1
|
Lu B, Zhang Y, Wang J, Yang D, Liu M, Ma L, Yi W, Liang Y, Xu Y, Fan H, Liu W, Tang J, Zeng S, Cai L, Zhang L, Nie J, Zhang F, Gu X, Rosa Duque JS, Lu G, Zhang Y. PD1 +CD4 + T cells promote receptor editing and suppress autoreactivity of CD19 +CD21 low B cells within the lower respiratory airways in adenovirus pneumonia. Mucosal Immunol 2024; 17:1045-1059. [PMID: 39038753 DOI: 10.1016/j.mucimm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Human adenovirus (HAdV) pneumonia poses a major health burden for young children, however, factors that contribute to disease severity remain elusive. We analyzed immune cells from bronchoalveolar lavage (BAL) of children with HAdV pneumonia and found that CD19+CD21low B cells were significantly enriched in the BAL and were associated with increased autoantibody concentrations and disease severity. Myeloid cells, PD-1+CD4+ T helper cells and CD21low B cells formed tertiary lymphoid structures within the respiratory tracts. Myeloid cells promoted autoantibody production by expressing high amounts of B cell activating factor (BAFF). In contrast, PD-1+CD4+ T helper cells induced production of IgG1 and IgG3 antibodies but suppressed autoreactive IgGs by initiating B cell receptor editing. In summary, this study reveals cellular components involved in protective versus autoreactive immune pathways in the respiratory tract, and these findings provide potential therapeutic targets for severe HAdV lower respiratory tract infections.
Collapse
Affiliation(s)
- Bingtai Lu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yanfang Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jun Wang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Diyuan Yang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ming Liu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Liuheyi Ma
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Weijing Yi
- Zybio Inc., Chongqing Municipality, 400039, China
| | - Yufeng Liang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Yingyi Xu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Huifeng Fan
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Wei Liu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jue Tang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Sengqiang Zeng
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Li Cai
- Department of Hospital Infection Control, Guangdong Provincial Hospital of Traditional Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Li Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Junli Nie
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Fen Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Xiaoqiong Gu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jaime S Rosa Duque
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; Department of Paediatric and Adolescent Medicine, the University of Hong Kong, Hong Kong, China.
| | - Gen Lu
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China.
| | - Yuxia Zhang
- Department of Respiratory Medicine, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong 510623, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Castaño D, Wang S, Atencio-Garcia S, Shields EJ, Rico MC, Sharpe H, Bustamante J, Feng A, Le Coz C, Romberg N, Tobias JW, Utz PJ, Henrickson SE, Casanova JL, Bonasio R, Locci M. IL-12 drives the differentiation of human T follicular regulatory cells. Sci Immunol 2024; 9:eadf2047. [PMID: 38968337 DOI: 10.1126/sciimmunol.adf2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
T follicular regulatory (Tfr) cells can counteract the B cell helper activity of T follicular helper (Tfh) cells and hinder the production of antibodies against self-antigens or allergens. A mechanistic understanding of the cytokines initiating the differentiation of human regulatory T (Treg) cells into Tfr cells is still missing. Herein, we report that low doses of the pro-Tfh cytokine interleukin-12 (IL-12) drive the induction of a Tfr cell program on activated human Treg cells while also preserving their regulatory function. Mechanistically, we found that IL-12 led to STAT4 (signal transducer and activator of transcription 4) phosphorylation and binding to IL-12-driven follicular signature genes. Patients with inborn errors of immunity in the IL12RB1 gene presented with a strong decrease in circulating Tfr cells and produced higher levels of anti-actin autoantibodies in vivo. Overall, this study unveils IL-12 as an inducer of Tfr cell differentiation in vivo and provides an approach for the in vitro generation of human Tfr-like cells.
Collapse
Affiliation(s)
- Diana Castaño
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sidney Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Segovia Atencio-Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily J Shields
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Rico
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Hannah Sharpe
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| | - Neil Romberg
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah E Henrickson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Yang Q, Zhang F, Chen H, Hu Y, Yang N, Yang W, Wang J, Yang Y, Xu R, Xu C. The differentiation courses of the Tfh cells: a new perspective on autoimmune disease pathogenesis and treatment. Biosci Rep 2024; 44:BSR20231723. [PMID: 38051200 PMCID: PMC10830446 DOI: 10.1042/bsr20231723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
The follicular helper T cells are derived from CD4+T cells, promoting the formation of germinal centers and assisting B cells to produce antibodies. This review describes the differentiation process of Tfh cells from the perspectives of the initiation, maturation, migration, efficacy, and subset classification of Tfh cells, and correlates it with autoimmune disease, to provide information for researchers to fully understand Tfh cells and provide further research ideas to manage immune-related diseases.
Collapse
Affiliation(s)
- Qingya Yang
- Division of Rheumatology, People’s Hospital of Mianzhu, Mianzhu, Sichuan, 618200, China
| | - Fang Zhang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Hongyi Chen
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yuman Hu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ning Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Wenyan Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Jing Wang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Yaxu Yang
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Ran Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Chao Xu
- Division of Rheumatology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
- Division of Rheumatology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| |
Collapse
|
5
|
Feng H, Zhao Z, Zhao X, Bai X, Fu W, Zheng L, Kang B, Wang X, Zhang Z, Dong C. A novel memory-like Tfh cell subset is precursor to effector Tfh cells in recall immune responses. J Exp Med 2024; 221:e20221927. [PMID: 38047912 PMCID: PMC10695277 DOI: 10.1084/jem.20221927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
T follicular helper (Tfh) cells, essential for germinal center reactions, are not identical, with different phenotypes reported. Whether, when, and how they generate memory cells is still poorly understood. Here, through single-cell RNA-sequencing analysis of CXCR5+Bcl6+ Tfh cells generated under different conditions, we discovered, in addition to PD-1hi effector Tfh cells, a CD62L+PD1low subpopulation. CD62L-expressing Tfh cells developed independently from PD-1+ cells and not in direct contact with B cells. More importantly, CD62L+ Tfh cells expressed memory- and stemness-associated genes, and with better superior long-term survival, they readily generated PD-1hi cells in the recall response. Finally, KLF2 and IL7R, also highly expressed by CD62L+ Tfh cells, were required to regulate their development. Our work thus demonstrates a novel Tfh memory-like cell subpopulation, which may benefit our understanding of immune responses and diseases.
Collapse
Affiliation(s)
- Han Feng
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Xue Bai
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Weiwei Fu
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liangtao Zheng
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Boxi Kang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Xiaohu Wang
- Institute for Immunology, Tsinghua University, Beijing, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Chen Dong
- Institute for Immunology, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute and Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
- Westlake University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
7
|
Azarias Da Silva M, Nioche P, Soudaramourty C, Bull-Maurer A, Tiouajni M, Kong D, Zghidi-Abouzid O, Picard M, Mendes-Frias A, Santa-Cruz A, Carvalho A, Capela C, Pedrosa J, Castro AG, Loubet P, Sotto A, Muller L, Lefrant JY, Roger C, Claret PG, Duvnjak S, Tran TA, Tokunaga K, Silvestre R, Corbeau P, Mammano F, Estaquier J. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. SCIENCE ADVANCES 2023; 9:eadg2122. [PMID: 37540749 PMCID: PMC10403221 DOI: 10.1126/sciadv.adg2122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.
Collapse
Affiliation(s)
| | - Pierre Nioche
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | | | | | - Mounira Tiouajni
- INSERM-U1124, Université Paris Cité, Paris, France
- Structural and Molecular Analysis Platform, BioMedTech Facilities INSERM US36-CNRS UMS2009, Université Paris Cité, Paris, France
| | - Dechuan Kong
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Santa-Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Alexandre Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Internal Medicine, Hospital of Braga, Braga, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Paul Loubet
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Albert Sotto
- Service des Maladies Infectieuses et Tropicales, CHU de Nîmes, Nîmes, France
| | - Laurent Muller
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Claire Roger
- Service de Réanimation Chirugicale, CHU de Nîmes, Nîmes, France
| | | | - Sandra Duvnjak
- Service de Gérontologie et Prévention du Vieillissement, CHU de Nîmes, Nîmes, France
| | - Tu-Anh Tran
- Service de Pédiatrie, CHU de Nîmes, Nîmes, France
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pierre Corbeau
- Institut de Génétique Humaine, UMR9002 CNRS-Université de Montpellier, Montpellier, France
- Laboratoire d’Immunologie, CHU de Nîmes, Nîmes, France
| | - Fabrizio Mammano
- INSERM-U1124, Université Paris Cité, Paris, France
- Université de Tours, INSERM, UMR1259 MAVIVH, Tours, France
| | - Jérôme Estaquier
- INSERM-U1124, Université Paris Cité, Paris, France
- CHU de Québec-Université Laval Research Center, Québec City, Québec, Canada
| |
Collapse
|
8
|
Kawahata K, Ishii T, Gono T, Tsuchiya Y, Ohashi H, Yoshizawa K, Zheng R, Ayabe M, Nishikawa K. Phase 3, multicentre, randomised, double-blind, placebo-controlled, parallel-group study of ustekinumab in Japanese patients with active polymyositis and dermatomyositis who have not adequately responded to one or more standard-of-care treatments. RMD Open 2023; 9:e003268. [PMID: 37652554 PMCID: PMC10476119 DOI: 10.1136/rmdopen-2023-003268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES To evaluate the efficacy and safety of ustekinumab (UST) in a multicentre, randomised, double-blind, placebo-controlled trial in adult Japanese patients with active polymyositis (PM) and dermatomyositis (DM). METHODS Fifty-one Japanese adults diagnosed with active PM/DM who did not respond adequately to one or more standard-of-care treatments were randomised 1:1 to receive UST (n=25) or placebo (n=26). Participants received body weight-range based intravenous administration of UST (6 mg/kg) or placebo at week 0 followed by 90 mg subcutaneous (SC) administration of UST or placebo every 8 weeks from week 8 to week 24. At week 24, placebo group crossed over to receive body weight-range based intravenous administration of UST, and thereafter, all participants received/were to receive SC administration of UST 90 mg every 8 weeks (week 32 through to week 72). The primary efficacy endpoint was the proportion of participants who achieved minimal improvement (≥20) in the International Myositis Assessment and Clinical Studies Total Improvement Score (IMACS TIS) at week 24. RESULTS No statistically significant difference was seen in the proportion of participants who achieved minimal improvement (≥20) in IMACS TIS at week 24 between the treatment groups (UST 64.0% vs placebo 61.5%, p=0.94) based on the primary estimand of the primary endpoint analysis. CONCLUSIONS UST was safe and well tolerated but did not meet the primary efficacy endpoint in adult Japanese participants with active PM/DM based on the primary analysis at week 24 in the study. TRIAL REGISTRATION NUMBER NCT03981744.
