1
|
Griffith O, Fornini R, Walter AE, Wilkes J, Bai X, Slobounov SM. Comorbidity of concussion and depression alters brain functional connectivity in collegiate student-athletes. Brain Res 2024; 1845:149200. [PMID: 39197571 DOI: 10.1016/j.brainres.2024.149200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Depression and concussion are highly prevalent neuropsychological disorders that often occur simultaneously. However, due to the high degree of symptom overlap between the two events, including but not limited to headache, sleep disturbances, appetite changes, fatigue, and difficulty concentrating, they may be treated in isolation. Thus, clinical awareness of additive symptom load may be missed. This study measures neuropsychological and electroencephalography (EEG) alpha band coherence differences in collegiate student-athletes with history of comorbid depression and concussion, in comparison to those with a single morbidity and healthy controls (HC). 35 collegiate athletes completed neuropsychological screenings and EEG measures. Participants were grouped by concussion and depression history. Differences in alpha band coherence were calculated using two-way ANOVA with post hoc correction for multiple comparisons. Comorbid participants scored significantly worse on neuropsychological screening, BDI-FS, and PCSS than those with a single morbidity and HC. Two-way ANOVA by group revealed significant main effects of alpha band coherence for concussion, depression, and their interaction term. Post-hoc analysis showed that comorbid participants had more abnormal alpha band coherence than single morbidity, when compared to HC. Comorbidity of concussion and depression increased symptom reporting and revealed more altered alpha band coherence than single morbidity, compared to HC. The abnormalities of the comorbid group exclusively showed decreased alpha band coherence in comparison to healthy controls. The comorbidity of depression and SRC has a compounding effect on depression symptoms, post-concussion symptoms, and brain functional connectivity. This research demonstrates a promising objective measure in comorbid individuals, previously only measured via subjective symptom reporting.
Collapse
Affiliation(s)
- Owen Griffith
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA 16802, USA.
| | - Robert Fornini
- College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, USA.
| | - Alexa E Walter
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19103, USA.
| | - James Wilkes
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA 16802, USA.
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, Social Science Research Institute, Penn State University, 120F Chandlee Laboratory, University Park, PA 16802, USA.
| | - S M Slobounov
- Department of Kinesiology, Penn State University, 19 Recreation Building, University Park, PA 16802, USA.
| |
Collapse
|
2
|
Clay AM, Carr RL, DuBien JL, To F. Short-term behavioral and histological findings following a single concussive and repeated subconcussive brain injury in a rodent model. Brain Inj 2024; 38:827-834. [PMID: 38704844 DOI: 10.1080/02699052.2024.2349144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PRIMARY OBJECTIVE It is unclear of the correlation between a mild traumatic brain injury (mTBI) and repeated subconcussive (RSC) impacts with respect to injury biomechanics. Thus, the present study was designed to determine the behavioral and histological differences between a single mTBI impact and RSC impacts with subdivided cumulative kinetic energies of the single mTBI impact. RESEARCH DESIGN Adult male Sprague-Dawley rats were randomly assigned to a single mTBI impact, RSC impact, sham, or repeated sham groups. METHODS AND PROCEDURES Following a weight drop injury, anxiety-like behavior and general locomotive activity and were assessed using the open field test, while motor coordination was evaluated using a rotarod unit. Neuronal loss, astrogliosis, and microgliosis were assessed using NeuN, GFAP and Iba-1 immunohistochemistry. All assessments were undertaken at 3- and 7-days post impact. MAIN OUTCOMES AND RESULTS No behavioral disturbances were observed in injury groups, however, both injury groups did lead to microgliosis following 3-days post-impact. CONCLUSIONS No pathophysiological differences were observed between a single mTBI impact and RSC impacts of the same energy input. Even though a cumulative injury threshold for RSC impacts was not determined, a threshold still may exist where no pathodynamic shift occurs.
Collapse
Affiliation(s)
- Anna Marie Clay
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi University, Mississippi, USA
| | - Janice L DuBien
- Department of Statistics, Mississippi University, Mississippi, USA
| | - Filip To
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| |
Collapse
|
3
|
Sicard V, Ledoux AA, Tang K, Yeates KO, Brooks BL, Anderson P, Keightley M, Desire N, Beauchamp MH, Zemek R. The association between symptom burden and processing speed and executive functioning at 4 and 12 weeks following pediatric concussion. J Int Neuropsychol Soc 2024; 30:533-545. [PMID: 38273645 DOI: 10.1017/s1355617724000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Symptoms and cognition are both utilized as indicators of recovery following pediatric concussion, yet their interrelationship is not well understood. This study aimed to investigate: 1) the association of post-concussion symptom burden and cognitive outcomes (processing speed and executive functioning [EF]) at 4 and 12 weeks after pediatric concussion, and 2) the moderating effect of sex on this association. METHODS This prospective, multicenter cohort study included participants aged 5.00-17.99 years with acute concussion presenting to four Emergency Departments of the Pediatric Emergency Research Canada network. Five processing speed and EF tasks and the Post-Concussion Symptom Inventory (PCSI; symptom burden, defined as the difference between post-injury and retrospective [pre-injury] scores) were administered at 4 and 12 weeks post-concussion. Generalized least squares models were conducted with task performances as dependent variables and PCSI and PCSI*sex interaction as the main predictors, with important pre-injury demographic and injury characteristics as covariates. RESULTS 311 children (65.0% males; median age = 11.92 [IQR = 9.14-14.21 years]) were included in the analysis. After adjusting for covariates, higher symptom burden was associated with lower Backward Digit Span (χ2 = 9.85, p = .043) and Verbal Fluency scores (χ2 = 10.48, p = .033) across time points; these associations were not moderated by sex, ps ≥ .20. Symptom burden was not associated with performance on the Coding, Continuous Performance Test, and Color-Word Interference scores, ps ≥ .17. CONCLUSIONS Higher symptom burden is associated with lower working memory and cognitive flexibility following pediatric concussion, yet these associations were not moderated by sex. Findings may inform concussion management by emphasizing the importance of multifaceted assessments of EF.
Collapse
Affiliation(s)
- Veronik Sicard
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Andrée-Anne Ledoux
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ken Tang
- Independent Statistical Consultant, Richmond, BC, Canada
| | - Keith Owen Yeates
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Brian L Brooks
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Neurosciences Program, Alberta Children's Hospital, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Peter Anderson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Mental Health Neuropsychology Program, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Michelle Keightley
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, TorontoON, Canada
- Departments of Occupational Science and Occupational Therapy and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Naddley Desire
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Ste-Justine Hospital Research Center, Montreal, QC, Canada
| | - Roger Zemek
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
- Department of Emergency Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
4
|
McPherson AL, Anderson T, Finnoff JT, Adams WM. Head Kinematics and Injury Analysis in Elite Bobsleigh Athletes Throughout a World Cup Tour. J Athl Train 2024; 59:584-593. [PMID: 37648215 PMCID: PMC11220765 DOI: 10.4085/1062-6050-0014.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
CONTEXT The neurocognitive health effects of repetitive head impacts have been examined in many sports. However, characterizations of head impacts for sliding-sport athletes are lacking. OBJECTIVE To describe head impact kinematics and injury epidemiology in elite athletes during the 2021-2022 Bobsleigh World Cup season. DESIGN Cross-sectional study. SETTING On-track training and competitions during the Bobsleigh World Cup season. PATIENTS OR OTHER PARTICIPANTS Twelve elite bobsleigh athletes (3 pilots [1 female], 9 push athletes [5 females]; age = 30 ± 5 years; female height and weight = 173 ± 8 cm and 75 ± 5 kg, respectively; male height and weight = 183 ± 5 cm and 101 ± 5 kg, respectively). MAIN OUTCOME MEASURE(S) Athletes wore an accelerometer-enabled mouthguard to quantify 6-degrees-of-freedom head impact kinematics. Isometric absolute and relative neck strength, number of head acceleration events (HAEs), workload (J), peak linear velocity (m·s-1), peak angular velocity (rad·s-1), peak linear acceleration (g), and peak angular acceleration (rad·s-2) were derived from mouthguard manufacturer algorithms. Linear mixed-effect models tested the effects of sex (male versus female), setting (training versus competition), and position (pilot versus push athlete) on the kinematic variables. RESULTS A total of 1900 HAEs were recorded over 48 training and 53 competition days. No differences were found between the number of HAEs per run per athlete by sex (incidence rate ratio [IRR] = 0.82, P = .741), setting (IRR = 0.94, P = .325), or position (IRR = 1.64, P = .463). No sex differences were observed for workload (mean ± SD: males = 3.3 ± 2.2 J, females = 3.1 ± 1.9 J; P = .646), peak linear velocity (males = 1.1 ± 0.3 m·s-1, females = 1.1 ± 0.3 m·s-1; P = .706), peak angular velocity (males = 4.2 ± 2.1 rad·s-1, females = 4.7 ± 2.5 rad·s-1; P = .220), peak linear acceleration (male = 12.4 ± 3.9g, females = 11.9 ± 3.5g; P = .772), or peak angular acceleration (males = 610 ± 353 rad·s-2, females = 680 ± 423 rad·s-2; P = .547). Also, no effects of setting or position on any kinematic variables were seen. Male athletes had greater peak neck strength than female athletes for all neck movements, aside from right-side flexion (P = .085), but no sex differences were noted in relative neck strength. CONCLUSIONS We provide a foundational understanding of the repetitive HAEs that occur in bobsleigh athletes. Future authors should determine the effects of repetitive head impacts on neurocognitive function and mental health.
Collapse
Affiliation(s)
- April L. McPherson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
| | - Travis Anderson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
| | - Jonathan T. Finnoff
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Denver
| | - William M. Adams
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
- Department of Kinesiology, University of North Carolina-Greensboro
- School of Sport, Exercise and Health Sciences, Loughborough University, National Centre for Sport and Exercise Medicine (NCSEM), UK
| |
Collapse
|
5
|
Mitchell KM, Dalton KN, Cinelli ME. A treadmill running research protocol to assess dynamic visual acuity and balance for athletes with and without recent concussion history. BMC Sports Sci Med Rehabil 2024; 16:112. [PMID: 38760838 PMCID: PMC11101338 DOI: 10.1186/s13102-024-00900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Athletes interpret dynamic visual scenes quickly and accurately during physical exertion. It is important to understand how increased exertion may impact vision and cognition following sport-related concussion (SRC).Purpose To examine the effect of a treadmill running research protocol on the assessment of dynamic visual acuity (DVA) and balance for athletes with and without recent history of SRC.Methods Varsity athletes following recent SRC (CONC=12) were compared to athletes without SRC (ATHLETE=19). The DVA task presented a Tumbling 'E' target in four possible orientations during random walk (RW) or horizontal (H) motion at a speed of 30°/s. Participants performed DVA trials standing on a force plate (1000Hz) at four time points: 1) pre-exercise (PRE-EX), 2) immediately (POST1), 3) 10-minutes (POST10), and 4) 20-minutes post- exercise (POST20). Performance was calculated as a change in DVA score from PRE-EX and median response time (RT, ms). Balance control was analyzed using the root mean square of centre of pressure displacement (dCOP).Results Both groups maintained DVA scores for both motion types and exhibited immediate exercise-induced benefits on RT. Both groups had similar change in balance control strategy following treadmill exercise.Conclusion Both groups elicited similar exercise-induced benefits on DVA following exercise. A repeated measures assessment following vigorous exercise may provide meaningful insights about visual and neurocognitive functions for athletes returning to sport following concussion.
