1
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High-affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. Mol Ther Methods Clin Dev 2024; 32:101385. [PMID: 39687729 PMCID: PMC11647616 DOI: 10.1016/j.omtm.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28-activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFN-γ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
2
|
Liu H, Dai H, Qiu F, Chen Y, Liang CL, Yang B, Gong N, Bromberg JS, Dai Z. Electrostimulation suppresses allograft rejection via promoting lymphatic regulatory T cell migration mediated by lymphotoxin - lymphotoxin receptor β signaling. Am J Transplant 2024; 24:2187-2198. [PMID: 38992495 DOI: 10.1016/j.ajt.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Conventional immunosuppressants that suppress allograft rejection cause various side effects. Although regulatory T cells (Tregs) are essential for allograft survival, the limited efficacy of Treg therapy demands improvement. Thus, it is imperative to seek new approaches to enhancing Treg suppression. Low-intensity electrostimulation (ES) has been shown to exert antiinflammatory effects without causing major adverse reactions. However, it remains unknown whether and how ES regulates alloimmunity. Here, we found that regional ES delayed murine skin allograft rejection and promoted long-term allograft survival induced by an mTOR inhibitor, rapamycin. ES also extended islet allograft survival. Mechanistically, ES enhanced the expression of lymphotoxin α (LTα) on Tregs after transplantation. Blockade of lymphotoxin β receptor-mediated nonclassical NFκB signaling suppressed lymphatic Treg migration and largely reversed the effects of ES on allograft survival. Moreover, ES failed to extend allograft survival when recipients lacked LTα/lymph nodes or if transferred Tregs lacked LTα. Therefore, ES promoted the lymphatic migration of CD4+Foxp3+ Tregs by upregulating their surface expression of LTα. Finally, ES augmented expression of LTα on murine or human Tregs, but not conventional T cells, while promoting their calcium influx in vitro. This ES-mediated upregulation of LTα relied on calcium influx. Thus, our findings have unveiled novel mechanisms underlying ES-mediated immunoregulation.
Collapse
Affiliation(s)
- Huazhen Liu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, the Second Xiangya Hospital of Central South University, Changsha, China
| | - Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuchao Chen
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester, UK
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Jonathan S Bromberg
- Kidney and Pancreas Transplantation, Department of Surgery and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Glinton K, Thakkar AV, Jones R, Inui H, Ge ZD, Thorp EB. Leukocyte-lymphatic intersections during cardiac inflammation. J Mol Cell Cardiol 2024; 198:13-20. [PMID: 39592090 DOI: 10.1016/j.yjmcc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Advances in genetic, pharmacologic, and sequencing technology have led to new insight into the role of lymphatics in health and disease. This includes fundamental aspects of the crosstalk between immune cells with cardiac lymphatics. At the interface between leukocytes and lymphatic endothelial cells, myeloid populations are sources of lymphatic growth factors during inflammation. Lymphatic endothelial cells also secrete signals that activate leukocytes, including to antigen presenting cells. Taken together, a view of the lymphatic vasculature as a supplemental cardiac immune hub is emerging. Herein, we discuss reciprocal cell and molecular crosstalk between leukocytes and lymphatics in the myocardium, with implications for health and cardiac inflammation.
Collapse
Affiliation(s)
- Kristofor Glinton
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Abhishek V Thakkar
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Rebecca Jones
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Hiroyasu Inui
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Zhi-Dong Ge
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill, United States of America
| | - Edward B Thorp
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
4
|
Lu X, Ma K, Ren J, Peng H, Wang J, Wang X, Nasser MI, Liu C. The immune regulatory role of lymphangiogenesis in kidney disease. J Transl Med 2024; 22:1053. [PMID: 39578812 PMCID: PMC11583545 DOI: 10.1186/s12967-024-05859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
The renal lymphatic system is critical for maintaining kidney homeostasis and regulating the immune response inside the kidney. In various kidney pathological situations, the renal lymphatic network experiences lymphangiogenesis, which is defined as the creation of new lymphatic vessels. Kidney lymphangiogenesis controls immunological response inside the kidney by controlling lymphatic flow, immune cell trafficking, and immune cell regulation. Ongoing study reveals lymphangiogenesis's different architecture and functions in numerous tissues and organs. New research suggests that lymphangiogenesis in kidney disorders may regulate the renal immune response in various ways. The flexibility of lymphatic endothelial cells (LECs) improves the kidney's immunological regulatory function of lymphangiogenesis. Furthermore, current research has shown disparate findings regarding its impact on distinct renal diseases, resulting in contradictory outcomes even within the same kidney condition. The fundamental causes of the various effects of lymphangiogenesis on renal disorders remain unknown. In this thorough review, we explore the dual impacts of renal lymphangiogenesis on several kidney pathologies, with a particular emphasis on existing empirical data and new developments in understanding its immunological regulatory function in kidney disease. An improved understanding of the immunological regulatory function of lymphangiogenesis in kidney diseases might help design novel medicines targeting lymphatics to treat kidney pathologies.
Collapse
Affiliation(s)
- Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Xiaoxiao Wang
- Department of Organ Transplantation, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
5
|
Ryu S, Zhang J, Simoes R, Liu X, Guo Z, Feng L, Unsinger J, Hotchkiss RS, Cao YQ. Regulatory T cells require peripheral CCL2-CCR2 signaling to facilitate the resolution of medication overuse headache-related behavioral sensitization. J Headache Pain 2024; 25:197. [PMID: 39528947 PMCID: PMC11555869 DOI: 10.1186/s10194-024-01900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Medication overuse headache (MOH) is the most common secondary headache disorder, resulting from chronic and excessive use of medication to treat headaches, for example, sumatriptan. In a recent study, we have shown that the peripheral C-C motif ligand 2 (CCL2), C-C motif chemokine receptor 2 (CCR2) and calcitonin-gene-related peptide (CGRP) signaling pathways interact with each other and play critical roles in the development of chronic migraine-related behavioral and cellular sensitization. In the present study, we investigated whether CCL2-CCR2 and CGRP signaling pathways play a role in the development of sumatriptan overuse-induced sensitization, and whether they are involved in its resolution by the low-dose interleukin-2 (LD-IL-2) treatment. METHODS Mice received daily sumatriptan administration for 12 days. MOH-related behavioral sensitization was assessed by measuring changes of periorbital mechanical thresholds for 3 weeks. CCL2-CCR2 and CGRP signaling pathways were inhibited by targeted gene deletion or with an anti-CCL2 antibody. Ca2+-imaging was used to examine whether repetitive sumatriptan treatment enhances CGRP and pituitary adenylate cyclase-activating polypeptide (PACAP) signaling in trigeminal ganglion (TG) neurons. LD-IL-2 treatment was initiated after the establishment of sumatriptan-induced sensitization. Immunohistochemistry and flow cytometry analyses were used to examine whether CCL2-CCR2 signaling controls regulatory T (Treg) cell proliferation and/or trafficking. RESULTS CCL2, CCR2 and CGRPα global KO mice exhibited robust sumatriptan-induced behavioral sensitization comparable to wild-type controls. Antibody neutralization of peripheral CCL2 did not affect sumatriptan-induced behaviors either. Repeated sumatriptan administration did not enhance the strength of CGRP or PACAP signaling in TG neurons. Nevertheless, LD-IL-2 treatment, which facilitated the resolution of sumatriptan-induced sensitization in wild-type and CGRPα KO mice, was completely ineffective in mice with compromised CCL2-CCR2 signaling. In CCL2 KO mice, we observed normal LD-IL-2-induced Treg expansion in peripheral blood, but the increase of Treg cells in dura and TG tissues was significantly reduced in LD-IL-2-treated CCL2 KO mice relative to wild-type controls. CONCLUSIONS These results indicate that the endogenous CCL2-CCR2 and CGRP signaling pathways are not involved in sumatriptan-induced behavioral sensitization, suggesting that distinct molecular mechanisms underlie chronic migraine and MOH. On the other hand, peripheral CCL2-CCR2 signaling is required for LD-IL-2 to reverse chronic headache-related sensitization.