Collapse
Affiliation(s)
- Kimito Kawahata
- Department of Rheumatology and Allergology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Tomonori Ishii
- Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Takahisa Gono
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Yumi Tsuchiya
- Research and Development, Janssen Pharmaceutical KK, Tokyo, Japan
| | - Hiroki Ohashi
- Research and Development, Janssen Pharmaceutical KK, Tokyo, Japan
| | | | - Richuan Zheng
- Statistics and Decision Sciences, Janssen Pharmaceutical KK, Tokyo, Japan
| | - Maori Ayabe
- Clinical Pharmacology and Pharmacometrics, Janssen Pharmaceutical KK, Tokyo, Japan
| | - Kazuko Nishikawa
- Research and Development, Janssen Pharmaceutical KK, Tokyo, Japan
| |
Collapse
|
9
|
Boyd MAA, Carey Hoppe A, Kelleher AD, Munier CML. T follicular helper cell responses to SARS-CoV-2 vaccination among healthy and immunocompromised adults. Immunol Cell Biol 2023; 101:504-513. [PMID: 36825370 PMCID: PMC10952589 DOI: 10.1111/imcb.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.
Collapse
Affiliation(s)
| | - Alexandra Carey Hoppe
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
- St Vincent's HospitalSydneyNSW2010Australia
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| |
Collapse
|
10
|
Sakamoto R, Takada A, Yamakado S, Tsuge H, Ito E, Iwata M. Release from persistent T cell receptor engagement and blockade of aryl hydrocarbon receptor activity enhance IL-6-dependent mouse follicular helper T-like cell differentiation in vitro. PLoS One 2023; 18:e0287746. [PMID: 37352327 PMCID: PMC10289413 DOI: 10.1371/journal.pone.0287746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Follicular helper T (Tfh) cells are crucial for humoral immunity. Dysregulation of Tfh cell differentiation can cause infectious, allergic, and autoimmune diseases. To elucidate the molecular mechanisms underlying Tfh cell differentiation, we attempted to establish an in vitro mouse model of Tfh cell differentiation in the absence of other cell types. Various cytokines and cell surface molecules are suggested to contribute to the differentiation. We found that stimulating naïve CD4+ T cells with immobilized antibodies to CD3, ICOS, and LFA-1 in the presence of soluble anti-CD28 antibody, IL-6, and antibodies that block IL-2 signaling for 3 days induced the expression of Bcl6 and Rorc(γt), master regulator genes of Tfh and Th17 cells, respectively. TGF-β significantly enhanced cell proliferation and Bcl6 and Rorc(γt) expression. An additional 2 days of culture without immobilized antibodies selectively downregulated Rorc(γt) expression. These cells produced IL-21 and promoted B cells to produce IgG antibodies. Adding the aryl hydrocarbon receptor (AhR) antagonist CH-223191 to the T cell culture further downregulated Rorc(γt) expression without significantly affecting Bcl6 expression, and upregulated expression of a key Tfh marker, CXCR5. Although their CXCR5 expression levels were still not high, the CH-223191-treated cells showed chemotactic activity towards the CXCR5 ligand CXCL13. On the other hand, AhR agonists upregulated Rorc(γt) expression and downregulated CXCR5 expression. These findings suggest that AhR activity and the duration of T cell receptor stimulation contribute to regulating the balance between Tfh and Th17 cell differentiation. Although this in vitro system needs to be further improved, it may be useful for elucidating the mechanisms of Tfh cell differentiation as well as for screening physiological or pharmacological factors that affect Tfh cell differentiation including CXCR5 expression.
Collapse
Affiliation(s)
- Rei Sakamoto
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | - Ayumi Takada
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | | | - Haruki Tsuge
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, TWIns, Shinjuku, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| | - Makoto Iwata
- Research Organization for Nano and Life Innovation, Waseda University, TWIns, Shinjuku, Tokyo, Japan
| |
Collapse
|
11
|
Vono M, Mastelic-Gavillet B, Mohr E, Östensson M, Persson J, Olafsdottir TA, Lemeille S, Pejoski D, Hartley O, Christensen D, Andersen P, Didierlaurent AM, Harandi AM, Lambert PH, Siegrist CA. C-type lectin receptor agonists elicit functional IL21-expressing Tfh cells and induce primary B cell responses in neonates. Front Immunol 2023; 14:1155200. [PMID: 37063899 PMCID: PMC10102809 DOI: 10.3389/fimmu.2023.1155200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionC-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults.MethodsHere, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF®01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses.ResultsOn day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10. CAF01 induced mixed Th1/Th17 neonatal responses while T cell responses induced by GLA-SE had a more pronounced Th2-profile. Only CAF01 induced T follicular helper (Tfh) cells expressing high levels of IL21 similar to levels induced in adult mice, which is essential for germinal center (GC) formation. Accordingly, only CAF01- induced neonatal Tfh cells activated adoptively transferred hen egg lysozyme (HEL)-specific B cells to form HEL+ GC B cells in neonatal mice upon vaccination with HEL-OVA.DiscussionCollectively, the data show that CLR-based adjuvants are promising neonatal and infant adjuvants due to their ability to harness Tfh responses in early life.
Collapse
Affiliation(s)
- Maria Vono
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- *Correspondence: Maria Vono,
| | - Beatris Mastelic-Gavillet
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Malin Östensson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - David Pejoski
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Arnaud M. Didierlaurent
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ali M. Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, British Columbia (BC) Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Paul-Henri Lambert
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Beaujean M, Uijen RF, Langereis JD, Boccara D, Dam D, Soria A, Veldhuis G, Adam L, Bonduelle O, van der Wel NN, Luirink J, Pedruzzi E, Wissink J, de Jonge MI, Combadière B. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model. Vaccine 2023; 41:2270-2279. [PMID: 36870875 DOI: 10.1016/j.vaccine.2023.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023]
Abstract
For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-muTM) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin.
Collapse
Affiliation(s)
- Manon Beaujean
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Rienke F Uijen
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David Boccara
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Hôpital Saint Louis, Reconstructive and Cosmetic and Burn, Paris, France
| | - Denise Dam
- U-Needle B.V., Enschede, the Netherlands
| | - Angèle Soria
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France; Service de Dermatologie et d'Allergologie, Hôpital Tenon, Paris HUEP, APHP, Paris, France
| | | | - Lucille Adam
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, De Boelelaan, 1085, 1081 HV Amsterdam, the Netherlands
| | - Eric Pedruzzi
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| | | | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Behazine Combadière
- Sorbonne Université, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi), Paris, France
| |
Collapse
|
13
|
Rahman Z, Dandekar MP. Implication of Paraprobiotics in Age-Associated Gut Dysbiosis and Neurodegenerative Diseases. Neuromolecular Med 2023; 25:14-26. [PMID: 35879588 DOI: 10.1007/s12017-022-08722-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are major age-related concerns in elderly people. Since no drug fully addresses the progression of neurodegenerative diseases, advance treatment strategies are urgently needed. Several studies have noted the senescence of immune system and the perturbation of gut microbiota in the aged population. In recent years, the role of gut microbiota has been increasingly studied in the manifestation of age-related CNS disorders. In this context, prebiotics, probiotics, and paraprobiotics are reported to improve the behavioural and neurobiological abnormalities in elderly patients. As live microbiota, prescribed in the form of probiotics, shows some adverse effects like sepsis, translocation, and horizontal gene transfer, paraprobiotics could be a possible alternative strategy in designing microbiome-based therapeutics. This review describes the health-beneficial effects of paraprobiotics in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
14
|
Connors J, Joyner D, Mege NJ, Cusimano GM, Bell MR, Marcy J, Taramangalam B, Kim KM, Lin PJC, Tam YK, Weissman D, Kutzler MA, Alameh MG, Haddad EK. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun Biol 2023; 6:188. [PMID: 36805684 PMCID: PMC9936473 DOI: 10.1038/s42003-023-04555-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Herein, we studied the impact of empty LNP (eLNP), component of mRNA-based vaccine, on anti-viral pathways and immune function of cells from young and aged individuals. eLNP induced maturation of monocyte derived dendritic cells (MDDCs). We further show that eLNP upregulated CD40 and induced cytokine production in multiple DC subsets and monocytes. This coincided with phosphorylation of TANK binding kinase 1 (pTBK1) and interferon response factor 7 (pIRF7). In response to eLNP, healthy older adults (>65 yrs) have decreased CD40 expression, and IFN-γ output compared to young adults (<65 yrs). Additionally, cells from older adults have a dysregulated anti-viral signaling response to eLNP stimulation, measured by the defect in type I IFN production, and phagocytosis. Overall, our data show function of eLNP in eliciting DC maturation and innate immune signaling pathways that is impaired in older adults resulting in lower immune responses to SARS-CoV-2 mRNA-based vaccines.
