1
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
2
|
Mincheva G, Moreno-Manzano V, Felipo V, Llansola M. Extracellular vesicles from mesenchymal stem cells improve neuroinflammation and neurotransmission in hippocampus and cognitive impairment in rats with mild liver damage and minimal hepatic encephalopathy. Stem Cell Res Ther 2024; 15:472. [PMID: 39696620 DOI: 10.1186/s13287-024-04076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Patients with steatotic liver disease may show mild cognitive impairment. Rats with mild liver damage reproduce this cognitive impairment, which is mediated by neuroinflammation that alters glutamate neurotransmission in the hippocampus. Treatment with extracellular vesicles (EV) from mesenchymal stem cells (MSC) reduces neuroinflammation and improves cognitive impairment in different animal models of neurological diseases. TGFβ in these EVs seems to be involved in its beneficial effects. The aim of this work was to assess if MSCs-EVs may improve cognitive impairment in rats with mild liver damage and to analyze the underlying mechanisms, assessing the effects on hippocampal neuroinflammation and neurotransmission. We also aimed to analyze the role of TGFβ in the in vivo effects of MSCs-EVs. METHODS Male Wistar rats with CCl4-induced mild liver damage were treated with EVs from unmodified MSC or with EVs derived from TGFβ-silenced MSCs and its effects on cognitive function and on neuroinflammation and altered neurotransmission in the hippocampus were analysed. RESULTS Unmodified MSC-EVs reversed microglia activation and TNFα content, restoring membrane expression of NR2 subunit of NMDA receptor and improved object location memory. In contrast, EVs derived from TGFβ-silenced MSCs did not induce these effects but reversed astrocyte activation, IL-1β content and altered GluA2 AMPA receptor subunit membrane expression leading to improvement of learning and working memory in the radial maze. CONCLUSIONS EVs from MSCs with TGFβ silenced induce different effects on behavior, neuroinflammation and neurotransmitter receptors alterations than unmodified MSC-EVs, indicating that the modification of TGFβ in the MSC-EVs has a notable effect on the consequences of the treatment. This work shows that treatment with MSC-EVs improves learning and memory in a model of mild liver damage and MHE in rats, suggesting that MSC-EVs may be a good therapeutic option to reverse cognitive impairment in patients with steatotic liver disease.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
3
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
4
|
Prencipe G, Cerveró-Varona A, Perugini M, Sulcanese L, Iannetta A, Haidar-Montes AA, Stöckl J, Canciello A, Berardinelli P, Russo V, Barboni B. Amphiregulin orchestrates the paracrine immune-suppressive function of amniotic-derived cells through its interplay with COX-2/PGE 2/EP4 axis. iScience 2024; 27:110508. [PMID: 39156643 PMCID: PMC11326934 DOI: 10.1016/j.isci.2024.110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 07/11/2024] [Indexed: 08/20/2024] Open
Abstract
The paracrine crosstalk between amniotic-derived membranes (AMs)/epithelial cells (AECs) and immune cells is pivotal in tissue healing following inflammation. Despite evidence collected to date, gaps in understanding the underlying molecular mechanisms have hindered clinical applications. The present study represents a significant step forward demonstrating that amphiregulin (AREG) orchestrates the native immunomodulatory functions of amniotic derivatives via the COX-2/PGE2/EP4 axis. The results highlight the immunosuppressive efficacy of PGE2-dependent AREG release, dampening PBMCs' activation, and NFAT pathway in Jurkat reporter cells via TGF-β signaling. Moreover, AREG emerges as a key protein mediator by attenuating acute inflammatory response in Tg(lysC:DsRed2) zebrafish larvae. Notably, the interplay of diverse COX-2/PGE2 pathway activators enables AM/AEC to adapt rapidly to external stimuli (LPS and/or stretching) through a responsive positive feedback loop on the AREG/EGFR axis. These findings offer valuable insights for developing innovative cell-free therapies leveraging the potential of amniotic derivatives in immune-mediated diseases and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Annamaria Iannetta
- Department of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Arlette Alina Haidar-Montes
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Kim HJ, Lee KN, Park KH, Choi BY, Cho I, Lee MJ. Characterization of Inflammation/Immune-, Acute Phase-, Extracellular Matrix-, Adhesion-, and Serine Protease-Related Proteins in the Amniotic Fluid of Women With Early Preterm Prelabor Rupture of Membranes. Am J Reprod Immunol 2024; 92:e13913. [PMID: 39113666 DOI: 10.1111/aji.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
PROBLEM To determine whether altered concentrations of various inflammation/immune-, acute phase-, extracellular matrix-, adhesion-, and serine protease-related proteins in the amniotic fluid (AF) are independently associated with microbial invasion of the amniotic cavity and/or intra-amniotic inflammation (MIAC/IAI), imminent spontaneous preterm delivery (SPTD; ≤7 days), and major neonatal morbidity/mortality (NMM) in women with early preterm prelabor rupture of membranes (PPROM). METHOD OF STUDY This was a retrospective cohort study involving 111 singleton pregnant women with PPROM (24-31 weeks) undergoing amniocentesis to diagnose MIAC/IAI. The following proteins were measured in stored AF samples by enzyme-linked immunosorbent assay (ELISA): APRIL, DKK-3, Gal-3BP, IGFBP-2, IL-8, VDBP, lumican, MMP-2, MMP-8, SPARC, TGFBI, TGF-β1, E-selectin, ICAM-5, P-selectin, haptoglobin, hepcidin, SAA1, kallistatin, and uPA. RESULTS Multivariate logistic regression analyses revealed that (i) elevated APRIL, IL-8, MMP-8, and TGFBI levels in the AF, reduced lumican and SPARC levels in the AF, and high percentages of samples above the lower limit of quantification for AF TGF-β1 and uPA were significantly associated with MIAC/IAI; (ii) elevated AF levels of IL-8 and MMP-8 were significantly associated with SPTD within 7 days; and (iii) elevated AF IL-6 levels were significantly associated with increased risk for major NMM, when adjusted for baseline covariates. CONCLUSION ECM (lumican, SPRAC, TGFBI, and TGF-β1)- and serine protease (uPA)-associated proteins in the AF are involved in the regulation of the host response to infection/inflammation in the amniotic cavity, whereas AF inflammation (IL-8, MMP-8, and IL-6)-associated mediators are implicated in the development of preterm parturition and major NMM in early PPROM.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Chungnam National University Hospital, Daejeon, South Korea
| | - Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Young Choi
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Iseop Cho
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Min Jung Lee
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
6
|
Gaspar D, Ginja C, Carolino N, Leão C, Monteiro H, Tábuas L, Branco S, Padre L, Caetano P, Romão R, Matos C, Ramos AM, Bettencourt E, Usié A. Genome-wide association study identifies genetic variants underlying footrot in Portuguese Merino sheep. BMC Genomics 2024; 25:100. [PMID: 38262937 PMCID: PMC10804546 DOI: 10.1186/s12864-023-09844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Ovine footrot caused by Dichelobacter nodosus (D. nodosus) is a contagious disease with serious economic and welfare impacts in sheep production systems worldwide. A better understanding of the host genetic architecture regarding footrot resistance/susceptibility is crucial to develop disease control strategies that efficiently reduce infection and its severity. A genome-wide association study was performed using a customized SNP array (47,779 SNPs in total) to identify genetic variants associated to footrot resistance/susceptibility in two Portuguese native breeds, i.e. Merino Branco and Merino Preto, and a population of crossbred animals. A cohort of 1375 sheep sampled across 17 flocks, located in the Alentejo region (southern Portugal), was included in the analyses. RESULTS Phenotypes were scored from 0 (healthy) to 5 (severe footrot) based on visual inspection of feet lesions, following the Modified Egerton System. Using a linear mixed model approach, three SNPs located on chromosome 24 reached genome-wide significance after a Bonferroni correction (p < 0.05). Additionally, six genome-wide suggestive SNPs were identified each on chromosomes 2, 4, 7, 8, 9 and 15. The annotation and KEGG pathway analyses showed that these SNPs are located within regions of candidate genes such as the nonsense mediated mRNA decay associated PI3K related kinase (SMG1) (chromosome 24) and the RALY RNA binding protein like (RALYL) (chromosome 9), both involved in immunity, and the heparan sulfate proteoglycan 2 (HSPG2) (chromosome 2) and the Thrombospodin 1 (THBS1) (chromosome 7) implicated in tissue repair and wound healing processes. CONCLUSION This is the first attempt to identify molecular markers associated with footrot in Portuguese Merino sheep. These findings provide relevant information on a likely genetic association underlying footrot resistance/susceptibility and the potential candidate genes affecting this trait. Genetic selection strategies assisted on the information obtained from this study could enhance Merino sheep-breeding programs, in combination with farm management strategies, for a more effective and sustainable long-term solution for footrot control.
Collapse
Affiliation(s)
- Daniel Gaspar
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus do Varão, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
| | - Catarina Ginja
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus do Varão, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661, Vairão, Portugal
- CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Nuno Carolino
- CIISA, Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Universidade Técnica, 1300-477, Lisboa, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária, I.P. (INIAV, I.P.), Avenida da República, Quinta Do Marquês, 2780-157, Oeiras, Portugal
- Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes 197, 3020-210, Lordemão, Coimbra, Portugal
| | - Célia Leão
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- Instituto Nacional de Investigação Agrária E Veterinária, I.P. (INIAV, I.P.), Avenida da República, Quinta Do Marquês, 2780-157, Oeiras, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | | | | | - Sandra Branco
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
- Departamento de Medicina Veterinária, Escola de Ciências E Tecnologia, Évora University, Pólo da Mitra Ap. 94, 7002-554, Évora, Portugal
| | - Ludovina Padre
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Pedro Caetano
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Ricardo Romão
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | | | - António Marcos Ramos
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal
| | - Elisa Bettencourt
- MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, University of Évora, Polo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola E Agro-Alimentar Do Alentejo (CEBAL)/ Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal.
