1
|
Stream A, Corriden R, Döhrmann S, Gallo RL, Nizet V, Anderson EL. The Effect of Retinoic Acid on Neutrophil Innate Immune Interactions With Cutaneous Bacterial Pathogens. INFECTIOUS MICROBES & DISEASES 2024; 6:65-73. [PMID: 38952747 PMCID: PMC11216695 DOI: 10.1097/im9.0000000000000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Vitamin A and its biologically active derivative, retinoic acid (RA), are important for many immune processes. RA, in particular, is essential for the development of immune cells, including neutrophils, which serve as a front-line defense against infection. While vitamin A deficiency has been linked to higher susceptibility to infections, the precise role of vitamin A/RA in host-pathogen interactions remains poorly understood. Here, we provided evidence that RA boosts neutrophil killing of methicillin-resistant Staphylococcus aureus (MRSA). RA treatment stimulated primary human neutrophils to produce reactive oxygen species, neutrophil extracellular traps, and the antimicrobial peptide cathelicidin (LL-37). Because RA treatment was insufficient to reduce MRSA burden in an in vivo murine model of skin infection, we expanded our analysis to other infectious agents. RA did not affect the growth of a number of common bacterial pathogens, including MRSA, Escherichia coli K1 and Pseudomonas aeruginosa; however, RA directly inhibited the growth of group A Streptococcus (GAS). This antimicrobial effect, likely in combination with RA-mediated neutrophil boosting, resulted in substantial GAS killing in neutrophil killing assays conducted in the presence of RA. Furthermore, in a murine model of GAS skin infection, topical RA treatment showed therapeutic potential by reducing both skin lesion size and bacterial burden. These findings suggest that RA may hold promise as a therapeutic agent against GAS and perhaps other clinically significant human pathogens.
Collapse
Affiliation(s)
- Alexandra Stream
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Ross Corriden
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Simon Döhrmann
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 3, USA
| | - Ericka L. Anderson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
2
|
Alizadeh M, Raj S, Shojadoost B, Matsuyama-Kato A, Boodhoo N, Abdelaziz K, Sharif S. In ovo administration of retinoic acid enhances cell-mediated immune responses against an inactivated H9N2 avian influenza virus vaccine. Vaccine 2023; 41:7281-7289. [PMID: 37923694 DOI: 10.1016/j.vaccine.2023.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
The H9N2 subtype avian influenza virus (AIV) is a low pathogenic AIV that infects avian species and lead to huge economical losses in the poultry industry. The unique immunomodulatory properties of Retinoic acid (RA), an active component of vitamin A, highlights its potential to enhance chicken's resistance to infectious diseases and perhaps vaccine-induced immunity. Therefore, the present study evaluated the effects of in ovo supplementation of RA on the immunogenicity and protective efficacy of an inactivated avian influenza virus vaccine. On embryonic day 18, eggs were inoculated with either 90 μmol RA/200 μL/egg or diluent into the amniotic sac. On days 7 and 21 post-hatch, birds were vaccinated with 15 μg of β-propiolactone (BPL) inactivated H9N2 virus via the intramuscular route. One group received BPL in combination with an adjuvant, while the other group received saline solution and served as a non-vaccinated control group. Serum samples were collected on days 7, 14, 21, 28, 35, and 42 post-primary vaccination (ppv) for antibody analysis. On day 24 ppv, spleens were collected, and splenocytes were isolated to analyze cytokine expression, interferon gamma (IFN-γ) production, and cell population. On day 28 ppv, birds in all groups were infected with H9N2 virus and oral and cloacal swabs were collected for TCID50 (50 % Tissue Culture Infectious Dose) assay up to day 7 post-infection. The results demonstrated that in ovo administration of RA did not significantly enhance the AIV vaccine-induced antibody response against H9N2 virus compared to the group that received the vaccine alone. However, RA supplementation enhanced the frequency of macrophages (KUL01+), expression of inflammatory cytokines and production of IFN-γ by splenocytes. In addition, RA administration reduced oral shedding of AIV on day 5 post-infection. In conclusion, these findings suggest that RA can be supplemented in ovo to enhance AIV vaccine efficacy against LPAIV.
