1
|
Villareal-Rivota B, Meneses-Preza YG, Campillo-Navarro M, Ruiz-Sánchez BP, Soria-Castro R, Barrios-Payán J, Mata-Espinosa D, Donis-Maturano L, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Hernández-Pando R, Chacón-Salinas R. Impaired control of Mycobacterium tuberculosis infection in mast cell-deficient Kit W-sh/W-sh mice. Tuberculosis (Edinb) 2025; 150:102587. [PMID: 39612800 DOI: 10.1016/j.tube.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Tuberculosis (TB) is a global health problem with diverse clinical manifestations. Different cells of the immune response participate in containing the infection, mainly through the development of granulomas. Mast cells (MCs) are hematopoietic cells that participate in the immune response to different pathogens, and in vitro evidence indicates that they can be activated by Mycobacterium tuberculosis (Mtb). The aim of this study was to evaluate the role of MCs in a murine TB model. We observed that KitW-sh/W-sh mast cell-deficient mice showed increased bacterial load in the lungs and the spleen compared to wild-type C57BL/6 mice. Furthermore, MC-deficient mice showed fewer pulmonary granulomas but an early higher inflammatory infiltrate. Interestingly, serum cytokine levels were altered in MC-deficient mice, which showed increased levels of IL-4, IL-5, and IL-22 during the early phase of the infection but increased levels of IFN-γ, IL-9, IL-10, and IL-21 during the late phase of the infection. These results show that mast cells play an important role during Mtb infection by modulating the immune response to the bacteria.
Collapse
Affiliation(s)
- Berenice Villareal-Rivota
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Bibiana Patricia Ruiz-Sánchez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Luis Donis-Maturano
- Faculty of Higher Studies-Iztacala, National Autonomous University of Mexico, Tlalnepantla de Baz, 54090, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- División de Ciencia Básica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.
| |
Collapse
|
2
|
Elaydi S, Lozi R. Global dynamics of discrete mathematical models of tuberculosis. JOURNAL OF BIOLOGICAL DYNAMICS 2024; 18:2323724. [PMID: 38493487 DOI: 10.1080/17513758.2024.2323724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional R 0 which is based on the disease-free equilibrium, and a new net reproduction number R 0 ( E ∗ ) based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if R 0 ≤ 1 and unstable if R 0 > 1 . Moreover, the endemic equilibrium is locally asymptotically stable if R 0 ( E ∗ ) < 1 < R 0 .
Collapse
Affiliation(s)
- Saber Elaydi
- Department of Mathematics, Trinity University, San Antonio, TX, USA
| | - René Lozi
- Department of Mathematics, Laboratory J.A. Dieudonné, CNRS, Université Côte d'Azur, France
| |
Collapse
|
3
|
He R, Zhang Q, Wang L, Hu Y, Qiu Y, Liu J, You D, Cheng J, Cao X. Exploring the feasibility of using mice as a substitute model for investigating microglia in aging and Alzheimer's disease though single cell analysis. PLoS One 2024; 19:e0311374. [PMID: 39591421 PMCID: PMC11594518 DOI: 10.1371/journal.pone.0311374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 11/28/2024] Open
Abstract
OBJECTIVE To guide animal experiments, we investigated the similarities and differences between humans and mice in aging and Alzheimer's disease (AD) at the single-nucleus RNA sequencing (snRNA-seq) or single-cell RNA sequencing (scRNA-seq) level. METHODS Microglia cells were extracted from dataset GSE198323 of human post-mortem hippocampus. The distributions and proportions of microglia subpopulation cell numbers related to AD or age were compared. This comparison was done between GSE198323 for humans and GSE127892 for mice, respectively. The Seurat R package and harmony R package were used for data analysis and batch effect correction. Differentially expressed genes (DEGs) were identified by FindMarkers function with MAST test. Comparative analyses were conducted on shared genes in DEGs associated with age and AD. The analyses were done between human and mouse using various bioinformatics techniques. The analysis of genes in DEGs related to age was conducted. Similarly, the analysis of genes in DEGs related to AD was performed. Cross-species analyses were conducted using orthologous genes. Comparative analyses of pseudotime between humans and mice were performed using Monocle2. RESULTS (1) Similarities: The proportion of microglial subpopulation Cell_APOE/Apoe shows consistent trends, whether in AD or normal control (NC) groups in both humans and mice. The proportion of Cell_CX3CR1/Cx3cr1, representing homeostatic microglia, remains stable with age in NC groups across species. Tuberculosis and Fc gamma R-mediated phagocytosis pathways are shared in microglia responses to age and AD across species, respectively. (2) Differences: IL1RAPL1 and SPP1 as marker genes are more identifiable in human microglia compared to their mouse counterparts. Most genes of DEGs associated with age or AD exhibit different trends between humans and mice. Pseudotime analyses demonstrate varying cell density trends in microglial subpopulations, depending on age or AD across species. CONCLUSIONS Mouse Apoe and Cell_Apoe maybe serve as proxies for studying human AD, while Cx3cr1 and Cell_Cx3cr1 are suitable for human aging studies. However, AD mouse models (App_NL_G_F) have limitations in studying human genes like IL1RAPL1 and SPP1 related to AD. Thus, mouse models cannot fully replace human samples for AD and aging research.
Collapse
Affiliation(s)
- Rong He
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Qiang Zhang
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Limei Wang
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Yiwen Hu
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Yue Qiu
- Dermatology Department of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Liu
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Dingyun You
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Jishuai Cheng
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Xue Cao
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Guo S, Ouyang J, Hu Z, Cao T, Huang C, Mou J, Gu X, Liu J. Intranasal vaccination with engineered BCG expressing CCL2 induces a stronger immune barrier against Mycobacterium tuberculosis than BCG. Mol Ther 2024; 32:3990-4005. [PMID: 39295146 PMCID: PMC11573603 DOI: 10.1016/j.ymthe.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Intradermal Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccination is currently the only licensed strategy for preventing tuberculosis (TB). It provides limited protection against pulmonary TB. To enhance the efficacy of BCG, we developed a recombinant BCG expressing exogenous monocyte chemoattractant CC chemokine ligand 2 (CCL2) called rBCG-CCL2. Co-culturing macrophages with rBCG-CCL2 enhances their abilities in migration, phagocytosis, and effector molecule expression. In the mouse model, intranasal vaccination with rBCG-CCL2 induced greater immune cell infiltration and a more extensive innate immune response in lung compared to vaccination with parental BCG, as determined by multiparameter flow cytometry, transcriptomic analysis, and pathological assessments. Moreover, rBCG-CCL2 induced a high frequency of activated macrophages and antigen-specific T helper 1 (Th1) and Th17 T cells in lungs. The enhanced immune microenvironment responded more effectively to intravenous challenge with Mycobacterium tuberculosis (Mtb) H37Ra, leading to significant reductions in H37Ra burden and pathological damage to the lungs and spleen. Intranasal rBCG-CCL2-vaccinated mice rapidly initiated pro-inflammatory Th1 cytokine release and reduced pathological damage to the lungs and spleen during the early stage of H37Ra challenge. The finding that co-expression of CCL2 synergistically enhances the immune barrier induced by BCG provides a model for defining immune correlates and mechanisms of vaccine-elicited protection against TB.
Collapse
Affiliation(s)
- Shaohua Guo
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jiangshan Ouyang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Zhiming Hu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Ting Cao
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Chunxu Huang
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jun Mou
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xinxia Gu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Liu
- Center for Infectious Disease and Vaccine, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
| |
Collapse
|
5
|
Guerrieri M, Bargagli E, Cassai L, Gangi S, Genovese M, Viani M, Melani AS. Pulmonary tuberculosis in non-HIV adults: an evergreen old-fashioned disease in high-income countries. A narrative review. Expert Rev Respir Med 2024; 18:861-872. [PMID: 39434706 DOI: 10.1080/17476348.2024.2418932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Tuberculosis (TB), an infective air-borne disease with worldwide non-homogeneous distribution, remains a top cause of morbidity and mortality. TB control is linked to early diagnosis and proper treatment of contagious TB cases and infected subjects at high risk of developing TB. AREAS COVERED A narrative review of pulmonary TB in non-HIV adults with reference to high-income countries. Modern medicine offers several advancements in diagnostics and therapeutics of TB, but they often remain to be extensively implemented in real life. In high-income countries TB is now relatively uncommon, but it remains a health and socio-economic burden that should not be underestimated. EXPERT OPINION Pulmonologists should maintain expertise toward TB for several reasons. First, the lung is the most common and the infectious moiety of TB. Second, TB remains a global issue due to common travels of western people and migrations from areas with high incidence of TB. Third, as TB has heterogenous clinics, its prompt diagnosis may be difficult. Fourth, TB is a curable disease, but its management is complex and predisposes to poor adherence with failures/relapses and selection of drug-resistant strains.
Collapse
Affiliation(s)
- Marco Guerrieri
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Azienda Ospedaliera Universitaria Senese, Policlinico S. Maria alle Scotte, Siena, Italy
| | - Elena Bargagli
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Azienda Ospedaliera Universitaria Senese, Policlinico S. Maria alle Scotte, Siena, Italy
| | - Lucia Cassai
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Azienda Ospedaliera Universitaria Senese, Policlinico S. Maria alle Scotte, Siena, Italy
| | - Sara Gangi
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Azienda Ospedaliera Universitaria Senese, Policlinico S. Maria alle Scotte, Siena, Italy
| | - Michele Genovese
- Unit of Respiratory Diseases, Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Magda Viani
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Azienda Ospedaliera Universitaria Senese, Policlinico S. Maria alle Scotte, Siena, Italy
| | - Andrea S Melani
- Department of Medical Sciences, Surgery and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Azienda Ospedaliera Universitaria Senese, Policlinico S. Maria alle Scotte, Siena, Italy
| |
Collapse
|
6
|
Jeyachandran DS, Pusam Y. Tuberculosis vaccine - A timely analysis of the drawbacks for the development of novel vaccines. Indian J Tuberc 2024; 71:453-459. [PMID: 39278679 DOI: 10.1016/j.ijtb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 09/18/2024]
Abstract
The BCG vaccine, Bacille Calmette Guerin, holds the distinction of being the most widely administered vaccine. Remarkably, a century has passed since its discovery; however, puzzlingly, questions persist regarding the effectiveness of the immune response it triggers. After years of diligent observation, it has been deduced that BCG imparts immunity primarily to a specific age group, namely children. This prompts a significant query: the rationale behind BCG's limited efficacy against TB in particular age groups and populations remains elusive. Beyond vaccinations, drug therapy has emerged as an alternative route for TB prevention. Nonetheless, this approach faces challenges in the contemporary landscape, marked by the emergence of new instances of MDR-TB and XDR-TB, compounded by the financial burden of treatment. It's noteworthy that BCG remains the sole WHO-approved vaccine for TB. This comprehensive review delves into several aspects, encompassing the immune response during infection, the shortcomings of BCG in conferring immunity, and the various factors contributing to its limitations. Within this discourse, we explore potential explanations for the observed deficiencies of the BCG vaccine and consider how these insights could catalyze the development of future vaccines. The current landscape of novel vaccine development for TB is illuminated, including a spotlight on the latest vaccine candidates.