- MED - Mediterranean Institute for Agriculture, Environment and Development and CHANGE - Global Change and Sustainability Institute, CEBAL - Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908, Beja, Portugal.
| |
Collapse
|
7
|
Chen L, Zhong S, Wang Y, Wang X, Liu Z, Hu G. Bmp4 in Zebrafish Enhances Antiviral Innate Immunity through p38 MAPK (Mitogen-Activated Protein Kinases) Pathway. Int J Mol Sci 2023; 24:14444. [PMID: 37833891 PMCID: PMC10572509 DOI: 10.3390/ijms241914444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of structurally and functionally related signaling molecules that comprise a subfamily, belonging to the TGF-β superfamily. Most BMPs play roles in the regulation of embryonic development, stem cell differentiation, tumor growth and some cardiovascular and cerebrovascular diseases. Although evidence is emerging for the antiviral immunity of a few BMPs, more BMPs are needed to determine whether this function is universal. Here, we identified the zebrafish bmp4 ortholog, whose expression is up-regulated through challenge with grass carp reovirus (GCRV) or its mimic poly(I:C). The overexpression of bmp4 in epithelioma papulosum cyprini (EPC) cells significantly decreased the viral titer of GCRV-infected cells. Moreover, compared to wild-type zebrafish, viral load and mortality were significantly increased in both larvae and adults of bmp4-/- mutant zebrafish infected with GCRV virus. We further demonstrated that Bmp4 promotes the phosphorylation of Tbk1 and Irf3 through the p38 MAPK pathway, thereby inducing the production of type I IFNs in response to virus infection. These data suggest that Bmp4 plays an important role in the host defense against virus infection. Our study expands the understanding of BMP protein functions and opens up new targets for the control of viral infection.
Collapse
Affiliation(s)
| | | | | | | | - Zhenhui Liu
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.C.); (S.Z.); (Y.W.); (X.W.)
| | - Guobin Hu
- College of Marine Life Science, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (L.C.); (S.Z.); (Y.W.); (X.W.)
| |
Collapse
|
8
|
Liu C, Cao J, Zhang H, Field MC, Yin J. Extracellular vesicles secreted by Echinococcus multilocularis: important players in angiogenesis promotion. Microbes Infect 2023; 25:105147. [PMID: 37142117 DOI: 10.1016/j.micinf.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The involvement of Echinococcus multilocularis, and other parasitic helminths, in regulating host physiology is well recognized, but molecular mechanisms remain unclear. Extracellular vesicles (EVs) released by helminths play important roles in regulating parasite-host interactions by transferring materials to the host. Analysis of protein cargo of EVs from E. multilocularis protoscoleces in the present study revealed a unique composition exclusively associated with vesicle biogenesis. Common proteins in various Echinococcus species were identified, including the classical EVs markers tetraspanins, TSG101 and Alix. Further, unique tegumental antigens were identified which could be exploited as Echinococcus EV markers. Parasite- and host-derived proteins within these EVs are predicted to support important roles in parasite-parasite and parasite-host communication. In addition, the enriched host-derived protein payloads identified in parasite EVs in the present study suggested that they can be involved in focal adhesion and potentially promote angiogenesis. Further, increased angiogenesis was observed in livers of mice infected with E. multilocularis and the expression of several angiogenesis-regulated molecules, including VEGF, MMP9, MCP-1, SDF-1 and serpin E1 were increased. Significantly, EVs released by the E. multilocularis protoscolex promoted proliferation and tube formation by human umbilical vein endothelial cells (HUVECs) in vitro. Taken together, we present the first evidence that tapeworm-secreted EVs may promote angiogenesis in Echinococcus-infections, identifying central mechanisms of Echinococcus-host interactions.
Collapse
Affiliation(s)
- Congshan Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Haobing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK; Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jianhai Yin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai, 200025, China.
| |
Collapse
|
9
|
Elsayed R, Elashiry M, Tran C, Yang T, Carroll A, Liu Y, Hamrick M, Cutler CW. Engineered Human Dendritic Cell Exosomes as Effective Delivery System for Immune Modulation. Int J Mol Sci 2023; 24:11306. [PMID: 37511064 PMCID: PMC10379002 DOI: 10.3390/ijms241411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes (exos) contain molecular cargo of therapeutic and diagnostic value for cancers and other inflammatory diseases, but their therapeutic potential for periodontitis (PD) remains unclear. Dendritic cells (DCs) are the directors of immune response and have been extensively used in immune therapy. We previously reported in a mouse model of PD that custom murine DC-derived exo subtypes could reprogram the immune response toward a bone-sparing or bone-loss phenotype, depending on immune profile. Further advancement of this technology requires the testing of human DC-based exos with human target cells. Our main objective in this study is to test the hypothesis that human monocyte-derived dendritic cell (MoDC)-derived exos constitute a well-tolerated and effective immune therapeutic approach to modulate human target DC and T cell immune responses in vitro. MoDC subtypes were generated with TGFb/IL-10 (regulatory (reg) MoDCs, CD86lowHLA-DRlowPDL1high), E. coli LPS (stimulatory (stim) MoDCs, CD86highHLA-DRhighPDL1low) and buffer (immature (i) MoDCs, CD86lowHLA-DRmedPDL1low). Exosomes were isolated from different MoDC subtypes and characterized. Once released from the secreting cell into the surrounding environment, exosomes protect their prepackaged molecular cargo and deliver it to bystander cells. This modulates the functions of these cells, depending on the cargo content. RegMoDCexos were internalized by recipient MoDCs and induced upregulation of PDL1 and downregulation of costimulatory molecules CD86, HLADR, and CD80, while stimMoDCexos had the opposite influence. RegMoDCexos induced CD25+Foxp3+ Tregs, which expressed CTLA4 and PD1 but not IL-17A. In contrast, T cells treated with stimMoDCexos induced IL-17A+ Th17 T cells, which were negative for immunoregulatory CTLA4 and PD1. T cells and DCs treated with iMoDCexos were immune 'neutral', equivalent to controls. In conclusion, human DC exos present an effective delivery system to modulate human DC and T cell immune responses in vitro. Thus, MoDC exos may present a viable immunotherapeutic agent for modulating immune response in the gingival tissue to inhibit bone loss in periodontal disease.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Cathy Tran
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tigerwin Yang
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Angelica Carroll
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Matsuda S, Revandkar A, Dubash TD, Ravi A, Wittner BS, Lin M, Morris R, Burr R, Guo H, Seeger K, Szabolcs A, Che D, Nieman L, Getz GA, Ting DT, Lawrence MS, Gainor J, Haber DA, Maheswaran S. TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep 2023; 42:112129. [PMID: 36821441 PMCID: PMC10187541 DOI: 10.1016/j.celrep.2023.112129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
TGF-β induces senescence in embryonic tissues. Whether TGF-β in the hypoxic tumor microenvironment (TME) induces senescence in cancer and how the ensuing senescence-associated secretory phenotype (SASP) remodels the cellular TME to influence immune checkpoint inhibitor (ICI) responses are unknown. We show that TGF-β induces a deeper senescent state under hypoxia than under normoxia; deep senescence correlates with the degree of E2F suppression and is marked by multinucleation, reduced reentry into proliferation, and a distinct 14-gene SASP. Suppressing TGF-β signaling in tumors in an immunocompetent mouse lung cancer model abrogates endogenous senescent cells and suppresses the 14-gene SASP and immune infiltration. Untreated human lung cancers with a high 14-gene SASP display immunosuppressive immune infiltration. In a lung cancer clinical trial of ICIs, elevated 14-gene SASP is associated with increased senescence, TGF-β and hypoxia signaling, and poor progression-free survival. Thus, TME-induced senescence may represent a naturally occurring state in cancer, contributing to an immune-suppressive phenotype associated with immune therapy resistance.
Collapse
Affiliation(s)
- Satoru Matsuda
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ajinkya Revandkar
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Taronish D Dubash
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arvind Ravi
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, MA 02139, USA; Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ben S Wittner
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Maoxuan Lin
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert Morris
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Risa Burr
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hongshan Guo
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Karsen Seeger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annamaria Szabolcs
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dante Che
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Linda Nieman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gad A Getz
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Ting
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Justin Gainor
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel A Haber
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Bethesda, MD 20815, USA.
| | - Shyamala Maheswaran
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Garcia OA, Arslanian K, Whorf D, Thariath S, Shriver M, Li JZ, Bigham AW. The Legacy of Infectious Disease Exposure on the Genomic Diversity of Indigenous Southern Mexicans. Genome Biol Evol 2023; 15:7023365. [PMID: 36726304 PMCID: PMC10016042 DOI: 10.1093/gbe/evad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
To characterize host risk factors for infectious disease in Mesoamerican populations, we interrogated 857,481 SNPs assayed using the Affymetrix 6.0 genotyping array for signatures of natural selection in immune response genes. We applied three statistical tests to identify signatures of natural selection: locus-specific branch length (LSBL), the cross-population extended haplotype homozygosity (XP-EHH), and the integrated haplotype score (iHS). Each of the haplotype tests (XP-EHH and iHS) were paired with LSBL and significance was determined at the 1% level. For the paired analyses, we identified 95 statistically significant windows for XP-EHH/LSBL and 63 statistically significant windows for iHS/LSBL. Among our top immune response loci, we found evidence of recent directional selection associated with the major histocompatibility complex (MHC) and the peroxisome proliferator-activated receptor gamma (PPAR-γ) signaling pathway. These findings illustrate that Mesoamerican populations' immunity has been shaped by exposure to infectious disease. As targets of selection, these variants are likely to encode phenotypes that manifest themselves physiologically and therefore may contribute to population-level variation in immune response. Our results shed light on past selective events influencing the host response to modern diseases, both pathogenic infection as well as autoimmune disorders.