Collapse
Affiliation(s)
- Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Khaled Abdelaziz
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC 29634, USA.
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
3
|
Akram N, Saeed F, Afzaal M, Shah YA, Qamar A, Faisal Z, Ghani S, Ateeq H, Akhtar MN, Tufail T, Hussain M, Asghar A, Rasheed A, Jbawi EA. Gut microbiota and synbiotic foods: Unveiling the relationship in COVID-19 perspective. Food Sci Nutr 2023; 11:1166-1177. [PMID: 36911846 PMCID: PMC10002946 DOI: 10.1002/fsn3.3162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) has spread across the globe and is causing widespread disaster. The impact of gut microbiota on lung disease has been widely documented. Diet, environment, and genetics all play a role in shaping the gut microbiota, which can influence the immune system. Improving the gut microbiota profile through customized diet, nutrition, and supplementation has been shown to boost immunity, which could be one of the preventative methods for reducing the impact of various diseases. Poor nutritional status is frequently linked to inflammation and oxidative stress, both of which can affect the immune system. This review emphasizes the necessity of maintaining an adequate level of important nutrients to effectively minimize inflammation and oxidative stress, moreover to strengthen the immune system during the COVID-19 severity. Furthermore, the purpose of this review is to present information and viewpoints on the use of probiotics, prebiotics, and synbiotics as adjuvants for microbiota modification and its effects on COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aiza Qamar
- Department of Nutrition and Health PromotionUniversity of Home Economics LahoreLahorePakistan
| | - Zargham Faisal
- Institute of Food Science and NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabassum Tufail
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aasma Asghar
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Ammara Rasheed
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
4
|
Han T, Tang H, Lin C, Shen Y, Yan D, Tang X, Guo D. Extracellular traps and the role in thrombosis. Front Cardiovasc Med 2022; 9:951670. [PMID: 36093130 PMCID: PMC9452724 DOI: 10.3389/fcvm.2022.951670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombotic complications pose serious health risks worldwide. A significant change in our understanding of the pathophysiology of thrombosis has occurred since the discovery of extracellular traps (ETs) and their prothrombotic properties. As a result of immune cells decondensing chromatin into extracellular fibers, ETs promote thrombus formation by acting as a scaffold that activates platelets and coagulates them. The involvement of ETs in thrombosis has been reported in various thrombotic conditions including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This review summarizes the existing evidence of ETs in human and animal model thrombi. The authors described studies showing the existence of ETs in venous or arterial thrombi. In addition, we studied potential novel therapeutic opportunities related to the resolution or prevention of thrombosis by targeting ETs.
Collapse
|
5
|
Hafkamp FM, Mol S, Waqué I, De Jong EC. Dexamethasone, but Not Vitamin D or A, Dampens the Inflammatory Neutrophil Response to Protect At-risk COVID-19 Patients. Immune Netw 2022; 22:e36. [PMID: 36081524 PMCID: PMC9433192 DOI: 10.4110/in.2022.22.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dexamethasone (DEX) was the first drug shown to save lives of critically ill coronavirus disease 2019 (COVID-19) patients suffering from respiratory distress. A hyperactivated state of neutrophils was found in COVID-19 patients compared to non-COVID pneumonia cases. Given the beneficial effects of DEX in COVID-19 patients, we investigated the effects of DEX and of other immunomodulatory drugs vitamin D3 (VD3) and retinoic acid (RA) on neutrophil function. DEX, but not VD3 or RA, significantly inhibited all tested aspects of neutrophil function, e.g., degranulation, intracellular ROS production, CXCL8 release and NETosis. Interestingly, RA displayed the opposite effect by significantly increasing both CXCL8 and NET release by neutrophils. Taken together, these data suggest that the lower COVID-19 mortality in DEX-treated patients may in part be due to the dampening effect of DEX on the inflammatory neutrophil response, which could prevent neutrophil plugs with NETS in the lungs and other inflamed organs of patients.
