:455. [PMID: 24994981 PMCID: PMC4063293 DOI: 10.3389/fnhum.2014.00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities and differences of movement-related cortical fields (MRCFs) in middle-aged and elderly monozygotic (MZ) twins. MRCFs were measured using a 160-channel magnetoencephalogram system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1) between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function.
Collapse
Affiliation(s)
- Toshihiko Araki
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| | - Masayuki Hirata
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan ; Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Hisato Sugata
- Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Takufumi Yanagisawa
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan ; Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Mai Onishi
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Osaka University Medical School , Suita , Japan
| | - Kayoko Omura
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Chika Honda
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Kazuo Hayakawa
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| |
Collapse
|
35
|
Ehlers CL, Wills DN, Desikan A, Phillips E, Havstad J. Decreases in energy and increases in phase locking of event-related oscillations to auditory stimuli occur during adolescence in human and rodent brain. Dev Neurosci 2014; 36:175-95. [PMID: 24819672 DOI: 10.1159/000358484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of changes in brain remodeling that occur during adolescence. This study sought to investigate developmental changes in EROs using a similar auditory event-related potential (ERP) paradigm in both rats and humans. Energy and phase variability of EROs collected from 38 young adult men (aged 18-25 years), 33 periadolescent boys (aged 10-14 years), 15 male periadolescent rats [at postnatal day (PD) 36] and 19 male adult rats (at PD103) were investigated. Three channels of ERP data (frontal cortex, central cortex and parietal cortex) were collected from the humans using an 'oddball plus noise' paradigm that was presented under passive (no behavioral response required) conditions in the periadolescents and under active conditions (where each subject was instructed to depress a counter each time he detected an infrequent target tone) in adults and adolescents. ERPs were recorded in rats using only the passive paradigm. In order to compare the tasks used in rats to those used in humans, we first studied whether three ERO measures [energy, phase locking index (PLI) within an electrode site and phase difference locking index (PDLI) between different electrode sites] differentiated the 'active' from 'passive' ERP tasks. Secondly, we explored our main question of whether the three ERO measures differentiated adults from periadolescents in a similar manner in both humans and rats. No significant changes were found in measures of ERO energy between the active and passive tasks in the periadolescent human participants. There was a smaller but significant increase in PLI but not PDLI as a function of active task requirements. Developmental differences were found in energy, PLI and PDLI values between the periadolescents and adults in both the rats and the human participants. Neuronal synchrony as indexed by PLI and PDLI was significantly higher to the infrequent (target) tone compared to the frequent (nontarget) tone in all brain sites in all of the regions of interest time-frequency intervals. Significantly higher ERO energy and significantly lower synchrony was seen in the periadolescent humans and rats compared to their adult counterparts. Taken together these findings are consistent with the hypothesis that adolescent remodeling of the brain includes decreases in energy and increases in synchrony over a wide frequency range both within and between neuronal networks and that these effects are conserved over evolution.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, Calif., USA
| | | | | | | | | |
Collapse
|
36
|
Sanchez-Alavez M, Robledo P, Wills DN, Havstad J, Ehlers CL. Cholinergic modulation of event-related oscillations (ERO). Brain Res 2014; 1559:11-25. [PMID: 24594019 DOI: 10.1016/j.brainres.2014.02.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022]
Abstract
The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | - Patricia Robledo
- Laboratory of Neuropharmacology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Derek N Wills
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | - James Havstad
- Laboratory of Neuropharmacology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Rosen BQ, O'Hara R, Kovacevic S, Schulman A, Padovan N, Marinkovic K. Oscillatory spatial profile of alcohol's effects on the resting state: anatomically-constrained MEG. Alcohol 2014; 48:89-97. [PMID: 24530007 PMCID: PMC3959272 DOI: 10.1016/j.alcohol.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 11/28/2022]
Abstract
It has been firmly established that opening and closing the eyes strongly modulate the electro- and magnetoencephalography (EEG and MEG) signals acquired during wakeful rest. Certain features of the resting EEG are altered in chronic alcoholics and their offspring, and have been proposed as biomarkers for alcoholism. Spontaneous brain oscillations are also affected by pharmacological manipulations, but the spectral and spatial characteristics of these changes are not clear. This study examined effects of the eyes-open (EO) and eyes-closed (EC) resting paradigm and alcohol challenge on the spatial profile of spontaneous MEG and EEG oscillations. Whole-head MEG and scalp EEG signals were acquired simultaneously from healthy social drinkers (n = 17) who participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Power of the signal was calculated with Fast Fourier Transform and was decomposed into its constituent theta (4-7 Hz), alpha (8-12 Hz), and beta (15-20 Hz) frequency bands. High-resolution structural MRI images were additionally obtained from all participants and used to constrain distributed minimum norm inverse source power estimates. The spatial estimates of the main generator nodes were in agreement with studies using a combined fMRI-EEG approach. Alpha band oscillations dominated the spectral profile and their source was estimated to the medial parieto-occipital area. Power in theta and beta bands was weaker overall and their sources were estimated to a more focal medial prefrontal area. EO and EC manipulation most strongly modulated power in the alpha band, but a wide-band power increase was observed during the EC condition. Alcohol intoxication increased alpha power, particularly during the EC condition. Application of this methodology to cohorts of chronic alcoholics or individuals at risk could potentially provide insight into the neural basis of oscillatory differences that may be predictive of the vulnerability to alcoholism.