Collapse
Affiliation(s)
- Obed A Garcia
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Data Science, Stanford University, Stanford, California
| | | | - Daniel Whorf
- College of Medicine, University of Illinois, Peoria, Illinois
| | - Serena Thariath
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee
| | - Mark Shriver
- Department of Anthropology, Penn State University, State College, Pennsylvania
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Abigail W Bigham
- Department of Anthropology, University of California, Los Angeles, California
| |
Collapse
|
12
|
da Costa Fernandes CJ, Ferreira MR, Zambuzzi WF. Cyclopamine targeting hedgehog modulates nuclear control of the osteoblast activity. Cells Dev 2023; 174:203836. [PMID: 36972848 DOI: 10.1016/j.cdev.2023.203836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/11/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
It is known that cellular events underlying the processes of bone maintenance, remodeling, and repair have their basis in the embryonic production of bone. Shh signaling is widely described developing important morphogenetic control in bone by modifying the activity of osteoblast. Furthermore, identifying whether it is associated with the modulation of nuclear control is very important to be the basis for further applications. Experimentally, osteoblasts were exposed with cyclopamine (CICLOP) considering up to 1 day and 7 days, here considered an acute and chronic responses respectively. Firstly, we have validated the osteogenic model in vitro by exposing the osteoblasts to classical differentiating solution up to 7 days to allow the analysis of alkaline phosphatase and mineralization. Conversely, our data shows that differentiating osteoblasts present higher activity of inflammasome-related genes, while Shh signaling members were lower, suggesting a negative feedback between them. Thereafter, to better know about the role of Shh signaling on this manner, functional assays using CICLOP (5 μM) were performed and the data validates the previously hypothesis that Shh represses inflammasome related genes activities. Altogether, our data supports the anti-inflammatory effect of Shh signaling by suppressing Tnfα, Tgfβ and inflammasome related genes during osteoblast differentiation, and this comprehension might support the understanding the molecular and cellular mechanisms related in bone regeneration by reporting molecular-related osteoblast differentiation.
Collapse
|
13
|
Zhao J, Pan J, Zhang Z, Chen Z, Mai K, Zhang Y. Fishmeal Protein Replacement by Defatted and Full-Fat Black Soldier Fly Larvae Meal in Juvenile Turbot Diet: Effects on the Growth Performance and Intestinal Microbiota. AQUACULTURE NUTRITION 2023; 2023:8128141. [PMID: 37089257 PMCID: PMC10115534 DOI: 10.1155/2023/8128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of the same fishmeal protein level replaced by black soldier fly larvae (Hermetia illucens) meal (BSFL) with different lipid contents on the growth performance and intestinal health of juvenile turbot (Scophthalmus maximus L.) (initial body weight 12.64 g). Three isonitrogenous and isolipidic diets were formulated: fish meal-based diet (FM), diets DF and FF, in which 14% fish meal protein of the FM diet was replaced by defatted and full-fat BSFL, respectively. There were no significant differences in growth performance, intestinal morphology, and mucosal barrier function between the DF and the FM group. However, diet FF markedly reduced the growth performance, intestinal perimeter ratio, and the gene expression of anti-inflammatory cytokine TGF-β (P < 0.05). Compared to group FF, the communities of intestinal microbiota in group DF were more similar to group FM. Moreover, diet DF decreased the abundance of some potential pathogenic bacteria and enriched the potential probiotics, such as Bacillus. Diet FF obviously altered the composition of intestinal microbiota and increased the abundance of some potential pathogenic bacteria. These results suggested that the application of defatted BSFL showed more positive effects on fish growth and intestinal health than the full-fat BSFL, and the intestinal microbiota was closely involved in these effects.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jintao Pan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhonghao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhichu Chen
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
14
|
Villar VH, Subotički T, Đikić D, Mitrović-Ajtić O, Simon F, Santibanez JF. Transforming Growth Factor-β1 in Cancer Immunology: Opportunities for Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:309-328. [PMID: 37093435 DOI: 10.1007/978-3-031-26163-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Transforming growth factor-beta1 (TGF-β) regulates a plethora of cell-intrinsic processes that modulate tumor progression in a context-dependent manner. Thus, although TGF-β acts as a tumor suppressor in the early stages of tumorigenesis, in late stages, this factor promotes tumor progression and metastasis. In addition, TGF-β also impinges on the tumor microenvironment by modulating the immune system. In this aspect, TGF-β exhibits a potent immunosuppressive effect, which allows both cancer cells to escape from immune surveillance and confers resistance to immunotherapy. While TGF-β inhibits the activation and antitumoral functions of T-cell lymphocytes, dendritic cells, and natural killer cells, it promotes the generation of T-regulatory cells and myeloid-derived suppressor cells, which hinder antitumoral T-cell activities. Moreover, TGF-β promotes tumor-associated macrophages and neutrophils polarization from M1 into M2 and N1 to N2, respectively. Altogether, these effects contribute to the generation of an immunosuppressive tumor microenvironment and support tumor promotion. This review aims to analyze the relevant evidence on the complex role of TGF-β in cancer immunology, the current outcomes of combined immunotherapies, and the anti-TGF-β therapies that may improve the success of current and new oncotherapies.
Collapse
Affiliation(s)
- Víctor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Tijana Subotički
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragoslava Đikić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Olivera Mitrović-Ajtić
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute On Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile.
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Dr. Subotica 4, POB 102, 11129, Belgrade, Serbia.
| |
Collapse
|
15
|
Biering SB, Gomes de Sousa FT, Tjang LV, Pahmeier F, Zhu C, Ruan R, Blanc SF, Patel TS, Worthington CM, Glasner DR, Castillo-Rojas B, Servellita V, Lo NTN, Wong MP, Warnes CM, Sandoval DR, Clausen TM, Santos YA, Fox DM, Ortega V, Näär AM, Baric RS, Stanley SA, Aguilar HC, Esko JD, Chiu CY, Pak JE, Beatty PR, Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat Commun 2022; 13:7630. [PMID: 36494335 PMCID: PMC9734751 DOI: 10.1038/s41467-022-34910-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | | | - Laurentia V Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chi Zhu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trishna S Patel
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dustin R Glasner
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Nicholas T N Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Yale A Santos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Douglas M Fox
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Anders M Näär
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Charles Y Chiu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Hu H, Zhang Z, Fang Y, Chen L, Wu J. Therapeutic poly(amino acid)s as drug carriers for cancer therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022; 27:5730. [PMID: 36080493 PMCID: PMC9457814 DOI: 10.3390/molecules27175730] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is one of the malignancies that affects men and significantly contributes to increased mortality rates in men globally. Patients affected with prostate cancer present with either a localized or advanced disease. In this review, we aim to provide a holistic overview of prostate cancer, including the diagnosis of the disease, mutations leading to the onset and progression of the disease, and treatment options. Prostate cancer diagnoses include a digital rectal examination, prostate-specific antigen analysis, and prostate biopsies. Mutations in certain genes are linked to the onset, progression, and metastasis of the cancer. Treatment for localized prostate cancer encompasses active surveillance, ablative radiotherapy, and radical prostatectomy. Men who relapse or present metastatic prostate cancer receive androgen deprivation therapy (ADT), salvage radiotherapy, and chemotherapy. Currently, available treatment options are more effective when used as combination therapy; however, despite available treatment options, prostate cancer remains to be incurable. There has been ongoing research on finding and identifying other treatment approaches such as the use of traditional medicine, the application of nanotechnologies, and gene therapy to combat prostate cancer, drug resistance, as well as to reduce the adverse effects that come with current treatment options. In this article, we summarize the genes involved in prostate cancer, available treatment options, and current research on alternative treatment options.