Collapse
Affiliation(s)
| | | | - Michael E Cinelli
- Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
6
|
Ji Q, Zhou C, Wang Y. Influence of conflicting prior information on action anticipation in soccer players: an ERP study. Front Behav Neurosci 2023; 17:1320900. [PMID: 38131060 PMCID: PMC10733450 DOI: 10.3389/fnbeh.2023.1320900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Objective Prior probability information and visual kinematic information are essential for action anticipation in athletes. The aims of this study were to examine how conflicting prior information influences anticipatory judgment in athletes vs. non-athletes and to explore the underlying cognitive mechanisms. Methods The aim of Experiment 1 was to determine the moment when prior information influenced action anticipation in athletes vs. non-athletes. To that end, 17 semi-elite soccer goalkeepers and 18 non-athletes received prior information about the probability of the direction that a player on a video would kick a ball into the goal. Participants then anticipated the trajectory of the ball when the action of the player's kick on the video was truncated at the moment the foot contacted the ball (time T) or one frame (T-1; 50 ms) or two frames (T-2; 100 ms) before the foot-ball contact. The aim of Experiment 2 was to elucidate the adaptive cognitive-motor behavior exhibited by highly trained soccer players at the moment when their anticipatory performance was most influenced by prior information. Experiment 2 included 27 different semi-elite soccer players with many years of experience as a goalkeeper and 27 different non-athletes. Participants anticipated the direction of the kick when the kinematic action of the kicker at the moment the anticipatory performance of the participants was most influenced by prior information (as determined in Experiment 1) was congruent, incongruent, or neutral. Action anticipation accuracy and response time were evaluated for both experiments, whereas event-related potential components N1, N2, and P3 were assessed only in Experiment 2. Results The results of Experiment 1 showed that anticipatory accuracy was significantly higher among athletes than non-athletes and that anticipatory accuracy with directional information given was significantly higher than that when no prior information was given or when prior information without directional information was given (p < 0.001) for both T-1 (p's ≤ 0.034) and T-2 (p's < 0.001) occlusion points. In Experiment 2 using those two video occlusion times, the amplitude of the N1 component, which reflects selective attention to stimulus properties, was significantly higher in athletes than in non-athletes (p < 0.001). The amplitude of the N2 component, which has been associated with conflict monitoring, for the incongruent condition was significantly higher than that for both neutral (p < 0.001) and congruent (p < 0.001) conditions in athletes. Non-athletes exhibited no significant N2 amplitude differences for any prior information condition. Conclusion Integrating prior information enhanced action anticipation in semi-elite soccer players, particularly 50 and 100 ms before the foot-ball contact. Semi-elite soccer players prioritized early selective attention and conflict monitoring of kinematic information, facilitating action anticipation using the prior information.
Collapse
Affiliation(s)
- Qingchun Ji
- Department of Physical Education, Shanghai University of Engineering Science, Shanghai, China
- Sports Economic Management Research Center, Shanghai University of Engineering Science, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai, China
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Motor Cognitive Assessment and Regulation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
7
|
Sattari S, Kenny R, Liu CC, Hajra SG, Dumont GA, Virji-Babul N. Blink-related EEG oscillations are neurophysiological indicators of subconcussive head impacts in female soccer players: a preliminary study. Front Hum Neurosci 2023; 17:1208498. [PMID: 37538402 PMCID: PMC10394644 DOI: 10.3389/fnhum.2023.1208498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Repetitive subconcussive head impacts can lead to subtle neural changes and functional consequences on brain health. However, the objective assessment of these changes remains limited. Resting state blink-related oscillations (BROs), recently discovered neurological responses following spontaneous blinking, are explored in this study to evaluate changes in BRO responses in subconcussive head impacts. Methods We collected 5-min resting-state electroencephalography (EEG) data from two cohorts of collegiate athletes who were engaged in contact sports (SC) or non-contact sports (HC). Video recordings of all on-field activities were conducted to determine the number of head impacts during games and practices in the SC group. Results In both groups, we were able to detect a BRO response. Following one season of games and practice, we found a strong association between the number of head impacts sustained by the SC group and increases in delta and beta spectral power post-blink. There was also a significant difference between the two groups in the morphology of BRO responses, including decreased peak-to-peak amplitude of response over left parietal channels and differences in spectral power in delta and alpha frequency range post-blink. Discussion Our preliminary results suggest that the BRO response may be a useful biomarker for detecting subtle neural changes resulting from repetitive head impacts. The clinical utility of this biomarker will need to be validated through further research with larger sample sizes, involving both male and female participants, using a longitudinal design.
Collapse
Affiliation(s)
- Sahar Sattari
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Rebecca Kenny
- Department of Rehabilitation Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Careesa Chang Liu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Sujoy Ghosh Hajra
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Guy A. Dumont
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Naznin Virji-Babul
- Department of Rehabilitation Sciences, The University of British Columbia, Vancouver, BC, Canada
- Department of Physical Therapy, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Fawzi AL, Franck C. Beyond symptomatic diagnosis of mild traumatic brain injury. Concussion 2023; 8:CNC109. [PMID: 37287883 PMCID: PMC10242431 DOI: 10.2217/cnc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
It is commonly assumed that there is no brain injury if there are no noticeable symptoms following a head impact. There is growing evidence that traumatic brain injuries can occur with no outward symptoms and that the damage from these injuries can accumulate over time resulting in disease and impairment later in life. It is time to rethink the role that symptoms play in traumatic brain injury and adopt a quantitative understanding of brain health at the cellular level to improve the way we diagnose, prevent, and ultimately heal brain injury.
Collapse
Affiliation(s)
- Alice Lux Fawzi
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Ye K, Fleysher R, Lipton RB, Zimmerman ME, Stewart WF, Sliwinski MJ, Kim M, Lipton ML. Repetitive soccer heading adversely impacts short-term learning among adult women. J Sci Med Sport 2022; 25:935-941. [PMID: 36210312 PMCID: PMC10020927 DOI: 10.1016/j.jsams.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine the impact of 12-month heading exposure on short-term learning. DESIGN A total of 105 active amateur soccer players, 45 women and 60 men, were administered an EMA-based test of working memory, a version of the two-back, once daily for 14 days. METHODS Heading exposure of the participants was assessed using "HeadCount", a validated structured questionnaire at the baseline visits. The short-term rate of learning of each individual is quantified by first fitting a quadratic model to the daily performance on the two-back test over a two-week period, then taking the instantaneous rate of the quadratic function at the 7th test. A linear regression model was used to test the association of heading exposure with rates of learning, including age, sex, years of education and history of concussion as covariates, as well as variables describing soccer play and heading within the two-week period. Sensitivity analyses were performed using different methods for quantifying the learning effects and different transformations on 12-month heading exposure. RESULTS Greater 12-month heading was associated with lower rates of learning among women (p = 0.008) but not among men (p = 0.74). CONCLUSIONS We have identified evidence for an adverse, albeit subclinical, effect of soccer heading on brain function among young adult players, which selectively affects women in our sample.
Collapse
Affiliation(s)
- Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, USA; Department of Systems & Computational Biology, Albert Einstein College of Medicine, USA.
| | - Roman Fleysher
- Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, USA; Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, USA
| | - Richard B Lipton
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, USA; Saul B. Korey Department of Neurology, Albert Einstein College of Medicine, Department of Neurology, Montefiore Medical Center, USA
| | | | | | - Martin J Sliwinski
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, USA
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, USA
| | - Michael L Lipton
- Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, USA; Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, USA.
| |
Collapse
|
10
|
Ledwidge PS, Jones CM, Huston CA, Trenkamp M, Bator B, Laeng J. Electrophysiology reveals cognitive-linguistic alterations after concussion. BRAIN AND LANGUAGE 2022; 233:105166. [PMID: 35970083 DOI: 10.1016/j.bandl.2022.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Language deficits and alterations to the N400 ERP are commonly reported in aphasia and moderate-to-severe traumatic brain injury (TBI), but have seldomly been investigated after mild TBI, such as concussion. In the present study, the N400 was recorded from young adults within 1-month after concussion and matched controls during a sentence processing task. The N400 recorded to semantically incongruent sentence-final words was significantly more negative and with a more anterior distribution in the concussion group than control group. Among the concussion group, a weaker N400 was associated with more concussion symptoms, slower response time, and poorer executive functioning. Multiple regression results showed that concussion occurrence and male gender were independently associated with a more negative N400-effect, whereas symptoms were associated with a weaker N400. These findings provide novel evidence that alterations to lexical-semantic networks may occur after concussion and vary based on individual differences in post-concussion symptoms and cognitive function.
Collapse
Affiliation(s)
- Patrick S Ledwidge
- Department of Psychology, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA.
| | - Christa M Jones
- Department of Communication Sciences & Disorders, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA
| | - Chloe A Huston
- Department of Psychology, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA
| | - Madison Trenkamp
- Department of Psychology, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA
| | - Bryan Bator
- Department of Psychology, Baldwin Wallace University, 275 Eastland Rd., Berea, OH 44017, USA
| | - Jennie Laeng
- Cleveland Clinic, Taussig Cancer Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
11
|
Repeated Sub-Concussive Impacts and the Negative Effects of Contact Sports on Cognition and Brain Integrity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127098. [PMID: 35742344 PMCID: PMC9222631 DOI: 10.3390/ijerph19127098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Sports are yielding a wealth of benefits for cardiovascular fitness, for psychological resilience, and for cognition. The amount of practice, and the type of practiced sports, are of importance to obtain these benefits and avoid any side effects. This is especially important in the context of contact sports. Contact sports are not only known to be a major source of injuries of the musculoskeletal apparatus, they are also significantly related to concussion and sub-concussion. Sub-concussive head impacts accumulate throughout the active sports career, and thus can cause measurable deficits and changes to brain health. Emerging research in the area of cumulative sub-concussions in contact sports has revealed several associated markers of brain injury. For example, recent studies discovered that repeated headers in soccer not only cause measurable signs of cognitive impairment but are also related to a prolonged cortical silent period in transcranial magnetic stimulation measurements. Other cognitive and neuroimaging biomarkers are also pointing to adverse effects of heading. A range of fluid biomarkers completes the picture of cumulating effects of sub-concussive impacts. Those accumulating effects can cause significant cognitive impairment later in life of active contact sportswomen and men. The aim of this review is to highlight the current scientific evidence on the effects of repeated sub-concussive head impacts on contact sports athletes’ brains, identify the areas in need of further investigation, highlight the potential of advanced neuroscientific methods, and comment on the steps governing bodies have made to address this issue. We conclude that there are indeed neural and biofluid markers that can help better understand the effects of repeated sub-concussive head impacts and that some aspects of contact sports should be redefined, especially in situations where sub-concussive impacts and concussions can be minimized.