Collapse
Affiliation(s)
- Dr Sivakamavalli Jeyachandran
- Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 77, Tamil Nadu, India.
| | - Yashika Pusam
- PG & Research Department of Biotechnology & Microbiology, National College Autonomous, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
7
|
Mukhtar F, Guarnieri A, Brancazio N, Falcone M, Di Naro M, Azeem M, Zubair M, Nicolosi D, Di Marco R, Petronio Petronio G. The role of Mycobacterium tuberculosis exosomal miRNAs in host pathogen cross-talk as diagnostic and therapeutic biomarkers. Front Microbiol 2024; 15:1441781. [PMID: 39176271 PMCID: PMC11340542 DOI: 10.3389/fmicb.2024.1441781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Tuberculosis (TB) is a global threat, affecting one-quarter of the world's population. The World Health Organization (WHO) reports that 6 million people die annually due to chronic illnesses, a statistic that includes TB-related deaths. This high mortality is attributed to factors such as the emergence of drug-resistant strains and the exceptional survival mechanisms of Mycobacterium tuberculosis (MTB). Recently, microRNAs (miRNAs) have garnered attention for their crucial role in TB pathogenesis, surpassing typical small RNAs (sRNA) in their ability to alter the host's immune response. For instance, miR-155, miR-125b, and miR-29a have been identified as key players in the immune response to MTB, particularly in modulating macrophages, T cells, and cytokine production. While sRNAs are restricted to within cells, exo-miRNAs are secreted from MTB-infected macrophages. These exo-miRNAs modify the function of surrounding cells to favor the bacterium, perpetuating the infection cycle. Another significant aspect is that the expression of these miRNAs affects specific genes and pathways involved in immune functions, suggesting their potential use in diagnosing TB and as therapeutic targets. This review compiles existing information on the immunomodulatory function of exosomal miRNAs from MTB, particularly focusing on disease progression and the scientific potential of this approach compared to existing diagnostic techniques. Thus, the aim of the study is to understand the role of exosomal miRNAs in TB and to explore their potential for developing novel diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Farwa Mukhtar
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Antonio Guarnieri
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Natasha Brancazio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Marilina Falcone
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Muhammad Azeem
- Department of Precision Medicine in the Medical, Surgical and Critical Care Area (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| | - Giulio Petronio Petronio
- Department of Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, Campobasso, Italy
| |
Collapse
|
8
|
Perez-Porcuna TM, Noguera-Julian A, Riera-Bosch MT, Macià-Rieradevall E, Santos-Santiago J, Rifà Pujol MÀ, Eril M, Aulet-Molist L, Padilla-Esteba E, Tórtola MT, Gómez i Prat J, Vilamala Bastarras A, Rebull-Fatsini JS, Papaleo A, Rius-Gordillo N, Gonçalves AQ, Naranjo-Orihuela À, Urgelles M, García-Lerín MG, Jimenez-Lladser G, Lorenzo-Pino B, Giuliano-Cuello MA, Pascual-Sánchez MT, Marco-García M, Abellana R, Espiau M, Altet-Gómez MN, Orcau-Palau A, Caylà JA, Soriano-Arandes A. Tuberculosis among children visiting friends & relatives. J Travel Med 2024; 31:taae037. [PMID: 38438137 PMCID: PMC11298048 DOI: 10.1093/jtm/taae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Most paediatric tuberculosis (TB) cases in low-TB-incidence countries involve children born to migrant families. This may be partially explained by trips to their countries of origin for visiting friends and relatives (VFR). We aimed to estimate the risk of latent TB infection (LTBI) and TB in children VFR. METHODS We conducted a prospective multicentric observational study in Catalonia (Spain) from June 2017 to December 2019. We enrolled children aged < 15 years with a negative tuberculin skin test (TST) at baseline and at least one parent from a high-TB-incidence country, and who had travelled to their parent's birth country for ≥21 days. TST and QuantiFERON-TB Gold Plus (QFT-Plus) were performed within 8-12 weeks post-return. LTBI was defined as a TST ≥5 mm and/or a positive QFT-Plus. RESULTS Five hundred children completed the study, equivalent to 78.2 person-years of follow-up (PYFU). Thirteen children (2.6%) were diagnosed with LTBI (16.6/per100 PYFU, 95%CI = 8.8-28.5), including two cases (0.4%) of TB (2.5/per100 PYFU, 95%CI = 0.3-9.3). LTBI incidence rates remained high after excluding BCG-vaccinated children (9.7/per100 PYFU, 95%CI = 3.9-20.0). Household tobacco smoke exposure was associated with LTBI (aOR = 3.9, 95%CI = 1.1-13.3). CONCLUSIONS The risk of LTBI in children VFR in high-TB-incidence countries may equal, or perhaps even exceed, the infection risk of the native population. The primary associated risk factor was the presence of smokers in the household. Furthermore, the incidence rate of active TB largely surpassed that of the countries visited. Children VFR in high-TB-incidence countries should be targeted for diagnostic and preventive interventions.
Collapse
Affiliation(s)
- Tomas M Perez-Porcuna
- TB Pediatric Unit, Research Foundation of Primary Health and Mútua Terassa University Hospital, Mútua Terrassa, Terrassa, Catalunya 08221, Spain
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Servei de Malalties Infeccioses, Institut de Recerca Pediàtrica Sant Joan de Déu, Barcelona 08950, Spain
| | | | | | - José Santos-Santiago
- Salut International i Malalties Transmisibles Drassanes, Institut Català de la Salut, Barcelona 08001, Spain
| | | | - Maria Eril
- EAP La Vall del Ges, Institut Català de la Salut, Barcelona 08007, Spain
| | | | | | - Maria Teresa Tórtola
- Microbiology Department, Hospital Universitari Vall d'Hebron, Barcelona 08035, Barcelona
| | - Jordi Gómez i Prat
- Public Health and Community Team (eSPiC), Unit of Tropical Medicine and International Health Drassanes-Vall d'Hebron (UTMIHD-VH), PROSICS, Barcelona 08028, Spain
| | - Anna Vilamala Bastarras
- Hospital Universitari de Vic, Multidisciplinary Inflammation Research group (MIRG), Barcelona 08500, Spain
| | | | - Andrea Papaleo
- CAP Magoria, Institut Català de la Salut, Barcelona 08014, Spain
| | - Neus Rius-Gordillo
- Servei de Pediatria, Hospital Universitari Sant Joan de Reus, Reus 43204, Spain
| | - Alessandra Q Gonçalves
- Unitat de Suport a la Recerca Terres de l'Ebre, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Tortosa 08007, Spain
| | | | - Marta Urgelles
- CAP Terrassa Sud, Fundació Assistencial Mútua Terrassa, Terrassa 08221, Spain
| | | | | | - Beatriz Lorenzo-Pino
- CAP Rubí Mútua Terrassa, Fundació Assistencial Mútua Terrassa, Terrassa 08221, Spain
| | | | | | | | - Rosa Abellana
- Departament de Fonaments Clínics. Unitat de Bioestadística. Universitat de Barcelona, Barcelona 08007, Spain
| | - Maria Espiau
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia 08035, Spain
| | | | | | - Joan A Caylà
- Barcelona Tuberculosis Research Unit Foundation, Barcelona 08036, Spain
| | - Antoni Soriano-Arandes
- Paediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia 08035, Spain
| |
Collapse
|
9
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
10
|
Rahman MA, Gelanew T, Barman S, Nainu F. Editorial: Vaccine-induced innate immunity and its role in viral infections. Front Immunol 2024; 15:1440061. [PMID: 39055719 PMCID: PMC11270504 DOI: 10.3389/fimmu.2024.1440061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tesfaye Gelanew
- Viral Diseases Research Division, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Soumik Barman
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
11
|
Badaoui A, Sasaninia K, Mohan AS, Beever A, Kachour N, Raien A, Kolloli A, Kumar R, Ramasamy S, Subbian S, Venketaraman V. Immune Responses to Mycobacterium tuberculosis Infection in the Liver of Diabetic Mice. Biomedicines 2024; 12:1370. [PMID: 38927576 PMCID: PMC11202211 DOI: 10.3390/biomedicines12061370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Individuals with uncontrolled diabetes are highly susceptible to tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) infection. Novel treatments for TB are needed to address the increased antibiotic resistance and hepatoxicity. Previous studies showed that the administration of liposomal glutathione (L-GSH) can mitigate oxidative stress, bolster a granulomatous response, and diminish the M. tb burden in the lungs of M. tb-infected mice. Nonetheless, the impact of combining L-GSH with conventional TB treatment (RIF) on the cytokine levels and granuloma formation in the livers of diabetic mice remains unexplored. In this study, we evaluated hepatic cytokine profiles, GSH, and tissue pathologies in untreated and L-GSH, RIF, and L-GSH+RIF treated diabetic (db/db) M. tb-infected mice. Our results indicate that treatment of M. tb-infected db/db mice with L-GSH+RIF caused modulation in the levels of pro-inflammatory cytokines and GSH in the liver and mitigation in the granuloma size in hepatic tissue. Supplementation with L-GSH+RIF led to a decrease in the M. tb burden by mitigating oxidative stress, promoting the production of pro-inflammatory cytokines, and restoring the cytokine balance. These findings highlight the potential of L-GSH+RIF combination therapy for addressing active EPTB, offering valuable insights into innovative treatments for M. tb infections.
Collapse
Affiliation(s)
- Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Aishvaryaa Shree Mohan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Abrianna Beever
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA
| | - Nala Kachour
- College of Natural and Agricultural Science, University of California Riverside, Riverside, CA 92521, USA
| | - Anmol Raien
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (A.B.); (K.S.); (A.S.M.); (A.R.)
| |
Collapse
|
12
|
Liang Y, Liang Y, Wang Q, Li Q, Huang Y, Li R, Pan X, Lie L, Xu H, Han Z, Liu H, Wen Q, Zhou C, Ma L, Zhou X. Viperin inhibits interferon-γ production to promote Mycobacterium tuberculosis survival by disrupting TBK1-IKKε-IRF3-axis and JAK-STAT signaling. Inflamm Res 2024; 73:897-913. [PMID: 38625657 PMCID: PMC11106103 DOI: 10.1007/s00011-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES AND DESIGN As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.