Collapse
Affiliation(s)
- Florianne M.J. Hafkamp
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sanne Mol
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Iris Waqué
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Esther C. De Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil Extracellular Traps in Digestive Cancers: Warrior or Accomplice. Front Oncol 2021; 11:766636. [PMID: 34868992 PMCID: PMC8639597 DOI: 10.3389/fonc.2021.766636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Characterized as a complex of extracellular DNA fibers and granule proteins, neutrophil extracellular traps (NETs) are generated specifically by neutrophils which play a critical role in host defense and immune regulation. NETs have been initially found crucial for neutrophil anti-microbial function. Recent studies suggest that NETs are involved in tumorigenesis and cancer progression. However, the function of NETs in cancer remains unclear, which might be due to the variation of research models and the heterogeneity of cancers. Although most of malignant tumors have similar biological behaviors, significant differences indeed exist in various systems. Malignant tumors of the digestive system cause the most incidence and mortality of cancer worldwide. In this review, we would focus on research developments on NETs in digestive cancers to provide insights on their role in digestive cancer progression and future research directions.
Collapse
Affiliation(s)
- Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Hafkamp FMJ, Groot Kormelink T, de Jong EC. Targeting DCs for Tolerance Induction: Don't Lose Sight of the Neutrophils. Front Immunol 2021; 12:732992. [PMID: 34675923 PMCID: PMC8523850 DOI: 10.3389/fimmu.2021.732992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.
Collapse
Affiliation(s)
| | | | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Alesci A, Fumia A, Lo Cascio P, Miller A, Cicero N. Immunostimulant and Antidepressant Effect of Natural Compounds in the Management of Covid-19 Symptoms. J Am Coll Nutr 2021; 41:840-854. [PMID: 34550044 DOI: 10.1080/07315724.2021.1965503] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, Padiglione C, A. O. U. Policlinico "G. Martino", Messina, Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10:cells10092406. [PMID: 34572056 PMCID: PMC8469435 DOI: 10.3390/cells10092406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are key cells of the innate immune system. It is now understood that this leukocyte population is diverse in both the basal composition and functional plasticity. Underlying this plasticity is a post-translational framework for rapidly achieving early activation states, but also a transcriptional capacity that is becoming increasingly recognized by immunologists. Growing interest in the contribution of neutrophils to health and disease has resulted in more efforts to describe their transcriptional activity. Whilst initial efforts focused predominantly on understanding the existing biology, investigations with advanced methods such as single cell RNA sequencing to understand interactions of the entire immune system are revealing higher flexibility in neutrophil transcription than previously thought possible and multiple transition states. It is now apparent that neutrophils utilise many forms of RNA in the regulation of their function. This review collates current knowledge on the nuclei structure and gene expression activity of human neutrophils across homeostasis and disease, before highlighting knowledge gaps that are research priority areas.
Collapse
|
10
|
Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Diet, Probiotics and Their Impact on the Gut Microbiota during the COVID-19 Pandemic. Nutrients 2021; 13:3172. [PMID: 34579048 PMCID: PMC8465654 DOI: 10.3390/nu13093172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2 infection is associated with diverse clinical manifestations, immune dysfunction, and gut microbiota alterations. The nutritional and biochemical quality of one's diet can influence the intestinal microbiota, which may play a role in the defense mechanisms against potential pathogens, by promoting a wide variety of immune-host interactions. In the COVID-19 pandemic, besides the development of pharmacological therapies, a healthy balanced diet, rich with food-derived antioxidants, may be a useful strategy. Many studies demonstrated that vitamins and probiotic therapies have positive effects on the treatment and prevention of oxidative stress and inflammation in COVID-19. The ecology of the gut microbiota in the digestive tract has been linked to the transport function of the host receptor known as angiotensin converting enzyme 2 (ACE2), suggesting that COVID-19 may be related to the gut microbiota. The angiotensin converting enzyme (ACE), and its receptor (ACE2), play central roles in modulating the renin-angiotensin system (RAS). In addition, ACE2 has functions that act independently of the RAS. ACE2 is the receptor for the SARS coronavirus, and ACE2 is essential for the expression of neutral amino acid transporters in the gut. In this context, ACE2 modulates innate immunity and influences the composition of the gut microbiota. Malnutrition is one of the leading underlying causes of morbidity and mortality worldwide and, including comorbidities, may be a major cause of worse outcomes and higher mortality among COVID-19 patients. This paper reviews the research on dietary components, with particular emphasis on vitamins, antioxidants, and probiotic therapies, and their impacts on the intestinal microbiota's diversity during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Marzena Jabczyk
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland; (M.J.); (B.Z.-S.)