Collapse
Affiliation(s)
- Jennifer Connors
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - David Joyner
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Molecular and Cellular Biology, Philadelphia, PA, USA
| | | | - Gina M Cusimano
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Matthew R Bell
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Jennifer Marcy
- Drexel University College of Medicine, Department of Molecular and Cellular Biology, Philadelphia, PA, USA
| | - Bhavani Taramangalam
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Kenneth M Kim
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
| | | | | | - Drew Weissman
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- University of Pennsylvania, Penn Institute for RNA Innovation, Philadelphia, PA, USA
| | - Michele A Kutzler
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA
| | - Mohamad-Gabriel Alameh
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- University of Pennsylvania, Penn Institute for RNA Innovation, Philadelphia, PA, USA.
| | - Elias K Haddad
- Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia, PA, USA.
- Drexel University College of Medicine, Department of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Yang J, Boer JC, Khongkow M, Phunpee S, Khalil ZG, Bashiri S, Deceneux C, Goodchild G, Hussein WM, Capon RJ, Ruktanonchai U, Plebanski M, Toth I, Skwarczynski M. The Development of Surface-Modified Liposomes as an Intranasal Delivery System for Group A Streptococcus Vaccines. Vaccines (Basel) 2023; 11:vaccines11020305. [PMID: 36851183 PMCID: PMC9961534 DOI: 10.3390/vaccines11020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Intranasal vaccine administration can overcome the disadvantages of injectable vaccines and present greater efficiency for mass immunization. However, the development of intranasal vaccines is challenged by poor mucosal immunogenicity of antigens and the limited availability of mucosal adjuvants. Here, we examined a number of self-adjuvanting liposomal systems for intranasal delivery of lipopeptide vaccine against group A Streptococcus (GAS). Among them, two liposome formulations bearing lipidated cell-penetrating peptide KALA and a new lipidated chitosan derivative (oleoyl-quaternized chitosan, OTMC) stimulated high systemic antibody titers in outbred mice. The antibodies were fully functional and were able to kill GAS bacteria. Importantly, OTMC was far more effective at stimulating antibody production than the classical immune-stimulating trimethyl chitosan formulation. In a simple physical mixture, OTMC also enhanced the immune responses of the tested vaccine, without the need for a liposome delivery system. The adjuvanting capacity of OTMC was further confirmed by its ability to stimulate cytokine production by dendritic cells. Thus, we discovered a new immune stimulant with promising properties for mucosal vaccine development.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Pathumthani 12120, Thailand
| | - Sarunya Phunpee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Pathumthani 12120, Thailand
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Cyril Deceneux
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Georgia Goodchild
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Klong 1, Pathumthani 12120, Thailand
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: ; Tel.: +61-73-346-9894
| |
Collapse
|
16
|
Connors J, Joyner D, Mege N, Cusimano G, Bell M, Marcy J, Taramangalam B, Lin P, Tam Y, Lin P, Weissman D, Kutzler M, Alameh MG, Haddad E. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. RESEARCH SQUARE 2022:rs.3.rs-2199652. [PMID: 36380763 PMCID: PMC9665340 DOI: 10.21203/rs.3.rs-2199652/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite the overwhelming success of mRNA-based vaccine in protecting against SARS-CoV-2 infection and reducing disease severity and hospitalization, little is known about the role lipid nanoparticles (LNP) play in initiating immune response. In this report we studied the adjuvantive impact of empty LNP with no mRNA cargo (eLNP) on anti-viral pathways and immune function of cells from young and aged individuals. We found that eLNP induced maturation of monocyte derived dendritic cells by measuring the expression of CD40, CD80, HLA-DR and production of cytokines including IFN-α,IL-6, IFN-γ, IL-12, and IL-21. Flow cytometry analysis of specific dendritic cell subsets showed that eLNP can induce CD40 expression and cytokine production in cDC1, cDC2 and monocytes. Empty LNP (eLNP) effects on dendritic cells and monocytes coincided with induction pIRF7 and pTBK1, which are both important in mitigating innate immune signaling. Interestingly our data show that in response to eLNP stimulus at 6 and 24 hrs, aged individuals have decreased CD40 expression and reduced IFN- γ output compared to young adults. Furthermore, we show that cDC1, cDC2, and CD14 dim CD16 + monocytes from healthy aged individuals have dysregulated anti-viral signaling response to eLNP stimulation as measured by the defect in type I IFN production, phosphorylation of IRF7, TBK-1, and immune function like phagocytosis. These data showed a novel function of eLNP in eliciting DC maturation and innate immune signaling pathways and that some of these functions are impaired in older individuals providing some suggestion of why older individuals (> 65 yrs of age) respond display lower immune responses and adverse events to SARS-CoV-2 mRNA-based vaccines.
Collapse
|
17
|
CHEN J, CHEN J, WANG L. Tertiary lymphoid structures as unique constructions associated with the organization, education, and function of tumor-infiltrating immunocytes. J Zhejiang Univ Sci B 2022; 23:812-822. [PMID: 36226536 PMCID: PMC9561406 DOI: 10.1631/jzus.b2200174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tertiary lymphoid structures (TLSs) are formations at sites with persistent inflammatory stimulation, including tumors. These ectopic lymphoid organs mainly consist of chemo-attracting B cells, T cells, and supporting dendritic cells (DCs). Mature TLSs exhibit functional organization for the optimal development and collaboration of adaptive immune response, delivering an augmented effect on the tumor microenvironment (TME). The description of the positive correlation between TLSs and tumor prognosis is reliable only under a certain condition involving the localization and maturation of TLSs. Emerging evidence suggests that underlying mechanisms of the anti-tumor effect of TLSs pave the way for novel immunotherapies. Several approaches have been developed to take advantage of intratumoral TLSs, either by combining it with therapeutic agents or by inducing the neogenesis of TLSs.
Collapse
Affiliation(s)
- Jing CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Jian CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Jian CHEN,
| | - Lie WANG
- Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Cancer Center, Zhejiang University, Hangzhou310058, China,Lie WANG,
| |
Collapse
|
18
|
Grydziuszko E, Phelps A, Bruton K, Jordana M, Koenig JFE. Heterogeneity, subsets, and plasticity of T follicular helper cells in allergy. J Allergy Clin Immunol 2022; 150:990-998. [PMID: 36070826 DOI: 10.1016/j.jaci.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Antibody responses are critical for protection against pathogens. However, diseases such as allergic rhinitis or food allergy result from aberrant production of IgE antibodies against otherwise innocuous environmental antigens. The production of allergen-specific IgE requires interaction between B cells and CD4+ T cells, and a granular understanding of these interactions is required to develop novel therapies for allergic disease. CD4+ T cells are exceptionally heterogeneous in their transcriptional, epigenetic, and proteomic profiles, which poses significant challenges when attempting to define subsets relevant to the study of allergy among a continuum of cells. Defining subsets such as the T follicular helper (TFH) cell cluster provides a shorthand to understand the functions of CD4+ T cells in antibody production and supports mechanistic experimentation for hypothesis-driven discovery. With a focus on allergic disease, this Rostrum article broadly discusses heterogeneity among CD4+ T cells and provides a rationale for subdividing TFH cells into both functional and cytokine-skewed subsets. Further, it highlights the plasticity demonstrated by TFH cells during the primary response and after recall, and it explores the possibility of harnessing this plasticity to reprogram immunity for therapeutic benefit in allergic disease.