Collapse
Affiliation(s)
- Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
| | - Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Paballo Motloung
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Lemohang Gumenku
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa
| |
Collapse
|
18
|
Bergholt NL, Demirel A, Pedersen M, Ding M, Kragstrup TW, Andersen T, Deleuran BW, Foldager CB. Intermittent Hypoxic Therapy Inhibits Allogenic Bone-Graft Resorption by Inhibition of Osteoclastogenesis in a Mouse Model. Int J Mol Sci 2021; 23:323. [PMID: 35008749 PMCID: PMC8745522 DOI: 10.3390/ijms23010323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 01/04/2023] Open
Abstract
Systemic Intermittent Hypoxic Therapy (IHT) relies on the adaptive response to hypoxic stress. We investigated allogenic bone-graft resorption in the lumbar spine in 48 mice. The mice were exposed to IHT for 1 week before surgery or 1 week after surgery and compared with controls after 1 and 4 weeks. Complete graft resorption was observed in 33-36% of the animals in the control group, but none in the preoperative IHT group. Increased bone-graft volume was demonstrated by micro-computed tomography in the preoperative IHT group after 1 week (p = 0.03) while a non-significant difference was observed after 4 weeks (p = 0.12). There were no significant differences in the postoperative IHT group. Increased concentration of immune cells was localized in the graft area, and more positive tartrate-resistant acid phosphatase (TRAP) staining was found in controls compared with IHT allogenic bone grafts. Systemic IHT resulted in a significant increase of the major osteoclast inhibitor osteoprotegerin as well as osteogenic and angiogenic regulators Tgfbr3, Fst3l, Wisp1, and Vegfd. Inflammatory cytokines and receptor activator of nuclear factor kappa-B ligand (RANKL) stimulators IL-6, IL-17a, IL-17f, and IL-23r increased after 1 and 4 weeks, and serum RANKL expression remained constant while Ccl3 and Ccl5 decreased. We conclude that the adaptive response to IHT activates numerous pathways leading to inhibition of osteoclastic activity and inhibition of allogenic bone-graft resorption.
Collapse
Affiliation(s)
- Natasja Leth Bergholt
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark; (N.L.B.); (A.D.)
| | - Ari Demirel
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark; (N.L.B.); (A.D.)
| | - Michael Pedersen
- Comparative Medicine Laboratory, Aarhus University, 8200 Aarhus, Denmark;
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital and University of Southern Denmark, 5000 Odense, Denmark;
| | - Tue Wenzel Kragstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.W.K.); (T.A.); (B.W.D.)
- Department of Rheumatology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Thomas Andersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.W.K.); (T.A.); (B.W.D.)
| | - Bent Winding Deleuran
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (T.W.K.); (T.A.); (B.W.D.)
- Department of Rheumatology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Casper Bindzus Foldager
- Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark; (N.L.B.); (A.D.)
- Comparative Medicine Laboratory, Aarhus University, 8200 Aarhus, Denmark;
| |
Collapse
|
19
|
Teaw S, Hinchcliff M, Cheng M. A review and roadmap of the skin, lung and gut microbiota in systemic sclerosis. Rheumatology (Oxford) 2021; 60:5498-5508. [PMID: 33734316 PMCID: PMC8643452 DOI: 10.1093/rheumatology/keab262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
As our understanding of the genetic underpinnings of SSc increases, questions regarding the environmental trigger(s) that induce and propagate SSc in the genetically predisposed individual emerge. The interplay between the environment, the immune system, and the microbial species that inhabit the patient's skin and gastrointestinal tract is a pathobiological frontier that is largely unexplored in SSc. The purpose of this review is to provide an overview of the methodologies, experimental study results and future roadmap for elucidating the relationship between the SSc host and his/her microbiome.
Collapse
Affiliation(s)
- Shannon Teaw
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Monique Hinchcliff
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| | - Michelle Cheng
- Yale School of Medicine, Department of Medicine Section of Rheumatology, Allergy & Immunology, New Haven, CT, USA
| |
Collapse
|
20
|
Gao J, Wang L, Bu L, Song Y, Huang X, Zhao J. Immunopharmacological properties of VitD3: 1,25VitD3 modulates regulatory T cells and Th17 cells and the cytokine balance in PBMCs from women with unexplained recurrent spontaneous abortion [URSA]. Curr Mol Pharmacol 2021; 15:779-793. [PMID: 34649494 DOI: 10.2174/1874467214666211015084803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND VitD3 may contribute to a successful pregnancy through modulation of immune responses, so VitD3 deficiency may have a role in the immunopathogenesis of unexplained recurrent spontaneous abortion [URSA]. However, the mechanisms of immunomodulatory actions of VitD3 in decreasing the risk of recurrent spontaneous abortion have not been understood well. OBJECTIVE The purpose of this research was to investigate the influence of 1,25VitD3 on regulatory T cells /Th17 axis, the gene expressions and concentrations of related cytokines including, TGF-β, IL-10, IL-6, IL-23, and IL-17A in peripheral blood mononuclear cells [PBMCs] of healthy women as a control group and women with URSA. METHOD Isolation of PBMCs was performed from peripheral blood of the subjects of the studied groups [20 women with URSA as a case group, and 20 control women]. The effects of 1,25VitD3 [50 nM, for 24 hours] on the studied parameters were evaluated and were compared to the positive and negative controls in vitro. Flow cytometry analysis was used to determine the percentages of regulatory T cells and Th17 cells. For gene expression measurement and cytokines assay, Real-time PCR and ELISA were carried out. RESULTS The proportion of regulatory T cells was markedly lower, while the proportion of Th17 cells in women with URSA was considerably higher than in the control group [P=0.01, P=0.01]. The ratio of the frequency of Tregs to the baseline [1,25VitD3/Untreated] increased, while the ratio of the frequency of Th17 cells to the baseline decreased in women with URSA relative to the controls [P= 0.01, P=0.04]. 1,25VitD3 increased IL-10 expressions at both the protein and mRNA levels in PBMCs in women with URSA relative to the control group [P=0.0001, P=0.04]. TGF-β levels in the cultured supernatants decreased significantly in the case group in the presence of 1,25VitD3 relative to the controls [P=0.03]. 1,25VitD3 treatment also significantly decreased gene expressions of IL-6, IL-17A, and IL-23 in PBMCs of women with URSA [P=0.01, P=0.001, P=0.0005], as well as the levels of those cytokines in cell culture supernatants [P=0.03, P=0.02, P=0.01, respectively] in women with URSA relative to the controls. CONCLUSION According to the findings of this research, modulation of immune responses by 1,25VitD3 is accomplished by strengthening Tregs function and inhibiting inflammatory responses of Th17 cells which may have a positive impact on pregnancy outcome. Thus, as an immunomodulating agent, VitD3 may be effective in reducing the risk of URSA.
Collapse
Affiliation(s)
- Jiefan Gao
- Department of reproductive medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061014. China
| | - Li Wang
- Department of Gynecology, Shandong Second Provincial General Hospital, No. 4, Duanxing West Road, Huaiyin District, Jinan City, Shandong Province, 250022. China
| | - Lei Bu
- Department of nephrology, Linyi people's hospital, Linyi City, Shandong Province, 276003. China
| | - Yangyang Song
- Department of reproductive medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061014. China
| | - Xiao Huang
- Department of reproductive medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou City, Hebei Province, 061014. China
| | - Jing Zhao
- Department of nursing, Dongying District People's Hospital, No. 333, Jinan Road, Dongying City, Shandong Province, 257099. China
| |
Collapse
|
21
|
Vázquez-Jiménez A, Avila-Ponce De León UE, Matadamas-Guzman M, Muciño-Olmos EA, Martínez-López YE, Escobedo-Tapia T, Resendis-Antonio O. On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Front Immunol 2021; 12:705646. [PMID: 34603282 PMCID: PMC8481922 DOI: 10.3389/fimmu.2021.705646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.
Collapse
Affiliation(s)
- Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Ugo Enrique Avila-Ponce De León
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biológicas, UNAM, Mexico City, Mexico
| | - Meztli Matadamas-Guzman
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Erick Andrés Muciño-Olmos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Yoscelina E. Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas y de la Salud, UNAM, Mexico City, Mexico
| | - Thelma Escobedo-Tapia
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, UNAM, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica - Red de Apoyo a la Investigación, UNAM, Mexico City, Mexico
| |
Collapse
|
22
|
Wadee R, Wadee AA. The Pathology of Lymphocytes, Histiocytes, and Immune Mechanisms in Mycobacterium tuberculosis Granulomas. Am J Trop Med Hyg 2021; 104:1796-1802. [PMID: 33720848 PMCID: PMC8103466 DOI: 10.4269/ajtmh.20-1372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 12/20/2022] Open
Abstract
Granuloma formation is the pathologic hallmark of tuberculosis (TB). Few studies have detailed the exact production of cytokines in human granulomatous inflammation and little is known about accessory molecule expressions in tuberculous granulomas. We aimed to identify some of the components of the immune response in granulomas in HIV-positive and -negative lymph nodes. We investigated the immunohistochemical profiles of CD4+, CD8+, CD68+, Th-17, Forkhead box P3 (FOXP3) cells, accessory molecule expression (human leukocyte antigen [HLA] classes I and II), and selected cytokines (interleukins 2, 4, and 6 and interferon-γ) of various cells, in granulomas within lymph nodes from 10 HIV-negative (-) and 10 HIV-positive (+) cases. CD4+ lymphocyte numbers were retained in HIV- granulomas, whereas CD4+:CD8 + cell were reversed in HIV+ TB granulomas. CD68 stained all histiocytes. Granulomas from the HIV+ group demonstrated a significant increase in FOXP3 cells. Interleukin-2 cytoplasmic expression was similar in both groups. Interferon-gamma (IFN-γ) expression was moderately increased, IL-6 was statistically increased and IL-4 expression was marginally lower in cells from HIV- than HIV+ TB granulomas. Greater numbers of cells expressed IFN-γ and IL-6 than IL-2 and IL-4 in HIV- TB granulomas. This study highlights the varied cytokine production in HIV-positive and -negative TB granulomas and indicates the need to identify localized tissue factors that play a role in mounting an adequate immune response required to halt infection. Although TB mono-infection causes variation in cell marker expression and cytokines in granulomas, alterations in TB and HIV coinfection are greater, pointing toward evolution of microorganism synergism.