Collapse
|
12
|
DiFabio MS, Smith DR, Breedlove KM, Pohlig RT, Buckley TA, Johnson CL. Altered Brain Functional Connectivity in the Frontoparietal Network following an Ice Hockey Season. Eur J Sport Sci 2022; 23:684-692. [PMID: 35466861 DOI: 10.1080/17461391.2022.2069512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSustaining sports-related head impacts has been reported to result in neurological changes that potentially lead to later-life neurological disease. Advanced neuroimaging techniques have been used to detect subtle neurological effects resulting from head impacts, even after a single competitive season. The current study used resting-state functional magnetic resonance imaging to assess changes in functional connectivity of the frontoparietal network, a brain network responsible for executive functioning, in collegiate club ice hockey players over one season. Each player was scanned before and after the season and wore accelerometers to measure head impacts at practices and home games throughout the season. We examined pre- to post-season differences in connectivity within the frontoparietal and default mode networks, as well as the relationship between the total number of head impacts sustained and changes in connectivity. We found a significant interaction between network region of interest and time point (p = 0.016), in which connectivity between the left and right posterior parietal cortex seed regions increased over the season (p < 0.01). Number of impacts had a significant effect on frontoparietal network connectivity, such that more impacts were related to greater connectivity differences over the season (p = 0.042). Overall, functional connectivity increased in ice hockey athletes over a season between regions involved in executive functioning, and sensory integration, in particular. Furthermore, those who sustained more impacts had the greatest changes in connectivity. Consistent with prior findings in resting-state sports-related head impact literature, these findings have been suggested to represent brain injury.
Collapse
Affiliation(s)
- Melissa S DiFabio
- Department of Biomedical Engineering, University of Delaware, Newark, DE.,Department of Child and Adolescent Psychiatry, Psychomatics, and Psychotherapy, Ludwig-Maximilans-Universität München - University of Munich, Munich, Germany
| | - Daniel R Smith
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| | - Katherine M Breedlove
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA.,Department of Radiology, Harvard Medical School, Boston, MA
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, DE
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE
| |
Collapse
|
13
|
Porfido T, Caccese J, Gutt J, Wentworth C, Peek K, Bretzin AC, Esopenko C. A standardized method for quantifying and characterizing repetitive head impacts in soccer matches using video footage. SCI MED FOOTBALL 2022; 6:331-339. [DOI: 10.1080/24733938.2022.2056233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tara Porfido
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107 USA
| | - Jaclyn Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, 43210 USA
| | - Jessica Gutt
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107 USA
| | - Conor Wentworth
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107 USA
| | - Kerry Peek
- Discipline of Physiotherapy, Sydney School of Health Sciences, The University of Sydney, Sydney, NSW 2006 Australia
| | - Abigail C Bretzin
- Penn Injury Science Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107 USA
| |
Collapse
|
14
|
An Investigation into Helmet Use, Perceptions of Sports-Related Concussion, and Seeking Medical Care for Head Injury amongst Competitive Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052861. [PMID: 35270553 PMCID: PMC8910390 DOI: 10.3390/ijerph19052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022]
Abstract
The purpose of this study was to investigate competitive cyclists' helmet use, perceptions of sports-related concussion (SRC), and medical-care-seeking behaviors. A mixed-method approach was used with qualitative and quantitative data presented. The study comprised of a cross-sectional analysis of 405 competitive cyclists who completed an online survey. Results indicated that most participants believed a bicycle helmet protects against SRC (79.5%) and considerable numbers of participants would not seek medical care for potential head injury in scenarios where this would be recommended. It was also discovered that marketing of concussion reduction technology influences cyclists' helmet-purchasing behaviors. With the data presented, it is recommended that governing bodies in cycling need to develop educational resources to address gaps in knowledge regarding SRC amongst cyclists. We also suggest that more independent research on concussion reduction technologies in bicycle helmets is needed, with advertising supported by clear scientific evidence to avoid negatively influencing head injury management and reporting behaviors amongst cyclists.
Collapse
|
15
|
Wu S, Chen A, Cao C, Ma S, Feng Y, Wang S, Song J, Xu G. Repeated subconcussive exposure alters low-frequency neural oscillation in memory retrieval processing. J Neurotrauma 2022; 39:398-410. [PMID: 35021889 DOI: 10.1089/neu.2021.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Repeated subconcussive head impacts are frequently experienced by athletes involved in competitive sports, such as boxing. The objective of the present study was to investigate the changes in working memory performance and memory retrieval-related neural oscillations in boxing athletes who experienced repeated subconcussive head impacts. Twenty-one boxing athletes (boxing group) and twenty-five matched controls (control group) completed a modified visual working memory task, and their continuous scalp electroencephalography (EEG) data were collected simultaneously. The behavioral measures and retrieval-related low-frequency neural oscillations were analyzed at each working memory set size in both groups. Subjects in the boxing group showed a reduced mean accuracy, diminished capacity estimates, and slower reaction time at demanding set sizes and a marginally increased intraindividual coefficient of variation (ICV) for overall set sizes. Additionally, decreased event-related frontal theta synchronization, parieto-occipital alpha desynchronization, and frontal low beta synchronization were observed in the boxing group, suggesting underlying working memory dysfunction for efficient neurocognitive resource employment, inhibition of distracting stimuli, and post-retrieval control in the boxing group. Moreover, a negative correlation was found between frontal beta synchronization and reaction time for most set sizes in both groups. The present study was the first to reveal the underlying working memory deficits caused by the cumulative effects of boxing-related subconcussive head impacts from the perspective of behavior and EEG time-frequency oscillations. Joint analysis of EEG low-frequency oscillations and the innovative task with multiple challenging load conditions may serve as a promising way to detect concealed deficiencies within working memory processing. Keywords: repeated subconcussive head impacts, working memory, modified Sternberg task, event-related desynchronization, event-related synchronization, boxing athletes.
Collapse
Affiliation(s)
- Shukai Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China.,The Second Affiliated Hospital of Fujian Medical University, neurosurgery, Quanzhou, Fujian, China;
| | - Aobo Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Chenglong Cao
- The First School of Clinical Medicine, Southern Medical University, Neurosurgery, Guangzhou, China.,Maastricht University Faculty of Psychology and Neuroscience, 396107, Maastricht, Limburg, Netherlands;
| | - Shenghui Ma
- Medical College of Wuhan University of Science and Technology, 481115, Wuhan, Hubei , China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Yu Feng
- Medical College of Wuhan University of Science and Technology, 481115, Wuhan, Hubei , China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Shuochen Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| | - Jian Song
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, neurosurgery, Wuhan, China;
| | - Guozheng Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,The General Hospital of Chinese PLA Central Theater Command, Wuhan, China;
| |
Collapse
|
16
|
Redlinger F, Sicard V, Caron G, Ellemberg D. Long-Term Cognitive Impairments of Sports Concussions in College-Aged Athletes: A Meta-Analysis. TRANSLATIONAL JOURNAL OF THE AMERICAN COLLEGE OF SPORTS MEDICINE 2022. [DOI: 10.1249/tjx.0000000000000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Brooks JS, Allison W, Harriss A, Bian K, Mao H, Dickey JP. Purposeful Heading Performed by Female Youth Soccer Players Leads to Strain Development in Deep Brain Structures. Neurotrauma Rep 2021; 2:354-362. [PMID: 34901935 PMCID: PMC8655815 DOI: 10.1089/neur.2021.0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Head impacts in soccer have been associated with both short- and long-term neurological consequences. Youth players' brains are especially vulnerable given that their brains are still developing, and females are at an increased risk of traumatic brain injury (TBI) compared to males. Approximately 90% of head impacts in soccer occur from purposeful heading. Accordingly, this study assessed the relationship between kinematic variables and brain strain during purposeful headers in female youth soccer players. A convenience sample of 36 youth female soccer players (13.4 [0.9] years of age) from three elite youth soccer teams wore wireless sensors to quantify head impact magnitudes during games. Purposeful heading events were categorized by game scenario (e.g., throw-in, goal kick) for 60 regular season games (20 games per team). A total of 434 purposeful headers were identified. Finite element model simulations were performed to calculate average peak maximum principal strain (APMPS) in the corpus callosum, thalamus, and brainstem on a subset of 110 representative head impacts. Rotational velocity was strongly associated with APMPS in these three regions of the brain (r = 0.83-0.87). Linear acceleration was weakly associated with APMPS (r = 0.13-0.31). Game scenario did not predict APMPS during soccer games (p > 0.05). Results demonstrated considerable APMPS in the corpus callosum (mean = 0.102) and thalamus (mean = 0.083). In addition, the results support the notion that rotational velocity is a better predictor of brain strain than linear acceleration and may be a potential indicator of changes to the brain.
Collapse
Affiliation(s)
- Jeffrey S. Brooks
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Wayne Allison
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Alexandra Harriss
- Health and Rehabilitation Sciences, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Kewei Bian
- Department of Mechanical and Materials Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
| | - Haojie Mao
- Department of Mechanical and Materials Engineering, Faculty of Engineering, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - James P. Dickey
- School of Kinesiology, Faculty of Health Sciences, Western University, London, Ontario, Canada
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Psycho-affective health, cognition, and neurophysiological functioning following sports-related concussion in symptomatic and asymptomatic athletes, and control athletes. Sci Rep 2021; 11:13838. [PMID: 34226626 PMCID: PMC8257649 DOI: 10.1038/s41598-021-93218-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/31/2021] [Indexed: 11/08/2022] Open
Abstract
Little is known about the neuropsychiatric and neurophysiological differences that characterize abnormal recovery following a concussion. The present study aimed to investigate the psycho-affective, cognitive, and neurophysiological profiles of symptomatic, slow-to-recover, concussed athletes, asymptomatic concussed athletes, and control athletes. Seventy-eight athletes (26 symptomatic, 26 asymptomatic, 26 control) completed the Beck Depression Inventory-II, Profile of Mood States, and 2-Back task. Additionally, event-related brain potentials were recorded during an experimental three-stimulus visual Oddball paradigm. Compared to asymptomatic and control groups, the symptomatic group reported greater depression symptoms and negatively altered mood states. Symptomatic athletes also exhibited poorer cognitive performance on the 2-Back task, indicated by more errors and slower reaction time. ERP analyses indicated prolonged P3b latency for both symptomatic and asymptomatic groups, but symptomatic athletes also exhibited reduced P3b amplitude compared to both asymptomatic and control groups. For the asymptomatic group, correlations were observed between time since last concussion and functioning, but no relations were observed within the symptomatic group for any measure. The current findings provide valuable information regarding the psycho-affective, cognitive, and neurophysiological profiles of athletes with and without persistent symptoms following a concussion and highlight the need to assess and treat symptomatic, slow-to-recover athletes from a multidimensional and integrative perspective.