Collapse
Affiliation(s)
- Emily Grydziuszko
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua F E Koenig
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
19
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
20
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
21
|
Tanemura S, Seki N, Tsujimoto H, Saito S, Kikuchi J, Sugahara K, Yoshimoto K, Suzuki K, Kaneko Y, Chiba K, Takeuchi T. Role of interferons (IFNs) in the differentiation of T peripheral helper (Tph) cells 2. IFN-α and IFN-λ1 cooperatively contribute to the expansion of Tph cells in systemic lupus erythematosus. Int Immunol 2022; 34:533-544. [PMID: 35780437 DOI: 10.1093/intimm/dxac032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-21-producing T peripheral helper (Tph) cells are thought to contribute to extra-follicular B cell activation and play a pathogenic role in autoimmune diseases. In this study, we investigated relationship between Tph cells and interferons (IFNs) in several autoimmune diseases because our previous study demonstrated that type I IFNs promote differentiation of IL-21-producing Tph-like cells. Frequency of Tph cells in the blood as well as serum IFN-α2a and IFN-λ1 were markedly elevated in patients with active systemic lupus erythematosus (SLE) compared to other autoimmune diseases or healthy controls. Notably, frequency of Tph cells were positively correlated with SLE disease activity index, serum IFN-α, and serum IFN-λ1 in SLE patients. Additionally, we found that type III IFNs (IFN-λ1, IFN-λ2, and IFN-λ3) promote differentiation of programmed cell death-1 (PD-1)-positive CXCR5 -CD4 + T cells and enhance secretion of IL-21, IFN-γ, and CXCL13. IFN-λ1, like IFN-α, up-regulated the mRNA expression of IL21, IFNG, CXCL13, CD244, SLAMF7, GZMB, PRF1, CCR5, and PRDM1, whereas down-regulated that of CXCR5 and BCL6, reflecting a Tph-related gene expression pattern. IFN-α in combination with IFN-λ1, IFN-λ2, or IFN-λ3 significantly increased differentiation of PD-1 +CXCR5 - Tph-like cells and secretion of Tph-related cytokines as compared with each IFN alone, suggesting a cooperative interaction. From these findings, it is highly probable that type III IFNs in addition to type I IFNs play a key role in differentiation of Tph cells and that high levels of IFN-α and IFN-λ1 trigger differentiation and expansion of Tph cells in SLE. (242 words).
Collapse
Affiliation(s)
- Shuhei Tanemura
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noriyasu Seki
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideto Tsujimoto
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shuntaro Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jun Kikuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kunio Sugahara
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenji Chiba
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
22
|
Ricard L, Eshagh D, Siblany L, de Vassoigne F, Malard F, Laurent C, Beurier P, Jachiet V, Rivière S, Fain O, Mohty M, Gaugler B, Mekinian A. 6-sulfo LacNAc monocytes are quantitatively and functionally disturbed in systemic sclerosis patients. Clin Exp Immunol 2022; 209:175-181. [PMID: 35758259 DOI: 10.1093/cei/uxac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis, microangiopathy and autoantibodies. We previously reported that circulating follicular helper T (cTfh) cells are increased in SSc and induce plasmablast differentiation. However, mechanisms leading to cTfh cell expansion and activation in SSc remain to be established. Tfh cells require IL-12 for their expansion and differentiation. 6-sulfo LacNAc monocytes (slanMo), a subset of monocytes, have a higher capacity to produce IL-12 and to induce CD4 + T cell proliferation in comparison with dendritic cells (DC) or classical monocytes. The aim of this study was to perform a quantitative and functional analysis of monocytes and DC and to correlate them with cTfh cell expansion and clinical manifestations in SSc. Using flow cytometry, we analyzed different monocyte subsets including slanMo and DC from 36 SSc patients and 26 healthy controls (HC). In vitro culture experiments of sorted slanMo were performed for functional analysis and cytokine production. We observed that slanMo, intermediate and non-classical monocytes were increased in SSc in comparison with HC. Furthermore, the increase in slanMo cells was more potent in patients with diffuse SSc. We observed a significant positive correlation between slanMo and cTfh cell levels in SSc patients but not in HC. Other monocyte subsets did not correlate with cTfh cell expansion. In addition, we observed that in vitro, slanMo cells from SSc patients produced less IL-12 than slanMo from HC. SlanMo are increased in SSc and may participate in the activation of cTfh cells in SSc.
Collapse
Affiliation(s)
- Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Déborah Eshagh
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Lama Siblany
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Frédéric de Vassoigne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Charlotte Laurent
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Pauline Beurier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France
| | - Vincent Jachiet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Sébastien Rivière
- AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Olivier Fain
- AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| |
Collapse
|
23
|
Torres A, Vivanco S, Lavín F, Pereda C, Chernobrovkin A, Gleisner A, Alcota M, Larrondo M, López MN, Salazar-Onfray F, Zubarev RA, González FE. Haptoglobin Induces a Specific Proteomic Profile and a Mature-Associated Phenotype on Primary Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2022; 23:ijms23136882. [PMID: 35805888 PMCID: PMC9266681 DOI: 10.3390/ijms23136882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) play a critical role in dendritic cells (DCs) ability to trigger a specific and efficient adaptive immune response for different physiological and pathological scenarios. We have previously identified constitutive DAMPs (HMGB1 and Calreticulin) as well as new putative inducible DAMPs such as Haptoglobin (HP), from a therapeutically used heat shock-conditioned melanoma cell lysate (called TRIMEL). Remarkably, HP was shown to be the most abundant protein in the proteomic profile of heat shock-conditioned TRIMEL samples. However, its relative contribution to the observed DCs phenotype has not been fully elucidated. Human DCs were generated from monocytes isolated from PBMC of melanoma patients and healthy donors. DC lineage was induced with rhIL-4 and rhGM-CSF. After additional stimulation with HP, the proteome of these HP-stimulated cells was characterized. In addition, DCs were phenotypically characterized by flow cytometry for canonical maturation markers and cytokine production. Finally, in vitro transmigration capacity was assessed using Transwell plates. Our results showed that the stimulation with HP was associated with the presence of exclusive and higher relative abundance of specific immune-; energy production-; lipid biosynthesis-; and DAMPs-related proteins. Importantly, HP stimulation enhanced the expression of specific DC maturation markers and pro-inflammatory and Th1-associated cytokines, and an in vitro transmigration of primary human DCs. Taken together, these data suggest that HP can be considered as a new inducible DAMP with an important role in in vitro DC activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Sheilah Vivanco
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Francisca Lavín
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Alexey Chernobrovkin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
| | - Milton Larrondo
- Blood Bank Service, University of Chile Clinical Hospital, Santiago 8380453, Chile;
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (C.P.); (A.G.); (M.N.L.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE17177 Stockholm, Sweden; (A.C.); (R.A.Z.)
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile; (A.T.); (S.V.); (F.L.)
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-2-29781714
| |
Collapse
|
24
|
Tanemura S, Tsujimoto H, Seki N, Kojima S, Miyoshi F, Sugahara K, Yoshimoto K, Suzuki K, Kaneko Y, Chiba K, Takeuchi T. Role of interferons (IFNs) in differentiation of T peripheral helper (Tph) cells. 1: Type I IFNs promote differentiation of interleukin-21-producing Tph-like cells. Int Immunol 2022; 34:519-532. [PMID: 35723683 DOI: 10.1093/intimm/dxac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
T follicular helper (Tfh) cells and T peripheral helper (Tph) cells produce interleukin (IL)-21 and are thought to contribute to follicular and extra-follicular B cell activation, respectively, in autoimmune diseases. It is known that programmed cell death-1 (PD-1)-positive CXCR5 + Tfh-like cells are differentiated from human naïve CD4 + T cells by IL-12 plus transforming growth factor (TGF)-β. However, it remains unclear what cytokines are required for Tph differentiation. In this study, we found that interferon (IFN)-α and IFN-β reduce the frequency of Tfh-like cells under IL-12 plus TGF-β condition whereas promote generation of PD-1 +CXCR5 -CD4 + T cells and secretion of IL-21, IFN-γ, and CXCL13. Intracellular cytokine staining and T cell-B cell co-culture studies indicated that IFN-α promotes generation of IL-21 +IFN-γ +CXCR5 -CD4 + T cells thereby enhancing B cell helper function. By IFN-α treatment, the mRNA levels of IL21, IFNG, CXCL13, CD244, SLAMF7, GZMB, and PRDM1 were significantly up-regulated but BCL6 mRNA expression was down-regulated, suggesting a Tph-related gene expression pattern. On the other hand, IL-2-neutralization increased mRNA levels of IL21, CXCL13, and CXCR5, retained BCL6, but showed no clear effect on IFNG or PRDM1. RNA sequencing analyses revealed that PD-1 hiCXCR5 -CD4 + T cells prepared from in vitro culture show a Tph-related gene expression pattern similar with that of PD-1 hiCXCR5 - Tph cells obtained from the blood of patients with systemic lupus erythematosus. From our findings, it is highly probable that type I IFNs play a key role in differentiation of Tph cells and trigger Tph cell-expansion in autoimmune diseases.
Collapse
Affiliation(s)
- Shuhei Tanemura
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hideto Tsujimoto
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Noriyasu Seki
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shinji Kojima
- Discovery Technology Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Fumihiko Miyoshi
- Discovery Technology Laboratories, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan
| | - Kunio Sugahara
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenji Chiba
- Research Unit Immunology & Inflammation, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, 227-0033, Japan.,Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
25
|
Surette FA, Butler NS. Temporally Evolving and Context-Dependent Functions of Cytokines That Regulate Murine Anti-Plasmodium Humoral Immunity. Pathogens 2022; 11:pathogens11050523. [PMID: 35631044 PMCID: PMC9144513 DOI: 10.3390/pathogens11050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protective immunity against blood-stage Plasmodium infection and the disease malaria depends on antibodies secreted from high-affinity B cells selected during the germinal center (GC) response. The induction and stability of the GC response require the activation and direct cell–cell communication between parasite-specific CD4 helper T cells and B cells. However, cytokines secreted by helper T cells, B cells, and multiple other innate and adaptive immune cells also contribute to regulating the magnitude and protective functions of GC-dependent humoral immune responses. Here, we briefly review emerging data supporting the finding that specific cytokines can exhibit temporally distinct and context-dependent influences on the induction and maintenance of antimalarial humoral immunity.