| | - Justyna Nowak
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland;
| | - Bartosz Hudzik
- Department of Cardiovascular Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland;
- Silesian Center for Heart Diseases, Third Department of Cardiology, Faculty of Medical Science in Zabrze, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Barbara Zubelewicz-Szkodzińska
- Department of Nutrition-Related Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia, Piekarska 18 Street, 41-902 Bytom, Poland; (M.J.); (B.Z.-S.)
| |
Collapse
|
11
|
Midha IK, Kumar N, Kumar A, Madan T. Mega doses of retinol: A possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol 2021; 31:1-14. [PMID: 33382930 PMCID: PMC7883262 DOI: 10.1002/rmv.2204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Of all the nutrients, vitamin A has been the most extensively evaluated for its impact on immunity. There are three main forms of vitamin A, retinol, retinal and retinoic acid (RA) with the latter being most biologically active and all-trans-RA (ATRA) its main derivative. Vitamin A is a key regulator of the functions of various innate and adaptive immune cells and promotes immune-homeostasis. Importantly, it augments the interferon-based innate immune response to RNA viruses decreasing RNA virus replication. Several clinical trials report decreased mortality in measles and Ebola with vitamin A supplementation.During the Covid-19 pandemic interventions such as convalescent plasma, antivirals, monoclonal antibodies and immunomodulator drugs have been tried but most of them are difficult to implement in resource-limited settings. The current review explores the possibility of mega dose vitamin A as an affordable adjunct therapy for Covid-19 illness with minimal reversible side effects. Insight is provided into the effect of vitamin A on ACE-2 expression in the respiratory tract and its association with the prognosis of Covid-19 patients. Vitamin A supplementation may aid the generation of protective immune response to Covid-19 vaccines. An overview of the dosage and safety profile of vitamin A is presented along with recommended doses for prophylactic/therapeutic use in randomised controlled trials in Covid-19 patients.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- Dwight D. Eisenhower VA Medical CenterLeavenworthKansasUSA
| | - Taruna Madan
- Department of Innate ImmunityICMR‐National Institute for Research in Reproductive HealthMumbaiIndia
| |
Collapse
|
12
|
Tourkochristou E, Triantos C, Mouzaki A. The Influence of Nutritional Factors on Immunological Outcomes. Front Immunol 2021; 12:665968. [PMID: 34135894 PMCID: PMC8201077 DOI: 10.3389/fimmu.2021.665968] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Through food intake, humans obtain a variety of nutrients that are essential for growth, cellular function, tissue development, energy, and immune defense. A special interaction between nutrients and gut-associated lymphoid tissue occurs in the intestinal tract. Enterocytes of the intestinal barrier act as sensors for antigens from nutrients and the intestinal microbiota, which they deliver to the underlying immune system of the lamina propria, triggering an immune response. Studies investigating the mechanism of influence of nutrition on immunological outcomes have highlighted an important role of macronutrients (proteins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals, antioxidants, probiotics) in modulating immune homeostasis. Nutrients exert their role in innate immunity and inflammation by regulating the expression of TLRs, pro- and anti-inflammatory cytokines, thus interfering with immune cell crosstalk and signaling. Chemical substrates derived from nutrient metabolism may act as cofactors or blockers of enzymatic activity, influencing molecular pathways and chemical reactions associated with microbial killing, inflammation, and oxidative stress. Immune cell function appears to be influenced by certain nutrients that form parts of the cell membrane structure and are involved in energy production and prevention of cytotoxicity. Nutrients also contribute to the initiation and regulation of adaptive immune responses by modulating B and T lymphocyte differentiation, proliferation and activation, and antibody production. The purpose of this review is to present the available data from the field of nutritional immunology to elucidate the complex and dynamic relationship between nutrients and the immune system, the delineation of which will lead to optimized nutritional regimens for disease prevention and patient care.