Collapse
Affiliation(s)
- Reubina Wadee
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, and National Health Laboratory Service (NHLS), Johannesburg, South Africa;,Address correspondence to Reubina Wadee, University of the Witwatersrand/National Health Laboratory Service (NHLS), Rm. 3L30, University of the Witwatersrand, School of Pathology, 7 York Rd., Parktown, Johannesburg 2193, Republic of South Africa. E-mail:
| | | |
Collapse
|
23
|
Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF. Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 2021; 251:105-124. [PMID: 33797140 DOI: 10.1002/dvdy.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) plays a crucial role in tumor progression. It can inhibit early cancer stages but promotes tumor growth and development at the late stages of tumorigenesis. TGF-β1 has a potent immunosuppressive function within the tumor microenvironment that largely contributes to tumor cells' immune escape and reduction in cancer immunotherapy responses. Likewise, myeloid-derived suppressor cells (MDSCs) have been postulated as leading tumor promoters and a hallmark of cancer immune evasion mechanisms. This review attempts to analyze the prominent roles of both TGF-β1 and MDSCs and their interplay in cancer immunity. Furthermore, therapies against either TGF-β1 or MDSCs, and their potential synergistic combination with immunotherapies are discussed. Simultaneous TGF-β1 and MDSCs inhibition suggest a potential improvement in immunotherapy or subverted tumor immune resistance.
Collapse
Affiliation(s)
- Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Sonja S Mojsilovic
- Laboratory for Immunochemistry, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Bjelica
- Department of Hematology, Clinical Hospital Centre Dragisa Misovic, Belgrade, Serbia
| | - Juan F Santibanez
- Molecular oncology group, Institute for Medical Research, University of Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
24
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
25
|
Elashiry M, Elsayed R, Elashiry MM, Rashid MH, Ara R, Arbab AS, Elawady AR, Hamrick M, Liu Y, Zhi W, Lucas R, Vazquez J, Cutler CW. Proteomic Characterization, Biodistribution, and Functional Studies of Immune-Therapeutic Exosomes: Implications for Inflammatory Lung Diseases. Front Immunol 2021; 12:636222. [PMID: 33841418 PMCID: PMC8027247 DOI: 10.3389/fimmu.2021.636222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-derived exosomes (DC EXO), natural nanoparticles of endosomal origin, are under intense scrutiny in clinical trials for various inflammatory diseases. DC EXO are eobiotic, meaning they are well-tolerated by the host; moreover, they can be custom-tailored for immune-regulatory or -stimulatory functions, thus presenting attractive opportunities for immune therapy. Previously we documented the efficacy of immunoregulatory DCs EXO (regDCs EXO) as immunotherapy for inflammatory bone disease, in an in-vivo model. We showed a key role for encapsulated TGFβ1 in promoting a bone sparing immune response. However, the on- and off-target effects of these therapeutic regDC EXO and how target signaling in acceptor cells is activated is unclear. In the present report, therapeutic regDC EXO were analyzed by high throughput proteomics, with non-therapeutic EXO from immature DCs and mature DCs as controls, to identify shared and distinct proteins and potential off-target proteins, as corroborated by immunoblot. The predominant expression in regDC EXO of immunoregulatory proteins as well as proteins involved in trafficking from the circulation to peripheral tissues, cell surface binding, and transmigration, prompted us to investigate how these DC EXO are biodistributed to major organs after intravenous injection. Live animal imaging showed preferential accumulation of regDCs EXO in the lungs, followed by spleen and liver tissue. In addition, TGFβ1 in regDCs EXO sustained downstream signaling in acceptor DCs. Blocking experiments suggested that sustaining TGFβ1 signaling require initial interaction of regDCs EXO with TGFβ1R followed by internalization of regDCs EXO with TGFβ1-TGFβ1R complex. Finally, these regDCs EXO that contain immunoregulatory cargo and showed biodistribution to lungs could downregulate the main severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target receptor, ACE2 on recipient lung parenchymal cells via TGFβ1 in-vitro. In conclusion, these results in mice may have important immunotherapeutic implications for lung inflammatory disorders.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States.,Department of Endodontics, College of Dentistry, Ainshams University, Cairo, Egypt
| | - Mohammad H Rashid
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ali S Arbab
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ahmed R Elawady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, at Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
26
|
Sun X, Bernhardt SM, Glynn DJ, Hodson LJ, Woolford L, Evdokiou A, Yan C, Du H, Robertson SA, Ingman WV. Attenuated TGFB signalling in macrophages decreases susceptibility to DMBA-induced mammary cancer in mice. Breast Cancer Res 2021; 23:39. [PMID: 33761981 PMCID: PMC7992865 DOI: 10.1186/s13058-021-01417-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFB1) is a multi-functional cytokine that regulates mammary gland development and cancer progression through endocrine, paracrine and autocrine mechanisms. TGFB1 also plays roles in tumour development and progression, and its increased expression is associated with an increased breast cancer risk. Macrophages are key target cells for TGFB1 action, also playing crucial roles in tumourigenesis. However, the precise role of TGFB-regulated macrophages in the mammary gland is unclear. This study investigated the effect of attenuated TGFB signalling in macrophages on mammary gland development and mammary cancer susceptibility in mice. METHODS A transgenic mouse model was generated, wherein a dominant negative TGFB receptor is activated in macrophages, in turn attenuating the TGFB signalling pathway specifically in the macrophage population. The mammary glands were assessed for morphological changes through wholemount and H&E analysis, and the abundance and phenotype of macrophages were analysed through immunohistochemistry. Another cohort of mice received carcinogen 7,12-dimethylbenz(a)anthracene (DMBA), and tumour development was monitored weekly. Human non-neoplastic breast tissue was also immunohistochemically assessed for latent TGFB1 and macrophage marker CD68. RESULTS Attenuation of TGFB signalling resulted in an increase in the percentage of alveolar epithelium in the mammary gland at dioestrus and an increase in macrophage abundance. The phenotype of macrophages was also altered, with inflammatory macrophage markers iNOS and CCR7 increased by 110% and 40%, respectively. A significant decrease in DMBA-induced mammary tumour incidence and prolonged tumour-free survival in mice with attenuated TGFB signalling were observed. In human non-neoplastic breast tissue, there was a significant inverse relationship between latent TGFB1 protein and CD68-positive macrophages. CONCLUSIONS TGFB acts on macrophage populations in the mammary gland to reduce their abundance and dampen the inflammatory phenotype. TGFB signalling in macrophages increases mammary cancer susceptibility potentially through suppression of immune surveillance activities of macrophages.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/adverse effects
- Animals
- Disease Susceptibility
- Disease-Free Survival
- Epithelial Cells/metabolism
- Estrous Cycle
- Female
- Humans
- Inflammation
- Macrophages/metabolism
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Transgenic
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Signal Transduction
- Smad2 Protein/metabolism
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Xuan Sun
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sarah M Bernhardt
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Danielle J Glynn
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Leigh J Hodson
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Andreas Evdokiou
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Sarah A Robertson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Wendy V Ingman
- Discipline of Surgery, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, Australia.
- Discipline of Surgery, The Queen Elizabeth Hospital, DX465702, 28 Woodville Rd., Woodville, 5011, Australia.
| |
Collapse
|
27
|
Nagasaki K, Nakashima A, Tamura R, Ishiuchi N, Honda K, Ueno T, Doi S, Kato Y, Masaki T. Mesenchymal stem cells cultured in serum-free medium ameliorate experimental peritoneal fibrosis. Stem Cell Res Ther 2021; 12:203. [PMID: 33757592 PMCID: PMC7986267 DOI: 10.1186/s13287-021-02273-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/08/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) provide potential treatments for peritoneal fibrosis. However, MSCs cultured in media containing serum bring risks of infection and other problems. In this study, we compared the effect of human MSCs in serum-free medium (SF-MSCs) on peritoneal fibrosis with that of MSCs cultured in medium containing 10% fetal bovine serum (10%MSCs). METHODS Peritoneal fibrosis was induced by intraperitoneally injecting 0.1% chlorhexidine gluconate (CG). SF-MSCs or 10%MSCs were intraperitoneally administered 30 min after the CG injection. Ten days after the CG and MSC injections, we performed histological analyses and peritoneal equilibrium testing. In the in vitro experiments, we used transforming growth factor (TGF)-β1-stimulated human peritoneal mesothelial cells incubated in conditioned medium from MSCs to examine whether the SF-MSCs showed enhanced ability to produce antifibrotic humoral factors. RESULTS Histological staining showed that the SF-MSCs significantly suppressed CG-induced cell accumulation and thickening compared with that of the 10%MSCs. Additionally, the SF-MSCs significantly inhibited mesenchymal cell expression, extracellular matrix protein deposition and inflammatory cell infiltration. Peritoneal equilibration testing showed that compared with administering 10%MSCs, administering SF-MSCs significantly reduced the functional impairments of the peritoneal membrane. The in vitro experiments showed that although the conditioned medium from MSCs suppressed TGF-β1 signaling, the suppression did not significantly differ between the SF-MSCs and 10%MSCs. CONCLUSIONS Serum-free culture conditions can enhance the antifibrotic abilities of MSCs by suppressing inflammation. Administering ex vivo expanded SF-MSCs may be a potential therapy for preventing peritoneal fibrotic progression.