Collapse
|
26
|
Garcillán B, Salavert M, Regueiro JR, Díaz-Castroverde S. Response to Vaccines in Patients with Immune-Mediated Inflammatory Diseases: A Narrative Review. Vaccines (Basel) 2022; 10:297. [PMID: 35214755 PMCID: PMC8877652 DOI: 10.3390/vaccines10020297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 02/13/2022] [Indexed: 12/28/2022] Open
Abstract
Patients with immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthritis and inflammatory bowel disease, are at increased risk of infection. International guidelines recommend vaccination to limit this risk of infection, although live attenuated vaccines are contraindicated once immunosuppressive therapy has begun. Biologic therapies used to treat IMIDs target the immune system to stop chronic pathogenic process but may also attenuate the protective immune response to vaccines. Here, we review the current knowledge regarding vaccine responses in IMID patients receiving treatment with biologic therapies, with a focus on the interleukin (IL)-12/23 inhibitors. B cell-depleting therapies, such as rituximab, strongly impair vaccines immunogenicity, and tumor necrosis factor (TNF) inhibitors and the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) fusion protein abatacept are also associated with attenuated antibody responses, which are further diminished in patients taking concomitant immunosuppressants. On the other hand, integrin, IL-6, IL-12/23, IL-17, and B-cell activating factor (BAFF) inhibitors do not appear to affect the immune response to several vaccines evaluated. Importantly, treatment with biologic therapies in IMID patients is not associated with an increased risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or developing severe disease. However, the efficacy of SARS-CoV-2 vaccines on IMID patients may be reduced compared with healthy individuals. The impact of biologic therapies on the response to SARS-CoV-2 vaccines seems to replicate what has been described for other vaccines. SARS-CoV-2 vaccination appears to be safe and well tolerated in IMID patients. Attenuated but, in general, still protective responses to SARS-CoV-2 vaccination in the context of certain therapies warrant current recommendations for a third primary dose in IMID patients treated with immunosuppressive drugs.
Collapse
Affiliation(s)
| | - Miguel Salavert
- Infectious Disease Unit, Department of Clinical Medicine, La Fe Health Research Institute, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - José R. Regueiro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 12 de Octubre Health Research Institute (imas12), 28040 Madrid, Spain;
| | | |
Collapse
|
27
|
Kim S, Boehme L, Nel L, Casian A, Sangle S, Nova-Lamperti E, Seitan V, Spencer J, Lavender P, D'Cruz DP, John S. Defective STAT5 Activation and Aberrant Expression of BCL6 in Naive CD4 T Cells Enhances Follicular Th Cell-like Differentiation in Patients with Granulomatosis with Polyangiitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:807-818. [PMID: 35039330 DOI: 10.4049/jimmunol.2001331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/25/2021] [Indexed: 12/21/2022]
Abstract
Granulomatosis with polyangiitis (GPA) is a potentially fatal small vessel vasculitis of unknown etiology, characterized by anti-neutrophil cytoplasmic autoantibodies, chronic inflammation, and granulomatous tissue damage. T cell dysregulation, comprising decreased regulatory T cell function and increased circulating effector memory follicular Th cells (TFH), is strongly associated with disease pathogenesis, but the mechanisms driving these observations are unknown. We undertook transcriptomic and functional analysis of naive CD4 T cells from patients with GPA to identify underlying functional defects that could manifest in the pathogenic profiles observed in GPA. Gene expression studies revealed a dysregulation of the IL-2 receptor β/JAK-STAT signaling pathway and higher expression of BCL6 and BCL6-regulated genes in GPA naive CD4 T cells. IL-2-induced STAT5 activation in GPA naive CD4 T cells was decreased, whereas STAT3 activation by IL-6 and IL-2 was unperturbed. Consistently, BCL6 expression was sustained following T cell activation of GPA naive CD4 T cells and in vitro TFH differentiation of these cells resulted in significant increases in the production TFH-related cytokines IL-21 and IL-6. Thus, naive CD4 T cells are dysregulated in patients with GPA, resulting from an imbalance in signaling equilibrium and transcriptional changes that drives the skewed pathogenic CD4 effector immune response in GPA.
Collapse
Affiliation(s)
- Sangmi Kim
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Lena Boehme
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Louise Nel
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; and
| | - Alina Casian
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; and
| | - Shirish Sangle
- Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; and
| | - Estefania Nova-Lamperti
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepcion, Chile
| | - Vlad Seitan
- Department of Medical & Molecular Genetics, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Jo Spencer
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Paul Lavender
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - David P D'Cruz
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom.,Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; and
| | - Susan John
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom;
| |
Collapse
|
28
|
Ribeiro F, Perucha E, Graca L. T follicular cells: the regulators of germinal centre homeostasis. Immunol Lett 2022; 244:1-11. [DOI: 10.1016/j.imlet.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/05/2023]
|
29
|
Papillion A, Jenkins MM, Ballesteros-Tato A. Assessment of the Impact of Cytokines on T FH, T REG, and T FR Cell Populations After Influenza Infection. Methods Mol Biol 2022; 2380:189-199. [PMID: 34802132 DOI: 10.1007/978-1-0716-1736-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the last several years, great strides have been made in understanding the molecular and cellular mechanisms that control the generation of T follicular helper (TFH), T regulatory (TREG), and T follicular regulatory (TFR) cells. As a result, it is now clear that cytokines play a critical role in regulating the development and function of these CD4+ T cell subsets. One of the critical limitations when studying the effect of individual cytokines in these populations is differentiating between the intrinsic and extrinsic effects of these cytokines in vivo. Here we describe how to utilize mixed bone marrow chimeras in combination with MHC class II tetramers to characterize the direct role played by cytokines on controlling the development, function, and maintenance of TFH, TREG, and TFR cells in vivo.
Collapse
Affiliation(s)
- Amber Papillion
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meagan M Jenkins
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Lee JL, Linterman MA. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol Lett 2022; 241:1-14. [PMID: 34767859 PMCID: PMC8765414 DOI: 10.1016/j.imlet.2021.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan amongst older people.
Collapse
Affiliation(s)
- Jia Le Lee
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Michelle A Linterman
- Immunology Program, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
31
|
Alaoui L, Durand M, Segura E. Identification of Antigen Presenting Cell Subsets Supporting Human Tfh Differentiation. Methods Mol Biol 2022; 2380:125-139. [PMID: 34802127 DOI: 10.1007/978-1-0716-1736-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CD4+ T follicular helper (Tfh) cells are essential for initiating and regulating efficient humoral responses in secondary lymphoid organs. Tfh polarization and differentiation is driven by multiple stimuli delivered by antigen presenting cells (APCs). APCs represent a complex population of immune cells, comprising several subpopulations (dendritic cells and macrophages) that are distinguished by their phenotype, ontogeny, and functions. In order to better identify and understand the role of the different APC subsets in human Tfh biology, we have used in vitro assays based on the co-culture of APCs and T cells. This chapter describes two complementary protocols. The first protocol describes an assay to study the capacity of APCs to drive Tfh polarization from naive CD4+ T cells. The second protocol is designed to address the role of APCs in modulating effector functions of mature Tfh cells.
Collapse
Affiliation(s)
- Lamine Alaoui
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Mélanie Durand
- Institut Curie, PSL Research University, INSERM, U932, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, Paris, France.
| |
Collapse
|
32
|
Alameh MG, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M, Hicks P, Manzoni TB, Knox JJ, Johnson JL, Laczkó D, Muramatsu H, Davis B, Meng W, Rosenfeld AM, Strohmeier S, Lin PJC, Mui BL, Tam YK, Karikó K, Jacquet A, Krammer F, Bates P, Cancro MP, Weissman D, Luning Prak ET, Allman D, Locci M, Pardi N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54:2877-2892.e7. [PMID: 34852217 PMCID: PMC8566475 DOI: 10.1016/j.immuni.2021.11.001] [Citation(s) in RCA: 307] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.
Collapse
Affiliation(s)
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chutamath Sittplangkoon
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Y Soliman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczkó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Katalin Karikó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; BioNTech RNA Pharmaceuticals, Mainz, Germany
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Jarlborg M, Gabay C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine 2021; 149:155742. [PMID: 34688020 DOI: 10.1016/j.cyto.2021.155742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 is produced locally in response to an inflammatory stimulus, and is able to induce systemic manifestations at distance from the site of inflammation. Its unique signaling mechanism, including classical and trans-signaling pathways, leads to a major expansion in the number of cell types responding to IL-6. This pleiotropic cytokine is a key factor in the pathogenesis of rheumatoid arthritis (RA) and is involved in many extra-articular manifestations that accompany the disease. Thus, IL-6 blockade is associated with various biological effects beyond the joints. In this review, the systemic effects of IL-6 in RA comorbidities and the consequences of its blockade will be discussed, including anemia of chronic disease, cardiovascular risks, bone and muscle functions, and neuro-psychological manifestations.