Collapse
Affiliation(s)
- Yao Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yun Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qi Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qianna Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Rong Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Xiaoxin Pan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
13
|
Nagar S, Nicholls D, Dawoud D. A systematic review of economic evaluations of pharmacological treatments for active tuberculosis. Front Public Health 2024; 12:1201512. [PMID: 38689771 PMCID: PMC11060080 DOI: 10.3389/fpubh.2024.1201512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
Objectives The continuing spread of tuberculosis (TB) worldwide, especially drug-resistant TB, poses a major challenge to healthcare systems globally. Addressing this requires appraising the cost effectiveness of existing pharmacological interventions against TB to identify key drivers of cost effectiveness and value and guide pharmaceutical innovation and novel drug regimen development. Methods Studies were identified from a search of six database: MEDLINE MEDLINE-In Process, MEDLINE Epub Ahead of Print, EMBASE, Cochrane Database of Systematic Reviews, and Econlit in July 2022. Two reviewers independently assessed all identified studies and reports using pre-defined inclusion/exclusion criteria. Study methodological quality was assessed, data were extracted in standard tables, and results were narratively synthesized. Results Overall, 991 studies and 53 HTA reports were identified with 20 studies and 3 HTA reports meeting the inclusion criteria. Quality assessment of the 20 studies identified 4 with minor limitations, while the remainder were assessed as having potentially or very serious limitations. Sixteen studies conducted cost-utility analyses, 6 conducted cost-effectiveness analyses, and 2 conducted cost-comparison analyses with some studies performing multiple analyses. The majority (n = 16) were model-based. Eleven studies analyzed the cost-effectiveness of bedaquiline, 6 compared shorter to longer/standard duration regimens, 2 assessed ethambutol, and 1 assessed delamanid. Key drivers of cost effectiveness were drug costs, the number of TB cases, the portion of cases with sputum culture conversion, treatment delivery costs, and treatment efficacy. Common value elements considered included adverse events, drug resistance, and improving treatment adherence. Conclusion Our results suggest that out of the pharmacological treatments assessed, bedaquiline is likely a cost-effective addition to existing treatment regimens/background treatment regimens, while ethambutol is not likely to be. Newer shorter regimens, even if more costly, seem to be more cost-effective compared to longer regimens. These results illustrate the limited number of novel cost-effective pharmacological interventions and highlight a need to develop new drugs/regimens against TB to overcome resistance, taking into account the key drivers of cost effectiveness and other value attributes identified from this review.
Collapse
Affiliation(s)
- Sarosh Nagar
- National Institute for Health and Care Excellence (NICE), London, United Kingdom
- Department of Chemistry & Department of Economics, Harvard College, Harvard University, Boston, MA, United States
| | - David Nicholls
- National Institute for Health and Care Excellence (NICE), London, United Kingdom
| | - Dalia Dawoud
- National Institute for Health and Care Excellence (NICE), London, United Kingdom
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Lawrence A. Bacillus Calmette-Guérin (BCG) Revaccination and Protection Against Tuberculosis: A Systematic Review. Cureus 2024; 16:e56643. [PMID: 38646352 PMCID: PMC11032142 DOI: 10.7759/cureus.56643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination remains a cornerstone in global efforts to combat tuberculosis (TB), a persistent public health threat worldwide. The purpose of this systematic review is to find out how well BCG revaccination protects against TB. This systematic review synthesized recent studies investigating the efficacy of BCG vaccination in preventing TB infection and disease. A total of 15 relevant publications were identified through a comprehensive search across multiple databases, including Cochrane Library, PubMed, Medline, and Scopus. The inclusion criteria encompassed studies involving humans, written in English, and categorized as case-control, cohort, meta-analysis, or full-text. Studies were selected based on their relevance to BCG revaccination and protection against TB, and a standardized data extraction form was used to gather pertinent information from each study. Quality assessment was conducted using established tools to evaluate the rigor, study design, and risk of bias in each included study. The findings revealed significant insights into BCG's effectiveness across different populations and age groups. Several studies demonstrated a substantial reduction in latent TB infection (LTBI) and incidence rates of TB following BCG vaccination. However, the protective efficacy of BCG revaccination varied across studies and populations, with some indicating modest protection against TB disease development, particularly in high-risk populations like healthcare workers. Furthermore, investigations into the immunological mechanisms underlying BCG's protective efficacy provided valuable insights into cytokine/chemokine profiles and immunomodulatory properties.
Collapse
Affiliation(s)
- Adewale Lawrence
- Pharmaceutical Medicine, Bioluminux Clinical Research, Naperville, USA
| |
Collapse
|
15
|
Arifin J, Sakti M, Massi N, Bukhari A, Hamid F, Winangun PA. Vertebral destruction in tuberculous spondylitis correlates with Toll-like Receptor 4 (TLR-4) levels: a cross-sectional study. Ann Med Surg (Lond) 2024; 86:800-804. [PMID: 38333260 PMCID: PMC10849308 DOI: 10.1097/ms9.0000000000001707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Background Tuberculous (TB) spondylitis is a hazardous infectious disease causing significant spinal deformity. Increased toll-like receptor-4 (TLR-4) activity promotes more extensive infections in patients with TB spondylitis, so it has the potential to be used as a biomarker to predict the severity. This study aims to determine the relationship between TLR-4 levels and the degree of vertebral destruction in TB spondylitis patients. Materials and methods A cross-sectional study was conducted from May to October 2023. A total of 27 TB spondylitis samples were then measured for TLR-4 serum levels. Vertebral destruction is assessed based on the Spine At Risk Signs (SARS) criteria on X-ray and MRI examinations. Moreover, the degree of sensory and motor impairment was also assessed in this study. The Spearman correlation test assessed the correlation between TLR-4 levels and vertebral destruction. Results Most of the samples in this study were less than 30 years old (10 people, 37%), female (14 people, 51.9%), had spinal destruction at 1 level (11 people, 40.7%), had paraplegia (8 people, 29.6%), and had hypoesthesia (11 people, 40.7%). TLR-4 levels had a mean value of 8254.1±1076.1 ng/ml. TLR-4 levels were positively correlated with the degree of vertebral destruction (r=0.599, P=0.001), motor disorders (r=0.632.x, P=0.000), and sensory disorders (r=0.574, P=0.002). Conclusion TLR-4 levels are associated with the severity of vertebral destruction in TB spondylitis, so it has the potential to be used as a prognostic biomarker.
Collapse
Affiliation(s)
- Jainal Arifin
- Department of Orthopedic and Traumatology, Spine Divison
| | - Muhammad Sakti
- Department of Orthopedic and Traumatology, Sports and Injury Division
| | | | | | | | - Putu A.N. Winangun
- Orthopaedic and Traumatology Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
16
|
Rapulana AM, Mpotje T, Baiyegunhi OO, Ndlovu H, Smit TK, McHugh TD, Marakalala MJ. Combined analysis of host IFN-γ, IL-2 and IP-10 as potential LTBI biomarkers in ESAT-6/CFP-10 stimulated blood. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1345510. [PMID: 39086434 PMCID: PMC11285608 DOI: 10.3389/fmmed.2024.1345510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 08/02/2024]
Abstract
Background: Accurate diagnosis of latent tuberculosis infected (LTBI) individuals is important in identifying individuals at risk of developing active tuberculosis. Current diagnosis of LTBI routinely relies on the detection and measurement of immune responses using the Tuberculin Skin Test (TST) and interferon gamma release assays (IGRAs). However, IGRA, which detects Mycobacterium tuberculosis specific IFN-γ, is associated with frequent indeterminate results, particularly in immunosuppressed patients. There is a need to identify more sensitive LTBI point of care diagnostic biomarkers. The aim of this study was to assess the validity of early secreted antigen target 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10) stimulated plasma to identify additional cytokines and chemokines as potential biomarkers of LTBI. Method: The levels of 27 cytokines and chemokines were measured by Bio-Plex Pro cytokine, chemokine and growth factor assay in ESAT-6 and CFP-10 co-stimulated plasma from 20 LTBI participants with positive IGRA (Quantiferon TB Gold plus) and 20 healthy controls with negative IGRA. Traditional ELISA was used to validate the abundance of the best performing markers in 70 LTBI and 72 healthy participants. All participants were HIV negative. Results: We found that Interleukin 1 receptor antagonist (IL1ra) (p = 0.0056), Interleukin 2 (IL-2) (p < 0.0001), Interleukin 13 (IL-13) (p < 0.0001), Interferon gamma-induced protein 10 (IP-10) (p < 0.0001), and Macrophage inflammatory protein-1 beta (MIP1b) (p = 0.0010) were significantly higher in stimulated plasma of LTBI compared to healthy individuals. Stimulated plasma IL-2 (cutoff 100 pg/mL), IP-10 (cutoff 300 pg/mL) and IL-13 (5 pg/mL) showed potential in diagnosing LTBI with PPV = 100%, 0.89.4%, and 80.9% and NPV = 86.9%, 0.85.7%, and 84.2%, respectively. Conclusion: Our data shows that co-stimulating whole blood with ESAT-6 and CFP-10 may help distinguish LTBI from healthy individuals. We also identified IL-2 and IP-10 as potential biomarkers that could be added to the currently used IFN-γ release assays in detection of LTBI.
Collapse
Affiliation(s)
- Antony M. Rapulana
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
- Division of Infection and Immunity, UCL Centre for Clinical for Clinical Microbiology, University College London, London, United Kingdom
| | - Thabo Mpotje
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
| | | | - Hlumani Ndlovu
- Division of Chemical and System Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Theresa K. Smit
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
| | - Timothy D. McHugh
- Division of Infection and Immunity, UCL Centre for Clinical for Clinical Microbiology, University College London, London, United Kingdom
| | - Mohlopheni J. Marakalala
- School of Laboratory Medicine and Medical Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
- Africa Health Research Institute, Durban, Kwazulu-Natal, South Africa
- Division of Infection and Immunity, UCL Centre for Clinical for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
17
|
Takashima S, Tokiya M, Izui K, Miyamoto H, Matsumoto A. Asian flush is a potential protective factor against COVID-19: a web-based retrospective survey in Japan. Environ Health Prev Med 2024; 29:14. [PMID: 38462476 PMCID: PMC10937249 DOI: 10.1265/ehpm.23-00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/10/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), first reported in December 2019, spread worldwide in a short period, resulting in numerous cases and associated deaths; however, the toll was relatively low in East Asia. A genetic polymorphism unique to East Asians, Aldehyde dehydrogenase 2 rs671, has been reported to confer protection against infections. METHOD We retrospectively investigated the association between the surrogate marker of the rs671 variant, the skin flushing phenomenon after alcohol consumption, and the timing of COVID-19 incidence using a web-based survey tool to test any protective effects of rs671 against COVID-19. RESULTS A total of 807 valid responses were received from 362 non-flushers and 445 flushers. During the 42 months, from 12/1/2019 to 5/31/2023, 40.6% of non-flushers and 35.7% of flushers experienced COVID-19. Flushers tended to have a later onset (Spearman's partial rank correlation test, p = 0.057, adjusted for sex and age). Similarly, 2.5% of non-flushers and 0.5% of flushers were hospitalized because of COVID-19. Survival analysis estimated lower risks of COVID-19 and associated hospitalization among flushers (p = 0.03 and <0.01, respectively; generalized Wilcoxon test). With the Cox proportional hazards model covering 21 months till 8/31/2021, when approximately half of the Japanese population had received two doses of COVID-19 vaccine, the hazard ratio (95% confidence interval) of COVID-19 incidence was estimated to be 0.21 (0.10-0.46) for flusher versus non-flusher, with adjustment for sex, age, steroid use, and area of residence. CONCLUSIONS Our study suggests an association between the flushing phenomenon after drinking and a decreased risk of COVID-19 morbidity and hospitalization, suggesting that the rs671 variant is a protective factor. This study provides valuable information for infection control and helps understand the unique constitutional diversity of East Asians.