Collapse
Affiliation(s)
- Kohei Nagasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan. .,Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.
| | - Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Kiyomasa Honda
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Yukio Kato
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan.,TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
| |
Collapse
|
28
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
29
|
Bmp8a is an essential positive regulator of antiviral immunity in zebrafish. Commun Biol 2021; 4:318. [PMID: 33750893 PMCID: PMC7943762 DOI: 10.1038/s42003-021-01811-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein (BMP) is a kind of classical multi-functional growth factor that plays a vital role in the formation and maintenance of bone, cartilage, muscle, blood vessels, and the regulation of adipogenesis and thermogenesis. However, understanding of the role of BMPs in antiviral immunity is still limited. Here we demonstrate that Bmp8a is a newly-identified positive regulator for antiviral immune responses. The bmp8a−/− zebrafish, when infected with viruses, show reduced antiviral immunity and increased viral load and mortality. We also show for the first time that Bmp8a interacts with Alk6a, which promotes the phosphorylation of Tbk1 and Irf3 through p38 MAPK pathway, and induces the production of type I interferons (IFNs) in response to viral infection. Our study uncovers a previously unrecognized role of Bmp8a in regulation of antiviral immune responses and provides a target for controlling viral infection. Zhang, Liu and colleagues identify the role of Bmp8a in antiviral immunity in zebrafish and provide mechanistic insight into its function. Bmp8a could serve as a future target for investigative studies of antiviral immune responses.
Collapse
|
30
|
Polak ME, Singh H. Tolerogenic and immunogenic states of Langerhans cells are orchestrated by epidermal signals acting on a core maturation gene module. Bioessays 2021; 43:e2000182. [PMID: 33645739 DOI: 10.1002/bies.202000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs), residing in the epidermis, are able to induce potent immunogenic responses and also to mediate immune tolerance. We propose that tolerogenic and immunogenic responses of LCs are directed by signaling from the epidermis and involve counter-acting gene circuits that are coupled to a core maturation gene module. We base our analysis on recent genetic and genomic findings facilitating the understanding of the molecular mechanisms controlling these divergent immune functions. Comparing gene regulatory network (GRN) analyses of various types of dendritic cells (DCs) including LCs we integrate signaling-dependent (TGFβ, EpCAM, β-Catenin) and transcription factor (IRF4, IRF1, NFκB) regulated gene circuits that appear to orchestrate the distinctive LC functional states. Our model proposes, that while epidermal signaling in the steady-state promotes LC tolerogenic function, the disruption of cell-cell contacts coupled with inflammatory signaling induces LC immunogenic programing. The conceptual framework emphasizes the sensing of discrete epidermal and inflammatory cues by resident LCs in dictating their genomic programing and cell state dynamics.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Lopes I, Altab G, Raina P, de Magalhães JP. Gene Size Matters: An Analysis of Gene Length in the Human Genome. Front Genet 2021; 12:559998. [PMID: 33643374 PMCID: PMC7905317 DOI: 10.3389/fgene.2021.559998] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
While it is expected for gene length to be associated with factors such as intron number and evolutionary conservation, we are yet to understand the connections between gene length and function in the human genome. In this study, we show that, as expected, there is a strong positive correlation between gene length, transcript length, and protein size as well as a correlation with the number of genetic variants and introns. Among tissue-specific genes, we find that the longest transcripts tend to be expressed in the blood vessels, nerves, thyroid, cervix uteri, and the brain, while the smallest transcripts tend to be expressed in the pancreas, skin, stomach, vagina, and testis. We report, as shown previously, that natural selection suppresses changes for genes with longer transcripts and promotes changes for genes with smaller transcripts. We also observe that genes with longer transcripts tend to have a higher number of co-expressed genes and protein-protein interactions, as well as more associated publications. In the functional analysis, we show that bigger transcripts are often associated with neuronal development, while smaller transcripts tend to play roles in skin development and in the immune system. Furthermore, pathways related to cancer, neurons, and heart diseases tend to have genes with longer transcripts, with smaller transcripts being present in pathways related to immune responses and neurodegenerative diseases. Based on our results, we hypothesize that longer genes tend to be associated with functions that are important in the early development stages, while smaller genes tend to play a role in functions that are important throughout the whole life, like the immune system, which requires fast responses.
Collapse
Affiliation(s)
| | | | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Song G, Luo BH. Atypical structure and function of integrin α V β 8. J Cell Physiol 2020; 236:4874-4887. [PMID: 33368230 DOI: 10.1002/jcp.30242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
Integrins are heterodimeric transmembrane proteins that play important roles in various biological processes. Most integrins serve as adhesion molecules and transmit bidirectional signaling across the cell membrane through global conformational changes from the bent closed to the extended open conformation. However, integrin β8 is distinctive in structure and function. Its cytoplasmic domain lacks the conserved protein-binding sequence, which is important in transmitting inside-out signals, suggesting that integrin β8 may have a different activation mechanism or lack such signaling. In addition, the ligand-binding or activating metal ion Mn2+ does not induce a global conformational change in integrin β8 . It may have only one conformation, that is, an extended, closed conformation, but with high affinity for ligands under physiological conditions, and is, therefore, considered an atypical integrin member. The extended structure and high ligand-binding affinity of integrin αv β8 make it ideal for encountering and binding ligands expressed on an opposing cell or in the extracellular matrix. In this review, we summarize the progress in integrin β8 research with a focus on its distinctive function and structure among integrin members.
Collapse
Affiliation(s)
- Guannan Song
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| | - Bing-Hao Luo
- Department of Life Science, University of Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
33
|
Hachim D, LoPresti ST, Rege RD, Umeda Y, Iftikhar A, Nolfi AL, Skillen CD, Brown BN. Distinct macrophage populations and phenotypes associated with IL-4 mediated immunomodulation at the host implant interface. Biomater Sci 2020; 8:5751-5762. [PMID: 32945303 PMCID: PMC7641101 DOI: 10.1039/d0bm00568a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The host macrophage response to implants has shown to be affected by tissue location and physio-pathological conditions of the patient. Success in immunomodulatory strategies is thus predicated on the proper understanding of the macrophage populations participating on each one of these contexts. The present study uses an in vivo implantation model to analyze how immunomodulation via an IL-4 eluting implant affects distinct macrophage populations at the tissue-implant interface and how this may affect downstream regenerative processes. Populations identified as F4/80+, CD68+ and CD11b+ macrophages at the peri-implant space showed distinct susceptibility to polarize towards an M2-like phenotype under the effects of delivered IL-4. Also, the presence of the coating resulted in a significant reduction in F4/80+ macrophages, while other populations remained unchanged. These results suggests that the F4/80+ macrophage population may be predominant in the early stages of the host response at the surface of these implants, in contrast to CD11b+ macrophage populations which were either fewer in number or located more distant from the implant surface. Gene expression assays showed increased proteolytic activity and diminished matrix deposition as possible mechanisms explaining the decreased fibrotic capsule deposition and improved peri-implant tissue quality shown in previous studies using IL-4 eluting coatings. The pattern of M2-like gene expression promoted by IL-4 was correlated with glycosaminoglycan production within the site of implantation at early stages of the host response, suggesting a significant role in this response. These findings demonstrate that immunomodulatory strategies can be utilized to design and implement targeted delivery for improving biomaterial performance.
Collapse
Affiliation(s)
- Daniel Hachim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Peng C, Cohen DJ. Advances in the pharmacotherapeutic management of esophageal squamous cell carcinoma. Expert Opin Pharmacother 2020; 22:93-107. [PMID: 33034212 DOI: 10.1080/14656566.2020.1813278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Esophageal squamous cancer remains an important cause of mortality worldwide with two new immunotherapy drugs recently approved for metastatic disease. AREAS COVERED The authors review the epidemiology and genomics of esophageal squamous cell carcinoma. They also examine prior trials involving targeted agents under investigation as well immunotherapies that have been approved and novel combinations. EXPERT OPINION Great advances have been made in characterizing the molecular changes in esophageal carcinoma. However, relatively few drugs have shown benefit in this disease. Targeted therapies have not shown to improve survival although many of these trials did not explore potential biomarkers. Pembrolizumab and nivolumab are now approved for esophageal squamous carcinoma but much more data are needed to understand how these agents may be used in non-metastatic settings. Novel treatments are still required as overall prognosis remains poor.
Collapse
Affiliation(s)
| | - Deirdre J Cohen
- Department of Hematology and Medical Oncology, Tisch Cancer Institute, Mount Sinai Health , New York, NY, USA
| |
Collapse
|
35
|
Mohammadnejad A, Li S, Duan H, Tan Q. Network based analysis of microarray gene expression profiles in response to electroacupuncture. J Tradit Complement Med 2020; 10:471-477. [PMID: 32953563 PMCID: PMC7485279 DOI: 10.1016/j.jtcme.2019.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 12/04/2022] Open
Abstract
Electroacupuncture (EA) has been extensively considered as a tool for treating diseases and relieving various pains. However, understanding the molecular mechanisms underlying its effect is of high importance. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on data collected from a microarray experiment to investigate the relationship underlying EA within three factors, time, frequency and tissue regions (periaqueductal grey (PAG) and spinal dorsal horn (DH)) as well as the biological implication of gene expression changes. Gene expression on rats in PAG-DH regions induced by EA with 2 Hz and 100 Hz at l h and 24 h were measured using microarray technology. The WGCNA was performed to identify distinct network modules related to EA effects. To find the biological function of genes and pathways, the gene ontology (GO) Consortium was applied and the gene-gene interaction network of top genes in important modules was visualized. We identified one network module (466 genes) which is significantly associated with time, another module (402 genes) significantly related to frequency, and three modules each consisting of 1144, 402 and 3148 genes that are significantly associated with tissue regions. Furthermore, meaningful biological pathways were enriched in association with each of the experimental factors during EA stimulation. Our analysis showed the robustness of WGCNA and revealed important genes within specific modules and pathways which might be activated in response to EA analgesia. The findings may help to clarify the underlying mechanisms of EA and provide references for future verification of this study.