Collapse
Affiliation(s)
- Matthias Jarlborg
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland; VIB-UGent Center for Inflammation Research and Ghent University, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
34
|
Roberti MP, Rauber C, Kroemer G, Zitvogel L. Impact of the ileal microbiota on colon cancer. Semin Cancer Biol 2021; 86:955-966. [PMID: 34624451 DOI: 10.1016/j.semcancer.2021.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Besides tumor cell-intrinsic oncogenic pathways, host and environmental factors have a major impact on cancer immunosurveillance and the efficacy of immunotherapeutics. Several modalities of anticancer treatments including immunogenic chemotherapies and immune checkpoint inhibitors lose their efficacy in patients treated with broad-spectrum antibiotics, pointing to a key role for the gut microbiota. The complex interactions between intestinal microbes, gut immunity and anti-tumor responses constitute an emerging field of investigation. In this work, we revise key primary literature, with an emphasis on recent mechanistic insights, unraveling the interplay between the immunosurveillance of colon cancers and ileal factors including the local microbiota, tissue architecture and immune system.
Collapse
Affiliation(s)
- Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Conrad Rauber
- Department of Gastroenterology and Infectious Diseases, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, INSERM U1138, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Paris, France; Metabolomics Platform, Gustave Roussy Cancer Campus, Villejuif, 94805, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden; Gustave Roussy, 94800, Villejuif, France.
| | - Laurence Zitvogel
- Université Paris-Saclay, Gustave Roussy, Villejuif, France; Gustave Roussy, 94800, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, France; Equipe Labellisée-Ligue Nationale contre le Cancer, 94800, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, 94800 Villejuif, France.
| |
Collapse
|
35
|
Ming S, Yin H, Li X, Gong S, Zhang G, Wu Y. GITR Promotes the Polarization of TFH-Like Cells in Helicobacter pylori-Positive Gastritis. Front Immunol 2021; 12:736269. [PMID: 34589088 PMCID: PMC8475268 DOI: 10.3389/fimmu.2021.736269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Gastric CD4+T cells contribute to Helicobacter pylori (H. pylori)-induced gastritis by amplifying mucosal inflammation and exacerbating mucosal injuries. However, the pathogenic CD4+ T cell subset involved in gastritis and the potential regulators are still unclear. Here we identified an IL-21-producing gastric CD4+T cell subset, which exhibited tissue-resident CXCR5−BTLA−PD-1hi TFH-like phenotype in H. pylori-positive gastritis patients. Meanwhile, we identified glucocorticoid-induced tumor necrosis factor receptor (GITR) as an important regulator to facilitate IL-21 production by CD4+T cells and accelerate mucosal inflammation in gastritis patients with H. pylori infection. Moreover, GITR expression was increased in gastric CD4+T cells of gastritis patients compared to healthy controls, along with the upregulated expression of its ligand GITRL in mucosal macrophages (Mϕ) of gastritis patients. Further observations showed that the activation of GITR/GITRL signal promoted the IL-21 production of CD4+T cells via the STAT3 pathway. Besides this, IL-21 from CD4+T cells induced the proliferation of B cell and promoted the production of inflammatory cytokines IL-1β and IL-6 and chemokines MIP-3α and CCL-25 as well as matrix metalloproteinase (MMP)-3 and MMP-9 by human gastric epithelial cells, suggesting the facilitating effect of IL-21-producing CD4+T cells on mucosal inflammation and injuries. Taking these data together, we revealed that GITR/GITRL signal promoted the polarization of mucosal IL-21-producing CD4+T cells in H. pylori-positive gastritis, which may provide therapeutic strategies for the clinical treatment of H. pylori-induced gastritis.
Collapse
Affiliation(s)
- Siqi Ming
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Huan Yin
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China.,Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongjian Wu
- Center for Infection and Immunity, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Wang H, Li X, Kajikawa T, Shin J, Lim JH, Kourtzelis I, Nagai K, Korostoff JM, Grossklaus S, Naumann R, Chavakis T, Hajishengallis G. Stromal cell-derived DEL-1 inhibits Tfh cell activation and inflammatory arthritis. J Clin Invest 2021; 131:e150578. [PMID: 34403362 PMCID: PMC8483759 DOI: 10.1172/jci150578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The secreted protein developmental endothelial locus 1 (DEL-1) regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA) models. In both models, mice with endothelium-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, whereas arthritis was exacerbated in DEL-1-deficient mice. Compared with WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited Tfh and germinal center B cell responses. Mechanistically, DEL-1 inhibited DC-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may therefore be a promising therapeutic for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jieun Shin
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jong-Hyung Lim
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jonathan M. Korostoff
- Department of Periodontics, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Ayithan N, Tang L, Tan SK, Chen D, Wallin JJ, Fletcher SP, Kottilil S, Poonia B. Follicular Helper T (T FH) Cell Targeting by TLR8 Signaling For Improving HBsAg-Specific B Cell Response In Chronic Hepatitis B Patients. Front Immunol 2021; 12:735913. [PMID: 34512670 PMCID: PMC8428528 DOI: 10.3389/fimmu.2021.735913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Identifying signaling pathways that induce B cell response can aid functional cure strategies for chronic hepatitis B infection (CHB). TLR8 activation with ssRNA was shown to enhance follicular helper T cell (TFH) function leading to improved B cell responses in vitro. We investigated whether this mechanism can rescue an exhausted immune response in CHB infection. Effect of TLR8 agonism on supporting cytokines and TFH and B cells were evaluated using ex vivo and in vitro assays. The ability of an oral TLR8 agonist to promote TFH and B cell response was tested in samples from phase 1b clinical trial. TLR8 agonism induced TFH polarizing cytokine IL-12 in monocytes. Treatment of peripheral blood mononuclear cells (PBMCs) from CHB patients with TLR8 agonists induced cytokine IL-21 by TFH cells with enhanced IL-21+BCL-6+ and ICOS+BCL-6+ co-expression. Mechanistically, incubation of isolated naïve CD4+ T cells with TLR8 triggered monocytes resulted in their differentiation into IL-21+ICOS+BCL-6+ TFH in an IL-12 dependent manner. Furthermore, co-culture of these IL-21 producing TFH with autologous naïve B cells led to enhanced memory (CD19+CD27+) and plasma B cell generation (CD19+CD27++CD38+) and IgG production. Importantly, in TFH from CHB patients treated with an oral TLR8 agonist, HBsAg-specific BCL-6, ICOS, IL-21 and CD40L expression and rescue of defective activation induced marker (AIM) response along with partial restoration of HBsAg-specific B cell ELISPOT response was evident. TLR8 agonism can thus enhance HBV-specific B cell responses in CHB patients by improving monocyte-mediated TFH function and may play a role in achieving HBV functional cure.
Collapse
Affiliation(s)
- Natarajan Ayithan
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lydia Tang
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Susanna K Tan
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Diana Chen
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Jeffrey J Wallin
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Simon P Fletcher
- Clinical Research, Gilead Sciences Inc., Foster City, CA, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bhawna Poonia
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
38
|
Eisenbarth SC, Baumjohann D, Craft J, Fazilleau N, Ma CS, Tangye SG, Vinuesa CG, Linterman MA. CD4 + T cells that help B cells - a proposal for uniform nomenclature. Trends Immunol 2021; 42:658-669. [PMID: 34244056 DOI: 10.1016/j.it.2021.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
T follicular helper (Tfh) cells cognately guide differentiation of antigen-primed B cells in secondary lymphoid tissues. 'Tfh-like' populations not expressing the canonical Tfh cell transcription factor BCL6 have also been described, which can aid particular aspects of B cell differentiation. Tfh and Tfh-like cells are essential for protective and pathological humoral immunity. These CD4+ T cells that help B cells are polarized to produce diverse combinations of cytokines and chemokine receptors and can be grouped into distinct subsets that promote antibodies of different isotype, affinity, and duration, according to the nature of immune challenge. However, unified nomenclature to describe the distinct functional Tfh and Tfh-like cells does not exist. While explicitly acknowledging cellular plasticity, we propose categorizing these cell states into three groups based on phenotype and function, paired with their anatomical site of action.
Collapse
Affiliation(s)
- Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 0652, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0652, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 0652, USA.