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Abnormally Hypersegmented Neutrophilia in Pediatric Acute Myeloid Leukemia Associated With t(2;11)(q31;p15) and NUP98 Rearrangement. J Pediatr Hematol Oncol 2021; 43:156-158. [PMID: 33480654 DOI: 10.1097/mph.0000000000002062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Verduci E, D'Auria E, Bosetti A, DI Profio E, Vizzuso S, Milanta C, Pendezza E, Borsani B, Zuccotti GV. Immunomodulatory diet in pediatric age. Minerva Pediatr (Torino) 2021; 73:128-149. [PMID: 33880904 DOI: 10.23736/s2724-5276.21.06214-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the last few decades, the importance of a functioning immune system and health status has become more evident. Multiple factors are able to influence the development of chronic diseases and diet is one of the most important environmental factors. Evidence demonstrates that dietary patterns high in fat and low in fiber are associated with the development of non-communicable diseases. Moreover, optimal nutritional status can modulate immune maturation and response to inflammation. During inflammatory conditions, nutritional deficiencies may occur, establishing a vicious circle, consequently a balanced nutritional status is essential to prevent and counteract infections. Dietary diversity can prevent allergic diseases and nutrients such as DHA, arginine, vitamins and trace elements have an impact on physical barriers (such as gut mucosal barrier and skin), on the immune system response and on microbiome modulation. Protein deficiencies can compromise innate and adaptive immune functions; arginine availability can affect the immune response in injured states and other disease processes; EPA and DHA can modulate both innate and adaptive immunity; prebiotics have a beneficial effect on the functioning of the immune system. Zinc, copper, selenium and iron are involved in the correct development and function of the immune system. Vitamins D, E, A, B and C have a role on immune system through different mechanisms of action. Since a complex interplay exists between diet, microbiome and epigenetic factors which determine nutrient-induced changes on the immune function, the effect of each single nutrient may be difficult to study. Well-designed intervention studies, investigating the effects of whole dietary pattern, should be performed to clarify impact of foods on the immune function and disease risk.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy - .,Department of Health Science, University of Milan, Milan, Italy -
| | - Enza D'Auria
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy.,Department of Health Science, University of Milan, Milan, Italy
| | | | | | - Sara Vizzuso
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | - Chiara Milanta
- Department of Health Science, University of Milan, Milan, Italy
| | - Erica Pendezza
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | - Barbara Borsani
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy
| | | |
Collapse
|
15
|
Mahmood R, Khurshid A, Yousaf MS, Aalam M, Salman M, Ikram M. Effect of vitamin A as a neoadjuvant agent in chemotherapy and photodynamic therapy of Rhabdomyosarcoma cells. Photodiagnosis Photodyn Ther 2020; 32:102088. [PMID: 33157333 DOI: 10.1016/j.pdpdt.2020.102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Combinational therapy is among the most used treatment modality's to increase cancer treatment efficacy. It may also reduce side effects, treatment time, and development of drug resistance. The effects of different analogues of vitamin A (VA) as neoadjuvant agent were observed in this study with chemotherapeutic drugs (doxorubicin and methotrexate) and photodynamic therapy (PDT) using 5-ALA and Photogem as photosensitizers in RD cells. The uptake time of photosensitizer was optimized by means of spectrophotometric measurements. Diode laser (λ = 635 nm ± 1 nm) was used as an illumination source for PDT. Responses of administered drugs were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. VA and its analogues exert prophylactic and therapeutic effects. Protective or antagonistic effects (CI > 1) were observed in each of the case. These results propose that the use of VA as a neoadjuvant agent in combinational therapeutic modalities may reduce the efficacy of cancer treatment protocols as well as the existing side effects. Thus, VA is not the successful drug for combinational therapies and under treatment cancer patients should try to avoid its use with oxidative stress induction therapies (e.g. PDT, Radiotherapy, chemotherapy).