Collapse
Affiliation(s)
- Afsaneh Mohammadnejad
- Unit of Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Denmark
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark
| | - Hongmei Duan
- Institute for Clinical Medicine, Copenhagen University, Denmark
| | - Qihua Tan
- Unit of Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark
| |
Collapse
|
36
|
Zhang A, Paidassi H, Lacy-Hulbert A, Savill J. Apoptotic cells induce CD103 expression and immunoregulatory function in myeloid dendritic cell precursors through integrin αv and TGF-β activation. PLoS One 2020; 15:e0232307. [PMID: 32667911 PMCID: PMC7363096 DOI: 10.1371/journal.pone.0232307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 12/05/2022] Open
Abstract
In the mammalian gut CD103+ve myeloid DCs are known to suppress inflammation threatened by luminal bacteria, but stimuli driving DC precursor maturation towards this beneficial phenotype are incompletely understood. We isolated CD11+ve DCs from mesenteric lymph nodes (MLNs) of healthy mice; CD103+ve DCs were 8–24 fold more likely than CD103-ve DCs to exhibit extensive of prior phagocytosis of apoptotic intestinal epithelial cells. However, CD103+ve and CD103-ve MLN DCs exhibited similar ex vivo capacity to ingest apoptotic cells, indicating that apoptotic cells might drive immature DC maturation towards the CD103+ve phenotype. When cultured with apoptotic cells, myeloid DC precursors isolated from murine bone marrow and characterised as lineage-ve CD103-ve, displayed enhanced expression of CD103 and β8 integrin and acquired increased capacity to induce T regulatory lymphocytes (Tregs) after 7d in vitro. However, DC precursors isolated from αv-tie2 mice lacking αv integrins in the myeloid line exhibited reduced binding of apoptotic cells and complete deficiency in the capacity of apoptotic cells and/or latent TGF-β1 to enhance CD103 expression in culture, whereas active TGF-β1 increased DC precursor CD103 expression irrespective of αv expression. Fluorescence microscopy revealed clustering of αv integrin chains and latent TGF-β1 at points of contact between DC precursors and apoptotic cells. We conclude that myeloid DC precursors can deploy αv integrin to orchestrate binding of apoptotic cells, activation of latent TGF-β1 and acquisition of the immunoregulatory CD103+ve β8+ve DC phenotype. This implies that a hitherto unrecognised consequence of apoptotic cell interaction with myeloid phagocytes is programming that prevents inflammation.
Collapse
Affiliation(s)
- Ailiang Zhang
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland, United Kingdom
| | | | - Adam Lacy-Hulbert
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - John Savill
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Akkaya B, Shevach EM. Regulatory T cells: Master thieves of the immune system. Cell Immunol 2020; 355:104160. [PMID: 32711171 DOI: 10.1016/j.cellimm.2020.104160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Treg cells are the immune system's in-house combatants against pathological immune activation. Because they are vital to maintenance of peripheral tolerance, it is important to understand how they perform their functions. To this end, various mechanisms have been proposed for Treg-mediated immune inhibition. A major group of mechanisms picture Treg cells as skilled thieves stealing a plethora of molecules that would otherwise promote immune effector functions. This suggests that several million years of evolution have endowed Treg cells with efficient ways to deprive immune effectors of activating stimuli to prevent immunopathology for survival of the host. Although we are still long way from deciphering their complete set of tricks, this review will focus on the types of "crimes" committed by these master thieves in both secondary lymphoid organs and non-lymphoid tissue.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Halder LD, Jo EAH, Hasan MZ, Ferreira-Gomes M, Krüger T, Westermann M, Palme DI, Rambach G, Beyersdorf N, Speth C, Jacobsen ID, Kniemeyer O, Jungnickel B, Zipfel PF, Skerka C. Immune modulation by complement receptor 3-dependent human monocyte TGF-β1-transporting vesicles. Nat Commun 2020; 11:2331. [PMID: 32393780 PMCID: PMC7214408 DOI: 10.1038/s41467-020-16241-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles have an important function in cellular communication. Here, we show that human and mouse monocytes release TGF-β1-transporting vesicles in response to the pathogenic fungus Candida albicans. Soluble β-glucan from C. albicans binds to complement receptor 3 (CR3, also known as CD11b/CD18) on monocytes and induces the release of TGF-β1-transporting vesicles. CR3-dependence is demonstrated using CR3-deficient (CD11b knockout) monocytes generated by CRISPR-CAS9 genome editing and isolated from CR3-deficient (CD11b knockout) mice. These vesicles reduce the pro-inflammatory response in human M1-macrophages as well as in whole blood. Binding of the vesicle-transported TGF-β1 to the TGF-β receptor inhibits IL1B transcription via the SMAD7 pathway in whole blood and induces TGFB1 transcription in endothelial cells, which is resolved upon TGF-β1 inhibition. Notably, human complement-opsonized apoptotic bodies induce production of similar TGF-β1-transporting vesicles in monocytes, suggesting that the early immune response might be suppressed through this CR3-dependent anti-inflammatory vesicle pathway.
Collapse
Affiliation(s)
- Luke D Halder
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Emeraldo A H Jo
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Mohammad Z Hasan
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Marta Ferreira-Gomes
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, University Hospital Jena, 07743, Jena, Germany
| | - Diana I Palme
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, 97070, Würzburg, Germany
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Friedrich Schiller University, 07745, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.,Friedrich Schiller University, 07743, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany.
| |
Collapse
|
39
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
40
|
Bai XY, Liu P, Chai YW, Wang Y, Ren SH, Li YY, Zhou H. Artesunate attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice. Eur J Pharmacol 2020; 874:173020. [DOI: 10.1016/j.ejphar.2020.173020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
|
41
|
Botting RA, Haniffa M. The developing immune network in human prenatal skin. Immunology 2020; 160:149-156. [PMID: 32173857 PMCID: PMC7218404 DOI: 10.1111/imm.13192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Establishment of a well‐functioning immune network in skin is crucial for its barrier function. This begins in utero alongside the structural differentiation and maturation of skin, and continues to expand and diversify across the human lifespan. The microenvironment of the developing human skin supports immune cell differentiation and has an overall anti‐inflammatory profile. Immunologically inert and skewed immune populations found in developing human skin promote wound healing, and as such may play a crucial role in the structural changes occurring during skin development.
Collapse
Affiliation(s)
- Rachel Anne Botting
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Sanger Institute, Hinxton, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
Abstract
The dynamic interplay between neoplastic cells and the immune microenvironment regulates every step of the metastatic process. Immune cells contribute to invasion by secreting a cornucopia of inflammatory factors that promote epithelial-to-mesenchymal transition and remodeling of the stroma. Cancer cells then intravasate to the circulatory system assisted by macrophages and use several pathways to avoid recognition by cytotoxtic lymphocytes and phagocytes. Circulating tumor cells that manage to adhere to the vasculature and encounter premetastic niches are able to use the associated myeloid cells to extravasate into ectopic organs and establish a dormant microscopic colony. If successful at avoiding repetitive immune attack, dormant cells can subsequently grow into overt, clinically detectable metastatic lesions, which ultimately account to most cancer-related deaths. Understanding how disseminated tumor cells evade and corrupt the immune system during the final stages of metastasis will be pivotal in developing new therapeutic modalities that combat metastasis.
Collapse
Affiliation(s)
- Asmaa El-Kenawi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
43
|
Zhang A, Lacy-Hulbert A, Anderton S, Haslett C, Savill J. Apoptotic Cell-Directed Resolution of Lung Inflammation Requires Myeloid αv Integrin-Mediated Induction of Regulatory T Lymphocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1224-1235. [PMID: 32201264 PMCID: PMC7254048 DOI: 10.1016/j.ajpath.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/29/2020] [Accepted: 02/26/2020] [Indexed: 01/12/2023]
Abstract
Intratracheal instillation of apoptotic cells enhances resolution of experimental lung inflammation by incompletely understood mechanisms. We report that this intervention induces functional regulatory T lymphocytes (Tregs) in mouse lung experimentally inflamed by intratracheal administration of lipopolysaccharide. Selective depletion demonstrated that Tregs were necessary for maximal apoptotic cell–directed enhancement of resolution, and adoptive transfer of additional Tregs was sufficient to promote resolution without administering apoptotic cells. After intratracheal instillation, labeled apoptotic cells were observed in most CD11c+CD103+ myeloid dendritic cells migrating to mediastinal draining lymph nodes and bearing migratory and immunoregulatory markers, including increased CCR7 and β8 integrin (ITGB8) expression. In mice deleted for αv integrin in the myeloid line to reduce phagocytosis of dying cells by CD103+ dendritic cells, exogenous apoptotic cells failed to induce transforming growth factor-β1 expression or Treg accumulation and failed to enhance resolution of lipopolysaccharide-induced lung inflammation. We conclude that in murine lung, myeloid phagocytes encountering apoptotic cells can deploy αv integrin–mediated mechanisms to induce Tregs and enhance resolution of acute inflammation.