Collapse
Affiliation(s)
- Burke Q Rosen
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., MC 0841, La Jolla, CA 92093-0841, USA
| | - Ryan O'Hara
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., MC 0841, La Jolla, CA 92093-0841, USA
| | - Sanja Kovacevic
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., MC 0841, La Jolla, CA 92093-0841, USA
| | - Andrew Schulman
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., MC 0841, La Jolla, CA 92093-0841, USA
| | - Nevena Padovan
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., MC 0841, La Jolla, CA 92093-0841, USA
| | - Ksenija Marinkovic
- Department of Radiology, University of California, San Diego, 9500 Gilman Dr., MC 0841, La Jolla, CA 92093-0841, USA.
| |
Collapse
|
38
|
EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions. PLoS One 2014. [PMID: 24505292 DOI: 10.1371/journal.pone.0087507.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations' functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal.
Collapse
|
39
|
Fingelkurts AA, Fingelkurts AA. EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions. PLoS One 2014; 9:e87507. [PMID: 24505292 PMCID: PMC3914824 DOI: 10.1371/journal.pone.0087507] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations' functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal.
Collapse
|
40
|
Irons DE, Iacono WG, Oetting WS, Kirkpatrick RM, Vrieze SI, Miller MB, McGue M. Gamma-aminobutyric acid system genes--no evidence for a role in alcohol use and abuse in a community-based sample. Alcohol Clin Exp Res 2014; 38:938-47. [PMID: 24460875 DOI: 10.1111/acer.12352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/13/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND While twin and adoption studies point to substantial genetic influence upon alcohol use, dependence, and other alcohol-related phenotypes, few of the genes underlying variation in these phenotypes have been identified. Markers in genes related to GABAergic activity-a system integral to many of alcohol's biological effects-have been implicated in alcohol use and alcohol-related psychopathology in linkage and association studies. METHODS Using multiple methods, we conducted a comprehensive examination of the effects of markers in γ-aminobutyric acid (GABA) system genes in a community-based sample of 7,224 individuals assessed in early and middle adulthood. In addition to testing the effect of individual single nucleotide polymorphism (SNP) markers on alcohol-related phenotypes, we computed a polygenic score reflecting the aggregated effects of multiple GABA system SNPs. We also estimated the variance in alcohol-related phenotypes attributable to all GABA system markers considered simultaneously and conducted gene-based association tests. RESULTS No method produced results indicative of an effect of GABA system variants on measures of alcohol use or misuse. CONCLUSIONS These results reflect alcohol-related behaviors in a population-representative sample, many of whom are still in adolescence, and in which the incidence of heavy drinking and alcohol-related symptomatology are relatively low. Contrasted with existing studies of the association between alcohol use and GABA system genes, our results suggest that the relationship may be limited to particular contexts, such as when accompanied by polysubstance abuse or a familial history of alcoholism.