Collapse
|
19
|
Caffey AL, Dalecki M. Evidence of residual cognitive deficits in young adults with a concussion history from adolescence. Brain Res 2021; 1768:147570. [PMID: 34216582 DOI: 10.1016/j.brainres.2021.147570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
The present study investigated executive function and sustained attention of non-athlete, young adults (ages 18-23) with a history of concussion beyond ten months post incident. Cognitive functioning was examined in 24 non-athletic, college students with a concussion history (mean age 21 yrs.; mean time and range post-injury: 4 years, 10-90 months) and 24 non-athletic controls with no history (NH) of concussion. Computerized versions of two cognitive assessment techniques were utilized to examine executive functioning (Stroop) and sustained attention capacity (D2). Primary dependent variables were response time, error score, and sustained attention score. Relationships between dependent variables and concussion metrics were also analyzed. ANOVA's revealed a significantly higher error rate in concussion history (CH) participants when performing the Stroop task (p < 0.05), including a trend for greater errors in the incongruent task condition (p < 0.05). Group measures did not differ in the sustained attention test (all p > 0.05). Nevertheless, there was a significant relationship between D2 error rate and time since concussion (p < 0.01), showing that D2 error rate was greater for participants with more time since concussion sustainment. Our findings indicate the potential for prolonged cognitive dysfunction linked to decision-making, but not to processing speed, in young adult non-athletes with a CH averaging four years post-injury. These findings may provide evidence of residual cognitive deficits in young adults with a concussion history over time.
Collapse
Affiliation(s)
- Abigail L Caffey
- School of Kinesiology, Louisiana State University, Baton Rouge, USA
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, USA.
| |
Collapse
|
20
|
Dechambre X, Carling C, Mrozek S, Pillard F, Decq P, Piscione J, Yrondi A, Brauge D. What Is the Impact of Physical Effort on the Diagnosis of Concussion? Clin J Sport Med 2021; 31:e144-e149. [PMID: 31219927 DOI: 10.1097/jsm.0000000000000757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/19/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sport-related concussion commonly occurs in contact sports such as rugby. To date, diagnosis is based on the realization of clinical tests conducted pitch-side. Yet, the potential effect of prior physical effort on the results of these tests remains poorly understood. The purpose of this study was to determine whether preceding physical effort can influence the outcome of concussion assessments. DESIGN Prospective observational study. SETTING University Medicine Center. PATIENTS A cohort of 40 subjects (20 rugby players and 20 athletes from a range of sports). INTERVENTION A concussion assessment was performed immediately after physical activity. After a period of 6 months and under the same experimental conditions, the same cohort performed the same tests in resting conditions. MAIN OUTCOME MEASURES Results of concussion tests. RESULTS In both cohorts, the comparison for postexercise and rest assessments demonstrated a most likely moderate-to-very large increase in the number of symptoms, severity of symptoms, and balance error scoring system score. In the rugby cohort, scores for concentration, delayed memory and standardized assessment of concussion (SAC), likely-to-most likely decreased following completion of physical activity compared with baseline values. The between-cohort comparison reported a most likely greater impact after exercise in the rugby players for delayed recall (0.73 ± 0.61) and SAC score (0.75 ± 0.41). CONCLUSIONS Physical activity altered the results of concussion diagnostic tests in athletes from a range of sports and notably in rugby players. Therefore, physical efforts before the concussion incident should be accounted for during pitch-side assessments and particularly during rugby competition and training.
Collapse
Affiliation(s)
- Xavier Dechambre
- Department of General Medicine, University Hospital of Toulouse, Toulouse, France
| | - Christopher Carling
- Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| | - Ségolène Mrozek
- Department of Anesthesiology and Intensive Care, University Hospital of Toulouse, Toulouse, France
| | - Fabien Pillard
- Department of Exploration of Respiratory Function and Sports Medicine, University Hospital of Toulouse, Toulouse, France
| | - Philippe Decq
- Department of Neurosurgery, Assistance Publique des Hôpitaux de Paris, University Hospital of Beaujon, Clichy, France
| | - Julien Piscione
- Research Department, French Rugby Union Federation, Marcoussis, France
| | - Antoine Yrondi
- Department of Psychiatry, University Hospital of Toulouse, Toulouse, France; and
| | - David Brauge
- Department of Neurosurgery, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
21
|
Fickling SD, Smith AM, Stuart MJ, Dodick DW, Farrell K, Pender SC, D'Arcy RCN. Subconcussive brain vital signs changes predict head-impact exposure in ice hockey players. Brain Commun 2021; 3:fcab019. [PMID: 33855296 PMCID: PMC8023684 DOI: 10.1093/braincomms/fcab019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 01/09/2023] Open
Abstract
The brain vital signs framework is a portable, objective, neurophysiological evaluation of brain function at point-of-care. We investigated brain vital signs at pre- and post-season for age 14 or under (Bantam) and age 16-20 (Junior-A) male ice hockey players to (i) further investigate previously published brain vital sign results showing subconcussive cognitive deficits and (ii) validate these findings through comparison with head-impact data obtained from instrumented accelerometers. With a longitudinal study design, 23 male ice hockey players in Bantam (n = 13; age 13.63 ± 0.62) and Tier II Junior-A (n = 10; age 18.62 ± 0.86) divisions were assessed at pre- and post-season. None were diagnosed with a concussion during the season. Cognitive evoked potential measures of Auditory sensation (N100), Basic attention (P300) and Cognitive processing (N400) were analysed as changes in peak amplitudes and latencies (six standard scores total). A regression analysis examined the relationship between brain vital signs and the number of head impacts received during the study season. Significant pre/post differences in brain vital signs were detected for both groups. Bantam and Junior-A players also differed in number of head impacts (Bantam: 32.92 ± 17.68; Junior-A: 195.00 ± 61.08; P < 0.001). Importantly, the regression model demonstrated a significant linear relationship between changes in brain vital signs and total head impacts received (R = 0.799, P = 0.007), with clear differences between the Bantam and Junior-A groups. In the absence of a clinically diagnosed concussion, the brain vital sign changes appear to have demonstrated the compounding effects of repetitive subconcussive impacts. The findings underscored the importance of an objective physiological measure of brain function along the spectrum of concussive impacts.
Collapse
Affiliation(s)
- Shaun D Fickling
- Faculty of Science and Applied Sciences, Simon Fraser University, Metro Vancouver, BC V5A1S6, Canada.,Center for Neurology Studies, HealthTech Connex, Metro Vancouver, BC V3V0C6, Canada.,BrainNET, Health and Technology District, Surrey, BC V3V0C6, Canada
| | - Aynsley M Smith
- Department of Physical Medicine and Rehabilitation, Sports Medicine Center, Mayo Clinic, Rochester, MN 55905, USA.,Department of Orthopedic Surgery, Sports Medicine Center, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Stuart
- Department of Orthopedic Surgery, Sports Medicine Center, Mayo Clinic, Rochester, MN 55905, USA
| | - David W Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Kyle Farrell
- Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | - Sara C Pender
- School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ryan C N D'Arcy
- Faculty of Science and Applied Sciences, Simon Fraser University, Metro Vancouver, BC V5A1S6, Canada.,Center for Neurology Studies, HealthTech Connex, Metro Vancouver, BC V3V0C6, Canada.,BrainNET, Health and Technology District, Surrey, BC V3V0C6, Canada.,DM Centre for Brain Health, Radiology, University of British Columbia, Metro Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
22
|
Waltzman D, Sarmiento K, Devine O, Zhang X, DePadilla L, Kresnow MJ, Borradaile K, Hurwitz A, Jones D, Goyal R, Breiding MJ. Head Impact Exposures Among Youth Tackle and Flag American Football Athletes. Sports Health 2021; 13:454-462. [PMID: 33618557 PMCID: PMC8404728 DOI: 10.1177/1941738121992324] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Promoted as a safer alternative to tackle football, there has been an increase in flag football participation in recent years. However, examinations of head impact exposure in flag football as compared with tackle football are currently limited. Hypothesis: Tackle football athletes will have a greater number and magnitude of head impacts compared with flag football athletes. Study Design: Cohort study. Level of Evidence: Level 4. Methods: Using mouthguard sensors, this observational, prospective cohort study captured data on the number and magnitude of head impacts among 524 male tackle and flag football athletes (6-14 years old) over the course of a single football season. Estimates of interest based on regression models used Bayesian methods to estimate differences between tackle and flag athletes. Results: There were 186,239 head impacts recorded during the study. Tackle football athletes sustained 14.67 (95% CI 9.75-21.95) times more head impacts during an athletic exposure (game or practice) compared with flag football athletes. Magnitude of impact for the 50th and 95th percentile was 18.15g (17.95-18.34) and 52.55g (51.06-54.09) for a tackle football athlete and 16.84g (15.57-18.21) and 33.51g (28.23-39.08) for a flag football athlete, respectively. A tackle football athlete sustained 23.00 (13.59-39.55) times more high-magnitude impacts (≥40g) per athletic exposure compared with a flag football athlete. Conclusion: This study demonstrates that youth athletes who play tackle football are more likely to experience a greater number of head impacts and are at a markedly increased risk for high-magnitude impacts compared with flag football athletes. Clinical Relevance: These results suggest that flag football has fewer head impact exposures, which potentially minimizes concussion risk, making it a safer alternative for 6- to 14-year-old youth football athletes.
Collapse
Affiliation(s)
- Dana Waltzman
- Dana Waltzman, PhD, Centers for Disease Control and Prevention, 4770 Buford Highway NE, Atlanta, GA 30341 ()
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Poluyi E, Morgan E, Poluyi C, Ikwuegbuenyi C, Imaguezegie G. Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis (ALS) and Alzheimer’s Disease (AD). INDIAN JOURNAL OF NEUROTRAUMA 2021. [DOI: 10.1055/s-0041-1725571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Background Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them.
Objectives This review will discuss the available literatures linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD).
Materials and Methods Given the complexity of this subject, a realist review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic.
Results Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.
Conclusion mTBI constitutes majority of brain injuries. However, studies have focused mostly on moderate-to-severe TBI as highlighted above with inconclusive and paucity of studies linking concussion and neurodegenerative disorders. Although, it is highly probable that repetitive concussion (mTBI) and subconcussive head injuries may be risk factors for ALS) and AD from this review. It will be imperative therefore to conduct more research with a focus on mTBI and its association with ALS and AD.