Collapse
Affiliation(s)
- R Mahmood
- Photomedicine Research Laboratory, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan.
| | - A Khurshid
- Photomedicine Research Laboratory, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan; Biophotonics Research Laboratory, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - M S Yousaf
- Photomedicine Research Laboratory, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - M Aalam
- Department of Virology and Immunology, National Institute of Health, Park Road, Islamabad, Pakistan
| | - M Salman
- Department of Virology and Immunology, National Institute of Health, Park Road, Islamabad, Pakistan
| | - M Ikram
- Photomedicine Research Laboratory, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan; Biophotonics Research Laboratory, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| |
Collapse
|
16
|
Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12:E1562. [PMID: 32471251 PMCID: PMC7352291 DOI: 10.3390/nu12061562] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Alex Brito
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow Medical University, Trubetskay Str. 8, 119991 Moscow, Russia
| | - Giulia Dingeo
- Independent Researcher, Val de Marne, 94999 Paris, France;
| | - Sofia Sosa Fernandez Del Campo
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA;
- Center for Health Research, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| |
Collapse
|
17
|
Haaker MW, Vaandrager AB, Helms JB. Retinoids in health and disease: A role for hepatic stellate cells in affecting retinoid levels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158674. [PMID: 32105672 DOI: 10.1016/j.bbalip.2020.158674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Vitamin A (retinol) is important for normal growth, vision and reproduction. It has a role in the immune response and the development of metabolic syndrome. Most of the retinol present in the body is stored as retinyl esters within lipid droplets in hepatic stellate cells (HSCs). In case of liver damage, HSCs release large amounts of stored retinol, which is partially converted to retinoic acid (RA). This surge of RA can mediate the immune response and enhance the regeneration of the liver. If the damage persists activated HSCs change into myofibroblast-like cells producing extracellular matrix, which increases the chance of tumorigenesis to occur. RA has been shown to decrease proliferation and metastasis of hepatocellular carcinoma. The levels of RA and RA signaling are influenced by the possibility to esterify retinol towards retinyl esters. This suggests a complex regulation between different retinoids, with an important regulatory role for HSCs.
Collapse
Affiliation(s)
- Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arie B Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Manley HR, Keightley MC, Lieschke GJ. The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Front Immunol 2018; 9:2867. [PMID: 30564248 PMCID: PMC6288403 DOI: 10.3389/fimmu.2018.02867] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Neutrophil nuclear morphology has historically been used in haematology for neutrophil identification and characterisation, but its exact role in neutrophil function has remained enigmatic. During maturation, segmentation of the neutrophil nucleus into its mature, multi-lobulated shape is accompanied by distinct changes in nuclear envelope composition, resulting in a unique nucleus that is believed to be imbued with extraordinary nuclear flexibility. As a rate-limiting factor for cell migration, nuclear morphology and biomechanics are particularly important in the context of neutrophil migration during immune responses. Being an extremely plastic and fast migrating cell type, it is to be expected that neutrophils have an especially deformable nucleus. However, many questions still surround the dynamic capacities of the neutrophil nucleus, and which nuclear and cytoskeletal elements determine these dynamics. The biomechanics of the neutrophil nucleus should also be considered for their influences on the production of neutrophil extracellular traps (NETs), given this process sees the release of chromatin "nets" from nucleoplasm to extracellular space. Although past studies have investigated neutrophil nuclear composition and shape, in a new era of more sophisticated biomechanical and genetic techniques, 3D migration studies, and higher resolution microscopy we now have the ability to further investigate and understand neutrophil nuclear plasticity at an unprecedented level. This review addresses what is currently understood about neutrophil nuclear structure and its role in migration and the release of NETs, whilst highlighting open questions surrounding neutrophil nuclear dynamics.