Collapse
Affiliation(s)
- Sun Ryu
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Jintao Zhang
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Roli Simoes
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Xuemei Liu
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Li Feng
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline Unsinger
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
- Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, Soldevila G. Induced regulatory T cells as immunotherapy in allotransplantation and autoimmunity: challenges and opportunities. J Leukoc Biol 2024; 116:947-965. [PMID: 38630873 DOI: 10.1093/jleuko/qiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Regulatory T cells play a crucial role in the homeostasis of the immune response. Regulatory T cells are mainly generated in the thymus and are characterized by the expression of Foxp3, which is considered the regulatory T-cell master transcription factor. In addition, regulatory T cells can be induced from naive CD4+ T cells to express Foxp3 under specific conditions both in vivo (peripheral regulatory T cells) and in vitro (induced regulatory T cells). Both subsets of thymic regulatory T cells and peripheral regulatory T cells are necessary for the establishment of immune tolerance to self and non-self antigens. Although it has been postulated that induced regulatory T cells may be less stable compared to regulatory T cells, mainly due to epigenetic differences, accumulating evidence in animal models shows that induced regulatory T cells are stable in vivo and can be used for the treatment of inflammatory disorders, including autoimmune diseases and allogeneic transplant rejection. In this review, we describe the biological characteristics of induced regulatory T cells, as well as the key factors involved in induced regulatory T-cell transcriptional, metabolic, and epigenetic regulation, and discuss recent advances for de novo generation of stable regulatory T cells and their use as immunotherapeutic tools in different experimental models. Moreover, we discuss the challenges and considerations for the application of induced regulatory T cells in clinical trials and describe the new approaches proposed to achieve in vivo stability, including functional or metabolic reprogramming and epigenetic editing.
Collapse
Affiliation(s)
- Evelyn Katy Alvarez-Salazar
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Arimelek Cortés-Hernández
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Saúl Arteaga-Cruz
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| | - Gloria Soldevila
- Department of Immunology and National Laboratory of Flow Cytometry, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, Colonia Copilco, Delegación Coyoacan, Apartado Postal 70228, CP 04510 Mexico City, Mexico
| |
Collapse
|
7
|
Kanazawa R, Goto R, Harada T, Ota T, Kobayashi N, Shibuya K, Ganchiku Y, Watanabe M, Zaitsu M, Kawamura N, Shimamura T, Taketomi A. Early graft-infiltrating lymphocytes are not associated with graft rejection in a mouse model of skin transplantation. Scand J Immunol 2024; 100:e13397. [PMID: 39080853 DOI: 10.1111/sji.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 11/05/2024]
Abstract
Graft-infiltrating lymphocytes (GILs) play an important role in promoting rejection after organ transplantation. We recently reported that GILs that accumulated up to 3 days post-transplantation did not promote rejection, whereas GILs present 3-5 days post-transplantation promoted rejection in a mouse heart transplantation model. However, the immunological behaviour of GILs in murine skin transplantation remains unclear. GILs were isolated on days 3, 5 or 7 post-transplantation from C57BL/6 (B6) allogeneic skin grafts transplanted onto BALB/c mice. BALB/c Rag2-/- γc-/- mice (BRGs) underwent B6 skin graft transplantation 10 weeks after adoptive transfer of day 3, 5, or 7 GILs. BRGs reconstituted with day 5 or 7 GILs completely rejected B6 grafts. However, when B6 grafts harvested from recipient BALB/c mice on day 5 or 7 were re-transplanted into BRGs, half of the re-transplanted day 5 grafts established long-term survival, although all re-transplanted day 7 grafts were rejected. BRGs reconstituted with day 3 GILs did not reject B6 grafts. Consistently, re-transplantation using day 3 skin grafts resulted in no rejection. Administration of anti-CD25 antibodies did not prevent the phenomenon observed for the day 3 skin grafts. Furthermore, BRGs reconstituted with splenocytes from naïve BALB/c mice immediately rejected the naïve B6 skin grafts and the re-transplanted day 3 B6 grafts, suggesting that day 3 GILs were unable to induce allograft rejection during the rejection process. In conclusion, the immunological role of GILs depends on the time since transplantation. Day 3 GILs had neither protective nor alloreactive effects in the skin transplant model.
Collapse
Affiliation(s)
- Ryo Kanazawa
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Ryoichi Goto
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Takuya Harada
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Takuji Ota
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Kazuaki Shibuya
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Yoshikazu Ganchiku
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Masaaki Watanabe
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Masaaki Zaitsu
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery 1, Hokkaido University, Sapporo, Japan
- Department of Transplant Surgery, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Urszula Ł, Ulana J, Bartosz S, Maja O, Małgorzata M, Monika RS. Exploring CCR5 + T regulatory cell subset dysfunction in type 1 diabetes patients: implications for immune regulation. Immunol Res 2024; 72:1061-1070. [PMID: 38937380 PMCID: PMC11564404 DOI: 10.1007/s12026-024-09508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
T regulatory lymphocytes (Treg) expressing CCR5 exhibit strong suppression activity in various autoimmune disorders. However, there remains a lack of comprehensive understanding regarding their involvement in the development of type 1 diabetes (T1D). In this study, we examined the role of the CCR5/CCL5 axis in regulating inflammatory response and its impact on regulatory T cells in type 1 diabetes (T1D). We hypothesize that dysregulation of the CCR5/CCL5 axis contributes to the development and progression of T1D through modulation of Treg-dependent immune responses. We analyzed the expression levels of CCR5 on Tregs isolated from individuals with T1D, as well as the plasma concentration of its main ligands. We found that Tregs from T1D patients exhibited decreased expression of CCR5 compared to healthy controls. Additionally, we observed a correlation between the expression levels of CCR5 on Tregs and their immunosuppressive function in T1D patients. Our results indicate the impaired migratory capacity of CCR5 + Tregs, suggesting a possible link between the dysregulation of the CCR5/CCL5 axis and impaired immune regulation in T1D. In line with previous studies, our findings support the notion that dysregulation of the CCR5/CCL5 axis contributes to the development and progression of type 1 diabetes (T1D) by modulating Treg-dependent immune responses. The decreased expression of CCR5 on Tregs in T1D patients suggests a potential impairment in the migratory capacity of these cells, which could compromise their ability to suppress autoreactive T cells and maintain immune homeostasis. Furthermore, our study highlights the importance of CCR5 as a biomarker for identifying dysfunctional Tregs in T1D.
Collapse
Affiliation(s)
- Ławrynowicz Urszula
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Juhas Ulana
- Division of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Słomiński Bartosz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Okońska Maja
- Department of Paediatrics, Diabetology and Endocrinology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Myśliwiec Małgorzata
- Department of Paediatrics, Diabetology and Endocrinology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
9
|
Napoli C, Benincasa G, Fiorelli A, Strozziero MG, Costa D, Russo F, Grimaldi V, Hoetzenecker K. Lung transplantation: Current insights and outcomes. Transpl Immunol 2024; 85:102073. [PMID: 38889844 DOI: 10.1016/j.trim.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Until now, the ability to predict or retard immune-mediated rejection events after lung transplantation is still limited due to the lack of specific biomarkers. The pressing need remains to early diagnose or predict the onset of chronic lung allograft dysfunction (CLAD) and its differential phenotypes that is the leading cause of death. Omics technologies (mainly genomics, epigenomics, and transcriptomics) combined with advanced bioinformatic platforms are clarifying the key immune-related molecular routes that trigger early and late events of lung allograft rejection supporting the biomarker discovery. The most promising biomarkers came from genomics. Both unregistered and NIH-registered clinical trials demonstrated that the increased percentage of donor-derived cell-free DNA in both plasma and bronchoalveolar lavage fluid showed a good diagnostic performance for clinically silent acute rejection events and CLAD differential phenotypes. A further success arose from transcriptomics that led to development of Molecular Microscope® Diagnostic System (MMDx) to interpret the relationship between molecular signatures of lung biopsies and rejection events. Other immune-related biomarkers of rejection events may be exosomes, telomer length, DNA methylation, and histone-mediated neutrophil extracellular traps (NETs) but none of them entered in registered clinical trials. Here, we discuss novel and existing technologies for revealing new immune-mediated mechanisms underlying acute and chronic rejection events, with a particular focus on emerging biomarkers for improving precision medicine of lung transplantation field.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, Department of Translation Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Dario Costa
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | | | - Vincenzo Grimaldi
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Clinical Department of Internal Medicine and Specialistics, University of Campania "L. Vanvitelli,", Naples, Italy
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
10
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
11
|
Yokose T, Szuter ES, Rosales I, Guinn MT, Liss AS, Baba T, Ruddy DA, Piquet M, Azzi J, Cosimi AB, Russell PS, Madsen JC, Colvin RB, Alessandrini A. Dysfunction of infiltrating cytotoxic CD8+ T cells within the graft promotes murine kidney allotransplant tolerance. J Clin Invest 2024; 134:e179709. [PMID: 38888968 PMCID: PMC11324304 DOI: 10.1172/jci179709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Tolerance of mouse kidney allografts arises in grafts that develop regulatory tertiary lymphoid organs (rTLOs). Single-cell RNA-seq (scRNA-seq) data and adoptive transfer of alloreactive T cells after transplantation showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required because adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite the presence of intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8-KO recipients resulted in acceptance and not rejection. Analysis of scRNA-seq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.