Collapse
Affiliation(s)
- Edward Poluyi
- Department of Clinical Neuroscience, University of Roehampton, London, United Kingdom
| | - Eghosa Morgan
- Department of Neurosurgery, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Charles Poluyi
- MPH Program, University of Buffalo, New York, United States
| | | | - Grace Imaguezegie
- Department of Surgery, Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
24
|
Desjardins M, Drisdelle BL, Lefebvre C, Gagnon JF, De Beaumont L, Jolicoeur P. Interhemispheric differences in P1 and N1 amplitude in EEG and MEG differ across older individuals with a concussion compared with age-matched controls. Psychophysiology 2020; 58:e13751. [PMID: 33347633 DOI: 10.1111/psyp.13751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
We studied the effects of mild traumatic brain injury (mTBI) in an aging population. We examined visual search with event-related potentials (ERPs) and event-related fields (ERF) for a lateral color singleton focusing on the P1 and N1 in each hemisphere. Forty participants (19 mTBI and 21 controls) aged 50 to 72 performed a visual search task, while we recorded their magnetoencephalogram (MEG) with simultaneous electroencephalogram (EEG). We compared visual ERPs and ERFs and associated cortical activity estimated using MEG source localization. Relative to matched controls, participants with an mTBI had a smaller P1 in the left hemisphere and a smaller N1 in the right hemisphere. Also, mTBI participants showed inversed activation patterns across the hemispheres during the N1 in MEG compared with controls. This is the first study to investigate the impact of mTBI on neuronal source activations during early visual processing in an aging population. Results showed that when aging individuals suffer from an mTBI, there are perturbations in the amplitude and hemispheric dominance patterns in the visual P1 and N1 responses that are visible for months to years following the injury. Our findings indicate that mTBI can lead to modifications of sensory and/or perceptual responses, suggesting possible adaptive functional reorganization following mTBI.
Collapse
Affiliation(s)
- Martine Desjardins
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada.,Montreal Sacred-Heart Hospital Research Centre, Montréal, QC, Canada
| | - Brandi Lee Drisdelle
- Department of Psychology, Université de Montréal, Montréal, QC, Canada.,Birkbeck College, University of London, London, UK
| | | | - Jean-Francois Gagnon
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada.,Montreal Sacred-Heart Hospital Research Centre, Montréal, QC, Canada
| | - Louis De Beaumont
- Montreal Sacred-Heart Hospital Research Centre, Montréal, QC, Canada.,Department of Surgery, Université de Montréal, Montréal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de Montréal, Montréal, QC, Canada.,Centre de recherche en neuropsychologie et cognition (CERNEC), Université de Montréal, Montréal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Characterization of On-Field Head Impact Exposure in Youth Soccer. J Appl Biomech 2020; 37:36-42. [PMID: 33152691 DOI: 10.1123/jab.2020-0071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022]
Abstract
The objective of this research was to characterize head impacts with a validated mouthpiece sensor in competitive youth female soccer players during a single season with a validated mouthpiece sensor. Participants included 14 youth female soccer athletes across 2 club-level teams at different age levels (team 1, ages 12-13 y; team 2, ages 14-15 y). Head impact and time-synchronized video data were collected for 66 practices and games. Video data were reviewed to characterize the type and frequency of contact experienced by each athlete. A total of 2216 contact scenarios were observed; heading the ball (n = 681, 30.7%) was most common. Other observed contact scenarios included collisions, dives, falls, and unintentional ball contact. Team 1 experienced a higher rate of headers per player per hour of play than team 2, while team 2 experienced a higher rate of collisions and dives. A total of 935 video-verified contact scenarios were concurrent with recorded head kinematics. While headers resulted in a maximum linear acceleration of 56.1g, the less frequent head-to-head collisions (n = 6) resulted in a maximum of 113.5g. The results of this study improve the understanding of head impact exposure in youth female soccer players and inform head impact exposure reduction in youth soccer.
Collapse
|
26
|
MIHALIK JASONP, AMALFE STEPHANIEA, ROBY PATRICIAR, FORD CASSIEB, LYNALL ROBERTC, RIEGLER KAITLINE, TEEL ELIZABETHF, WASSERMAN ERINB, PUTUKIAN MARGOT. Sex and Sport Differences in College Lacrosse and Soccer Head Impact Biomechanics. Med Sci Sports Exerc 2020; 52:2349-2356. [DOI: 10.1249/mss.0000000000002382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Rawlings S, Takechi R, Lavender AP. Effects of sub-concussion on neuropsychological performance and its potential mechanisms: A narrative review. Brain Res Bull 2020; 165:56-62. [PMID: 33011196 DOI: 10.1016/j.brainresbull.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Concussion and mild traumatic brain injury (mTBI) are recognised as serious medical events that are relatively common in contact sports. Recently, the seemingly non-injurious phenomenon of sub-concussion has gained interest among neuroscience researchers and early studies are showing that there may be some acute and chronic effects on brain health and function with repeated sub-concussive events of the type seen in soccer, where players strike the ball with the head, and collision sports like the rugby codes. The aim of this narrative review is to describe sub-concussion and the current understanding of short and long term effects of repeated minor impacts that have been found to occur in human and animal models. Here, potential mechanisms for cognitive dysfunction following sub-concussion and recommend directions for future research are discussed. The Potential mechanisms of injuries resulting from sub-concussion such as changes in blood brain barrier integrity, neuroinflammation, cognitive impairment, and oxidative stress damage, among other changes in central nervous system function vary considerably making understanding of the underlying causative mechanism challenging for researchers. Some evidence suggests a link between impaired cerebrovascular function and cognitive impairment which poses a potential mechanism linking the two. It is hoped that this review helps guide researchers toward a potential direction of investigations.
Collapse
Affiliation(s)
- Samuel Rawlings
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia; School of Public Health, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Andrew P Lavender
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia; School of Science, Psychology and Sport, Federation University Australia, Ballarat, Australia.
| |
Collapse
|
28
|
Zutrauen S, McFaull S, Do MT. Soccer-related head injuries-analysis of sentinel surveillance data collected by the electronic Canadian Hospitals Injury Reporting and Prevention Program. Paediatr Child Health 2020; 25:378-384. [PMID: 32963651 DOI: 10.1093/pch/pxz116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Background Participating in sports is a great way to gain physical, psychological, and social benefits. However, it also carries the risk of injury. Soccer is one of the most popular sports worldwide, and in recent years, there have been concerns about potential vulnerabilities to head injuries. Objectives To investigate soccer-related head injuries (SRHIs), using data from the electronic Canadian Hospitals Injury Reporting and Prevention Program (eCHIRPP) surveillance system. Specifically, we aim to compare characteristics of SRHI cases to all head injury cases within the eCHIRPP database. Methods Descriptive analyses of emergency department (ED) injury surveillance data (2011 to 2017) for individuals aged 5 to 29 years from all participating eCHIRPP sites. Computation of proportionate injury ratios (PIR) comparing SRHIs to all head injuries reported to eCHIRPP, and 95% confidence intervals (CI). Results A total of 3,970 SRHIs were reported to eCHIRPP. Injuries were from contact with another player, the ball, ground, goal-post, and other causes. Of the injuries caused by contact with the ball, 9% were from purposely directing the ball with the head (heading). A higher proportion of concussions (PIR=1.32, 95% confidence interval [CI]: 1.27 to 1.37) and minor closed head injuries (PIR=1.20, 95% CI: 1.15 to 1.26) were observed in soccer players. Higher proportions of head injuries occurred in organized soccer and soccer played outdoors. However, admission to the ED for a SRHI was rare (PIR=0.40, 95% CI: 0.30 to 0.55). Conclusions Overall, elevated proportions of brain injuries were observed among soccer players, however, these injuries were unlikely to result in a hospital admission. Moreover, purposely heading the ball contributed to few ED visits.
Collapse
Affiliation(s)
- Sarah Zutrauen
- Department of Health Sciences, Carleton University, Ottawa, Ontario.,Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario
| | - Steven McFaull
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario
| | - Minh T Do
- Department of Health Sciences, Carleton University, Ottawa, Ontario.,Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario
| |
Collapse
|
29
|
Cecchi NJ, Monroe DC, Moscoso WX, Hicks JW, Reinkensmeyer DJ. Effects of soccer ball inflation pressure and velocity on peak linear and rotational accelerations of ball-to-head impacts. SPORTS ENGINEERING 2020. [DOI: 10.1007/s12283-020-00331-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
The Impact of Sleep on the Relationship between Soccer Heading Exposure and Neuropsychological Function in College-Age Soccer Players. J Int Neuropsychol Soc 2020; 26:633-644. [PMID: 32098640 DOI: 10.1017/s1355617720000211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Soccer is the most popular sport worldwide and is the only sport where athletes purposely use their head to deflect the ball during play, termed "heading" the ball. These repetitive head impacts (RHI) are associated with worse neuropsychological function; however, factors that can increase risk of injury following exposure to such head impacts have been largely unexamined. The present study provided a novel examination of the modifying role of sleep on the relationship between RHI exposure and neuropsychological function in college-age soccer players. METHODS Fifty varsity and intramural college soccer players completed questionnaires assessing recent and long-term heading exposure, a self-report measure of sleep function, and a battery of neuropsychological tests. RESULTS A high level of recent heading exposure was significantly associated with poorer processing speed, independent of concussion history. With reduced sleep duration, a high level of recent heading exposure was related to worse sustained attention. However, with greater hours of sleep duration, heading exposure was related to preserved neuropsychological outcome in sustained attention. CONCLUSIONS We replicated our earlier finding of an association between recent head impact exposure and worse processing speed in an independent sample. In addition, we found that sleep may serve as a risk or protective factor for soccer players following extensive exposure to head impacts. Ultimately, this study furthers the understanding of factors impacting neuropsychological function in soccer players and provides empirical support for sleep interventions to help ensure safer soccer play and recovery from injury.
Collapse
|
31
|
Harriss A, Johnson AM, Thompson JWG, Walton DM, Dickey JP. Cumulative soccer heading amplifies the effects of brain activity observed during concurrent moderate exercise and continuous performance task in female youth soccer players. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220912654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Alexandra Harriss
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Andrew M Johnson
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada
| | | | - David M Walton
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada
- School of Physical Therapy, The University of Western Ontario, London, Ontario, Canada
| | - James P Dickey
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
32
|
Johnson BD, Sackett JR, Schlader ZJ, Leddy JJ. Attenuated Cardiovascular Responses to the Cold Pressor Test in Concussed Collegiate Athletes. J Athl Train 2020; 55:124-131. [PMID: 31909640 DOI: 10.4085/1062-6050-573-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Cardiovascular responses to the cold pressor test (CPT) provide information regarding sympathetic function. OBJECTIVE To determine if recently concussed collegiate athletes had blunted cardiovascular responses during the CPT. DESIGN Cross-sectional study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS A total of 10 symptomatic concussed collegiate athletes (5 men, 5 women; age = 20 ± 2 years) who were within 7 days of diagnosis and 10 healthy control individuals (5 men, 5 women; age = 24 ± 4 years). INTERVENTION(S) The participants' right hands were submerged in agitated ice water for 120 seconds (CPT). MAIN OUTCOME MEASURE(S) Heart rate and blood pressure were continuously measured and averaged at baseline and every 30 seconds during the CPT. RESULTS Baseline heart rate and mean arterial pressure were not different between groups. Heart rate increased throughout 90 seconds of the CPT (peak increase at 60 seconds = 16 ± 13 beats/min; P < .001) in healthy control participants but remained unchanged in concussed athletes (peak increase at 60 seconds = 7 ± 10 beats/min; P = .08). We observed no differences between groups for the heart rate response (P > .28). Mean arterial pressure was elevated throughout the CPT starting at 30 seconds (5 ± 7 mm Hg; P = .048) in healthy control individuals (peak increase at 120 seconds = 26 ± 9 mm Hg; P < .001). Mean arterial pressure increased in concussed athletes at 90 seconds (8 ± 8 mm Hg; P = .003) and 120 seconds (12 ± 8 mm Hg; P < .001). Healthy control participants had a greater increase in mean arterial pressure starting at 60 seconds (P < .001) and throughout the CPT than concussed athletes (peak difference at 90 seconds = 25 ± 10 mm Hg and 8 ± 8 mm Hg, respectively; P < .001). CONCLUSIONS Recently concussed athletes had blunted cardiovascular responses to the CPT, which indicated sympathetic dysfunction.