Collapse
Affiliation(s)
- Harriet R Manley
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
19
|
Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of Vitamin A in the Immune System. J Clin Med 2018; 7:E258. [PMID: 30200565 PMCID: PMC6162863 DOI: 10.3390/jcm7090258] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
Vitamin A (VitA) is a micronutrient that is crucial for maintaining vision, promoting growth and development, and protecting epithelium and mucus integrity in the body. VitA is known as an anti-inflammation vitamin because of its critical role in enhancing immune function. VitA is involved in the development of the immune system and plays regulatory roles in cellular immune responses and humoral immune processes. VitA has demonstrated a therapeutic effect in the treatment of various infectious diseases. To better understand the relationship between nutrition and the immune system, the authors review recent literature about VitA in immunity research and briefly introduce the clinical application of VitA in the treatment of several infectious diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, China.
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Yu Liu
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, China.
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin 541004, Guangxi, China.
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - David Brand
- Research Service, VA Medical Center, Memphis, TN 38104, USA.
| | - Song Guo Zheng
- Department of Medicine, Division of Rheumatology, Milton S. Hershey Medical Center at Penn State University, Hershey, PA 17033, USA.
| |
Collapse
|
20
|
Tomay F, Wells K, Duong L, Tsu JW, Dye DE, Radley-Crabb HG, Grounds MD, Shavlakadze T, Metharom P, Nelson DJ, Jackaman C. Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B-cell zones. Immunol Cell Biol 2018; 96:831-840. [PMID: 29603362 DOI: 10.1111/imcb.12046] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
The average age of the human population is rising, leading to an increasing burden of age-related diseases, including increased susceptibility to infection. However, immune function can decrease with age which could impact on processes that require a functional immune system. Aging is also characterized by chronic low-grade inflammation which could further impact immune cell function. While changes to neutrophils in blood during aging have been described, little is known in aging lymphoid organs. This study used female C57BL/6J mice comparing bone marrow (BM), spleen and lymph nodes from young mice aged 2-3 months (equivalent to 18 human years) with healthy elderly mice aged 22-24 months (equivalent to 60-70 human years). Neutrophil proportions increased in BM and secondary lymphoid organs of elderly mice relative to their younger counterparts and presented an atypical phenotype. Interestingly, neutrophils from elderly spleen and lymph nodes were long lived (with decreased apoptosis via Annexin V staining and increased proportion of BrdUneg mature cells) with splenic neutrophils also demonstrating a hypersegmented morphology. Furthermore, splenic neutrophils of elderly mice expressed a mixed phenotype with increased expression of activation markers, CD11b and ICAM-1, increased proinflammatory TNFα, yet increased anti-inflammatory transforming growth factor-beta. Elderly splenic architecture was compromised, as the marginal zone (required for clearing infections) was contracted. Moreover, neutrophils from elderly but not young mice accumulated in lymph node and splenic T- and B-cell zones. Overall, the expansion of functionally compromised neutrophils could contribute to increased susceptibility to infection observed in the elderly.
Collapse
Affiliation(s)
- Federica Tomay
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Kelsi Wells
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Lelinh Duong
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Jean Wei Tsu
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Danielle E Dye
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Hannah G Radley-Crabb
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia.,School of Human Sciences, Faculty of Science, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, Faculty of Science, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Tea Shavlakadze
- School of Human Sciences, Faculty of Science, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Pat Metharom
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Delia J Nelson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| | - Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, 6012, Australia
| |
Collapse
|
21
|