Collapse
Affiliation(s)
- Satoshi Takashima
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
- Plant Products Safety Division, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyodaku, Tokyo 100-8950, Japan
| | - Mikiko Tokiya
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Katsura Izui
- Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
18
|
Abdalla AE, Alanazi A, Abosalif KOA, Alameen AAM, Junaid K, Manni E, Talha AA, Ejaz H. MicroRNA-155, a double-blade sword regulator of innate tuberculosis immunity. Microb Pathog 2023; 185:106438. [PMID: 37925110 DOI: 10.1016/j.micpath.2023.106438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Tuberculosis (TB) is a chronic, life-threatening disease caused by unusual facultative intracellular bacteria, Mycobacterium tuberculosis. This bacterium has unique resistance to many antimicrobial agents and has become a major global health concern due to emerging multidrug-resistant strains. Additionally, it has developed multiple schemes to exploit host immune signaling and establish long-term survival within host tissues. Thus, understanding the pathways that govern the crosstalk between the bacterium and the immune system could provide a new avenue for therapeutic interventions. MicroRNAs (miRs) are short, noncoding, and regulator RNA molecules that control the expression of cellular genes by targeting their mRNAs post-transcriptionally. MiR-155 is one of the most crucial miR in shaping the host immune defenses against M. tuberculosis. MiR-155 is remarkably downregulated in patients with clear clinical TB symptoms in comparison with latently infected patients and/or healthy individuals, thereby implicating its role in controlling M. tuberculosis infection. However, functional probing of miR-155 suggests dual effects in regulating the host's innate defenses in response to mycobacterial infection. This review provides comprehensive knowledge and future perspectives regarding complex signaling pathways that mediated miR-155 expression during M. tuberculosis infections. Moreover, miR-155-targeting signaling orchestrates inflammatory mediators' production, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Awadh Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Khalid Omer Abdalla Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Emad Manni
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Albadawi Abdelbagi Talha
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| |
Collapse
|
19
|
Zhu Y, Shi H, Tang T, Li Q, Peng Y, Bermudez LE, Hu C, Chen H, Guo A, Chen Y. Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase fadD33 Promotes Bacillus Calmette-Guérin Survival in Hostile Extracellular and Intracellular Microenvironments in the Host. Cells 2023; 12:2610. [PMID: 37998345 PMCID: PMC10670722 DOI: 10.3390/cells12222610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), remains a significant global health challenge. The survival of M. tb in hostile extracellular and intracellular microenvironments is crucial for its pathogenicity. In this study, we discovered a Bacillus Calmette-Guérin (BCG) mutant B1033 that potentially affected mycobacterium pathogenicity. This mutant contained an insertion mutation gene, fadD33, which is involved in lipid metabolism; however, its direct role in regulating M. tb infection is not well understood. Here, we found that the absence of fadD33 reduced BCG adhesion and invasion into human pulmonary alveolar epithelial cells and increased the permeability of the mycobacterial cell wall, allowing M. tb to survive in the low pH and membrane pressure extracellular microenvironment of the host cells. The absence of fadD33 also inhibited the survival of BCG in macrophages by promoting the release of proinflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumors necrosis factor-α, through the mitogen-activated protein kinase p38 signaling pathway. Overall, these findings provide new insights into M. tb mechanisms to evade host defenses and might contribute to identifying potential therapeutic and vaccine targets for tuberculosis prevention.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongling Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (T.T.)
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Wufuer D, Li Y, Aierken H, Zheng J. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res 2023; 28:445. [PMID: 37853432 PMCID: PMC10585777 DOI: 10.1186/s40001-023-01371-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Ferroptosis is closely associated with the pathophysiological processes of many diseases, such as infection, and is characterized by the accumulation of excess lipid peroxides on the cell membranes. However, studies on the ferroptosis-related diagnostic markers in tuberculosis (TB) is still lacking. Our study aimed to explore the role of ferroptosis-related biomarkers and molecular subtypes in TB. METHODS GSE83456 dataset was applied to identify ferroptosis-related genes (FRGs) associated with TB, and GSE42826, GSE28623, and GSE34608 datasets for external validation of core biomarkers. Core FRGs were identified using weighted gene co-expression network analysis (WGCNA). Subsequently, two ferroptosis-related subtypes were constructed based on ferroptosis score, and differently expressed analysis, GSEA, GSEA, immune cell infiltration analysis between the two subtypes were performed.Affiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.correctly RESULTS: A total of 22 FRGs were identified, of which three genes (CHMP5, SAT1, ZFP36) were identified as diagnostic biomarkers that were enriched in pathways related to immune-inflammatory response. In addition, TB patients were divided into high- and low-ferroptosis subtypes (HF and LF) based on ferroptosis score. HF patients had activated immune- and inflammation-related pathways and higher immune cell infiltration levels than LF patients. CONCLUSION Three potential diagnostic biomarkers and two ferroptosis-related subtypes were identified in TB patients, which would help to understand the pathogenesis of TB.Author names: Kindly check and confirm the process of the author names [2,4]correctly.
Collapse
Affiliation(s)
- Dilinuer Wufuer
- The First Affiliated Hospital of Guangzhou Medical University/National Clinical Research Center for Respiratory Disease/National Respiratory Medical Center/State Key Laboratory of Respiratory Disease/Guangzhou Institute of Respiratory Health, NO. 151 Yanjang Road, Guangzhou, 510120, China
| | - YuanYuan Li
- Department of Respiratory Medicine, Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830049, Xinjiang, China
| | - Haidiya Aierken
- Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - JinPing Zheng
- The First Affiliated Hospital of Guangzhou Medical University/National Clinical Research Center for Respiratory Disease/National Respiratory Medical Center/State Key Laboratory of Respiratory Disease/Guangzhou Institute of Respiratory Health, NO. 151 Yanjang Road, Guangzhou, 510120, China.
| |
Collapse
|
21
|
Wang N, Yao Y, Qian Y, Qiu D, Cao H, Xiang H, Wang J. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol 2023; 14:1254347. [PMID: 37928531 PMCID: PMC10622749 DOI: 10.3389/fimmu.2023.1254347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Exosomes as double-membrane vesicles contain various contents of lipids, proteins, mRNAs and non-coding RNAs, and involve in multiple physiological processes, for instance intercellular communication and immunomodulation. Currently, numerous studies found that the components of exosomal proteins, nucleic acids or lipids released from host cells are altered following infection with Mycobacterium tuberculosis. Exosomal contents provide excellent biomarkers for the auxiliary diagnosis, efficacy evaluation, and prognosis of tuberculosis. This study aimed to review the current literatures detailing the functions of exosomes in the procedure of M. tuberculosis infection, and determine the potential values of exosomes as biomarkers to assist in the diagnosis and monitoring of tuberculosis.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Yingfen Qian
- Department of Clinical Laboratory, Kunshan Fourth People’s Hospital, Suzhou, Jiangsu, China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Huayuan Xiang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Osei-Wusu S, Tetteh JKA, Musah AB, Ntiamoah DO, Arthur N, Adjei A, Arbues A, Ofori EA, Mensah KA, Galevo SEA, Frempong AF, Asare P, Asante-Poku A, Otchere ID, Kusi KA, Lenz TL, Gagneux S, Portevin D, Yeboah-Manu D. Macrophage susceptibility to infection by Ghanaian Mycobacterium tuberculosis complex lineages 4 and 5 varies with self-reported ethnicity. Front Cell Infect Microbiol 2023; 13:1163993. [PMID: 37645380 PMCID: PMC10461633 DOI: 10.3389/fcimb.2023.1163993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Background The epidemiology of Mycobacterium tuberculosis complex (MTBC) lineage 5 (L5) infections in Ghana revealed a significantly increased prevalence in Ewes compared to other self-reported ethnic groups. In that context, we sought to investigate the early phase of tuberculosis (TB) infection using ex vivo infection of macrophages derived from the blood of Ewe and Akan ethnic group volunteers with MTBC L4 and L5 strains. Methods The study participants consisted of 16 controls, among which self-reported Akan and Ewe ethnicity was equally represented, as well as 20 cured TB cases consisting of 11 Akans and 9 Ewes. Peripheral blood mononuclear cells were isolated from both healthy controls and cured TB cases. CD14+ monocytes were isolated and differentiated into monocyte-derived macrophages (MDMs) before infection with L4 or L5 endemic strains. The bacterial load was assessed after 2 hours (uptake) as well as 3 and 7 days post-infection. Results We observed a higher capacity of MDMs from Ewes to phagocytose L4 strains (p < 0.001), translating into a higher bacillary load on day 7 (p < 0.001) compared to L5, despite the higher replication rate of L5 in Ewe MDMs (fold change: 1.4 vs. 1.2, p = 0.03) among the controls. On the contrary, within macrophages from Akans, we observed a significantly higher phagocytic uptake of L5 (p < 0.001) compared to L4, also translating into a higher load on day 7 (p = 0.04). However, the replication rate of L4 in Akan MDMs was higher than that of L5 (fold change: L4 = 1.2, L4 = 1.1, p = 0.04). Although there was no significant difference in the uptake of L4 and L5 among cured TB cases, there was a higher bacterial load of both L4 (p = 0.02) and L5 (p = 0.02) on day 7 in Ewe MDMs. Conclusion Our results suggest that host ethnicity (driven by host genetic diversity), MTBC genetic diversity, and individual TB infection history are all acting together to modulate the outcome of macrophage infections by MTBC.
Collapse
Affiliation(s)
- Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Ghana
| | - John K. A. Tetteh
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Abdul Basit Musah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Nelly Arthur
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Abraham Adjei
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Ainhoa Arbues
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Ebenezer Addo Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Akyea Mensah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Abena Frema Frempong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Prince Asare
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Tobias L. Lenz
- Research Group for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
24
|
Cavalcante-Silva LHA, Almeida FS, Andrade AGD, Comberlang FC, Cardoso LL, Vanderley SER, Keesen TSL. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci 2023; 24:11385. [PMID: 37511144 PMCID: PMC10379580 DOI: 10.3390/ijms241411385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), a disease that causes pulmonary inflammation but can also affect other tissues. Despite macrophages having a defined role in TB immunopathogenesis, other innate immune cells, such as neutrophils, are involved in this process. These cells have high phagocytic ability and a microbial-killing machine comprised of enzymes, antimicrobial peptides, and reactive oxygen species. In the last two decades, a new neutrophil immune response, the neutrophil extracellular traps (NETs), has been intensely researched. NETs comprise DNA associated with histones, enzymes, and antimicrobial peptides. These structures are related to antimicrobial immune response and some immuno-pathogenesis mechanisms. This mini review highlights the role of NETs in tuberculosis and how they can be helpful as a diagnostic tool and/or therapeutic target.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Leonardo Lima Cardoso
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
25
|
Pelosi U, Pintus R, Savasta S, Fanos V. Pulmonary Tuberculosis in Children: A Forgotten Disease? Microorganisms 2023; 11:1722. [PMID: 37512894 PMCID: PMC10385511 DOI: 10.3390/microorganisms11071722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Even today, tuberculosis in childhood is a disease that is often undiagnosed and undertreated. In the absence of therapy with antituberculosis drugs, children in the first years of life have a high degree of severe forms and mortality. In these children, symptoms are often not very specific and can easily be confused with other diseases of bacterial, viral or fungal etiology, making diagnosis more difficult. Nevertheless, the introduction of new diagnostic techniques has allowed a more rapid identification of the infection. Indeed, Interferon gamma release assay (IGRA) is preferred to the Mantoux, albeit with obvious limitations in children aged <2 years. While the Xpert Mtb/RIF Ultra test is recommended as an initial diagnostic investigation of the gastric aspirate and/or stools in children with signs and symptoms of pulmonary tuberculosis. The drugs used in the treatment of susceptible and resistant TB are the same as those used in adults but doses and combinations are different in the pediatric age. In children, brief therapy is preferable in both the latent infection and the active disease, as a significant reduction in side effects is obtained.