Collapse
Affiliation(s)
- Takahiro Yokose
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edward S. Szuter
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Center for Transplantation Sciences, Department of Surgery and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael T. Guinn
- Center for Transplantation Sciences, Department of Surgery and
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Ruddy
- Novartis Biomedical Research, Oncology, Cambridge, Massachusetts, USA
| | - Michelle Piquet
- Novartis Biomedical Research, Oncology, Cambridge, Massachusetts, USA
| | - Jamil Azzi
- Transplantation Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - A. Benedict Cosimi
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S. Russell
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B. Colvin
- Center for Transplantation Sciences, Department of Surgery and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Han JL, Zimmerer JM, Zeng Q, Chaudhari S, Satoskar A, Abdel-Rasoul M, Uwase H, Breuer CK, Bumgardner GL. Antibody-Suppressor CXCR5+CD8+ T Cells Are More Potent Regulators of Humoral Alloimmunity after Kidney Transplant in Mice Compared to CD4+ Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1504-1518. [PMID: 38517294 PMCID: PMC11047759 DOI: 10.4049/jimmunol.2300289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.
Collapse
Affiliation(s)
- Jing L. Han
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH
| | - Jason M. Zimmerer
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Qiang Zeng
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Sachi Chaudhari
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Anjali Satoskar
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Hope Uwase
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| | - Christopher K. Breuer
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Ginny L. Bumgardner
- Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
13
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Efe O, Gassen RB, Morena L, Ganchiku Y, Al Jurdi A, Lape IT, Ventura-Aguiar P, LeGuern C, Madsen JC, Shriver Z, Babcock GJ, Borges TJ, Riella LV. A humanized IL-2 mutein expands Tregs and prolongs transplant survival in preclinical models. J Clin Invest 2024; 134:e173107. [PMID: 38426492 PMCID: PMC10904054 DOI: 10.1172/jci173107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
Long-term organ transplant survival remains suboptimal, and life-long immunosuppression predisposes transplant recipients to an increased risk of infection, malignancy, and kidney toxicity. Promoting the regulatory arm of the immune system by expanding Tregs may allow immunosuppression minimization and improve long-term graft outcomes. While low-dose IL-2 treatment can expand Tregs, it has a short half-life and off-target expansion of NK and effector T cells, limiting its clinical applicability. Here, we designed a humanized mutein IL-2 with high Treg selectivity and a prolonged half-life due to the fusion of an Fc domain, which we termed mIL-2. We showed selective and sustainable Treg expansion by mIL-2 in 2 murine models of skin transplantation. This expansion led to donor-specific tolerance through robust increases in polyclonal and antigen-specific Tregs, along with enhanced Treg-suppressive function. We also showed that Treg expansion by mIL-2 could overcome the failure of calcineurin inhibitors or costimulation blockade to prolong the survival of major-mismatched skin grafts. Validating its translational potential, mIL-2 induced a selective and sustainable in vivo Treg expansion in cynomolgus monkeys and showed selectivity for human Tregs in vitro and in a humanized mouse model. This work demonstrated that mIL-2 can enhance immune regulation and promote long-term allograft survival, potentially minimizing immunosuppression.
Collapse
Affiliation(s)
- Orhan Efe
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | - Leela Morena
- Center for Transplantation Sciences, Department of Surgery
| | | | - Ayman Al Jurdi
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| | | | | | | | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery
- Division of Nephrology, Department of Medicine, and
| |
Collapse
|
15
|
Ma L, Ge Y, Brown J, Choi SC, Elshikha A, Kanda N, Terrell M, Six N, Garcia A, Mohamadzadeh M, Silverman G, Morel L. Dietary tryptophan and genetic susceptibility expand gut microbiota that promote systemic autoimmune activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575942. [PMID: 38293097 PMCID: PMC10827173 DOI: 10.1101/2024.01.16.575942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Tryptophan modulates disease activity and the composition of microbiota in the B6.Sle1.Sle2.Sle3 (TC) mouse model of lupus. To directly test the effect of tryptophan on the gut microbiome, we transplanted fecal samples from TC and B6 control mice into germ-free or antibiotic-treated non-autoimmune B6 mice that were fed with a high or low tryptophan diet. The recipient mice with TC microbiota and high tryptophan diet had higher levels of immune activation, autoantibody production and intestinal inflammation. A bloom of Ruminococcus gnavus (Rg), a bacterium associated with disease flares in lupus patients, only emerged in the recipients of TC microbiota fed with high tryptophan. Rg depletion in TC mice decreased autoantibody production and increased the frequency of regulatory T cells. Conversely, TC mice colonized with Rg showed higher autoimmune activation. Overall, these results suggest that the interplay of genetic and tryptophan can influence the pathogenesis of lupus through the gut microbiota.
Collapse
Affiliation(s)
- Longhuan Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Seung-Chul Choi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Ahmed Elshikha
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Natalie Six
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Abigail Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| | | | - Laurence Morel
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
16
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
17
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
18
|
Bei KF, Moshkelgosha S, Liu BJ, Juvet S. Intragraft regulatory T cells in the modern era: what can high-dimensional methods tell us about pathways to allograft acceptance? Front Immunol 2023; 14:1291649. [PMID: 38077395 PMCID: PMC10701590 DOI: 10.3389/fimmu.2023.1291649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Replacement of diseased organs with transplanted healthy donor ones remains the best and often only treatment option for end-stage organ disease. Immunosuppressants have decreased the incidence of acute rejection, but long-term survival remains limited. The broad action of current immunosuppressive drugs results in global immune impairment, increasing the risk of cancer and infections. Hence, achievement of allograft tolerance, in which graft function is maintained in the absence of global immunosuppression, has long been the aim of transplant clinicians and scientists. Regulatory T cells (Treg) are a specialized subset of immune cells that control a diverse array of immune responses, can prevent allograft rejection in animals, and have recently been explored in early phase clinical trials as an adoptive cellular therapy in transplant recipients. It has been established that allograft residency by Tregs can promote graft acceptance, but whether intragraft Treg functional diversification and spatial organization contribute to this process is largely unknown. In this review, we will explore what is known regarding the properties of intragraft Tregs during allograft acceptance and rejection. We will summarize recent advances in understanding Treg tissue residency through spatial, transcriptomic and high-dimensional cytometric methods in both animal and human studies. Our discussion will explore properties of intragraft Tregs in mediating operational tolerance to commonly transplanted solid organs. Finally, given recent developments in Treg cellular therapy, we will review emerging knowledge of whether and how these adoptively transferred cells enter allografts in humans. An understanding of the properties of intragraft Tregs will help lay the foundation for future therapies that will promote immune tolerance.