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Joe Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 0652, USA; Department of Medicine, Yale University School of Medicine, New Haven, CT 0652, USA
| | - Nicolas Fazilleau
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, 31024 Toulouse, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Carola G Vinuesa
- John Curtin School for Medical Research, Australian National University, Acton 2601, ACT, Australia
| | - Michelle A Linterman
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
39
|
Amin OE, Colbeck EJ, Daffis S, Khan S, Ramakrishnan D, Pattabiraman D, Chu R, Micolochick Steuer H, Lehar S, Peiser L, Palazzo A, Frey C, Davies J, Javanbakht H, Rosenberg WM, Fletcher SP, Maini MK, Pallett LJ. Therapeutic Potential of TLR8 Agonist GS-9688 (Selgantolimod) in Chronic Hepatitis B: Remodeling of Antiviral and Regulatory Mediators. Hepatology 2021; 74:55-71. [PMID: 33368377 PMCID: PMC8436741 DOI: 10.1002/hep.31695] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS GS-9688 (selgantolimod) is a toll-like receptor 8 agonist in clinical development for the treatment of chronic hepatitis B (CHB). Antiviral activity of GS-9688 has previously been evaluated in vitro in HBV-infected hepatocytes and in vivo in the woodchuck model of CHB. Here we evaluated the potential of GS-9688 to boost responses contributing to viral control and to modulate regulatory mediators. APPROACH AND RESULTS We characterized the effect of GS-9688 on immune cell subsets in vitro in peripheral blood mononuclear cells of healthy controls and patients with CHB. GS-9688 activated dendritic cells and mononuclear phagocytes to produce IL-12 and other immunomodulatory mediators, inducing a comparable cytokine profile in healthy controls and patients with CHB. GS-9688 increased the frequency of activated natural killer (NK) cells, mucosal-associated invariant T cells, CD4+ follicular helper T cells, and, in about 50% of patients, HBV-specific CD8+ T cells expressing interferon-γ. Moreover, in vitro stimulation with GS-9688 induced NK-cell expression of interferon-γ and TNF-α, and promoted hepatocyte lysis. We also assessed whether GS-9688 inhibited immunosuppressive cell subsets that might enhance antiviral efficacy. Stimulation with GS-9688 reduced the frequency of CD4+ regulatory T cells and monocytic myeloid-derived suppressor cells (MDSCs). Residual MDSCs expressed higher levels of negative immune regulators, galectin-9 and programmed death-ligand 1. Conversely, GS-9688 induced an expansion of immunoregulatory TNF-related apoptosis-inducing ligand+ NK cells and degranulation of arginase-I+ polymorphonuclear MDSCs. CONCLUSIONS GS-9688 induces cytokines in human peripheral blood mononuclear cells that are able to activate antiviral effector function by multiple immune mediators (HBV-specific CD8+ T cells, CD4+ follicular helper T cells, NK cells, and mucosal-associated invariant T cells). Although reducing the frequency of some immunoregulatory subsets, it enhances the immunosuppressive potential of others, highlighting potential biomarkers and immunotherapeutic targets to optimize the antiviral efficacy of GS-9688.
Collapse
Affiliation(s)
- Oliver E. Amin
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Emily J. Colbeck
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | | | | | | | | | - Ruth Chu
- Gilead Sciences Inc.Foster CityCA
| | | | - Sophie Lehar
- Gilead Sciences Inc.Foster CityCA
- Present address:
Genentech Inc.South San FranciscoCA
| | - Leanne Peiser
- Gilead Sciences Inc.Foster CityCA
- Present address:
Bristol Myers SquibbSeattleWA
| | | | - Christian Frey
- Gilead Sciences Inc.Foster CityCA
- Present address:
Ideaya Biosciences Inc.South San FranciscoCA
| | - Jessica Davies
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Hassan Javanbakht
- Gilead Sciences Inc.Foster CityCA
- Present address:
SQZ BiotechnologiesWatertownMA
| | | | | | - Mala K. Maini
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| | - Laura J. Pallett
- Division of Infection & ImmunityInstitute of Immunity & TransplantationUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
40
|
Fu N, Xie F, Sun Z, Wang Q. The OX40/OX40L Axis Regulates T Follicular Helper Cell Differentiation: Implications for Autoimmune Diseases. Front Immunol 2021; 12:670637. [PMID: 34234777 PMCID: PMC8256170 DOI: 10.3389/fimmu.2021.670637] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
T Follicular helper (Tfh) cells, a unique subset of CD4+ T cells, play an essential role in B cell development and the formation of germinal centers (GCs). Tfh differentiation depends on various factors including cytokines, transcription factors and multiple costimulatory molecules. Given that OX40 signaling is critical for costimulating T cell activation and function, its roles in regulating Tfh cells have attracted widespread attention. Recent data have shown that OX40/OX40L signaling can not only promote Tfh cell differentiation and maintain cell survival, but also enhance the helper function of Tfh for B cells. Moreover, upregulated OX40 signaling is related to abnormal Tfh activity that causes autoimmune diseases. This review describes the roles of OX40/OX40L in Tfh biology, including the mechanisms by which OX40 signaling regulates Tfh cell differentiation and functions, and their close relationship with autoimmune diseases.
Collapse
Affiliation(s)
- NanNan Fu
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Fang Xie
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - ZhongWen Sun
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Qin Wang
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Issabekova A, Zhumabekova M, Zhunussova M, Ogay V. The Crosstalk Between Dendritic Cells, Cytokine-Induced Killer Cells And Cancer Cells From The Perspective Of Combination Therapy. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dendritic cells (DCs) are considered the most potent professional antigen-presenting cells (APCs) that elicit adaptive antitumour immunity. DCs integrate multiple environmental signals by efficiently processing tumour-associated antigens (TAAs) and migrating to draining lymph nodes (dLNs), where they present foreign antigens to T cells for priming. DCs thus serve as a major link between innate and adaptive immunity. Although DCs (mostly monocyte-derived DCs [mo-DCs]) have already been used in cancer therapies, such approaches have shown limited efficacy. Mo-DCs have the unique ability to present antigens to T cells in peripheral tissues. CD3+CD56+ cytokine-induced killer (CIK) cells are characterized by both MHC-restricted and MHC-unrestricted antitumour cytotoxicity against a broad range of cancer cells. This review presents an overview of the mechanisms by which mo-DCs and CIK cells’ interact with each other and with tumours. The maturation of DCs was identified as a crucial step in the development of effective DC-based vaccines against cancer. A further improved adoptive immunotherapy strategy involves a combination of mature mo-DCs and CIK cells. Combination therapy presents many opportunities for cancer treatment, as reported by a number of clinical trials. However, there is a lack of fundamental studies on the interaction of in vitro-generated mo-DCs with CIK cells. We discuss several methods of boosting DC-based vaccines and review the current knowledge of contact-dependent and cytokine-induced interactions of mo-DCs with CIK cells. We highlight that the combination of mo-DCs with CIK cells activates MHC-restricted and MHC-unrestricted immune responses.
Collapse
|
42
|
Elsner RA, Shlomchik MJ. Germinal Center and Extrafollicular B Cell Responses in Vaccination, Immunity, and Autoimmunity. Immunity 2021; 53:1136-1150. [PMID: 33326765 DOI: 10.1016/j.immuni.2020.11.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15216, USA.
| |
Collapse
|
43
|
Zhao Q, Dai H, Liu X, Jiang H, Liu W, Feng Z, Zhang N, Gao Y, Dong Z, Zhou X, Du J, Zhang N, Rui H, Yuan L, Liu B. Helper T Cells in Idiopathic Membranous Nephropathy. Front Immunol 2021; 12:665629. [PMID: 34093559 PMCID: PMC8173183 DOI: 10.3389/fimmu.2021.665629] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Idiopathic membranous nephropathy (IMN) is an autoimmune disease in which the immune system produces an antibody response to its own antigens due to impaired immune tolerance. Although antibodies are derived from plasma cells differentiated by B cells, the T-B cells also contribute a lot to the immune system. In particular, the subsets of helper T (Th) cells, including the dominant subsets such as Th2, Th17, and follicular helper T (Tfh) cells and the inferior subsets such as regulatory T (Treg) cells, shape the immune imbalance of IMN and promote the incidence and development of autoimmune responses. After reviewing the physiological knowledge of various subpopulations of Th cells and combining the existing studies on Th cells in IMN, the role model of Th cells in IMN was explained in this review. Finally, the existing clinical treatment regimens for IMN were reviewed, and the importance of the therapy for Th cells was highlighted.
Collapse
Affiliation(s)
- Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Xianli Liu
- Shunyi Branch, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Wenbin Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Feng
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing, China
| | - Na Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Yu Gao
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Zhaocheng Dong
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jieli Du
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Naiqian Zhang
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Rui
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Jha V, Nicholson LK, Gardner EM, Rahkola JT, Pratap H, Scott J, Borgeson M, Jacobelli J, Janoff EN. Impact of HIV-1 Infection and Antigen Class on T Follicular Helper Cell Responses to Pneumococcal Polysaccharide-Protein Conjugate Vaccine-13. THE JOURNAL OF IMMUNOLOGY 2021; 206:2402-2411. [PMID: 33931485 DOI: 10.4049/jimmunol.2001133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022]
Abstract
Pneumococcal infections are common and serious complications of HIV-1 disease. Prevention has been compromised by the limited magnitude and quality of Ab responses to T cell-independent type 2 pneumococcal capsular polysaccharides (PPS). The pneumococcal polysaccharide-protein conjugate vaccine-13 (PCV-13) contains PPS conjugated to the T cell-dependent protein (diphtheria toxoid [DT] [CRM197]). We investigated the differential response to PPS and DT by human Ab-secreting B cells (ASC) after immunization with PCV-13 in newly diagnosed healthy HIV+ and control adults. The numbers of PPS-specific IgG ASC increased significantly and similarly in HIV+ and controls. However, DT-specific IgG ASC increased in controls but not HIV+ subjects. To determine the cellular basis of these disparate responses to DT and PPS, we characterized the frequency and activation of T follicular helper (Tfh) cells, the predominant T cell subset providing B cell help. Expression of inducible T cell costimulator (ICOS), which sustains Tfh function and phenotype, increased significantly among controls, when compared with the HIV+ group. Increases in ICOS+ Tfh correlated with changes in T-dependent, DT-specific IgG ASC in controls but not in HIV+ In contrast, ICOS expression did not correlate with T cell-independent type 2 PPS-specific ASC in either group. Of note, upon optimized ex vivo stimulation, CD4 T cells from HIV+ subjects differentiated into Tfh cells and formed synapses with Raji B cells at frequencies similar to that of controls. In summary, PCV-13-induced increase in ICOS expression on Tfh was associated with responses to DT, which was compromised in recently diagnosed healthy HIV+ adults and can be restored ex vivo by providing effective Tfh-differentiating signals.