Collapse
Affiliation(s)
- Umberto Pelosi
- Pediatric Unit, Santa Barbara Hospital, 09016 Iglesias, Italy
| | - Roberta Pintus
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy
| | - Salvatore Savasta
- Department of Pediatrics and Rare Diseases, Ospedale Microcitemico Antonio Cao, University of Cagliari, 09124 Cagliari, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, AOU Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
26
|
Sampath P, Moorthy M, Menon A, Madhav L, Janaki A, Dhanapal M, Natarajan AP, Hissar S, Ranganathan UD, Ramaswamy G, Bethunaickan R. Downregulation of monocyte miRNAs: implications for immune dysfunction and disease severity in drug-resistant tuberculosis. Front Immunol 2023; 14:1197805. [PMID: 37457712 PMCID: PMC10345223 DOI: 10.3389/fimmu.2023.1197805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Background Monocyte miRNAs govern both protective and pathological responses during tuberculosis (TB) through their differential expression and emerged as potent targets for biomarker discovery and host-directed therapeutics. Thus, this study examined the miRNA profile of sorted monocytes across the TB disease spectrum [drug-resistant TB (DR-TB), drug-sensitive TB (DS-TB), and latent TB] and in healthy individuals (HC) to understand the underlying pathophysiology and their regulatory mechanism. Methods We sorted total monocytes including three subsets (HLA-DR+CD14+, HLA-DR+CD14+CD16+, and HLA-DR+CD16+cells) from peripheral blood mononuclear cells (PBMCs) of healthy and TB-infected individuals through flow cytometry and subjected them to NanoString-based miRNA profiling. Results The outcome was the differential expression of 107 miRNAs particularly the downregulation of miRNAs in the active TB groups (both drug-resistant and drug-sensitive). The miRNA profile revealed differential expression signatures: i) decline of miR-548m in DR-TB alone, ii) decline of miR-486-3p in active TB but significant elevation only in LTB iii) elevation of miR-132-3p only in active TB (DR-TB and DS-TB) and iv) elevation of miR-150-5p in DR-TB alone. The directionality of functions mediated by monocyte miRNAs from Gene Set Enrichment Analysis (GSEA) facilitated two phenomenal findings: i) a bidirectional response between active disease (activation profile in DR-TB and DS-TB compared to LTB and HC) and latent infection (suppression profile in LTB vs HC) and ii) hyper immune activation in the DR-TB group compared to DS-TB. Conclusion Thus, monocyte miRNA signatures provide pathological clues for altered monocyte function, drug resistance, and disease severity. Further studies on monocyte miRNAs may shed light on the immune regulatory mechanism for tuberculosis.
Collapse
Affiliation(s)
- Pavithra Sampath
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Athul Menon
- TheraCUES Innovations Pvt. Ltd, Bangalore, India
| | | | - Aishwarya Janaki
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Madhavan Dhanapal
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Syed Hissar
- Department of Clinical Research, ICMR-National Institute of Research in Tuberculosis (NIRT), Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | | | - Ramalingam Bethunaickan
- Department of Immunology, Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis (NIRT), Chennai, India
| |
Collapse
|
27
|
Ijaz MU, Vaziri F, Wan YJY. Effects of Bacillus Calmette-Guérin on immunometabolism, microbiome and liver diseases ⋆. LIVER RESEARCH 2023; 7:116-123. [PMID: 38223885 PMCID: PMC10786626 DOI: 10.1016/j.livres.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metabolic diseases have overtaken infectious diseases as the most serious public health issue and economic burden in most countries. Moreover, metabolic diseases increase the risk of having infectious diseases. The treatment of metabolic disease may require a long-term strategy of taking multiple medications, which can be costly and have side effects. Attempts to expand the therapeutic use of vaccination to prevent or treat metabolic diseases have attracted significant interest. A growing body of evidence indicates that Bacillus Calmette-Guérin (BCG) offers protection against non-infectious diseases. The non-specific effects of BCG occur likely due to the induction of trained immunity. In this regard, understanding how BCG influences the development of chronic metabolic health including liver diseases would be important. This review focuses on research on BCG, the constellation of disorders associated with metabolic health issues including liver diseases and diabetes as well as how BCG affects the gut microbiome, immunity, and metabolism.
Collapse
Affiliation(s)
- Muhammad Umair Ijaz
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
28
|
Owusu DO, Adankwah E, Aniagyei W, Acheampong I, Minadzi D, Yeboah A, Arthur JF, Lamptey M, Vivekanandan MM, Abass MK, Kumbel F, Osei-Yeboah F, Gawusu A, Batsa Debrah L, Debrah A, Mayatepek E, Seyfarth J, Phillips RO, Jacobsen M. BCG-Vaccinated Children with Contact to Tuberculosis Patients Show Delayed Conversion of Mycobacterium tuberculosis-Specific IFN-γ Release. Vaccines (Basel) 2023; 11:vaccines11040855. [PMID: 37112767 PMCID: PMC10146292 DOI: 10.3390/vaccines11040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mycobacterium (M.) bovis BCG vaccination is recommended for healthy babies after birth in several countries with a high prevalence of tuberculosis, including Ghana. Previous studies showed that BCG vaccination prevents individuals from developing severe clinical manifestations of tuberculosis, but BCG vaccination effects on the induction of IFN-γ after M. tuberculosis infection have hardly been investigated. Here, we performed IFN-γ-based T-cell assays (i.e., IFN-γ Release Assay, IGRA; T-cell activation and maturation marker assay, TAM-TB) in children who had contact with index tuberculosis patients (contacts). These contacts were classified as either being BCG vaccinated at birth (n = 77) or non-BCG-vaccinated (n = 17) and were followed up at three timepoints for a period of one year to determine immune conversion after M. tuberculosis exposure and potential infection. At baseline and month 3, BCG-vaccinated contacts had significantly lower IFN-γ levels after stimulation with M. tuberculosis-specific proteins as compared to non-BCG-vaccinated contacts. This resulted in decreased proportions of positive IGRA results (BCG-vaccinated: 60% at baseline, 57% at month 3; non-BCG-vaccinated: 77% and 88%, respectively) at month 3. However, until month 12, immune conversion in BCG-vaccinated contacts led to balanced proportions in IGRA responders and IFN-γ expression between the study groups. TAM-TB assay analyses confirmed higher proportions of IFN-γ-positive T-cells in non-BCG-vaccinated contacts. Low proportions of CD38-positive M. tuberculosis-specific T-cells were only detected in non-BCG-vaccinated contacts at baseline. These results suggest that BCG vaccination causes delayed immune conversion as well as differences in the phenotype of M. tuberculosis-specific T-cells in BCG-vaccinated contacts of tuberculosis patients. These differences are immune biomarker candidates for protection against the development of severe clinical tuberculosis manifestations.
Collapse
Affiliation(s)
- Dorcas O Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Ernest Adankwah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
- Department of Medical Diagnostics, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
| | - Wilfred Aniagyei
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Isaac Acheampong
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Difery Minadzi
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Augustine Yeboah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Joseph F Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Millicent Lamptey
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Monika M Vivekanandan
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | | | | | | | - Amidu Gawusu
- Sene West Health Directorate, Kwame Danso, Ghana
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Alexander Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi 00233, Ghana
- School of Medicine and Dentistry, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi 00233, Ghana
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| |
Collapse
|
29
|
Pereira SM, Barreto FR, de Souza RA, de Souza Teles Santos CA, Pereira M, da Paixão ES, de Jesus Lima CCO, da Natividade MS, Lindoso AABP, Fernandes EG, Junior EBC, Pescarini JM, de Andrade KVF, de Souza FM, de Britto EA, Nunes C, Ichihara MY, Dalcolmo M, Trajman A, Barral-Netto M, Abubakar I, Barreto ML, de Alencar Ximenes RA, Rodrigues LC. Previous BCG vaccination is associated with less severe clinical progression of COVID-19. BMC Med 2023; 21:145. [PMID: 37055776 PMCID: PMC10099006 DOI: 10.1186/s12916-023-02859-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND BCG vaccination, originally used to prevent tuberculosis, is known to "train" the immune system to improve defence against viral respiratory infections. We investigated whether a previous BCG vaccination is associated with less severe clinical progression of COVID-19 METHODS: A case-control study comparing the proportion with a BCG vaccine scar (indicating previous vaccination) in cases and controls presenting with COVID-19 to health units in Brazil. Cases were subjects with severe COVID-19 (O2 saturation < 90%, severe respiratory effort, severe pneumonia, severe acute respiratory syndrome, sepsis, and septic shock). Controls had COVID-19 not meeting the definition of "severe" above. Unconditional regression was used to estimate vaccine protection against clinical progression to severe disease, with strict control for age, comorbidity, sex, educational level, race/colour, and municipality. Internal matching and conditional regression were used for sensitivity analysis. RESULTS BCG was associated with high protection against COVID-19 clinical progression, over 87% (95% CI 74-93%) in subjects aged 60 or less and 35% (95% CI - 44-71%) in older subjects. CONCLUSIONS This protection may be relevant for public health in settings where COVID-19 vaccine coverage is still low and may have implications for research to identify vaccine candidates for COVID-19 that are broadly protective against mortality from future variants. Further research into the immunomodulatory effects of BCG may inform COVID-19 therapeutic research.