Huebner H, Hartner A, Rascher W, Strick RR, Kehl S, Heindl F, Wachter DL, Beckmann Md MW, Fahlbusch FB, Ruebner M. Expression and Regulation of Retinoic Acid Receptor Responders in the Human Placenta. Reprod Sci 2017; 25:1357-1370. [PMID: 29246089 DOI: 10.1177/1933719117746761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling through its receptors (RARA, RARB, RARG, and the retinoic X receptor RXRA) is essential for healthy placental and fetal development. An important group of genes regulated by RA are the RA receptor responders (RARRES1, 2, and 3). We set out to analyze their expression and regulation in healthy and pathologically altered placentas of preeclampsia (PE) and intrauterine growth restriction (IUGR) as well as in trophoblast cell lines. METHODS We performed immunohistochemical staining on placental sections and analyzed gene expression by real-time polymerase chain reaction. Additionally, we performed cell culture experiments and stimulated Swan71 and Jeg-3 cells with different RA derivates and 2'-deoxy-5-azacytidine (AZA) to induce DNA demethylation. RESULTS RARRES1, 2, and 3 and RARA, RARB, RARG, and RXRA are expressed in the extravillous part of the placenta. RARRES1, RARA, RARG, and RXRA were additionally detected in villous cytotrophoblasts. RARRES gene expression was induced via activation of RARA, RARB, and RARG in trophoblast cells. RARRES1 was overexpressed in villous trophoblasts and the syncytiotrophoblast from PE placentas, but not in IUGR without PE. Promoter methylation was detectable for RARRES1 and RARB based on their sensitivity toward AZA treatment of trophoblast cell lines. DISCUSSION RARRES1, 2 and 3 are expressed in the functional compartments of the human placenta and can be regulated by RA. We hypothesize that the epigenetic suppression of trophoblast RARRES1 and RARB expression and the upregulation of RARRES1 in PE trophoblast cells suggest an involvement of environmental factors (eg, maternal vitamin A intake) in the pathogenesis of this pregnancy complication.
Collapse
Affiliation(s)
- Hanna Huebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Hartner
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Rascher
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Reiner R Strick
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sven Kehl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Felix Heindl
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David L Wachter
- 3 Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany * The authors are contributed equally
| | - Matthias W Beckmann Md
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian B Fahlbusch
- 2 Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- 1 Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
22
|
Doster RS, Rogers LM, Gaddy JA, Aronoff DM. Macrophage Extracellular Traps: A Scoping Review. J Innate Immun 2017; 10:3-13. [PMID: 28988241 DOI: 10.1159/000480373] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
Tissue macrophages are derived from either circulating blood monocytes that originate in the bone marrow, or embryonic precursors that establish residence in tissues and are maintained independent of bone marrow progenitors. Macrophages perform diverse functions including tissue repair, the maintenance of homeostasis, and immune regulation. Recent studies have demonstrated that macrophages produce extracellular traps (ETs). ETs are an immune response by which a cell undergoes "ETosis" to release net-like material, with strands composed of cellular DNA that is studded with histones and cellular proteins. ETs are thought to immobilize and kill microorganisms, but also been implicated in disease pathology including aseptic inflammation and autoimmune disease. We conducted a scoping review to define what is known from the existing literature about the ETs produced by monocytes or macrophages. The results suggest that macrophage ETs (METs) are produced in response to various microorganisms and have similar features to neutrophil ETs (NETs), in that METs are produced by a unique cell death program (METosis), which results in release of fibers composed of DNA and studded with cellular proteins. METs function to immobilize and kill some microorganisms, but may also play a role in disease pathology.
Collapse
Affiliation(s)
- Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
23
|
Shrestha S, Kim SY, Yun YJ, Kim JK, Lee JM, Shin M, Song DK, Hong CW. Dataset on the changes of neutrophils treated with retinoic acid. Data Brief 2017; 12:97-102. [PMID: 28409177 PMCID: PMC5382026 DOI: 10.1016/j.dib.2017.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/03/2022] Open
Abstract
The data presented in this article are related to the research article entitled “Retinoic acid induces hypersegmentation and enhances cytotoxicity of neutrophils against cancer cells” (S. Shrestha, S.Y. Kim, Y.J. Young, J.K. Kim, J.M. Lee, M. Shin, D.K. Song, C.W. Hong, 2017) [1]. This article complements the potential of retinoic acid to induce changes in effector function of human neutrophils. Here the datasets describe the rate of apoptosis, changes in numbers of nuclear lobes, and the expressions of surface markers in human neutrophils in presence or absence of retinoic acid. The tumor growth in recipient mice with adoptive transfer of retinoic acid-treated neutrophils was evaluated. The included data is made publicly available to criticism and extended analysis.
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Shin-Yeong Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Young-Jin Yun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun-Kyu Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry & Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|