Collapse
Affiliation(s)
- Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, NY
| | - James R Sackett
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, NY
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, NY
| | - John J Leddy
- Department of Orthopaedics and Sports Medicine, University at Buffalo, NY
| |
Collapse
|
33
|
Hunter LE, Freudenberg-Hua Y, Davies P, Kim M, Fleysher R, Stewart WF, Lipton RB, Lipton ML. BDNF Val 66Met Positive Players Demonstrate Diffusion Tensor Imaging Consistent With Impaired Myelination Associated With High Levels of Soccer Heading: Indication of a Potential Gene-Environment Interaction Mechanism. Front Neurol 2019; 10:1297. [PMID: 31920921 PMCID: PMC6918922 DOI: 10.3389/fneur.2019.01297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to examine the potential effect modifying role of the BDNF Val66Met polymorphism on the association of soccer heading with white matter microstructure. We studied 312 players enrolled in the ongoing Einstein Soccer Study, a longitudinal study of amateur soccer player in New York City and surrounding areas. At enrollment and 2 years later, total heading in the prior 12 months (12-mo.) was estimated using an established self-report instrument and diffusion tensor imaging (DTI) was performed. Generalized Estimating Equations (GEE) logistic regression models were employed to test effect modification by the BDNF Val66Met polymorphism on the association between 12-mo. heading exposure and DTI. We identified a significant interaction of 12-mo heading*BDNF Val66Met genotype on the presence of low Radial Diffusivity, a DTI marker associated with myelination. Only Met (+) players demonstrated significantly reduced odds of low RD [OR (95 % CI): -2.36 (-3.53, -1.19)] associated with the highest vs. lowest quartile of 12-mo heading exposure. BDNF Val66Met (+) soccer players with long-term exposure to high levels of heading exhibit less low Radial Diffusivity, suggesting impaired re-myelination may be a substrate of the previously reported association between heading and poor functional outcomes in soccer players.
Collapse
Affiliation(s)
- Liane E. Hunter
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
| | - Yun Freudenberg-Hua
- Division of Geriatric Psychiatry, Northwell Health, Glen Oaks, NY, United States
- Litwin-Zucker Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Peter Davies
- Division of Geriatric Psychiatry, Northwell Health, Glen Oaks, NY, United States
| | - Mimi Kim
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
| | - Roman Fleysher
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
| | | | - Richard B. Lipton
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
| | - Michael L. Lipton
- The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, The Bronx, NY, United States
| |
Collapse
|
34
|
Stockbridge MD, Newman R. Enduring Cognitive and Linguistic Deficits in Individuals With a History of Concussion. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2019; 28:1554-1570. [PMID: 31487473 DOI: 10.1044/2019_ajslp-18-0196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose The purpose of this research is to determine whether individuals with a history of concussion retain enduring differences in narrative writing tasks, which necessitate rapid and complex integration of both cognitive and linguistic faculties. Method Participants aged 12-40 years old, who did or did not have a remote history of concussion, were recruited to take an online survey that included writing both a familiar and a novel narrative. They also were asked to complete multiple tasks targeting word-level and domain general cognitive skills, so that their performance could be interpreted across these dimensions. Results Participants with a concussion history were largely similar to participants with no history of brain injury across tasks that targeted a single skill in isolation. However, participants with prior concussions demonstrated difficulty in providing both key content and details when presented with a novel video and asked to provide a summary of what they had just seen. Number of lifetime concussions predicted the inclusion of key content when summarizing the video. Thus, differences in cognitive and linguistic skills required for written narrative language may continue to be present far after concussion, despite average normative levels of performance on tasks targeting these skills in isolation. Conclusions These findings suggest that individuals with a concussion history, particularly a history of multiple concussions, may continue to experience difficulties for a long period after injury and are likely to benefit from more complex and ecologically valid assessment prior to discharge. Individuals with a concussion history who return to full participation in work, school, and recreational activities may continue to benefit from assistance when asked to rapidly acquire and distill novel information, as is often required in academic and professional environments.
Collapse
Affiliation(s)
| | - Rochelle Newman
- Department of Hearing and Speech Sciences, University of Maryland, College Park
| |
Collapse
|
35
|
An Evaluation of Heart Rate Variability in Female Youth Soccer Players Following Soccer Heading: A Pilot Study. Sports (Basel) 2019; 7:sports7110229. [PMID: 31689916 PMCID: PMC6915463 DOI: 10.3390/sports7110229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022] Open
Abstract
Most head impacts in soccer occur from purposeful heading; however, the link between heading and neurological impairment is unknown. Previous work suggests concussion may result in an uncoupling between the autonomic nervous system and cardiovascular system. Accordingly, heart rate variability (HRV) may be a sensitive measure to provide meaningful information regarding repetitive heading in soccer. The purpose of this pilot study assesses the feasibility of measuring HRV to evaluate autonomic function following soccer heading. Sixteen youth female participants underwent heart rate monitoring during a heading and footing condition. Participants completed a five minute resting supine trial at the start and end of each testing session. Standard 450 g soccer balls were projected at 6 m/s towards participants. Participants performed five headers, for the header condition, and five footers for the footer condition. The HRV for resting supine trials, pre- and post-header and footer conditions were assessed for both time and frequency domains. HRV effect sizes were small when comparing conditions, except absolute low frequency (d = 0.61) and standard deviation of the normal-normal (NN) intervals (d = 0.63). Participant retention and adherence were high, without adverse events. Findings suggest HRV is a feasible measure for evaluating the effects of heading on autonomic function.
Collapse
|
36
|
Concussion in Combination With Whiplash-Associated Disorder May Be Missed in Primary Care: Key Recommendations for Assessment and Management. J Orthop Sports Phys Ther 2019; 49:819-828. [PMID: 31610758 DOI: 10.2519/jospt.2019.8946] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whiplash and concussion may have similar presenting symptoms, biomechanical mechanisms, and neurophysiological sequelae, but neither enjoys a gold standard diagnostic test. Guidelines for whiplash and concussion are developed and implemented separately. This disparate process may contribute to misdiagnosis, delay appropriate primary care management, and impair patient outcomes. In our clinical commentary, we present 3 cases where signs and symptoms consistent with whiplash were identified in primary care. Symptoms in all cases included neck pain, headache, dizziness, and concentration deficits, raising suspicion of coexisting postconcussion syndrome. All cases were referred for specialist physical therapy. Characteristics consistent with poor recovery in both whiplash and postconcussion syndrome were confirmed, and multidisciplinary management, drawing from both whiplash and concussion guidelines, was implemented. All patients reported improvement in activities of daily living after tailored management addressing both neck and head injury-related factors, suggesting that these conditions were not mutually exclusive. Self-reported outcomes included reductions in neck disability and postconcussion symptoms of between 20% and 40%. It may be appropriate for whiplash and concussion guidelines to be amalgamated, enhanced, and mutually recognized on a patient-by-patient basis. Primary health care professionals might consider minimum screening to identify postconcussion syndrome in patients following motor vehicle collision by administering questionnaires and assessing cranial nerve function, balance, and cognition. Management should then incorporate principles from both whiplash and concussion guidelines and harmonize with available imaging guidelines for suspected spine and head trauma. J Orthop Sports Phys Ther 2019;49(11):819-828. doi:10.2519/jospt.2019.8946.
Collapse
|
37
|
Lecci L, Williams M, Taravath S, Frank HG, Dugan K, Page R, Keith J. Validation of a Concussion Screening Battery for Use in Medical Settings: Predicting Centers for Disease Control Concussion Symptoms in Children and Adolescents. Arch Clin Neuropsychol 2019; 35:265-274. [DOI: 10.1093/arclin/acz041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023] Open
Abstract
Abstract
Objective
Effective screening for concussion is increasingly important, and medical professionals play a critical role in diagnostic and return-to-play decisions. However, few well-validated measures are available to assist in those decisions. This study aims to determine whether previously validated measures assessing neurocognitive and neurobehavioral abilities can predict Centers for Disease Control (CDC) concussion symptom endorsement in a sample of child or youth athletes.
Method
Participants were 113 individuals, aged 6–17, representing 29 consecutive cases undergoing a post-concussion evaluation by a pediatric neurologist and 84 consecutive cases completing standardized baseline assessments (i.e., not being evaluated as a follow-up to a concussion). All participants completed the same standardized battery of tests comprised of the Connors’ Continuous Performance Test (CPT 3), the Balance Error Scoring System (BESS), and the NIH 4-Meter Gait Test as well as completing a checklist of CDC concussion symptoms.
Results
Regression analyses indicate that the screening battery explained 33% of the variance (d = 1.4) in concussion symptom endorsement, after controlling for age. The neurocognitive test alone (CPT 3) accounts for 21.5% of the variance (d = 1.05) in symptoms after controlling for age, and the neurobehavioral measures (BESS and NIH 4-Meter Gait) then account for an additional 11.5% variance (accounting for 18.6% variance, d = .96, when entered first). These effect sizes are considered large to very large and reflect a marked increase in predictive validity relative to existing measures commonly used in concussion assessments.
Conclusions
A relatively brief screening battery can function in medical settings to predict significant and substantial variability in CDC concussion symptoms in a pediatric sample.
Collapse
Affiliation(s)
- Len Lecci
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Mark Williams
- Internal Medicine, New Hanover Regional Medical Center, Wilmington, NC 28403, USA
| | - Sasidharan Taravath
- Pediatric Neurology, New Hanover Regional Medical Center, Wilmington, NC 28403, USA
| | - Harrison G Frank
- Frank Institute for Health and Wellness, Wilmington, NC 28403, USA
| | - Kelly Dugan
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Ryan Page
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Julian Keith
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| |
Collapse
|
38
|
Fickling SD, Smith AM, Pawlowski G, Ghosh Hajra S, Liu CC, Farrell K, Jorgensen J, Song X, Stuart MJ, D'Arcy RCN. Brain vital signs detect concussion-related neurophysiological impairments in ice hockey. Brain 2019; 142:255-262. [PMID: 30649205 PMCID: PMC6351777 DOI: 10.1093/brain/awy317] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/29/2018] [Indexed: 01/25/2023] Open
Abstract
There is a growing demand for objective evaluations of concussion. We developed a portable evoked potential framework to extract ‘brain vital signs’ using electroencephalography. Brain vital signs were derived from well established evoked responses representing auditory sensation (N100), basic attention (P300), and cognitive processing (N400) amplitudes and latencies, converted to normative metrics (six total). The study evaluated whether concussion-related neurophysiological impairments were detected over the duration of ice hockey seasons using brain vital signs. Forty-seven Tier III, Junior A, male ice hockey players were monitored over two seasons. Twelve sustained concussions after baseline testing then completed post-injury and return-to-play assessments. Twenty-three were not diagnosed with a concussion during the season and completed both baseline and post-season testing. Scores were evaluated using a repeated-measures analysis of variance with post hoc two-tailed paired t-tests. Concussion resulted in significantly increased amplitude and delayed latency scores for all six brain vital signs (P < 0.0001). Importantly, significant changes at return-to-play were also detected in basic attention (P300) amplitude, indicating persistent subclinical impairment. In the non-concussed group, there was also a significant change between baseline and post-season (P = 0.0047), with specific decreases in cognitive processing (N400) speed (P = 0.011) and overall total score (P = 0.002).