Collapse
Affiliation(s)
| | | | | | - Carlos Antonio de Souza Teles Santos
- Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Salvador, Brazil
- Department of Exact Sciences, State University of Feira de Santana, Bahia, Salvador, Brazil
| | - Marcos Pereira
- Institute of Collective Health, Federal University of Bahia, Salvador, Brazil.
| | - Enny Santos da Paixão
- Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Salvador, Brazil
- Faculty of Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | - Julia Moreira Pescarini
- Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Salvador, Brazil
- Faculty of Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Elisangela Alves de Britto
- Institute of Collective Health, Federal University of Bahia, Salvador, Brazil
- State Department of Health of Bahia, Institute Couto Maia, Salvador, Brazil
| | - Ceuci Nunes
- State Department of Health of Bahia, Institute Couto Maia, Salvador, Brazil
| | - Maria Yuri Ichihara
- Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Salvador, Brazil
| | - Margareth Dalcolmo
- Hélio Fraga Reference Center, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Anete Trajman
- Departamento de Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- McGill TB International Centre, McGill University, Montreal, Canada
| | - Manoel Barral-Netto
- Institute Gonçalo Moniz - Fundação Oswaldo Cruz (Fiocruz), Salvador, Brazil
- Faculdade de Medicina, Federal University of Bahia, Salvador, Brazil
| | - Ibrahim Abubakar
- Institute for Global Health, University College London, London, UK
| | - Mauricio Lima Barreto
- Institute of Collective Health, Federal University of Bahia, Salvador, Brazil
- Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Salvador, Brazil
| | | | - Laura Cunha Rodrigues
- Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Salvador, Brazil
- Faculty of Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
30
|
Ingratta GG, Stempler A, Fernández B, Colavecchia SB, Jolly A, Minatel L, Paolicchi FA, Mundo SL. Early-stage findings in an experimental calf model infected with Argentinean isolates of Mycobacterium avium subsp. paratuberculosis. Vet Immunol Immunopathol 2023; 259:110595. [PMID: 37058952 DOI: 10.1016/j.vetimm.2023.110595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an important pathogen that causes granulomatous enteritis known as Johne's disease or paratuberculosis (PTB). In this study an experimental model of calves infected with Argentinean isolates of MAP for 180 days was used to provide more data of the early PTB stages. Calves were challenged by oral route with MAP strain IS900-RFLPA (MA; n = 3), MAP strain IS900-RFLPC (MC; n = 2) or mock infected (MI; n = 2), and response to infection was evaluated through peripheral cytokine expression, MAP tissue distribution and histopathological early-stage findings. Specific and varied levels of IFN-γ were only detected at 80 days post-infection in infected calves. These data indicate that specific IFN-γ is not a useful indicator for early detection of MAP infection in our calf model. At 110 days post-infection, TNF-α expression was higher than IL-10 in 4 of the 5 infected animals and a significant decrease of TNF-α expression was detected in infected vs. non-infected calves. All calves challenged were identified as infected by mesenteric lymph node tissue culture and real time IS900 PCR. In addition, for lymph nodes samples, the agreement between these techniques was almost perfect (κ = 0.86). Colonization of tissues and levels of tissue infection varied between individuals. Evidence of early MAP dissemination to extraintestinal tissues such as the liver was detected by culture in one animal (MAP strain IS900-RFLPA). In both groups microgranulomatous lesions were observed predominantly in the lymph nodes, with giant cells present only in the MA group. In summary, the findings described herein may indicate that local MAP strains induced specific immune responses with particularities that could suggest differences in their biological behavior. Further studies should be carried out in order to obtain an in-depth understanding of the influence of MAP strains in host-pathogen interactions and the outcome of disease.
Collapse
Affiliation(s)
- Giselle Gabriela Ingratta
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Stempler
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Bárbara Fernández
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina.
| | - Silvia Beatriz Colavecchia
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Jolly
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Minatel
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Patología, Av. San Martín 5285, C1417DSM Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Alberto Paolicchi
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Laboratorio de Bacteriología, Ruta 226, Km 73.5, Balcarce B7620BEN, Provincia de Buenos Aires, Argentina; Universidad Nacional de Mar del Plata, Facultad de Ciencias Agrarias, Departamento de Producción Animal, Ruta 226, Km 73.5, Balcarce B7620BEN, Provincia de Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Inmunología, Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), Av. Chorroarín 280, C1427CWO Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
31
|
Du J, Su Y, Wang R, Dong E, Cao Y, Zhao W, Gong W. Research progress on specific and non-specific immune effects of BCG and the possibility of BCG protection against COVID-19. Front Immunol 2023; 14:1118378. [PMID: 36798128 PMCID: PMC9927227 DOI: 10.3389/fimmu.2023.1118378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) is the only approved vaccine for tuberculosis (TB) prevention worldwide. BCG has an excellent protective effect on miliary tuberculosis and tuberculous meningitis in children or infants. Interestingly, a growing number of studies have shown that BCG vaccination can induce nonspecific and specific immunity to fight against other respiratory disease pathogens, including SARS-CoV-2. The continuous emergence of variants of SARS-CoV-2 makes the protective efficiency of COVID-19-specific vaccines an unprecedented challenge. Therefore, it has been hypothesized that BCG-induced trained immunity might protect against COVID-19 infection. This study comprehensively described BCG-induced nonspecific and specific immunity and the mechanism of trained immunity. In addition, this study also reviewed the research on BCG revaccination to prevent TB, the impact of BCG on other non-tuberculous diseases, and the clinical trials of BCG to prevent COVID-19 infection. These data will provide new evidence to confirm the hypotheses mentioned above.
Collapse
Affiliation(s)
- Jingli Du
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yue Su
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Ruilan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Enjun Dong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yan Cao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenjuan Zhao
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
32
|
Gupta MM, Gilhotra R, Deopa D, Bhat AA, Thapa R, Singla N, Kulshrestha R, Gupta G. Epigenetics of Pulmonary Tuberculosis. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:127-144. [DOI: 10.1007/978-981-99-4780-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
33
|
Soloski MJ, Poulain M, Pes GM. Does the trained immune system play an important role in the extreme longevity that is seen in the Sardinian blue zone? FRONTIERS IN AGING 2022; 3:1069415. [PMID: 36601618 PMCID: PMC9806115 DOI: 10.3389/fragi.2022.1069415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Villages in the island of Sardinia in the Mediterranean that display exceptional longevity are clustered within a defined mountainous region. Because of their unique location we hypothesize that these villages had a unique infectious disease exposure relevant to the observed successful longevity. These highland villages had a significant exposure to malaria in the first half of the 20th century after which malaria was eliminated due to vector control mechanisms. In addition, there is likely a high incidence of Helicobacter pylori infections among shepherds in Sardinia, the primary occupation of many living in the LBZ, as well as helminth infections among children. This suggests that individuals living in the LBZ had a unique infectious disease exposure. Specifically, we hypothesize that the continued high exposure of residents in the LBZ to these infectious agents prior to the 1950s lead to the generation of a uniquely trained (or imprinted) immune system. Once some of these diseases were eliminated in the latter half of the century, individuals within the LBZ were equipped with a trained immune system that was uniquely capable of not only responding effectively to common infections but also responding in a manner that maximized maintaining tissue health. In addition, there are lifestyle factors that also favor such a trained immune system. This hypothesis may help explain the slow progression of chronic immune mediated diseases as well as other chronic non-transmissible age-related diseases seen in the Sardinian LBZ and serve as a template for future studies that support or refute this hypothesis.
Collapse
Affiliation(s)
- Mark J. Soloski
- Division of Rheumatology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Mark J. Soloski,
| | - Michel Poulain
- IACCHOS Université Catholique de Louvain, Estonian Institute for Population Studies, Tallinn University, Tallinn, Estonia
| | - Giovanni M. Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari, Italy
| |
Collapse
|
34
|
Yu R, Zhang C. miR-124-Antagonist-Loaded Liposomal Nanoparticles Negatively Regulate the Toll-Like Receptor (TLR)-Signaling Pathway in Alveolar Epithelial Cells in Pulmonary Tuberculosis. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miR-124 is intensively expressed in the alveolar epithelial cells of pulmonary tuberculosis. This study focused on exploring the negative regulation of miR-124-antagonist-loaded liposomal nanoparticles on the Toll-like receptor (TLR)-signal transduction pathway in the alveolar epithelial
cells from pulmonary tuberculosis, aiming to provide theoretical evidence for the treatment of pulmonary tuberculosis. The purchased alveolar epithelial cells were grouped into Blank group, Empty-vector group, Bacillus Calmette-Guerin (BCG) group, Nanoparticle+MiR-124 Antagonist group, MiR-124
Antagonist group, and MiR-124 Agonist group. The liposomal nanoparticles were identified. The following aspects were investigated: mRNA level of miR-124, mRNA and protein levels of Myeloid differentiation factor 88 (MyD 88), Toll-like receptor the 6 (TLR 6) and their downstream molecules Nuclear
Factor-κB (NF-κB) and Tumor necrosis factor TNF receptor-associated factor 6 (TRAF 6) secretion level of cytokines (NF-κB, IL-8, IL-1α, TNF-α and IL-6), as well as the regulatory link between miR-124-antagonists with TLR6 and
MyD88. The liposomal nanoparticles were uniform in size, with an average particle size of (35.25±10.58) nm and an average Zeta potential of (−48.55±10.27) mV. The miR-124 level was the strongest in the MiR-124 Agonist group, while being the lowest in the Blank group. The
miR-124 level was relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+MiR-124 Antagonist group, which was higher than the Blank group. The miR-124 level in the MiR-124 Antagonist group was higher than that in the Nanoparticle+MiR-124
Antagonist group (P <0.05). The mRNA and protein levels of MyD88, TLR6, NF-κB and TRAF6 were the highest in the MiR-124 Agonist group, while being the lowest in the Blank group. The transcription and translation levels of TRAF6, TLR6, NF-κB and MyD88 were
relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+ MiR-124 Antagonist group, which were higher than in the Blank group. The transcription and translation levels of TRAF6, TLR6, NF-κB and MyD88 were in the MiR-124 Antagonist
group were higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05). The secretion levels of inflammatory factors (NF-κB, IL-8, IL-1α, TNF-α and IL-6) were the highest in the MiR-124 Agonist group, while being the lowest in the
Blank group. The levels of these inflammatory factors were relatively higher in the BCG group and Empty-vector group, while being significantly reduced in the Nanoparticle+MiR-124 Antagonist group, which were elevated compared to that in the Blank group. The secretion quantities of these inflammatory
factors in the MiR-124 Antagonist group were higher than that in the Nanoparticle+MiR-124 Antagonist group (P <0.05).Dual luciferase experiments indicated that miR-124-antagonists may retard TLR6 and MyD88 to affect the immune response of pulmonary alveolar epithelial cells in
pulmonary tuberculosis. The fluorescence intensity of mutant plasmid was significantly stronger than that of wild-type plasmid (P < 0.05). In the alveolar epithelial cells from pulmonary tuberculosis, the miR-124-antagonistloaded liposomal nanoparticles can significantly reduce the
expression of TLR6 and MyD88, and their downstream molecules (NF-κB and TRAF6), leading to the reduced secretion of the inflammatory factors. As a result, the inflammatory response of lung tissue was alleviated, while the immune function was restored. This regulation was achieved
by the miR-124-antagonist-loaded liposomal nanoparticles via negatively regulating the TLR6/MyD88 pathways.