Collapse
Affiliation(s)
- Daniel E Irons
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
41
|
Electrical activity of the distal muscles of the hand in men having high or low output alpha-frequencies while performing usual manual movements in response to sensory signals. Ann Neurosci 2013; 20:90-4. [PMID: 25206023 PMCID: PMC4117115 DOI: 10.5214/ans.0972.7531.200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/17/2013] [Accepted: 07/03/2013] [Indexed: 11/30/2022] Open
Abstract
Background Human functional capabilities largely depend upon genetic qualities of person’s nervous system. The registration of the spontaneous electroencephalogram (EEG) is among the physiological techniques allowing making a direct estimation of specific features of the nervous system, in particular, the human brain activity. Purpose Research is dedicated to the study of distal muscles of the hand, in particular, its functional ability in men with a high or low background EEG α-frequency being in quiescent state or while performing usual manual movements in response to sensory signals. Methods A test group consisting of 104 healthy men from the ages of 19 to 21 was divided into two groups according to the magnitude of their individual α- frequency (IAF) median – groups with high (n = 53, IA≥10,04 Hz) and low (n = 51, IAF≤10,03 Hz) levels of IAF. Subjects’ psychodynamic properties of their nervous processes have been evaluated as well as any background and level of changes in the average amplitude of EMG while performing usual manual movements in response to sensory signals and intergroup differences were studied. Results It has been found that higher levels of speed and accuracy of the sensorimotor response in men with a high IAF are associated with increased lateral and reciprocal significant differences both in the background muscle activity and efficiency of the distal arm muscles primarily functioning as flexors. But on the contrary, the inverse dynamics appears in men having the low-frequency which is correlated with a lower mobility and balanced nervous processes in their sensorimotor response. Conclusion The establishment of such common factors in the experiments groups is an important step towards defining prognostic criteria for the functionality of motor area based on EMG activity of the distal muscles of the hand.
Collapse
|
42
|
Yener GG, Başar E. Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:343-63. [PMID: 24053048 DOI: 10.1016/b978-0-7020-5307-8.00016-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This survey covers the potential use of neurophysiological changes as a biomarker in four neuropsychiatric diseases (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), bipolar disorder (BD), and schizophrenia (SZ)). Great developments have been made in the search of biomarkers in these disorders, especially in AD. Nevertheless, there is a tremendous need to develop an efficient, low-cost, potentially portable, non-invasive biomarker in the diagnosis, course, or treatment of the above-mentioned disorders. Electrophysiological methods would provide a tool that would reflect functional brain dynamic changes within milliseconds and also may be used as an ensemble of biomarkers that is greatly needed in the evaluation of cognitive changes seen in these disorders. The strategies for measuring cognitive changes include spontaneous electroencephalography (EEG), sensory evoked oscillation (SEO), and event-related oscillations (ERO). Further selective connectivity deficit in sensory or cognitive networks is reflected by coherence measurements. Possible candidate biomarkers discussed in an interactive panel can be summarized as follows: for ADHD: (a) elevation of delta and theta, (b) diminished alpha and beta responses in spontaneous EEG; for SZ: (a) decrease of ERO gamma responses, (b) decreased ERO in all other frequency ranges, (c) invariant ERO gamma response in relation to working memory demand; for euthymic BD: (a) decreased event-related gamma coherence, (b) decreased alpha in ERO and in spontaneous EEG; for manic BD: (a) lower alpha and higher beta in ERO, (b) decreased event-related gamma coherence, (c) lower alpha and beta in ERO after valproate; and for AD: (a) decreased alpha and beta, and increased theta and delta in spontaneous EEG, (b) hyperexcitability of motor cortices as shown by transcortical magnetic stimulation, (c) hyperexcitability of visual sensory cortex as indicated by increased SEO theta responses, (d) lower delta ERO, (e) lower delta, theta, and alpha event-related coherence, (f) higher theta synchrony and higher alpha event-related coherence in cholinergically treated AD subjects. In further research in the search for biomarkers, multimodal methods should be introduced to electrophysiology for validation purposes. Also, providing the protocols for standardization and harmonization of user-friendly acquisition or analysis methods that would be applied in larger cohort populations should be used to incorporate these electrophysiologic methods into the clinical criteria. In an extension to conventional anatomical, biochemical and brain imaging biomarkers, the use of neurophysiologic markers may lead to new applications for functional interpretrations and also the possibility to monitor treatments tailored for individuals.