Collapse
Affiliation(s)
- Shaun D Fickling
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada
| | - Aynsley M Smith
- Department of Orthopedic Surgery and Physical Medicine and Rehabilitation, Sports Medicine Center, Mayo Clinic, Rochester, MN, USA
| | - Gabriela Pawlowski
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada
| | - Sujoy Ghosh Hajra
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada
| | - Careesa C Liu
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada
| | - Kyle Farrell
- Department of Orthopedic Surgery and Physical Medicine and Rehabilitation, Sports Medicine Center, Mayo Clinic, Rochester, MN, USA
| | - Janelle Jorgensen
- Department of Orthopedic Surgery and Physical Medicine and Rehabilitation, Sports Medicine Center, Mayo Clinic, Rochester, MN, USA
| | - Xiaowei Song
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada
| | - Michael J Stuart
- Department of Orthopedic Surgery, Mayo Clinic Sports Medicine Center, Mayo Clinic, Rochester, MN, USA
| | - Ryan C N D'Arcy
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada.,HealthTech Connex Inc, Surrey, BC, Canada
| |
Collapse
|
39
|
Hajiaghamemar M, Seidi M, Oeur RA, Margulies SS. Toward development of clinically translatable diagnostic and prognostic metrics of traumatic brain injury using animal models: A review and a look forward. Exp Neurol 2019; 318:101-123. [PMID: 31055005 PMCID: PMC6612432 DOI: 10.1016/j.expneurol.2019.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. There is an increasing interest in both clinical and pre-clinical studies to discover biomarkers to accurately diagnose traumatic brain injury (TBI), predict its outcomes, and monitor its progression especially in the developing brain. In humans, the heterogeneity of TBI in terms of clinical presentation, injury causation, and mechanism has contributed to the many challenges associated with finding unifying diagnosis, treatment, and management practices. In addition, findings from adult human research may have little application to pediatric TBI, as age and maturation levels affect the injury biomechanics and neurophysiological consequences of injury. Animal models of TBI are vital to address the variability and heterogeneity of TBI seen in human by isolating the causation and mechanism of injury in reproducible manner. However, a gap between the pre-clinical findings and clinical applications remains in TBI research today. To take a step toward bridging this gap, we reviewed several potential TBI tools such as biofluid biomarkers, electroencephalography (EEG), actigraphy, eye responses, and balance that have been explored in both clinical and pre-clinical studies and have shown potential diagnostic, prognostic, or monitoring utility for TBI. Each of these tools measures specific deficits following TBI, is easily accessible, non/minimally invasive, and is potentially highly translatable between animals and human outcomes because they involve effort-independent and non-verbal tasks. Especially conspicuous is the fact that these biomarkers and techniques can be tailored for infants and toddlers. However, translation of preclinical outcomes to clinical applications of these tools necessitates addressing several challenges. Among the challenges are the heterogeneity of clinical TBI, age dependency of some of the biomarkers, different brain structure, life span, and possible variation between temporal profiles of biomarkers in human and animals. Conducting parallel clinical and pre-clinical research, in addition to the integration of findings across species from several pre-clinical models to generate a spectrum of TBI mechanisms and severities is a path toward overcoming some of these challenges. This effort is possible through large scale collaborative research and data sharing across multiple centers. In addition, TBI causes dynamic deficits in multiple domains, and thus, a panel of biomarkers combining these measures to consider different deficits is more promising than a single biomarker for TBI. In this review, each of these tools are presented along with the clinical and pre-clinical findings, advantages, challenges and prospects of translating the pre-clinical knowledge into the human clinical setting.
Collapse
Affiliation(s)
- Marzieh Hajiaghamemar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Morteza Seidi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
40
|
Fickling SD, Smith AM, Ghosh Hajra S, Liu CC, Song X, Stuart MJ, D'Arcy RCN. Reply: P300 amplitudes after concussions are usually decreased not increased. Brain 2019; 142:e33. [PMID: 31203375 DOI: 10.1093/brain/awz147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shaun D Fickling
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Aynsley M Smith
- Department of Physical Medicine and Rehabilitation, Sports Medicine Center, Mayo Clinic, Rochester, MN, USA.,Department of Orthopedic Surgery, Mayo Clinic Sports Medicine Center, Mayo Clinic, Rochester, MN, USA
| | - Sujoy Ghosh Hajra
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Careesa C Liu
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada
| | - Xiaowei Song
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada
| | - Michael J Stuart
- Department of Orthopedic Surgery, Mayo Clinic Sports Medicine Center, Mayo Clinic, Rochester, MN, USA
| | - Ryan C N D'Arcy
- Faculty of Applied Sciences, Simon Fraser University, Metro Vancouver, BC, Canada.,Health Sciences and Innovation, Surrey Memorial Hospital, Fraser Health, Metro Vancouver, BC, Canada.,HealthTech Connex Inc, Surrey, BC, Canada
| |
Collapse
|
41
|
Harriss A, Johnson AM, Walton DM, Dickey JP. Head impact magnitudes that occur from purposeful soccer heading depend on the game scenario and head impact location. Musculoskelet Sci Pract 2019; 40:53-57. [PMID: 30708266 DOI: 10.1016/j.msksp.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE This study quantified the linear and angular kinematics that result from purposeful heading during youth soccer games, and the influence of game scenario and head impact location on these magnitudes. METHOD This observational study recruited thirty-six female soccer players (13.4 ± 0.9 years old) from three elite youth soccer teams (U13, U14, U15) and followed for an entire soccer season. Players wore wireless sensors during each game to quantify head impact magnitudes. A total of 60 regular season games (20 games per team) were video recorded, and purposeful heading events were categorized by game scenario (e.g. throw in), and head impact location (e.g. front of head). RESULTS Game scenario had a statistically significant effect on the linear head acceleration, and rotational head velocity, that resulted from purposeful headers. Rotational velocity from purposeful headers varied significantly between head impact locations, with impacts to the top of the head (improper technique) resulting in larger peak rotational velocities than impacts to the front of the head (proper technique); this was also the case for the linear acceleration for punts. CONCLUSION Our findings suggest that the magnitude for both linear and angular head impact kinematics depend on the game scenario and head impact location. Headers performed with the top of the head (improper technique) result in larger rotational velocities compared to the front of the head (proper technique). Accordingly, youth players should be educated on how to execute proper heading technique to reduce head impact accelerations.
Collapse
Affiliation(s)
- Alexandra Harriss
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Andrew M Johnson
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada; School of Health Studies, The University of Western Ontario, London, Ontario, Canada
| | - David M Walton
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada; School of Physical Therapy, The University of Western Ontario, London, Ontario, Canada
| | - James P Dickey
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
42
|
Sensitivity of the Cogstate Test Battery for Detecting Prolonged Cognitive Alterations Stemming From Sport-Related Concussions. Clin J Sport Med 2019; 29:62-68. [PMID: 29023272 DOI: 10.1097/jsm.0000000000000492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if the Cogstate test battery contains the requisite sensitivity to detect prolonged cognitive alterations. METHODS One hundred twenty collegiate athletes (71 with a history of concussion; 49 controls) completed the Cogstate test battery, to which we added a 2-back condition. In addition to the Cogstate clinical (transformed variables), we analyzed the raw data. RESULTS The clinical variables failed to reveal any group differences. Further, although the raw data failed to reveal group differences for tasks measuring lower-level cognition, group differences were observed for accuracy on the 1- and 2-back tasks, which require multiple aspects of higher cognition. The overall classification accuracy was higher using the raw data than the clinical variables. The combined sensitivity of the 1- and 2-back task was moderate and specificity was high. CONCLUSIONS These results suggest that using the raw scores over clinical variables increases the sensitivity of the test battery. Moreover, these results add another piece of evidence suggesting that concussive injuries are associated with subtle long-term alterations in aspects of higher cognition. Importantly, these deficits would have gone unobserved if we had relied solely on automated clinical variables. The current results further our scientific understanding of concussion and may be used to advance clinical practices.
Collapse
|
43
|
Moore RD, Ellemberg D. Long-term outcomes of sport-related brain injuries: A psychophysiological perspective. Int J Psychophysiol 2018; 132:1-2. [DOI: 10.1016/j.ijpsycho.2018.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
The long-term outcomes of sport-related concussion in pediatric populations. Int J Psychophysiol 2018; 132:14-24. [DOI: 10.1016/j.ijpsycho.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
|
45
|
Harriss A, Johnson AM, Walton DM, Dickey JP. The number of purposeful headers female youth soccer players experience during games depends on player age but not player position. SCI MED FOOTBALL 2018. [DOI: 10.1080/24733938.2018.1506591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alexandra Harriss
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Andrew M. Johnson
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada
| | - David M. Walton
- School of Physical Therapy, The University of Western Ontario, London, Ontario, Canada
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - James P. Dickey
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
46
|
Effects of Repeated Concussions and Sex on Early Processing of Emotional Facial Expressions as Revealed by Electrophysiology. J Int Neuropsychol Soc 2018; 24:673-683. [PMID: 29729683 DOI: 10.1017/s1355617718000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Concussions affect the processing of emotional stimuli. This study aimed to investigate how sex interacts with concussion effects on early event-related brain potentials (ERP) measures (P1, N1) of emotional facial expressions (EFE) processing in asymptomatic, multi-concussion athletes during an EFE identification task. METHODS Forty control athletes (20 females and 20 males) and 43 multi-concussed athletes (22 females and 21 males), recruited more than 3 months after their last concussion, were tested. Participants completed the Beck Depression Inventory II, the Beck Anxiety Inventory, the Post-Concussion Symptom Scale, and an Emotional Facial Expression Identification Task. Pictures of male and female faces expressing neutral, angry, and happy emotions were randomly presented and the emotion depicted had to be identified as fast as possible during EEG acquisition. RESULTS Relative to controls, concussed athletes of both sex exhibited a significant suppression of P1 amplitude recorded from the dominant right hemisphere while performing the emotional face expression identification task. The present study also highlighted a sex-specific suppression of the N1 component amplitude after concussion which affected male athletes. CONCLUSIONS These findings suggest that repeated concussions alter the typical pattern of right-hemisphere response dominance to EFE in early stages of EFE processing and that the neurophysiological mechanisms underlying the processing of emotional stimuli are distinctively affected across sex. (JINS, 2018, 24, 673-683).