Collapse
Affiliation(s)
- Rong Yu
- Department of Tuberculosis, The First Hospital of Changsha, Changsha 410000, Hunan, China
| | - Cai Zhang
- Department of Pediatrics, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha 410000, Hunan, China
| |
Collapse
|
35
|
Barral TD, Kalil MA, Mariutti RB, Arni RK, Gismene C, Sousa FS, Collares T, Seixas FK, Borsuk S, Estrela-Lima A, Azevedo V, Meyer R, Portela RW. Immunoprophylactic properties of the Corynebacterium pseudotuberculosis-derived MBP:PLD:CP40 fusion protein. Appl Microbiol Biotechnol 2022; 106:8035-8051. [PMID: 36374330 PMCID: PMC9660185 DOI: 10.1007/s00253-022-12279-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Caseous lymphadenitis (CLA) is a disease that affects small ruminants, and the best way to prevent its spread on a herd is through immunoprophylaxis. Thus, we aimed to evaluate the MBP:PLD:CP40 fusion protein as a new CLA immunogen. The fusion protein was constructed by combining Corynebacterium pseudotuberculosis PLD and CP40 proteins with maltose-binding protein (MBP) as an intrinsic adjuvant. The antigenicity, allergenic potential, prediction of B epitopes, binding to MHC receptors, and docking on the Toll-Like 2 receptor were evaluated in silico. MBP:PLD:CP40 was expressed and purified. 40 BALB/c were divided into four groups (G1 - control, G2 - Saponin, G3 - MBP:PLD:CP40, and G4 - rPLD + rCP40). Total IgG, IgG1, and IgG2a were quantified, and the expressions of cytokines after splenocyte in vitro stimulation were assessed. Mice were challenged 42 days after the first immunization. The in silico analysis showed that MBP:PLD:CP40 has immunogenic potential, does not have allergic properties, and can dock on the TRL2 receptor. MBP:PLD:CP40 stimulated the production of IgG1 antibodies in a fivefold proportion to IgG2a, and TNF and IL-17 were significantly expressed in response to the antigenic stimuli. When rPLD and rCP40 were used together for immunization, they could induce IFN-γ and IL-12, but with no detectable antibody production. The G3 and G4 groups presented a survival of 57.14% and 42.86%, respectively, while the G1 and G2 mice were all dead 15 days after the challenge. MBP:PLD:CP40 partially protected the mice against C. pseudotuberculosis infection and can be considered a potential new CLA immunogen. KEY POINTS: • The fusion protein induced more IgG1 than IgG2a antibodies; • The fusion protein also induced the expression of the TNF and IL-17 cytokines; • Mice inoculated with MBP:PLD:CP40 presented a 57.14% survival.
Collapse
Affiliation(s)
- Thiago Doria Barral
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil
| | - Mauricio Alcantara Kalil
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil
| | - Ricardo Barros Mariutti
- Multiuser Center for Biomolecular Innovation, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, 15054-000, Brazil
| | - Raghuvir Krishnaswamy Arni
- Multiuser Center for Biomolecular Innovation, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, 15054-000, Brazil
| | - Carolina Gismene
- Multiuser Center for Biomolecular Innovation, Universidade Estadual Paulista, São José do Rio Preto, São Paulo State, 15054-000, Brazil
| | - Fernanda Severo Sousa
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Tiago Collares
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Fabiana Kommling Seixas
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Sibele Borsuk
- Center for Technological Development, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Alessandra Estrela-Lima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine and Zootechnics, Universidade Federal da Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Vasco Azevedo
- Laboratory of Molecular and Cellular Genetics, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil
| | - Ricardo Wagner Portela
- Laboratory of Immunology and Molecular Biology, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon s/n, Salvador, Bahia State, 40110-100, Brazil.
| |
Collapse
|
36
|
Latent Tuberculosis: A Promising New Compound to Treat Non-Replicating and Intramacrophagic Mycobacteria. Biomedicines 2022; 10:biomedicines10102398. [PMID: 36289661 PMCID: PMC9598318 DOI: 10.3390/biomedicines10102398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022] Open
Abstract
As a biologic reservoir of Mycobacterium tuberculosis (M. tb), one-quarter of the world population is infected with the well-known latent tuberculosis (LTBI). About 5–10% of LTBI patients will progress to active disease in the first years after primary infection and, despite using the recommended treatment, 20% can still reactivate the infection. A new LTBI treatment could minimize adverse effects and antibiotic resistance that can occur when the same drug is used to treat the latent and active disease. New hydrazones were evaluated, and they showed great inhibitory activity against intramacrophagic and non-replicating M. tb, commonly found at this stage of infection, in addition to bactericidal and narrow-spectrum activity. When tested against eukaryotic cells, the hydrazones showed great safety at different exposure times. In vitro, these compounds performed better than isoniazid and could be considered new candidates for LTBI treatment, which may promote greater engagement in its prescription and adherence.
Collapse
|
37
|
Wang W, Ning Y, Wang Y, Deng G, Pace S, Barth SA, Menge C, Zhang K, Dai Y, Cai Y, Chen X, Werz O. Mycobacterium tuberculosis-Induced Upregulation of the COX-2/mPGES-1 Pathway in Human Macrophages Is Abrogated by Sulfasalazine. Front Immunol 2022; 13:849583. [PMID: 35663935 PMCID: PMC9160237 DOI: 10.3389/fimmu.2022.849583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages are the primary human host cells of intracellular Mycobacterium tuberculosis (M.tb) infection, where the magnitude of inflammatory reactions is crucial for determining the outcome of infection. Previously, we showed that the anti-inflammatory drug sulfasalazine (SASP) significantly reduced the M.tb bactericidal burden and histopathological inflammation in mice. Here, we asked which genes in human inflammatory macrophages are affected upon infection with M.tb and how would potential changes impact the functional state of macrophages. We used a flow cytometry sorting system which can distinguish the dead and alive states of M.tb harbored in human monocyte-derived macrophages (MDM). We found that the expression of cyclooxygenase-2 and microsomal prostaglandin E2 synthase (mPGES)-1 increased significantly in tagRFP+ MDM which were infected with alive M.tb. After exposure of polarized M1-MDM to M.tb (H37Rv strain)-conditioned medium (MTB-CM) or to the M.tb-derived 19-kD antigen, the production of PGE2 and pro-inflammatory cytokines increased 3- to 4-fold. Upon treatment of M1-MDM with SASP, the MTB-CM-induced expression of COX-2 and the release of COX products and cytokines decreased. Elevation of PGE2 in M1-MDM upon MTB-CM stimulation and modulation by SASP correlated with the activation of the NF-κB pathway. Together, infection of human macrophages by M.tb strongly induces COX-2 and mPGES-1 expression along with massive PGE2 formation which is abrogated by the anti-inflammatory drug SASP.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yejun Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Kehong Zhang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Youchao Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
38
|
Immunobiology of tubercle bacilli and prospects of immunomodulatory drugs to tackle tuberculosis (TB) and other non-tubercular mycobacterial infections. Immunobiology 2022; 227:152224. [PMID: 35533535 PMCID: PMC9068598 DOI: 10.1016/j.imbio.2022.152224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023]
Abstract
The COVID-19 pandemic has set back progress made on antimicrobial resistance (AMR). Without urgent re-focus, we risk slowing down drug discovery and providing treatment for drug resistant Mycobacterium tuberculosis. Unique in its immune evasion, dormancy and resuscitation, the causal pathogens of tuberculosis (TB) have demonstrated resistance to antibiotics with efflux pumps and the ability to form biofilms. Repurposing drugs is a prospective avenue for finding new anti-TB drugs. There are many advantages to discovering novel targets of an existing drug, as the pharmacokinetic and pharmacodynamic properties have already been established, they are cost-efficient and can be commercially accelerated for the new development. One such group of drugs are non-steroidal anti-inflammatory drugs (NSAIDs) that are originally known for their ability to supress the host proinflammatory responses. In addition to their anti-inflammatory properties, some NSAIDs have been discovered to have antimicrobial modes of action. Of particular interest is Carprofen, identified to inhibit the efflux mechanism and disrupt biofilm formation in mycobacteria. Due to the complexities of host-pathogens interactions in the lung microbiome, inflammatory responses must carefully be controlled alongside the in vivo actions of the prospective anti-infectives. This critical review explores the potential dual role of a selection of NSAIDs, as an anti-inflammatory and anti-tubercular adjunct to reverse the tide of antimicrobial resistance in existing treatments.
Collapse
|
39
|
Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2022; 12:662218. [PMID: 35222350 PMCID: PMC8866702 DOI: 10.3389/fimmu.2021.662218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Traditional vaccine development against infectious diseases has been guided by the overarching aim to generate efficacious vaccines normally indicated by an antibody and/or cellular response that correlates with protection. However, this approach has been shown to be only a partially effective measure, since vaccine- and pathogen-specific immunity may not perfectly overlap. Thus, some vaccine development strategies, normally focused on targeted generation of both antigen specific antibody and T cell responses, resulting in a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from better mimicking the immune response of a natural infection. However, challenges to achieving this goal remain unattended, due to gaps in our understanding of human immunity and full elucidation of infectious pathogenesis. In this review, we describe recent advances in the development of effective vaccines, focusing on how understanding the differences in the immunizing and non-immunizing immune responses to natural infections and corresponding shifts in immune ontogeny are crucial to inform the next generation of infectious disease vaccines.
Collapse
Affiliation(s)
- Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
41
|
Soto JA, Gálvez NMS, Andrade CA, Ramírez MA, Riedel CA, Kalergis AM, Bueno SM. BCG vaccination induces cross-protective immunity against pathogenic microorganisms. Trends Immunol 2022; 43:322-335. [PMID: 35074254 DOI: 10.1016/j.it.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis strain used as a vaccine to prevent Mycobacterium tuberculosis (M. tb) infection. Its ability to potentiate the immune response induced by other vaccines and to promote nonspecific immunomodulatory effects has been described. These effects can be triggered by epigenetic reprogramming and metabolic shifts on innate immune cells, a phenomenon known as trained immunity. The induction of trained immunity may contribute to explain why BCG vaccination effectively decreases disease symptoms caused by pathogens different from M. tb. This article explains the importance of BCG immunization and the possible mechanisms associated with the induction of trained immunity, which might be used as a strategy for rapid activation of the immune system against unrelated pathogens.
Collapse
Affiliation(s)
- Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Nicolás M S Gálvez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Catalina A Andrade
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Mario A Ramírez
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Claudia A Riedel
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile.
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Santiago 8330025, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile.
| |
Collapse
|
42
|
Immunopathogenesis in HIV-associated pediatric tuberculosis. Pediatr Res 2022; 91:21-26. [PMID: 33731810 PMCID: PMC8446109 DOI: 10.1038/s41390-021-01393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
Tuberculosis (TB) is an increasing global emergency in human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) patients, in which host immunity is dysregulated and compromised. However, the pathogenesis and efficacy of therapeutic strategies in HIV-associated TB in developing infants are essentially lacking. Bacillus Calmette-Guerin vaccine, an attenuated live strain of Mycobacterium bovis, is not adequately effective, which confers partial protection against Mycobacterium tuberculosis (Mtb) in infants when administered at birth. However, pediatric HIV infection is most devastating in the disease progression of TB. It remains challenging whether early antiretroviral therapy (ART) could maintain immune development and function, and restore Mtb-specific immune function in HIV-associated TB in children. A better understanding of the immunopathogenesis in HIV-associated pediatric Mtb infection is essential to provide more effective interventions, reducing the risk of morbidity and mortality in HIV-associated Mtb infection in infants. IMPACT: Children living with HIV are more likely prone to opportunistic infection, predisposing high risk of TB diseases. HIV and Mtb coinfection in infants may synergistically accelerate disease progression. Early ART may probably induce immune reconstitution inflammatory syndrome and TB pathology in HIV/Mtb coinfected infants.