Collapse
Affiliation(s)
- Ke Fan Bei
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Bo Jie Liu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Lung Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
19
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Biswas M, So K, Bertolini TB, Krishnan P, Rana J, Muñoz-Melero M, Syed F, Kumar SRP, Gao H, Xuei X, Terhorst C, Daniell H, Cao S, Herzog RW. Distinct functions and transcriptional signatures in orally induced regulatory T cell populations. Front Immunol 2023; 14:1278184. [PMID: 37954612 PMCID: PMC10637621 DOI: 10.3389/fimmu.2023.1278184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-β (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFβ and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFβ expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaman So
- Department of Biostatistics and Health Data Science and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Thais B. Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Preethi Krishnan
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Farooq Syed
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sandeep R. P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
22
|
Rosado-Sánchez I, Haque M, Salim K, Speck M, Fung VC, Boardman DA, Mojibian M, Raimondi G, Levings MK. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 2023; 8:e167215. [PMID: 37669115 PMCID: PMC10619441 DOI: 10.1172/jci.insight.167215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A. Boardman
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Nabi N, Singh S, Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. PHYTOCHEMISTRY 2023; 214:113798. [PMID: 37517615 DOI: 10.1016/j.phytochem.2023.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Plant-based drugs have been used for centuries for treating different ailments. Malaria, one of the prevalent threats in many parts of the world, is treated mainly by artemisinin-based drugs derived from plants of genus Artemisia. However, the distribution of artemisinin is restricted to a few species of the genus; besides, its yield depends on ontogeny and the plant's geographical location. Here, we review the studies focusing on biosynthesis and distributional pattern of artemisinin production in species of the genus Artemisia. We also discussed various agronomic and in vitro methods and molecular approaches to increase the yield of artemisinin. We have summarized different mechanisms of artemisinin involved in its anti-malarial, anti-cancer, anti-inflammatory and anti-viral activities (like against Covid-19). Overall the current review provides a synopsis of a global view of the distribution of artemisinin, its biosynthesis, and pharmacological potential in treating various diseases like malaria, cancer, and coronavirus, which may provoke future research efforts in drug development. Nevertheless, long-term trials and molecular approaches, like CRISPR-Cas, are required for in-depth research.
Collapse
Affiliation(s)
- Neelofer Nabi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Seema Singh
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
24
|
Guinn MT, Szuter ES, Yokose T, Ge J, Rosales IA, Chetal K, Sadreyev RI, Cuenca AG, Kreisel D, Sage PT, Russell PS, Madsen JC, Colvin RB, Alessandrini A. Intragraft B cell differentiation during the development of tolerance to kidney allografts is associated with a regulatory B cell signature revealed by single cell transcriptomics. Am J Transplant 2023; 23:1319-1330. [PMID: 37295719 PMCID: PMC11232115 DOI: 10.1016/j.ajt.2023.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward S Szuter
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takahiro Yokose
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifu Ge
- Boston's Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy A Rosales
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex G Cuenca
- Boston's Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S Russell
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B Colvin
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
25
|
Jeon S, Lee YS, Oh SR, Jeong J, Lee DH, So KH, Hwang NS. Recent advances in endocrine organoids for therapeutic application. Adv Drug Deliv Rev 2023; 199:114959. [PMID: 37301512 DOI: 10.1016/j.addr.2023.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The endocrine system, consisting of the hypothalamus, pituitary, endocrine glands, and hormones, plays a critical role in hormone metabolic interactions. The complexity of the endocrine system is a significant obstacle to understanding and treating endocrine disorders. Notably, advances in endocrine organoid generation allow a deeper understanding of the endocrine system by providing better comprehension of molecular mechanisms of pathogenesis. Here, we highlight recent advances in endocrine organoids for a wide range of therapeutic applications, from cell transplantation therapy to drug toxicity screening, combined with development in stem cell differentiation and gene editing technologies. In particular, we provide insights into the transplantation of endocrine organoids to reverse endocrine dysfunctions and progress in developing strategies for better engraftments. We also discuss the gap between preclinical and clinical research. Finally, we provide future perspectives for research on endocrine organoids for the development of more effective treatments for endocrine disorders.
Collapse
Affiliation(s)
- Suwan Jeon
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seh Ri Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinseong Jeong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Hyun Lee
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Nathaniel S Hwang
- Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Larson JH, Jin S, Loschi M, Bolivar Wagers S, Thangavelu G, Zaiken MC, McDonald-Hyman C, Saha A, Aguilar EG, Koehn B, Osborn MJ, Panoskaltsis-Mortari A, Macdonald KPA, Hill GR, Murphy WJ, Serody JS, Maillard I, Kean LS, Kim SV, Littman DR, Blazar BR. Enforced gut homing of murine regulatory T cells reduces early graft-versus-host disease severity. Am J Transplant 2023; 23:1102-1115. [PMID: 36878433 PMCID: PMC10475494 DOI: 10.1016/j.ajt.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/31/2023] [Indexed: 03/07/2023]
Abstract
Damage to the gastrointestinal tract following allogeneic hematopoietic stem cell transplantation is a significant contributor to the severity and perpetuation of graft-versus-host disease. In preclinical models and clinical trials, we showed that infusing high numbers of regulatory T cells reduces graft-versus-host disease incidence. Despite no change in in vitro suppressive function, transfer of ex vivo expanded regulatory T cells transduced to overexpress G protein-coupled receptor 15 or C-C motif chemokine receptor 9, specific homing receptors for colon or small intestine, respectively, lessened graft-versus-host disease severity in mice. Increased regulatory T cell frequency and retention within the gastrointestinal tissues of mice that received gut homing T cells correlated with lower inflammation and gut damage early post-transplant, decreased graft-versus-host disease severity, and prolonged survival compared with those receiving control transduced regulatory T cells. These data provide evidence that enforced targeting of ex vivo expanded regulatory T cells to the gastrointestinal tract diminishes gut injury and is associated with decreased graft-versus-host disease severity.
Collapse
Affiliation(s)
- Jemma H Larson
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sujeong Jin
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Bolivar Wagers
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael C Zaiken
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cameron McDonald-Hyman
- Division of Hematology/Oncology/Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Asim Saha
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ethan G Aguilar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brent Koehn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kelli P A Macdonald
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Immunology Department, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - William J Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA; Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Jonathan S Serody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
27
|
Peters K, McDonald T, Muhammad F, Walsh M, Drenen K, Montieth A, Stephen Foster C, Lee DJ. A2Ar-dependent PD-1+ and TIGIT+ Treg cells have distinct homing requirements to suppress autoimmune uveitis in mice. Mucosal Immunol 2023; 16:422-431. [PMID: 37164238 PMCID: PMC10512849 DOI: 10.1016/j.mucimm.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
The proper function of regulatory T cells (Tregs) to suppress inflammation requires homing to the correct tissue site. Resolution of autoimmune uveitis generates distinct programmed death receptor 1 (PD-1+) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT+) Tregs in an adenosine 2A receptor (A2Ar)-dependent manner found in the spleen. Where and how these Tregs migrate from the spleen to prevent uveitis is not known. In this work, we show that A2Ar-dependent Tregs migrated to the eye and secondary lymphoid tissue and expressed chemokine receptor (CCR)6 and CCR7. Suppression of autoimmune uveitis required CCR6 and CCR7 expression for TIGIT+ Tregs but not PD-1+ Tregs. Moreover, stimulation of A2Ar on T cells from patients showed a decreased capacity to induce TIGIT+ Tregs that expressed CCR6 or CCR7, and PD-1+ Treg that expressed CCR6. This work provides a mechanistic understanding of the homing requirements of each of these Treg populations. Importantly, this work is clinically relevant because patients with chronic autoimmune uveitis are unable to induce the Treg populations identified in mice that home to the target tissue.
Collapse
Affiliation(s)
- Kayleigh Peters
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Trisha McDonald
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Marisa Walsh
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA
| | - Kayla Drenen
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA
| | - Alyssa Montieth
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA
| | - C Stephen Foster
- Massachusetts Eye Research and Surgery Institute, Waltham, USA; Ocular Immunology and Uveitis Foundation, Waltham, USA; Harvard Medical School, Boston, USA
| | - Darren J Lee
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, USA; Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, USA.
| |
Collapse
|
28
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
29
|
Kou Y, Jiang Y, Liu S, Yang P, Lu Y, Liu H, Li M. Regulatory T cells showed characteristics of T helper-17(Th17) cells in mice periodontitis model. Oral Dis 2023; 29:1149-1162. [PMID: 34741371 DOI: 10.1111/odi.14072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This study aimed to clarify the regulatory role of Th17-Treg balance in periodontitis and further reveal Treg plasticity. MATERIALS AND METHODS An experimental periodontitis model was established by ligation and injection of Pg-LPS. Inflammatory factors were measured by ELISA and RT-PCR. Alveolar bone absorption was evaluated by micro-CT and histomorphology. Quantities of Treg and Th17 cell and their related gene expression were examined. Furthermore, after magnetic bead-sorting spleen Treg cells, Treg/Th17 characteristic genes were explored. Immunofluorescence double staining of Foxp3 and IL-17 was conducted to further reveal Treg plasticity. RESULTS Inflammatory cytokines in serum and gingival tissue increased significantly in periodontitis, which revealed obvious crestal bone loss. Further analysis showed that the number of Th17 cells and expression of related genes increased more significantly than Treg cells, demonstrating Treg-Th17 imbalance. Flow cytometry showed that the proportions of Treg cells in the blood and spleen were lower in periodontitis group. Furthermore, Foxp3 was downregulated, and Rorc/ IL-17A were increased in Treg cells of periodontitis group. Immunofluorescence double staining showed significantly increased number of IL-17+Foxp3+ cells in periodontitis. CONCLUSIONS These results provided evidence that Treg cells showed characteristics of Th17 cells in mice with periodontitis, although its mechanisms require further study.