Collapse
Affiliation(s)
- Ailiang Zhang
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | | | - Stephen Anderton
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Christopher Haslett
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - John Savill
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
44
|
Li X, Dong Y, Yin H, Qi Z, Wang D, Ren S. Mesenchymal stem cells induced regulatory dendritic cells from hemopoietic progenitor cells through Notch pathway and TGF-β synergistically. Immunol Lett 2020; 222:49-57. [PMID: 32199868 DOI: 10.1016/j.imlet.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the attractive candidates in regenerative medicine of many clinical applications because of their low immunogenicity and immunomodulatory property. Our previous studies provided that mouse bone marrow-derived Sca-1+MSCs could drive the differentiation of regulatory DC (regDCs) (Scal-1+ BM-MSC-driven DC [sBM-DCs]) from hemopoietic progenitor cells (HPCs) and the Notch pathway played a critical role in maintaining the immunomodulatory property. However, the detailed mechanisms of their immunoregulatory capacity are not fully defined. In the present study, we show that BM-MSCs expressed high levels of Jagged 1 while sBM-DCs expressed high levels of Notch1. Jagged1 expressed on the surface of BM-MSCs initiated Notch signaling to maintain the immunomodulatory property of the sBM-DCs. The level of TGF-β is high in MSCs, either alone or coculture with HPCs medium. TGF-β plays a vital role in the proliferation and differentiation of sBM-DCs and inhibition of TGF-β reduce the number and increase the percentage of CD34, CD117, CD135 of generation cells. Thus, MSCs induced the regDCs from HPCs via the Notch signaling pathway and TGF-β synergistically. This study further broadens our understanding of the immunomodulatory mechanism and the potential therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China; Stem Cell Clinical Research Laboratory, Institute for Stem Cell Clinical Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yulei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Han Yin
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Zhanfeng Qi
- Department of Orthopedic Surgery, Dongchang People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Dawei Wang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| | - Shaoda Ren
- Stem Cell Clinical Research Laboratory, Institute for Stem Cell Clinical Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| |
Collapse
|
45
|
Rocha-Ramírez LM, Hernández-Ochoa B, Gómez-Manzo S, Marcial-Quino J, Cárdenas-Rodríguez N, Centeno-Leija S, García-Garibay M. Evaluation of Immunomodulatory Activities of the Heat-Killed Probiotic Strain Lactobacillus casei IMAU60214 on Macrophages In Vitro. Microorganisms 2020; 8:microorganisms8010079. [PMID: 31936101 PMCID: PMC7022880 DOI: 10.3390/microorganisms8010079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 12/16/2022] Open
Abstract
Most Lactobacillus species have beneficial immunological (“immunoprobiotic”) effects in the host. However, it is unclear how probiotic bacteria regulate immune responses. The present study investigated the effects of heat-killed Lactobacillus casei IMAU60214 on the activity of human monocyte-derived macrophages (MDMs). Human MDMs were treated with heat-killed L. casei at a ratio (bacteria/MDM) of 50:1, 100:1, 250:1, and 500:1, and then evaluated for the following: NO production, by Griess reaction; phagocytosis of FITC-labeled Staphylococcus aureus particles; cytokine secretion profile (tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-12p70, IL-10, and transforming growth factor (TGF)-β) by ELISA; and costimulatory molecule (CD80 and CD86) surface expression, by flow cytometry. Heat-killed L. casei IMAU60214 enhanced phagocytosis, NO production, cytokine release, and surface expression of CD80 and CD86 in a dose-dependent manner. All products were previously suppressed by pretreatment with a Toll-like receptor 2 (TLR2)-neutralizing antibody. Overall, our findings suggest that this probiotic strain promotes an M1-like pro-inflammatory phenotype through the TLR2 signaling pathway. These effects on macrophage phenotype help explain the probiotic efficacy of Lactobacillus and provide important information for the selection of therapeutic targets and treatments compatible with the immunological characteristics of this probiotic strain.
Collapse
Affiliation(s)
- Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico
- Correspondence: ; Tel.: +52-55-5228-9917 (ext. 2084)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica y Biología Celular, Hospital Infantil de México Federico Gómez, Secretaría de Salud. Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaria de Salud, Ciudad de México 04530, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Sara Centeno-Leija
- Consejo Nacional Ciencia y Tecnologia (CONACYT) Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28629, Mexico;
| | - Mariano García-Garibay
- Departamento de Ciencias de la Alimentación, Unidad Lerma, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col Vicentina, Ciudad de México 09340, Mexico;
| |
Collapse
|
46
|
The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019; 8:cells8121503. [PMID: 31771248 PMCID: PMC6952767 DOI: 10.3390/cells8121503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023] Open
Abstract
Fibrogenesis is a progressive scarring event resulting from disrupted regular wound healing due to repeated tissue injury and can end in organ failure, like in liver cirrhosis. The protagonists in this process, either liver-resident cells or patrolling leukocytes attracted to the site of tissue damage, interact with each other by soluble factors but also by direct cell–cell contact mediated by cell adhesion molecules. Since cell adhesion molecules also support binding to the extracellular matrix, they represent excellent biosensors, which allow cells to modulate their behavior based on changes in the surrounding microenvironment. In this review, we focus on selectins, cadherins, integrins and members of the immunoglobulin superfamily of adhesion molecules as well as some non-classical cell adhesion molecules in the context of hepatic fibrosis. We describe their liver-specific contributions to leukocyte recruitment, cell differentiation and survival, matrix remodeling or angiogenesis and touch on their suitability as targets in antifibrotic therapies.
Collapse
|
47
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
48
|
Abstract
Lymphatic vessels collect interstitial fluid that has extravasated from blood vessels and return it to the circulatory system. Another important function of the lymphatic network is to facilitate immune cell migration and antigen transport from the periphery to draining lymph nodes. This migration plays a crucial role in immune surveillance, initiation of immune responses and tolerance. Here we discuss the significance and mechanisms of lymphatic migration of innate and adaptive immune cells in homeostasis, inflammation and cancer.
Collapse
Affiliation(s)
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Kensington, NSW, Australia
| |
Collapse
|
49
|
Large-scale production and directed induction of functional dendritic cells ex vivo from serum-free expanded human hematopoietic stem cells. Cytotherapy 2019; 21:755-768. [PMID: 31105040 DOI: 10.1016/j.jcyt.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/01/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dendritic cells (DCs) that are derived from hematopoietic stem cells (HSCs) are the most potent antigen-presenting cells and play a pivotal role in initiating the immune response. Hence, large-scale production and direct induction of functional DCs ex vivo from HSCs are crucial to HSC research and clinical potential, such as vaccines for cancer and immune therapy. METHODS In a previous study, we developed a serum-free HSC expansion system (SF-HSC medium) to expand large numbers of primitive HSCs ex vivo. Herein, a DC induction and expansion medium (DC medium) was proposed to further generate large numbers of functional DCs from serum-free expanded HSCs, which were developed and optimized by factorial design and the steepest ascent method. RESULTS The DC medium is composed of effective basal medium (Iscove's modified Dulbecco's medium [IMDM]) and cytokines (2.9 ng/mL stem cell factor [SCF], 2.1 ng/mL Flt-3 ligand, 3.6 ng/mL interleukin [IL]-1β, 19.3 ng/mL granulocyte-macrophage colony-stimulating factor [GM-CSF] and 20.0 ng/mL tumor necrosis factor-α [TNF-α]). After 10-day culture in DC medium, the maximum fold expansion for accumulated CD1a+CD11c+ DCs was more than 4000-fold, and the induced DCs were characterized and confirmed by analysis of growth kinetics, surface antigen expression, endocytosis ability, mixed lymphocyte reaction, specific cytokine secretion and lipopolysaccharide stimulation. DISCUSSION In conclusion, the combination of DC medium and SF-HSC medium can efficiently induce and expand a large amount of functional DCs from a small scale of HSCs and might be a promising source of DCs for vaccine and immune therapy in the near future.
Collapse
|
50
|
Padberg F, Tarnow P, Luch A, Zellmer S. Minor structural modifications of bisphenol A strongly affect physiological responses of HepG2 cells. Arch Toxicol 2019; 93:1529-1541. [PMID: 31055635 DOI: 10.1007/s00204-019-02457-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Bisphenols represent a large group of structurally similar compounds. In contrast to bisphenol A (BPA) and bisphenol S (BPS), however, toxicological data are usually scarce, thus making bisphenols an ideal candidate for read-across assessments. BPA, bisphenol C (BPC) and a newly synthesized bisphenol A/C (BPA/C) differ only by one methyl group attached to the phenolic ring. Their EC50 values for cytotoxicity and logPOW values are comparable. However, the estrogenic activities of these bisphenols are not comparable and among this group only BPC leads to a decrease of the mitochondrial membrane potential and ATP concentration in HepG2 cells. Conversely, the cell division rate was decreased by BPS, BPA, BPC and BPA/C at 10% toxicity (EC10). At lower concentrations, only BPC significantly affected proliferation. The pro-inflammatory cytokines TGFB1 and TNF were significantly upregulated by BPC only, while SPP1 was upregulated by BPA, BPA/C and BPS. BPC led to the release of cytochrome c from mitochondria, indicating that this compound is capable of inducing apoptosis. In conclusion, the read-across approach revealed non-applicable in the case of the various structurally and physicochemically comparable bisphenols tested in this study, as the presence of one or two additional methyl group(s) attached at the phenol ring profoundly affected cellular physiology.
Collapse
Affiliation(s)
- F Padberg
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany.
| | - P Tarnow
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany
| | - A Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany
| | - S Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|