Collapse
|
43
|
Vijayakumar P, Singaravadivelan A, Mishra A, Jagadeesan K, Bakyaraj S, Suresh R, Sivakumar T. Whole-Genome comparative analysis reveals genetic mechanisms of disease resistance and heat tolerance of tropical Bos indicus cattle breeds. Genome 2021; 65:241-254. [PMID: 34914549 DOI: 10.1139/gen-2021-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Bos indicus cattle breeds have been naturally selected over thousands of years for disease resistance and thermo-tolerance. However, a genetic mechanism of these specific inherited characteristics needs to be discovered. Hence, in this study, the whole-genome comparative analysis of Bos indicus cattle breeds of Kangayam, Tharparkar, Sahiwal, Red Sindhi, and Hariana of the Indian subcontinent was conducted. The genetic variants identification analysis revealed a total of 15,58,51,012 SNPs and 1,00,62,805 InDels in the mapped reads across all Bos indicus cattle breeds. The functional annotation of 17,252 genes that comprised both, SNPs and InDels, of high functional impact on proteins, has been carried out. The functional annotation results revealed the pathways that were involved in the innate immune response including toll-like receptors, a retinoic acid-inducible gene I like receptors, NOD-like receptors, Jak-STAT signaling pathways, and the non-synonymous variants in the candidate immune genes. Further, we also identified several pathways involved in heat shock response, hair and skin properties, oxidative stress response, osmotic stress response, thermal sweating, feed intake, metabolism, and the non-synonymous variants in the candidate thermo-tolerant genes. These pathways and genes were directly or indirectly contributing to the disease resistance and thermo-tolerance adaptations of Bos indicus cattle breeds.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- Veterinary College and Research Institute, TANUVAS, Animal Genetics and Breeding, Livestock Farm Comlex, Orathanadu, Tamil Nadu, India, 6145 625;
| | - Arunasalam Singaravadivelan
- Veterinary College and Research Institute, TANUVAS, Livestock Production Management, VCRI, Orathanadu, Orathanadu, Tamil Nadu, India, 614 625;
| | - Anamika Mishra
- High Security Animal Disease laboratory, Indian Veterinary Research Institute, Anand Nagar, Bhopal, Madhya Pradesh, India, 462021;
| | - Krishnan Jagadeesan
- University Training and Research Centre, Pillayarpatty - 613 403, , Animal Genetics and Breeding, Thanjavur, Tamil Nadu, India;
| | - Sanniyasi Bakyaraj
- College of Poultry Production and Management, TANUVAS, Hosur, Tamil nadu, India;
| | - Ramalingam Suresh
- Veterinary College and Research Institute, TANUVAS, Animal Genetics and Breeding, VETERINARY COLLEGE AND RESEARCH INSTITUTE, Orathanadu, Tamil Nadu, India, 243122.,Indian Veterinary Research Institute, 30072, 117, Salihothra Hostel (4th hostel), IVRI, BAREILLY, Izatnagar, UTTAR PRADESH, India, 243122;
| | - Thiagarajan Sivakumar
- Veterinary College and Research Institute, TANUVAS, Livestock Production Management, Orathanadu, Tamil Nadu, India;
| |
Collapse
|
44
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
45
|
Enriquez AB, Izzo A, Miller SM, Stewart EL, Mahon RN, Frank DJ, Evans JT, Rengarajan J, Triccas JA. Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Front Immunol 2021; 12:740117. [PMID: 34759923 PMCID: PMC8572789 DOI: 10.3389/fimmu.2021.740117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/26/2021] [Indexed: 01/15/2023] Open
Abstract
Tuberculosis (TB) remains one of the leading causes of death worldwide due to a single infectious disease agent. BCG, the only licensed vaccine against TB, offers limited protection against pulmonary disease in children and adults. TB vaccine research has recently been reinvigorated by new data suggesting alternative administration of BCG induces protection and a subunit/adjuvant vaccine that provides close to 50% protection. These results demonstrate the need for generating adjuvants in order to develop the next generation of TB vaccines. However, development of TB-targeted adjuvants is lacking. To help meet this need, NIAID convened a workshop in 2020 titled “Advancing Vaccine Adjuvants for Mycobacterium tuberculosis Therapeutics”. In this review, we present the four areas identified in the workshop as necessary for advancing TB adjuvants: 1) correlates of protective immunity, 2) targeting specific immune cells, 3) immune evasion mechanisms, and 4) animal models. We will discuss each of these four areas in detail and summarize what is known and what we can advance on in order to help develop more efficacious TB vaccines.
Collapse
Affiliation(s)
- Ana B Enriquez
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Angelo Izzo
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Shannon M Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Erica L Stewart
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Robert N Mahon
- Division of AIDS, Columbus Technologies & Services Inc., Contractor to National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel J Frank
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States.,Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Sydney Institute for Infectious Diseases and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Taghipour A, Malih N, Köksal F, Jokelainen P, Ghaffarifar F. Toxoplasma gondii seroprevalence among tuberculosis patients: A systematic review and meta-analysis. Microb Pathog 2021; 159:105083. [PMID: 34246749 DOI: 10.1016/j.micpath.2021.105083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/26/2022]
Abstract
Toxoplasma gondii and Mycobacterium tuberculosis are intracellular pathogens, both infecting a substantial proportion of human population. We conducted a systematic review and meta-analysis to estimate the pooled T. gondii seroprevalence in tuberculosis patients. Three international databases were systematically searched for literature on prevalence of T. gondii in tuberculosis patients. A total of 1389 documents were identified, and eight papers were eligible to be included in the systematic review and meta-analysis. Geographical data gaps were evident, as no studies were identified from many countries where both infections are important. The pooled seroprevalence of IgG, IgM, and both IgG and IgM antibodies against T. gondii in tuberculosis patients were estimated to be 35.9% (95% confidence interval [CI], 19.3-56.7%), 35.0% (95% CI, 3.0-90.3%), and 13.4% (95% CI, 2.4-49.0%), respectively. In the included case-control studies, the pooled T. gondii seroprevalence (proportion anti- T. gondii IgG antibody positive) was higher in tuberculosis patients than in their controls, with an odds ratio by random effects model of 1.63 (95% CI, 1.28-2.08). The results of our work suggest an association between T. gondii seropositivity and being a tuberculosis patient, which should however be interpreted with caution because the timeline of the infections and the disease process are not accounted for. Our work showed that T. gondii seropositivity, indicating chronic infection with the zoonotic parasite, was relatively common among tuberculosis patients.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Malih
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatih Köksal
- Department of Clinical Bacteriology, Faculty of Medicine, Çukurova University, Adana, Turkey; TR Ministry of Health Regional Tuberculosis Laboratories and the Director of the Tropical Diseases Research and Application Center, Turkey
| | - Pikka Jokelainen
- Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
47
|
Gijsbers A, Vinciauskaite V, Siroy A, Gao Y, Tria G, Mathew A, Sánchez-Puig N, López-Iglesias C, Peters PJ, Ravelli RBG. Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Curr Res Struct Biol 2021; 3:153-164. [PMID: 34337436 PMCID: PMC8313811 DOI: 10.1016/j.crstbi.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data shows that quaternary structure of EspB is conserved across slow growing species, but not in the fast growing M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.
Collapse
Affiliation(s)
- Abril Gijsbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Vanesa Vinciauskaite
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Axel Siroy
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Giancarlo Tria
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Anjusha Mathew
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Nuria Sánchez-Puig
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
48
|
Vlasova AN, Saif LJ. Bovine Immunology: Implications for Dairy Cattle. Front Immunol 2021; 12:643206. [PMID: 34267745 PMCID: PMC8276037 DOI: 10.3389/fimmu.2021.643206] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
The growing world population (7.8 billion) exerts an increased pressure on the cattle industry amongst others. Intensification and expansion of milk and beef production inevitably leads to increased risk of infectious disease spread and exacerbation. This indicates that improved understanding of cattle immune function is needed to provide optimal tools to combat the existing and future pathogens and improve food security. While dairy and beef cattle production is easily the world's most important agricultural industry, there are few current comprehensive reviews of bovine immunobiology. High-yielding dairy cattle and their calves are more vulnerable to various diseases leading to shorter life expectancy and reduced environmental fitness. In this manuscript, we seek to fill this paucity of knowledge and provide an up-to-date overview of immune function in cattle emphasizing the unresolved challenges and most urgent needs in rearing dairy calves. We will also discuss how the combination of available preventative and treatment strategies and herd management practices can maintain optimal health in dairy cows during the transition (periparturient) period and in neonatal calves.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda J Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
49
|
Marzoog BA, Vlasova TI. The possible puzzles of BCG vaccine in protection against COVID-19 infection. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC7838855 DOI: 10.1186/s43168-021-00052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The paper aimed to analyze and evaluate the present literature data on the clinical effectiveness of using the bacillus Calmette–Guérin (BCG) vaccine in protecting against the novel coronavirus disease 2019 (COVID-19). Main body Several novel clinical data have shown a relationship between the vaccinated population with the bacillus Calmette–Guérin (BCG) vaccine and the severity and mortality rate from coronavirus disease 2019 (COVID-19). However, the linkage between the BCG vaccine and COVID-19 infection mortality and morbidity rate is still ambiguous. The BCG has been protected previously from many other respiratory viral infections. The efficacy of the BCG vaccine in the protection against COVID-19 depends on various factors including social, economic, cultural norms, mitigation efforts, health infrastructure, and demographic differences between countries. Conclusion Thus, the literature analyses show a noticed difference between the countries that follow national vaccination programs than in countries that do not follow such programs (Italy, Netherlands, USA). However, there are not any recommendations for using BCG in the protection against severe cases of COVID-19. The severity of COVID-19 maybe depends on the age, immune state of the patient, and the level of vaccine coverage. The possible reason for BCG protection is trained immunity in both diseases.
Collapse
|
50
|
Weighted Gene Co-Expression Network Analysis Identifies Key Modules and Hub Genes Associated with Mycobacterial Infection of Human Macrophages. Antibiotics (Basel) 2021; 10:antibiotics10020097. [PMID: 33498280 PMCID: PMC7909288 DOI: 10.3390/antibiotics10020097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023] Open
Abstract
Tuberculosis (TB) is still a leading cause of death worldwide. Treatments remain unsatisfactory due to an incomplete understanding of the underlying host–pathogen interactions during infection. In the present study, weighted gene co-expression network analysis (WGCNA) was conducted to identify key macrophage modules and hub genes associated with mycobacterial infection. WGCNA was performed combining our own transcriptomic results using Mycobacterium aurum-infected human monocytic macrophages (THP1) with publicly accessible datasets obtained from three types of macrophages infected with seven different mycobacterial strains in various one-to-one combinations. A hierarchical clustering tree of 11,533 genes was built from 198 samples, and 47 distinct modules were revealed. We identified a module, consisting of 226 genes, which represented the common response of host macrophages to different mycobacterial infections that showed significant enrichment in innate immune stimulation, bacterial pattern recognition, and leukocyte chemotaxis. Moreover, by network analysis applied to the 74 genes with the best correlation with mycobacteria infection, we identified the top 10 hub-connecting genes: NAMPT, IRAK2, SOCS3, PTGS2, CCL20, IL1B, ZC3H12A, ABTB2, GFPT2, and ELOVL7. Interestingly, apart from the well-known Toll-like receptor and inflammation-associated genes, other genes may serve as novel TB diagnosis markers and potential therapeutic targets.
Collapse
|