Collapse
|
47
|
Stewart WF, Kim N, Ifrah C, Sliwinski M, Zimmerman ME, Kim M, Lipton RB, Lipton ML. Heading Frequency Is More Strongly Related to Cognitive Performance Than Unintentional Head Impacts in Amateur Soccer Players. Front Neurol 2018; 9:240. [PMID: 29740384 PMCID: PMC5928847 DOI: 10.3389/fneur.2018.00240] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Objective Compared to heading, unintentional head impacts (e.g., elbow to head, head to head, head to goalpost) in soccer are more strongly related to risk of moderate to very severe Central Nervous System (CNS) symptoms. But, most head impacts associated with CNS symptoms that occur in soccer are mild and are more strongly related to heading. We tested for a differential relation of heading and unintentional head impacts with neuropsychological (NP) test performance. Method Active adult amateur soccer players were recruited in New York City and the surrounding areas for this repeated measures longitudinal study of individuals who were enrolled if they had 5+ years of soccer play and were active playing soccer 6+ months/year. All participants completed a baseline validated questionnaire (“HeadCount-2w”), reporting 2-week recall of soccer activity, heading and unintentional head impacts. In addition, participants also completed NP tests of verbal learning, verbal memory, psychomotor speed, attention, and working memory. Most participants also completed one or more identical follow-up protocols (i.e., HeadCount-2w and NP tests) at 3- to 6-month intervals over a 2-year period. Repeated measures General Estimating Equations (GEE) linear models were used to determine if variation in NP tests at each visit was related to variation in either heading or unintentional head impacts in the 2-week period before testing. Results 308 players (78% male) completed 741 HeadCount-2w. Mean (median) heading/2-weeks was 50 (17) for men and 26 (7) for women. Heading was significantly associated with poorer performance on psychomotor speed (p < 0.001) and attention (p = 0.02) tasks and was borderline significant with poorer performance on the working memory (p = 0.06) task. Unintentional head impacts were not significantly associated with any NP test. Results did not differ after excluding 22 HeadCount-2w with reported concussive or borderline concussive symptoms. Conclusion Poorer NP test performance was consistently related to frequent heading during soccer practice and competition in the 2 weeks before testing. In contrast, unintentional head impacts incurred during soccer were not related to cognitive performance.
Collapse
Affiliation(s)
| | - Namhee Kim
- The Gruss Magnetic Resonance Research Center, Bronx, NY, United States.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Chloe Ifrah
- The Gruss Magnetic Resonance Research Center, Bronx, NY, United States.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Martin Sliwinski
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, PA, United States
| | - Molly E Zimmerman
- Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,Fordham University, Bronx, NY, United States
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Richard B Lipton
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Michael L Lipton
- The Gruss Magnetic Resonance Research Center, Bronx, NY, United States.,Department of Radiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
48
|
Yuan W, Dudley J, Barber Foss KD, Ellis JD, Thomas S, Galloway RT, DiCesare CA, Leach JL, Adams J, Maloney T, Gadd B, Smith D, Epstein JN, Grooms DR, Logan K, Howell DR, Altaye M, Myer GD. Mild Jugular Compression Collar Ameliorated Changes in Brain Activation of Working Memory after One Soccer Season in Female High School Athletes. J Neurotrauma 2018; 35:1248-1259. [PMID: 29334834 DOI: 10.1089/neu.2017.5262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent neuroimaging studies have suggested that repetitive subconcussive head impacts, even after only one sport season, may lead to pre- to post-season structural and functional alterations in male high school football athletes. However, data on female athletes are limited. In the current investigation, we aimed to (1) assess the longitudinal pre- to post-season changes in functional MRI (fMRI) of working memory and working memory performance, (2) quantify the association between the pre- to post-season change in fMRI of working memory and the exposure to head impact and working memory performance, and (3) assess whether wearing a neck collar designed to reduce intracranial slosh via mild compression of the jugular veins can ameliorate the changes in fMRI brain activation observed in the female high school athletes who did not wear collars after a full soccer season. A total of 48 female high school soccer athletes (age range: 14.00-17.97 years) were included in the study. These athletes were assigned to the non-collar group (n = 21) or to the collar group (n = 27). All athletes undewent MRI at both pre-season and post-season. In each session, a fMRI verbal N-Back task was used to engage working memory. A significant pre- to post-season increase in fMRI blood oxygen level dependent (BOLD) signal was demonstrated when performing the N-back working memory task in the non-collar group but not in the collar group, despite the comparable exposure to head impacts during the season between the two groups. The collar group demonstrated significantly smaller pre- to post-season change in fMRI BOLD signal than the non-collar group, suggesting a potential protective effect from the collar device. Significant correlations were also found between the pre- to post-season increase in fMRI brain activation and the decrease in task accuracy in the non-collar group, indicating an association between the compensatory mechanism in underlying neurophysiology and the alteration in the behavioral outcomes.
Collapse
Affiliation(s)
- Weihong Yuan
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,2 University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Jonathan Dudley
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Kim D Barber Foss
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jonathan D Ellis
- 2 University of Cincinnati College of Medicine , Cincinnati, Ohio.,3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Staci Thomas
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Ryan T Galloway
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Christopher A DiCesare
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - James L Leach
- 2 University of Cincinnati College of Medicine , Cincinnati, Ohio.,4 Department of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Janet Adams
- 4 Department of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Thomas Maloney
- 1 Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Brooke Gadd
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - David Smith
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jeff N Epstein
- 2 University of Cincinnati College of Medicine , Cincinnati, Ohio.,5 Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Dustin R Grooms
- 6 Ohio Musculoskeletal and Neurological Institute, Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University , Athens, Ohio
| | - Kelsey Logan
- 2 University of Cincinnati College of Medicine , Cincinnati, Ohio.,3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - David R Howell
- 7 The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts.,8 Sports Medicine Center , Children's Hospital Colorado, Aurora, Colorado
| | - Mekibib Altaye
- 2 University of Cincinnati College of Medicine , Cincinnati, Ohio.,9 Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Gregory D Myer
- 3 eSPORT Center, Division of Sports Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,7 The Micheli Center for Sports Injury Prevention , Waltham, Massachusetts.,8 Sports Medicine Center , Children's Hospital Colorado, Aurora, Colorado.,10 Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati , Cincinnati, Ohio.,11 Department of Orthopaedics, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Brooks BL, Silverberg N, Maxwell B, Mannix R, Zafonte R, Berkner PD, Iverson GL. Investigating Effects of Sex Differences and Prior Concussions on Symptom Reporting and Cognition Among Adolescent Soccer Players. Am J Sports Med 2018; 46:961-968. [PMID: 29323926 DOI: 10.1177/0363546517749588] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There has been increasing concern regarding the possible effect of multiple concussions on the developing brain, especially for adolescent females. Hypothesis/Purpose: The objectives were to determine if there are differences in cognitive functioning, symptom reporting, and/or sex effects from prior concussions. In a very large sample of youth soccer players, it was hypothesized that (1) there would be no differences in cognitive test performance between those with and without prior concussions, (2) baseline preseason symptoms would be better predicted by noninjury factors than concussion history, and (3) males and females with prior concussions would not have differences in cognition or symptoms. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Participants included 9314 youth soccer players (mean = 14.8 years, SD = 1.2) who completed preseason baseline cognitive testing, symptom reporting, and a health/injury history questionnaire from the ImPACT battery (Immediate Post-concussion Assessment and Cognitive Testing). On the basis of injury history, athletes were grouped by number of prior concussions: 0 (boys, n = 4012; girls, n = 3963), 1 (boys, n = 527; girls, n = 457), 2 (boys, n = 130; girls, n = 97), or ≥3 (boys, n = 73; girls, n = 55). The primary measures were the 4 primary cognitive scores and the total symptom ratings from ImPACT. Primary outcomes were assessed across injury groups, controlling for age, sex, learning disability, attention-deficit/hyperactivity disorder (ADHD), treatment for headaches/migraines, substance abuse, and mental health problems. RESULTS Cognitive test performance was not associated with concussion history but was associated with sex, age, learning disability, ADHD, and prior mental health problems. Greater symptom reporting was more strongly associated with psychiatric problems, older age, learning disability, substance abuse, headaches, being female, and ADHD than with a history of multiple concussions. Boys and girls did not differ on cognitive scores or symptom reporting based on a history of concussion. CONCLUSION In this very large sample of youth soccer players with prior concussion, there was no evidence of negative effects on cognition, very weak evidence of negative effects on symptom reporting, and no evidence of sex × concussion differences in cognition or symptom reporting.
Collapse
Affiliation(s)
- Brian L Brooks
- Neurosciences Program, Alberta Children's Hospital, Calgary, Alberta, Canada.,Departments of Pediatrics, Clinical Neurosciences, and Psychology, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Noah Silverberg
- Division of Physical Medicine and Rehabilitation, University of British Columbia; Vancouver Coastal Health Research Institute Rehabilitation Research Program, Vancouver, British Columbia, Canada.,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce Maxwell
- Department of Computer Science, Colby College, Waterville, Maine, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Brain Injury Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School, and Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Boston, Massachusetts, USA
| | - Paul D Berkner
- Health Services and the Department of Biology, Colby College, Waterville, Maine, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, MassGeneral Hospital for Children Sport Concussion Program, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Olson RL, Brush CJ, Ehmann PJ, Buckman JF, Alderman BL. A history of sport-related concussion is associated with sustained deficits in conflict and error monitoring. Int J Psychophysiol 2018; 132:145-154. [PMID: 29355581 DOI: 10.1016/j.ijpsycho.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/19/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
Previous research has demonstrated long-term deficits in neurocognitive function in individuals with a history of sport-related concussion. The purpose of this study was to examine the relationship between a history of concussion and behavioral and event-related potential (ERP) indices of pre- and post-response conflict and error monitoring. A secondary aim was to determine whether years of high risk sport participation were related to impairments in these cognitive control processes. Forty-seven former athletes (age = 20.8 ± 2.2 years) with (n = 25; 5 females) and without (n = 22; 9 females) a history of concussion completed a modified flanker task while behavioral performance, N2, error-related negativity (ERN), and error positivity (Pe) components were assessed. An increase in post-response error-related (ERN) brain activity and a nonsignificant trend of increased pre-response conflict (N2) was observed in individuals with a prior sport-related concussion relative to non-concussed controls; however, no behavioral performance differences were found between groups. No significant associations were found between ERP and behavioral measures and the number of years of high-risk sport participation; however, time since last head injury was associated with shorter N2 latency. Together, these findings suggest a persistent impairment in cognitive control and error-related processing in individuals with a history of concussion. These findings are interpreted within the framework of the compensatory error-monitoring hypothesis.
Collapse
Affiliation(s)
- Ryan L Olson
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA
| | - Christopher J Brush
- Department of Kinesiology and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Peter J Ehmann
- Department of Kinesiology and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jennifer F Buckman
- Department of Kinesiology and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Brandon L Alderman
- Department of Kinesiology and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|