Collapse
Affiliation(s)
- Görsev G Yener
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir 35340, Turkey.
| | | |
Collapse
|
43
|
Review of delta, theta, alpha, beta, and gamma response oscillations in neuropsychiatric disorders. APPLICATION OF BRAIN OSCILLATIONS IN NEUROPSYCHIATRIC DISEASES - SELECTED PAPERS FROM “BRAIN OSCILLATIONS IN COGNITIVE IMPAIRMENT AND NEUROTRANSMITTERS” CONFERENCE, ISTANBUL, TURKEY, 29 APRIL–1 MAY 2011 2013; 62:303-41. [DOI: 10.1016/b978-0-7020-5307-8.00019-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
44
|
Başar E. Is research on brain oscillations in a new “take off-state” in integrative brain function? Int J Psychophysiol 2012. [DOI: 10.1016/j.ijpsycho.2012.07.180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Agrawal A, Verweij KJH, Gillespie NA, Heath AC, Lessov-Schlaggar CN, Martin NG, Nelson EC, Slutske WS, Whitfield JB, Lynskey MT. The genetics of addiction-a translational perspective. Transl Psychiatry 2012; 2:e140. [PMID: 22806211 PMCID: PMC3410620 DOI: 10.1038/tp.2012.54] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 05/30/2012] [Indexed: 12/16/2022] Open
Abstract
Addictions are serious and common psychiatric disorders, and are among the leading contributors to preventable death. This selective review outlines and highlights the need for a multi-method translational approach to genetic studies of these important conditions, including both licit (alcohol, nicotine) and illicit (cannabis, cocaine, opiates) drug addictions and the behavioral addiction of disordered gambling. First, we review existing knowledge from twin studies that indicates both the substantial heritability of substance-specific addictions and the genetic overlap across addiction to different substances. Next, we discuss the limited number of candidate genes which have shown consistent replication, and the implications of emerging genomewide association findings for the genetic architecture of addictions. Finally, we review the utility of extensions to existing methods such as novel phenotyping, including the use of endophenotypes, biomarkers and neuroimaging outcomes; emerging methods for identifying alternative sources of genetic variation and accompanying statistical methodologies to interpret them; the role of gene-environment interplay; and importantly, the potential role of genetic variation in suggesting new alternatives for treatment of addictions.
Collapse
Affiliation(s)
- A Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ehlers CL, Wills DN, Havstad J. Ethanol reduces the phase locking of neural activity in human and rodent brain. Brain Res 2012; 1450:67-79. [PMID: 22410292 DOI: 10.1016/j.brainres.2012.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/29/2022]
Abstract
How the neuromolecular actions of ethanol translate to its observed intoxicating effects remains poorly understood. Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of ethanol's effects. Using a similar auditory event-related potential paradigm in both rats and humans we investigated the phase variability of EROs collected from 38 young men who had participated in an ethanol/placebo challenge protocol, and 46 adult male rats given intraperitoneal injections of ethanol/saline. Phase locking was significantly higher in the delta frequencies in humans than in rats. Phase locking was also higher for the rare (target) tone than the frequent (non-target) tone in both species. Significant reductions in phase locking to the rare (target) tone in the delta, theta, alpha, beta and gamma frequencies, within and between brain sites, was found at 1h following ethanol as compared to placebo/saline administration in both rats and humans. Reductions in phase locking in the alpha frequencies in the parietal cortex were found to be correlated with blood ethanol concentrations. These findings are consistent with the hypothesis that ethanol's intoxicating actions in the brain include reducing synchrony within and between neuronal networks, perhaps by increasing the level of noise in key neuromolecular interactions.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Integrative Neuroscience, The Scripps Research Institute,10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
47
|
Criado JR, Gizer IR, Slutske WS, Phillips E, Ehlers CL. Event-related oscillations to affective stimuli: heritability, linkage and relationship to externalizing disorders. J Psychiatr Res 2012; 46:256-63. [PMID: 22123122 PMCID: PMC3264760 DOI: 10.1016/j.jpsychires.2011.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 11/26/2022]
Abstract
Event-related oscillations (EROs) are heritable electrophysiological measures associated with cognitive activity and have been shown to be particularly informative for the genetic analysis of substance dependence and other psychiatric disorders. In the present study associations between the cortical event-related oscillations (EROs) elicited by affective stimuli, and the diagnosis of ASPD or CD (ASPD/CD) were investigated, and heritability and linkage analyses conducted in 662 individuals residing in an American Indian community. Results from this study found that participants with ASPD/CD showed increased alpha ERO energy in centro-parietal leads in the 0-250 ms time window in response to all three emotional expressions (sad, neutral and happy faces). Participants with ASPD/CD also showed increased alpha ERO energy in centro-parietal leads in the 400-700 ms time window in response to happy and neutral faces. Variance components analysis suggested a significant familial component to each of the described ERO phenotypes. Although a follow-up genome-wide linkage analysis failed to detect significant evidence of genetic linkage for any of these phenotypes, centro-parietal alpha energy in response to happy faces showed suggestive evidence of linkage to chromosome 1p36.31 (LOD = 2.40), in an area found in previous studies to be associated with externalizing phenotypes. Findings from this study suggest greater activation of neural circuits required to perform a facial recognition task in participants with ASPD/CD. The observed increase in alpha ERO energy may represent a heritable endophenotype associated with select externalizing disorders in this population.