Collapse
Affiliation(s)
- Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yujun Jiang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shanshan Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
30
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
32
|
Kaljanac M, Abken H. Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation 2023; 107:74-85. [PMID: 36226849 PMCID: PMC9746345 DOI: 10.1097/tp.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of regulatory T cells (Treg) can induce transplant tolerance in preclinical models by suppressing alloantigen-directed inflammatory responses; clinical translation was so far hampered by the low abundance of Treg with allo-specificity in the peripheral blood. In this situation, ex vivo engineering of Treg with a T-cell receptor (TCR) or chimeric antigen receptor (CAR) provides a cell population with predefined specificity that can be amplified and administered to the patient. In contrast to TCR-engineered Treg, CAR Treg can be redirected toward a broad panel of targets in an HLA-unrestricted fashion' making these cells attractive to provide antigen-specific tolerance toward the transplanted organ. In preclinical models, CAR Treg accumulate and amplify at the targeted transplant, maintain their differentiated phenotype, and execute immune repression more vigorously than polyclonal Treg. With that, CAR Treg are providing hope in establishing allospecific, localized immune tolerance in the long term' and the first clinical trials administering CAR Treg for the treatment of transplant rejection are initiated. Here, we review the current platforms for developing and manufacturing alloantigen-specific CAR Treg and discuss the therapeutic potential and current hurdles in translating CAR Treg into clinical exploration.
Collapse
Affiliation(s)
- Marcell Kaljanac
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Giri S, Meitei HT, Sonar SA, Shaligram S, Lal G. In vitro-induced Foxp3 + CD8 + regulatory T cells suppress allergic IgE response in the gut. J Leukoc Biol 2022; 112:1497-1507. [PMID: 36000308 DOI: 10.1002/jlb.5a0122-027r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/26/2022] [Indexed: 01/04/2023] Open
Abstract
Several subsets of CD8+ T cells are known to have a suppressive function in different tissues and diseases in mice and humans. Due to the lack of a consensus on the phenotype of regulatory CD8+ T cells and very low frequency in the body, its clinical use as adoptive cellular therapy has not advanced much. In the present work, using DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (Aza), we efficiently and stably differentiated naïve CD8+ T cells (CD8+ CD25- CD44- cells) into the CD8+ Foxp3+ regulatory CD8+ T cells (CD8 Tregs). We also generated OVA peptide257-264 -specific CD8+ Foxp3+ Tregs. Compared with activated CD8 T cells, Aza plus TGF-β-induced CD8+ Foxp3+ Tregs showed significantly increased surface expression of CD39, CD73, CD122, CD62L, and CD103, and secreted TGF-β and suppressed the proliferation of effector CD4+ T cells. Interestingly, CD8+ Foxp3+ Tregs exhibited low expression of perforin and granzyme required for cytotoxic function. Analysis of chemokine receptors showed that TGF-β + Aza induced CD8+ Foxp3+ Tregs expressed gut-tropic chemokine receptors CCR6 and CCR9, and chemokine receptors CCR7 and CXCR3 required for mobilization into the spleen, lymph nodes, and gut-associated lymphoid tissues. Adoptive transfer of induced CD8+ Foxp3+ Tregs restored cholera toxin-induced breakdown of oral tolerance to OVA by regulating OVA-specific IgE and IgG1. Altogether, we showed an efficient method to generate antigen-specific CD8+ Foxp3+ Tregs, and the adoptive transfer of these cells induces oral tolerance by suppressing allergic response and maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Shilpi Giri
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | | | - Sandip Ashok Sonar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | - Saumitra Shaligram
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| | - Girdhari Lal
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, India
| |
Collapse
|
34
|
Kim S, Shukla RK, Yu H, Baek A, Cressman SG, Golconda S, Lee GE, Choi H, Reneau JC, Wang Z, Huang CA, Liyanage NPM, Kim S. CD3e-immunotoxin spares CD62L lo Tregs and reshapes organ-specific T-cell composition by preferentially depleting CD3e hi T cells. Front Immunol 2022; 13:1011190. [PMID: 36389741 PMCID: PMC9643874 DOI: 10.3389/fimmu.2022.1011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
CD3-epsilon(CD3e) immunotoxins (IT), a promising precision reagent for various clinical conditions requiring effective depletion of T cells, often shows limited treatment efficacy for largely unknown reasons. Tissue-resident T cells that persist in peripheral tissues have been shown to play pivotal roles in local and systemic immunity, as well as transplant rejection, autoimmunity and cancers. The impact of CD3e-IT treatment on these local cells, however, remains poorly understood. Here, using a new murine testing model, we demonstrate a substantial enrichment of tissue-resident Foxp3+ Tregs following CD3e-IT treatment. Differential surface expression of CD3e among T-cell subsets appears to be a main driver of Treg enrichment in CD3e-IT treatment. The surviving Tregs in CD3e-IT-treated mice were mostly the CD3edimCD62Llo effector phenotype, but the levels of this phenotype markedly varied among different lymphoid and nonlymphoid organs. We also found notable variations in surface CD3e levels among tissue-resident T cells of different organs, and these variations drive CD3e-IT to uniquely reshape T-cell compositions in local organs. The functions of organs and anatomic locations (lymph nodes) also affected the efficacy of CD3e-IT. The multi-organ pharmacodynamics of CD3e-IT and potential treatment resistance mechanisms identified in this study may generate new opportunities to further improve this promising treatment.
Collapse
Affiliation(s)
- Shihyoung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH, United States
| | - Hannah Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Alice Baek
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Sophie G. Cressman
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Sarah Golconda
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Ga-Eun Lee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Hyewon Choi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - John C. Reneau
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Zhirui Wang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Namal P. M. Liyanage
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States,Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH, United States,Infectious Disease Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Namal P. M. Liyanage, ; Sanggu Kim,
| | - Sanggu Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States,Infectious Disease Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Namal P. M. Liyanage, ; Sanggu Kim,
| |
Collapse
|
35
|
M2c Macrophages Protect Mice from Adriamycin-Induced Nephropathy by Upregulating CD62L in Tregs. Mediators Inflamm 2022; 2022:1153300. [PMID: 36262548 PMCID: PMC9576407 DOI: 10.1155/2022/1153300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Regulatory T cells (Tregs) and M2c macrophages have been shown to exert potentially synergistic therapeutic effects in animals with adriamycin-induced nephropathy (AN), a model chronic proteinuric renal disease. M2c macrophages may protect against renal injury by promoting an increase in the number of Tregs in the renal draining lymph nodes of AN mice, but how they do so is unclear. In this study, we used an AN mouse model to analyze how M2c macrophages induce the migration of Tregs. Using flow cytometry, we found that M2c macrophages promoted the migration of Tregs from the peripheral blood to the spleen, thymus, kidney, and renal draining lymph nodes. At the same time, M2c macrophages significantly upregulated chemokine receptors and adhesion molecule in Tregs, including CCR4, CCR5, CCR7, CXCR5, and CD62L. Treating AN mice with monoclonal anti-CD62L antibody inhibited the migration of M2c macrophages and Tregs to the spleen, thymus, kidney, and renal draining lymph nodes. Taken together, our results suggest that M2c macrophages upregulate CD62L in Tregs and thereby promote their migration to inflammatory sites, where they exert renoprotective effects. These insights may aid the development of treatments against chronic kidney disease.