Collapse
Affiliation(s)
- Vibha Jha
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Lindsay K Nicholson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Jeremy T Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Harsh Pratap
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | | | - Mandy Borgeson
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Jordan Jacobelli
- Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO .,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
45
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2021; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
Du B, Teng J, Yin R, Tian Y, Jiang T, Du Y, Cai W. Increased Circulating T Follicular Helper Cells Induced via IL-12/21 in Patients With Acute on Chronic Hepatitis B Liver Failure. Front Immunol 2021; 12:641362. [PMID: 33868273 PMCID: PMC8044369 DOI: 10.3389/fimmu.2021.641362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives T Follicular helper (Tfh) cells, recognized as a distinct CD4+ T cell subset, mediate the development of long-lived humoral immunity via B cell activation/differentiation. Tfh cells play an important role during hepatic viral infection, but its role in hepatitis B virus-related acute on chronic liver failure (HBV-ACLF) remains to be explored. Materials and Methods The frequency of Tfh cells, serum pro-inflammatory cytokine (IL-12, IL-21, IL-17 and TNF) levels and IgG/M levels were investigated in HBV-ACLF (n = 36), serious chronic hepatitis B (n = 21), moderate chronic hepatitis B patients (n = 32) and healthy control (HC) subjects (n = 10). Results Circulating Tfh cells were significantly increased in HBV-ACLF patients compared to other groups, correlating well with MELD score. However, the frequency of Tfh cells decreased in ameliorated HBV-ACLF patients. Furthermore, serum IL-12 and IL-21 levels were higher in HBV-ACLF patients, compared to other groups. Naïve CD4+ T cells from HC subjects differentiate into Tfh cells following treatment with HBV-ACLF patients’ serum, a process that can be blocked by IL-12/21 neutralizing antibodies. Tfh cells induced by HBV-ACLF patient’s serum promoted the proliferation and IgG production of B cells in vitro. Moreover, circulating CD19+ B cells, serum and liver IgG/M levels were significantly higher in HBV-ACLF patients, compared to other groups. Conclusions Our data demonstrated that there was a high frequency of Tfh cells and high levels of serum IL-12/21 in HBV-ACLF patients. Naïve CD4+ T cells differentiate into Tfh cells in the presence of HBV-ACLF patients’ serum rich in IL-12/21, which can be blocked by neutralizing IL-12/21 antibodies. These data may provide useful insights for both clinical and basic research in the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Bingying Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaming Teng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongkun Yin
- Department of Infectious Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Tian
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Tingwang Jiang
- Clinical Research Centre, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Yanan Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Higashioka K, Yoshimura M, Sakuragi T, Ayano M, Kimoto Y, Mitoma H, Ono N, Arinobu Y, Kikukawa M, Yamada H, Horiuchi T, Akashi K, Niiro H. Human PD-1 hiCD8 + T Cells Are a Cellular Source of IL-21 in Rheumatoid Arthritis. Front Immunol 2021; 12:654623. [PMID: 33815416 PMCID: PMC8017303 DOI: 10.3389/fimmu.2021.654623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is a prototypical autoantibody-driven autoimmune disease in which T-B interactions play a critical role. Recent comprehensive analysis suggests that PD-1+CD8+ T cells as well as two distinct IL-21-producing PD-1+CD4+ T cell subsets, follicular helper T (Tfh) and peripheral helper T (Tph) cells, are involved in the pathogenesis of RA. Herein, we aimed to clarify a generation mechanism of IL-21-producing CD8+ T cells in humans, and to characterize this novel subset in patients with RA. Methods CD8+ T cells in the peripheral blood (PB) and synovial fluid (SF) of healthy control (HC) and patients with RA were subject to the analysis of IL-21 mRNA and protein. We evaluated the surface marker, cytokine and transcription profiles of IL-21-producing CD8+ T cells in HCPB, RAPB and RASF. Results IL-21-producing CD8+ T cells were enriched in the CD45RA-(memory) PD-1+, especially PD-1hi subpopulation, and IL-12 and IL-21 synergistically induced IL-21 production by naïve CD8+ T cells. Memory PD-1hiCD8+ T cells in HCPB facilitated plasmablast differentiation and IgG production in an IL-21-dependent manner. In addition, PD-1hiCD8+ T cells in RASF and RAPB produced large amounts of IL-21 and were characterized by high levels of CD28, ICOS, CD69, HLA-DR, and CCR2 but not CXCR5. Furthermore, PD-1hiCD8+ T cells expressed high levels of transcripts of MAF and PRDM1, a feature observed in Tph cells. Conclusions Identification of IL-21-producing PD-1hiCD8+ T cells expands our knowledge of T cell subsets with B helper functions in RA. Selective targeting of these subsets could pave an avenue for the development of novel treatment strategies for this disease.
Collapse
Affiliation(s)
- Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahide Sakuragi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Kikukawa
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisakata Yamada
- Department of Arthritis and Immunology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
49
|
Schroeder AR, Zhu F, Hu H. Stepwise Tfh cell differentiation revisited: new advances and long-standing questions. Fac Rev 2021; 10. [PMID: 33644779 PMCID: PMC7894273 DOI: 10.12703/r/10-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in germinal center formation and the generation of high-affinity antibodies. Studies have proposed that Tfh cell differentiation is a multi-step process. However, it is still not fully understood how a subset of activated CD4+ T cells begin to express CXCR5 during the early stage of the response and, shortly after, how some CXCR5+ precursor Tfh (pre-Tfh) cells enter B cell follicles and differentiate further into germinal center Tfh (GC-Tfh) cells while others have a different fate. In this mini-review, we summarize the recent advances surrounding these two aspects of Tfh cell differentiation and discuss related long-standing questions, including Tfh memory.
Collapse
Affiliation(s)
- Andrew R Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fangming Zhu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
50
|
Dong X, Antao OQ, Song W, Sanchez GM, Zembrzuski K, Koumpouras F, Lemenze A, Craft J, Weinstein JS. Type I Interferon-Activated STAT4 Regulation of Follicular Helper T Cell-Dependent Cytokine and Immunoglobulin Production in Lupus. Arthritis Rheumatol 2021; 73:478-489. [PMID: 33512094 PMCID: PMC7914134 DOI: 10.1002/art.41532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To assess the role of STAT4 activation in driving pathogenic follicular helper T (Tfh) cell secretion of the cytokines interleukin-21 (IL-21) and interferon-γ (IFNγ) in murine and human lupus. METHODS The effect of STAT4-dependent Tfh cell signaling on cytokine production and autoreactive B cell maturation was assessed temporally during the course of lupus in a murine model, with further assessment of Tfh cell gene transcription performed using RNA-Seq technology. STAT4-dependent signaling and cytokine production were also determined in circulating Tfh-like cells in patients with systemic lupus erythematosus (SLE), as compared to cells from healthy control subjects, and correlations with disease activity were assessed in the Tfh-like cells from SLE patients. RESULTS IL-21- and IFNγ-coproducing Tfh cells expanded prior to the detection of potentially pathogenic IgG2c autoantibodies in lupus-prone mice. Tfh cells transcriptionally evolved during the course of disease with acquisition of a STAT4-dependent gene signature. Maintenance of Tfh cell cytokine synthesis was dependent upon STAT4 signaling, driven by type I IFNs. Circulating Tfh-like cells from patients with SLE also secreted IL-21 and IFNγ, with STAT4 phosphorylation enhanced by IFNβ, in association with the extent of clinical disease activity. CONCLUSION We identified a role for type I IFN signaling in driving STAT4 activation and production of IL-21 and IFNγ by Tfh cells in murine and human lupus. Enhanced STAT4 activation in Tfh cells may underlie pathogenic B cell responses in both murine and human lupus. These data indicate that STAT4 guides pathogenic cytokine and immunoglobulin production in SLE, demonstrating a potential therapeutic target to modulate autoimmunity.
Collapse
Affiliation(s)
- Xuemei Dong
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Wenzhi Song
- Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | - Joe Craft
- Yale University School of Medicine, New Haven, Connecticut
| | - Jason S Weinstein
- Yale University School of Medicine, New Haven, Connecticut, and Rutgers New Jersey Medical School, Newark
| |
Collapse
|