Collapse
Affiliation(s)
- Jose R. Criado
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Ian R. Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - Wendy S. Slutske
- Department of Psychological Sciences, University of Missouri, Columbia, MO
| | - Evie Phillips
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Cindy L. Ehlers
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
48
|
Pandey AK, Kamarajan C, Rangaswamy M, Porjesz B. Event-Related Oscillations in Alcoholism Research: A Review. ACTA ACUST UNITED AC 2012; Suppl 7. [PMID: 24273686 DOI: 10.4172/2155-6105.s7-001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism.
Collapse
Affiliation(s)
- Ashwini K Pandey
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
49
|
Marinkovic K, Rosen BQ, Cox B, Kovacevic S. Event-Related Theta Power during Lexical-Semantic Retrieval and Decision Conflict is Modulated by Alcohol Intoxication: Anatomically Constrained MEG. Front Psychol 2012; 3:121. [PMID: 22536192 PMCID: PMC3334511 DOI: 10.3389/fpsyg.2012.00121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
Language processing is commonly characterized by an event-related increase in theta power (4-7 Hz) in scalp EEG. Oscillatory brain dynamics underlying alcohol's effects on language are poorly understood despite impairments on verbal tasks. To investigate how moderate alcohol intoxication modulates event-related theta activity during visual word processing, healthy social drinkers (N = 22, 11 females) participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. They performed a double-duty lexical decision task as they detected real words among non-words. An additional requirement to respond to all real words that also referred to animals induced response conflict. High density whole-head MEG signals and midline scalp EEG data were decomposed for each trial with Morlet wavelets. Each person's reconstructed cortical surface was used to constrain noise-normalized distributed minimum norm inverse solutions for theta frequencies. Alcohol intoxication increased reaction time and marginally affected accuracy. The overall spatio-temporal pattern is consistent with the left-lateralized fronto-temporal activation observed in language studies applying time-domain analysis. Event-related theta power was sensitive to the two functions manipulated by the task. First, theta estimated to the left-lateralized fronto-temporal areas reflected lexical-semantic retrieval, indicating that this measure is well suited for investigating the neural basis of language functions. While alcohol attenuated theta power overall, it was particularly deleterious to semantic retrieval since it reduced theta to real words but not pseudowords. Second, a highly overlapping prefrontal network comprising lateral prefrontal and anterior cingulate cortex was sensitive to decision conflict and was also affected by intoxication, in agreement with previous studies indicating that executive functions are especially vulnerable to alcohol intoxication.
Collapse
Affiliation(s)
- Ksenija Marinkovic
- Department of Radiology, University of CaliforniaSan Diego, CA, USA
- *Correspondence: Ksenija Marinkovic, Department of Radiology, University of California, San Diego, 9500 Gilman Drive 0841, La Jolla, CA 92093-0841, USA. e-mail:
| | - Burke Q. Rosen
- Department of Radiology, University of CaliforniaSan Diego, CA, USA
| | - Brendan Cox
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Sanja Kovacevic
- Department of Radiology, University of CaliforniaSan Diego, CA, USA
| |
Collapse
|
50
|
EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2011; 36:677-95. [PMID: 22020231 DOI: 10.1016/j.neubiorev.2011.10.002] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Functional significance of delta oscillations is not fully understood. One way to approach this question would be from an evolutionary perspective. Delta oscillations dominate the EEG of waking reptiles. In humans, they are prominent only in early developmental stages and during slow-wave sleep. Increase of delta power has been documented in a wide array of developmental disorders and pathological conditions. Considerable evidence on the association between delta waves and autonomic and metabolic processes hints that they may be involved in integration of cerebral activity with homeostatic processes. Much evidence suggests the involvement of delta oscillations in motivation. They increase during hunger, sexual arousal, and in substance users. They also increase during panic attacks and sustained pain. In cognitive domain, they are implicated in attention, salience detection, and subliminal perception. This evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations. The former processes rise in activity, however, when the latter are dysfunctional.
Collapse
|