Collapse
|
36
|
Sun J, Zhou GP, Li SP, Chen XJ, Zhang JM, Jiang YZ, Cui B, Zhang HM, Sun LY, Zhu ZJ. Potential correlation of allograft infiltrating group 2 innate lymphoid cells with acute rejection after liver transplantation. Front Immunol 2022; 13:953240. [PMID: 35967423 PMCID: PMC9367675 DOI: 10.3389/fimmu.2022.953240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence indicates the critical roles of group 2 innate lymphoid cells (ILC2s) in immunoregulation. However, the role of ILC2s in acute rejection after liver transplantation (LT) remains elusive. In this study, we analyzed the frequency, counts, and signature cytokines of ILC2s in liver transplant recipients by flow cytometric analysis and multiplex immunofluorescence assay. We also assessed the spatial distribution and correlation between hepatic ILC2s and Treg cells. The changes of ILC2s were dynamically monitored in the mouse LT model. We found that the frequencies of circulating ILC2s were comparable in liver transplant recipients with either rejection or non-rejection compared with the control group. The hepatic ILC2s counts were significantly increased in the rejection group than in the non-rejection and control groups, and a similar trend was observed for Treg cells. In the mouse LT model, allograft infiltrating ILC2s dramatically increased within 14 days post-transplant. The frequency of ILC2s in bone marrow significantly increased at 7 days post-transplant and rapidly decreased at 14 days after LT. Similarly, there was a significant increase in the frequency of splenic ILC2s within two weeks post-transplant. Multiplex immunofluorescence assay showed a close correlation between hepatic ILC2s and Treg cells by analyzing their spatial distribution and distance. In conclusion, the number of allograft infiltrating ILC2s was closely related to rejection after LT. Allograft infiltrating ILC2s may play inhibitory roles in posttransplant immune homeostasis, favoring resolution of liver allograft rejection by interacting with Treg cells or promoting the migration of Tregs cells into the liver allograft.
Collapse
Affiliation(s)
- Jie Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Shi-Peng Li
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Jin-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Yi-Zhou Jiang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cui
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Hai-Ming Zhang
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- Department of Critical Liver Disease, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhi-Jun Zhu, ; Li-Ying Sun,
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Pediatric Liver Transplantation, Capital Medical University, Beijing, China
- *Correspondence: Zhi-Jun Zhu, ; Li-Ying Sun,
| |
Collapse
|
37
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
38
|
Dai H, Pena A, Bauer L, Williams A, Watkins SC, Camirand G. Treg suppression of immunity within inflamed allogeneic grafts. JCI Insight 2022; 7:160579. [PMID: 35881490 PMCID: PMC9462475 DOI: 10.1172/jci.insight.160579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Regulatory CD4+Foxp3+ T cells (Treg) restrain inflammation and immunity. However, the mechanisms underlying Treg suppressor function in inflamed non-lymphoid tissues remain largely unexplored. Here, we restricted immune responses to non-lymphoid tissues and used intravital microscopy to visualize Treg suppression of rejection by effector T cells (Teff) within inflamed allogeneic islet transplants. Despite their elevated motility, Treg preferentially contact antigen-presenting cells (APCs) over Teff. Interestingly, Treg specifically target APCs that are extensively and simultaneously contacted by Teff. In turn, Treg decrease MHC-II expression on APCs and hinder Teff function. Lastly, we demonstrate that Treg suppressor function within inflamed allografts requires ecto-nucleotidase CD73 activity, which generates the anti-inflammatory adenosine. Consequently, CD73-/- Treg exhibit reduced contacts with APCs within inflamed allografts compared to wt Treg, but not in spleen. Overall, our findings demonstrate that Treg suppress immunity within inflamed grafts through CD73 activity and suggest that Treg-APC direct contacts are central to this process.
Collapse
Affiliation(s)
- Hehua Dai
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute- University of Pittsburgh, Pittsburgh, United States of America
| | - Andressa Pena
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Lynne Bauer
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Amanda Williams
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Simon C Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, United States of America
| | - Geoffrey Camirand
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
39
|
Gille I, Claas FHJ, Haasnoot GW, Heemskerk MHM, Heidt S. Chimeric Antigen Receptor (CAR) Regulatory T-Cells in Solid Organ Transplantation. Front Immunol 2022; 13:874157. [PMID: 35720402 PMCID: PMC9204347 DOI: 10.3389/fimmu.2022.874157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Solid organ transplantation is the treatment of choice for various end-stage diseases, but requires the continuous need for immunosuppression to prevent allograft rejection. This comes with serious side effects including increased infection rates and development of malignancies. Thus, there is a clinical need to promote transplantation tolerance to prevent organ rejection with minimal or no immunosuppressive treatment. Polyclonal regulatory T-cells (Tregs) are a potential tool to induce transplantation tolerance, but lack specificity and therefore require administration of high doses. Redirecting Tregs towards mismatched donor HLA molecules by modifying these cells with chimeric antigen receptors (CAR) would render Tregs far more effective at preventing allograft rejection. Several studies on HLA-A2 specific CAR Tregs have demonstrated that these cells are highly antigen-specific and show a superior homing capacity to HLA-A2+ allografts compared to polyclonal Tregs. HLA-A2 CAR Tregs have been shown to prolong survival of HLA-A2+ allografts in several pre-clinical humanized mouse models. Although promising, concerns about safety and stability need to be addressed. In this review the current research, obstacles of CAR Treg therapy, and its potential future in solid organ transplantation will be discussed.
Collapse
Affiliation(s)
- Ilse Gille
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | - Geert W Haasnoot
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Eurotransplant Reference Laboratory, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
40
|
Xiao P, Takiishi T, Violato NM, Licata G, Dotta F, Sebastiani G, Marselli L, Singh SP, Sze M, Van Loo G, Dejardin E, Gurzov EN, Cardozo AK. NF-κB-inducing kinase (NIK) is activated in pancreatic β-cells but does not contribute to the development of diabetes. Cell Death Dis 2022; 13:476. [PMID: 35589698 PMCID: PMC9120028 DOI: 10.1038/s41419-022-04931-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in β-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic β-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous β-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice. Therefore, NIK has been proposed as a potential target for diabetes therapy. However, no clear studies showed whether inhibition of NIK improves diabetes development. Here we show that genetic silencing of NIK in pancreatic β-cells neither modifies diabetes incidence nor inflammatory responses in a mouse model of immune-mediated diabetes. Moreover, NIK silencing in DIO mice did not influence body weight gain, nor glucose metabolism. In vitro studies corroborated the in vivo findings in terms of β-cell survival, function, and downstream gene regulation. Taken together, our data suggest that NIK activation is dispensable for the development of diabetes.
Collapse
Affiliation(s)
- Peng Xiao
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Tatiana Takiishi
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Natalia Moretti Violato
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Giada Licata
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Guido Sebastiani
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Laboratory, University of Pisa, Pisa, Italy
| | - Sumeet Pal Singh
- Institute for Interdisciplinary Research in Human and Molecular Biology, Medical Faculty, Université libre de Bruxelles, Brussels, Belgium
| | - Mozes Sze
- Center for Inflammation Research, VIB, B-9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052, Ghent, Belgium
| | - Geert Van Loo
- Center for Inflammation Research, VIB, B-9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052, Ghent, Belgium
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Insitute, ULiege, Liège, Belgium
| | - Esteban Nicolas Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Alessandra Kupper Cardozo
- Inflammation and Cell Death Signalling group, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
41
|
Eschweiler S, Ramírez-Suástegui C, Li Y, King E, Chudley L, Thomas J, Wood O, von Witzleben A, Jeffrey D, McCann K, Simon H, Mondal M, Wang A, Dicker M, Lopez-Guadamillas E, Chou TF, Dobbs NA, Essame L, Acton G, Kelly F, Halbert G, Sacco JJ, Schache AG, Shaw R, McCaul JA, Paterson C, Davies JH, Brennan PA, Singh RP, Loadman PM, Wilson W, Hackshaw A, Seumois G, Okkenhaug K, Thomas GJ, Jones TM, Ay F, Friberg G, Kronenberg M, Vanhaesebroeck B, Vijayanand P, Ottensmeier CH. Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs. Nature 2022; 605:741-746. [PMID: 35508656 PMCID: PMC9132770 DOI: 10.1038/s41586-022-04685-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022]
Abstract
Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.
Collapse
Affiliation(s)
| | | | - Yingcong Li
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emma King
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
- Dorset Cancer Centre, Poole Hospital NHS Foundation Trust, Poole, UK
| | - Lindsey Chudley
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jaya Thomas
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Oliver Wood
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Adrian von Witzleben
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Danielle Jeffrey
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Katy McCann
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Hayley Simon
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Alice Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | - Nicola A Dobbs
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Louisa Essame
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Gary Acton
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Fiona Kelly
- Centre for Drug Development, Cancer Research UK, London, UK
| | - Gavin Halbert
- Cancer Research UK Formulation Unit, University of Strathclyde, Glasgow, UK
| | - Joseph J Sacco
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Centre NHS Foundation Trust and Liverpool Cancer Research UK Experimental Cancer Medicine Center Liverpool, Liverpool, UK
| | - Andrew Graeme Schache
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Richard Shaw
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | | | - Joseph H Davies
- Dorset Cancer Centre, Poole Hospital NHS Foundation Trust, Poole, UK
| | | | - Rabindra P Singh
- Southampton University Hospitals NHS Foundation Trust, Southampton, UK
| | - Paul M Loadman
- University of Bradford, Institute of Cancer Therapeutics, Bradford, UK
| | - William Wilson
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | - Allan Hackshaw
- Cancer Research UK and UCL Cancer Trials Centre, London, UK
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Gareth J Thomas
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK
| | - Terry M Jones
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ferhat Ay
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Mitchell Kronenberg
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- CRUK and NIHR Experimental Cancer Medicine Center, University of Southampton, Southampton, UK.
- Liverpool Head and Neck Center and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Clatterbridge Cancer Centre NHS Foundation Trust and Liverpool Cancer Research UK Experimental Cancer Medicine Center Liverpool, Liverpool, UK.
| |
Collapse
|
42
|
Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, Lakhan R, Brinkman CC, Walden S, Hippen KL, WillsonShirkey M, Lee YS, Wagner C, Blazar BR, Bromberg JS. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep 2022; 39:110727. [PMID: 35443187 PMCID: PMC9093052 DOI: 10.1016/j.celrep.2022.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cell (Treg) lymphatic migration is required for resolving inflammation and prolonging allograft survival. Focusing on Treg interactions with lymphatic endothelial cells (LECs), we dissect mechanisms and functional consequences of Treg transendothelial migration (TEM). Using three genetic mouse models of pancreatic islet transplantation, we show that Treg lymphotoxin (LT) αβ and LEC LTβ receptor (LTβR) signaling are required for efficient Treg migration and suppressive function to prolong allograft survival. Inhibition of LT signaling increases Treg conversion to Foxp3loCD25lo exTregs. In a transwell-based model of TEM across polarized LECs, non-migrated Tregs become exTregs. Such conversion is regulated by LTβR nuclear factor κB (NF-κB) signaling in LECs, which increases interleukin-6 (IL-6) production and drives exTreg conversion. Migrating Tregs are ectonucleotidase CD39hi and resist exTreg conversion in an adenosine-receptor-2A-dependent fashion. Human Tregs migrating across human LECs behave similarly. These molecular interactions can be targeted for therapeutic manipulation of immunity and suppression.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lushen Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Christina Paluskievicz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanbao Xiong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Simon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - C Colin Brinkman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sarah Walden
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Keli L Hippen
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Marina WillsonShirkey
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Young S Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chelsea Wagner
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
43
|
Lapp MM, Lin G, Komin A, Andrews L, Knudson M, Mossman L, Raimondi G, Arciero JC. Modeling the Potential of Treg-Based Therapies for Transplant Rejection: Effect of Dose, Timing, and Accumulation Site. Transpl Int 2022; 35:10297. [PMID: 35479106 PMCID: PMC9035492 DOI: 10.3389/ti.2022.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
Introduction: The adoptive transfer of regulatory T cells (Tregs) has emerged as a method to promote graft tolerance. Clinical trials have demonstrated the safety of adoptive transfer and are now assessing their therapeutic efficacy. Strategies that generate large numbers of antigen specific Tregs are even more efficacious. However, the combinations of factors that influence the outcome of adoptive transfer are too numerous to be tested experimentally. Here, mathematical modeling is used to predict the most impactful treatment scenarios. Methods: We adapted our mathematical model of murine heart transplant rejection to simulate Treg adoptive transfer and to correlate therapeutic efficacy with Treg dose and timing, frequency of administration, and distribution of injected cells. Results: The model predicts that Tregs directly accumulating to the graft are more protective than Tregs localizing to draining lymph nodes. Inhibiting antigen-presenting cell maturation and effector functions at the graft site was more effective at modulating rejection than inhibition of T cell activation in lymphoid tissues. These complex dynamics define non-intuitive relationships between graft survival and timing and frequency of adoptive transfer. Conclusion: This work provides the framework for better understanding the impact of Treg adoptive transfer and will guide experimental design to improve interventions.
Collapse
Affiliation(s)
- Maya M. Lapp
- Department of Mathematics, The College of Wooster, Wooster, OH, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
| | - Alexander Komin
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Leah Andrews
- Department of Mathematics, St. Olaf College, Northfield, MN, United States
| | - Mei Knudson
- Department of Mathematics, Carleton College, Northfield, MN, United States
| | - Lauren Mossman
- Department of Mathematics, St. Olaf College, Northfield, MN, United States
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States,*Correspondence: Giorgio Raimondi, ; Julia C. Arciero,
| | - Julia C. Arciero
- Department of Mathematical Sciences, Indiana University-Purdue University of Indianapolis, Indianapolis, IN, United States,*Correspondence: Giorgio Raimondi, ; Julia C. Arciero,
| |
Collapse
|
44
|
Cremoni M, Massa F, Sicard A. Overcoming barriers to widespread use of CAR-Treg therapy in organ transplant recipients. HLA 2022; 99:565-572. [PMID: 35233971 DOI: 10.1111/tan.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
Preventing allograft rejection has been the main challenge of transplantation medicine since the discovery of immune responses against foreign HLA molecules in the mid-20th century. Prevention of rejection currently relies on immunosuppressive drugs, which lack antigen specificity and therefore increase the risk for infections and cancers. Adoptive cell therapy with donor-reactive regulatory T cells (Tregs) has progressively emerged as a promising approach to reduce the need for pan-immunosuppressive drugs and minimize morbidity and mortality in solid-organ transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate Tregs specific for donor HLA molecules and overcome the limitations of Tregs enrichment protocols based on repetitive stimulations with alloantigens. While this novel approach opens new possibilities to make Tregs therapy more feasible, it also creates additional challenges. It is essential to determine which source of therapeutic Tregs, CAR constructs, target alloantigens, safety strategies, patients and immunosuppressive regimens are optimal for the success of CAR Treg therapy. Here, we discuss unmet needs and strategies to bring donor-specific CAR Treg therapy to the clinic and make it as accessible as possible.
Collapse
Affiliation(s)
- Marion Cremoni
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Clinical Research Unit, University Côte d'Azur (UR2CA), Nice, France
| | - Filippo Massa
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| | - Antoine Sicard
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| |
Collapse
|
45
|
Zhou H, Lu H, Sun L, Wang Z, Zheng M, Hang Z, Zhang D, Tan R, Gu M. Diagnostic Biomarkers and Immune Infiltration in Patients With T Cell-Mediated Rejection After Kidney Transplantation. Front Immunol 2022; 12:774321. [PMID: 35058922 PMCID: PMC8764245 DOI: 10.3389/fimmu.2021.774321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
T cell-mediated rejection (TCMR) is an important rejection type in kidney transplantation, characterized by T cells and macrophages infiltration. The application of bioinformatic analysis in genomic research has been widely used. In the present study, Microarray data was analyzed to identify the potential diagnostic markers of TCMR in kidney transplantation. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) was performed to determine the distribution of immune cell infiltration in the pathology. Totally 129 upregulated differently expressed genes (DEGs) and 378 downregulated DEGs were identified. The GO and KEGG results demonstrated that DEGs were mainly associated with pathways and diseases involved in immune response. The intersection of the two algorithms (PPI network and LASSO) contains three overlapping genes (CXCR6, CXCL13 and FCGR1A). After verification in GSE69677, only CXCR6 and CXCL13 were selected. Immune cells Infiltration analysis demonstrated that CXCR6 and CXCL13 were positively correlated with gamma delta T cells (p < 0.001), CD4+ memory activated T cells (p < 0.001), CD8+ T cells (p < 0.001) and M1 macrophages (p = 0.006), and negatively correlated with M2 macrophages (p < 0.001) and regulatory T cells (p < 0.001). Immunohistochemical staining and image analysis confirmed the overexpression of CXCR6 and CXCL13 in human allograft TCMR samples. CXCR6 and CXCL13 could be diagnostic biomarkers of TCMR and potential targets for immunotherapy in patients with TCMR.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongcheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongliang Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Chruscinski A, Rojas-Luengas V, Moshkelgosha S, Issachar A, Luo J, Yowanto H, Lilly L, Smith R, Renner E, Zhang J, Epstein M, Grant D, McEvoy CM, Konvalinka A, Humar A, Adeyi O, Fischer S, Volmer FH, Taubert R, Jaeckel E, Juvet S, Selzner N, Levy GA. Evaluation of a gene expression biomarker to identify operationally tolerant liver transplant recipients: the LITMUS trial. Clin Exp Immunol 2022; 207:123-139. [PMID: 35020854 PMCID: PMC8802178 DOI: 10.1093/cei/uxab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
LITMUS was a single-centre, Phase 2a study designed to investigate whether the gene biomarker FGL2/IFNG previously reported for the identification of tolerance in murine models could identify operationally tolerant liver transplant recipients. Multiplex RT-PCR was used to amplify eight immunoregulatory genes in peripheral blood mononuclear cells (PBMC) from 69 adult liver transplant recipients. Patients with PBMC FGL2/IFNG ≥ 1 and a normal liver biopsy underwent immunosuppression (IS) withdrawal. The primary end point was the development of operational tolerance. Secondary end points included correlation of tolerance with allograft gene expression and immune cell markers. Twenty-eight of 69 patients (38%) were positive for the PBMC tolerance biomarker and 23 proceeded to IS withdrawal. Nine of the 23 patients had abnormal baseline liver biopsies and were excluded. Of the 14 patients with normal biopsies, eight (57%) have achieved operational tolerance and are off IS (range 12–57 months). Additional studies revealed that all of the tolerant patients and only one non-tolerant patient had a liver gene ratio of FOXP3/IFNG ≥ 1 prior to IS withdrawal. Increased CD4+ T regulatory T cells were detected both in PBMC and livers of tolerant patients following IS withdrawal. Higher expression of SELE (gene for E-selectin) and lower expression of genes associated with inflammatory responses (GZMB, CIITA, UBD, LSP1, and CXCL9) were observed in the pre-withdrawal liver biopsies of tolerant patients by RNA sequencing. These results suggest that measurement of PBMC FGL2/IFNG may enrich for the identification of operationally tolerant liver transplant patients, especially when combined with intragraft measurement of FOXP3/IFNG. Clinical Trial Registration: ClinicalTrials.gov (LITMUS: NCT02541916).
Collapse
Affiliation(s)
- Andrzej Chruscinski
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Vanessa Rojas-Luengas
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sajad Moshkelgosha
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Assaf Issachar
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | | | | | - Leslie Lilly
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Robert Smith
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Eberhard Renner
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Jianhua Zhang
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Maor Epstein
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - David Grant
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Caitriona M McEvoy
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Atul Humar
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Oyedele Adeyi
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Sandra Fischer
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Felix H Volmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephen Juvet
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Nazia Selzner
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| |
Collapse
|
47
|
Morgana F, Opstelten R, Slot MC, Scott AM, van Lier RAW, Blom B, Mahfouz A, Amsen D. Single-Cell Transcriptomics Reveals Discrete Steps in Regulatory T Cell Development in the Human Thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:384-395. [PMID: 34937744 DOI: 10.4049/jimmunol.2100506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
CD4+CD25+FOXP3+ regulatory T (Treg) cells control immunological tolerance. Treg cells are generated in the thymus (tTreg) or in the periphery. Their superior lineage fidelity makes tTregs the preferred cell type for adoptive cell therapy (ACT). How human tTreg cells develop is incompletely understood. By combining single-cell transcriptomics and flow cytometry, we in this study delineated three major Treg developmental stages in the human thymus. At the first stage, which we propose to name pre-Treg I, cells still express lineage-inappropriate genes and exhibit signs of TCR signaling, presumably reflecting recognition of self-antigen. The subsequent pre-Treg II stage is marked by the sharp appearance of transcription factor FOXO1 and features induction of KLF2 and CCR7, in apparent preparation for thymic exit. The pre-Treg II stage can further be refined based on the sequential acquisition of surface markers CD31 and GPA33. The expression of CD45RA, finally, completes the phenotype also found on mature recent thymic emigrant Treg cells. Remarkably, the thymus contains a substantial fraction of recirculating mature effector Treg cells, distinguishable by expression of inflammatory chemokine receptors and absence of CCR7. The developmental origin of these cells is unclear and warrants caution when using thymic tissue as a source of stable cells for ACT. We show that cells in the major developmental stages can be distinguished using the surface markers CD1a, CD27, CCR7, and CD39, allowing for their viable isolation. These insights help identify fully mature tTreg cells for ACT and can serve as a basis for further mechanistic studies into tTreg development.
Collapse
Affiliation(s)
- Florencia Morgana
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Rianne Opstelten
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Manon C Slot
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Bianca Blom
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands; and
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research, Amsterdam, the Netherlands; .,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, the Netherlands.,Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Saito S. Reconsideration of the Role of Regulatory T Cells during Pregnancy: Differential Characteristics of Regulatory T Cells between the Maternal-Fetal Interface and Peripheral Sites and between Early and Late Pregnancy. Med Princ Pract 2022; 31:403-414. [PMID: 36195068 PMCID: PMC9801372 DOI: 10.1159/000527336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/02/2022] [Indexed: 01/03/2023] Open
Abstract
Regulatory T (Treg) cells play an important role in implantation of the embryo and maintenance of pregnancy after allogeneic mating. Implantation failure, miscarriage, and preeclampsia are associated with decreased numbers of Treg cells or with dysfunctional Treg cells. Treg cells are classified into naturally occurring Treg (nTreg) cells or thymus-derived Treg (tTreg) cells that differentiate in the thymus and induce tolerance to self-antigens, while induced Treg (iTreg) or peripheral Treg (pTreg) cells differentiate in the periphery and induce transient tolerance to foreign antigens. Memory nTreg or iTreg cells were recently reported to accumulate in the uterus during early pregnancy and contribute to the establishment of pregnancy. Miscarriage is characterized by the downregulation of the total numbers of Treg cells rather than a downregulation of the numbers of paternal/fetal antigen-specific Treg cells. In addition to the volume of paternal/fetal antigen-specific CD8+ T cells, the number of paternal/fetal antigen-specific Treg cells, which protect the fetus/placenta against maternal immune cell attack, increases after the second trimester of pregnancy. Clonal Treg cells which are surrogate markers of paternal/fetal antigen-specific Treg cells in humans may be involved in the development of preeclampsia during the mid- to late pregnancy stage, as evidenced by their downregulation in the decidua of preeclamptic cases. This review summarizes recent findings on Treg cells and discusses the roles, in the maintenance of pregnancy, of different types of Treg cells such as paternal/fetal antigen-specific Treg, pregnancy-associated memory Treg, nTreg (or tTreg), and iTreg (or pTreg cells).
Collapse
|
49
|
Fu J, Lehmann CHK, Wang X, Wahlbuhl M, Allabauer I, Wilde B, Amon L, Dolff S, Cesnjevar R, Kribben A, Woelfle J, Rascher W, Hoyer PF, Dudziak D, Witzke O, Hoerning A. CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation. Sci Rep 2021; 11:23815. [PMID: 34893663 PMCID: PMC8664946 DOI: 10.1038/s41598-021-03115-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment.
Collapse
Affiliation(s)
- Jian Fu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany.,The Emergency and Trauma Center, The First Affiliated Hospital of Hai Nan Medical University, Haikou, China
| | - Christian H K Lehmann
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany. .,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany.
| | - Xinning Wang
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mandy Wahlbuhl
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Ida Allabauer
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lukas Amon
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Department of Cardiac Surgery, Universitäts-Kinderspital Zürich, Zurich, Switzerland
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Joachim Woelfle
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Wolfgang Rascher
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Peter F Hoyer
- Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Research Module II, Hartmannstr. 14, 91052, Erlangen, Germany.,Medical Immunology Campus and German Centre for Immuntherapy (Deutsches Zentrum für Immuntherapie-DZI) Erlangen, FAU Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - André Hoerning
- Department for Pediatric and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Loschgestrasse 15, 91054, Erlangen, Germany. .,Department of Pediatrics II, Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Children's Hospital Essen, University Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
50
|
Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021; 12:771210. [PMID: 34804061 PMCID: PMC8596464 DOI: 10.3389/fimmu.2021.771210] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.
Collapse
Affiliation(s)
- Liyang Fei
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| |
Collapse
|