1
|
Raquer-McKay HM, Maqueda-Alfaro RA, Saravanan S, Arroyo Hornero R, Clausen BE, Gottfried-Blackmore A, Idoyaga J. Monocytes give rise to Langerhans cells that preferentially migrate to lymph nodes at steady state. Proc Natl Acad Sci U S A 2024; 121:e2404927121. [PMID: 39541348 PMCID: PMC11588065 DOI: 10.1073/pnas.2404927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Current evidence suggests that ontogeny may account for the functional heterogeneity of some tissue macrophages, but not others. Here, we asked whether developmental origin drives different functions of skin Langerhans cells (LCs), an embryo-derived mononuclear phagocyte with features of both tissue macrophages and dendritic cells. Using time-course analyses, bone marrow chimeras, and fate tracing models, we found that the complete elimination of embryo-derived LCs at steady state results in their repopulation from circulating monocytes. However, monocyte-derived LCs inefficiently replenished the epidermal niche. Instead, these cells preferentially migrated to skin-draining lymph nodes. Mechanistically, we show that the enhanced migratory capability of monocyte-derived LCs is associated with higher expression of CD207/Langerin, a C-type lectin involved in the capture of skin microbes. Our data demonstrate that ontogeny plays a role in the migratory behavior of epidermal LCs.
Collapse
Affiliation(s)
- Hayley M. Raquer-McKay
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Raul A. Maqueda-Alfaro
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Sanjana Saravanan
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Rebeca Arroyo Hornero
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy (Forschungs-Zentrum für Immuntherapie), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Andres Gottfried-Blackmore
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA92093
- Veterans Affairs San Diego Healthcare System, Gastroenterology Section, La Jolla, CA92161
| | - Juliana Idoyaga
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Molecular Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Zhu R, Yao X, Li W. Langerhans cells and skin immune diseases. Eur J Immunol 2024; 54:e2250280. [PMID: 39030782 DOI: 10.1002/eji.202250280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Langerhans cells (LCs) are the key antigen-presenting cells in the epidermis in normal conditions and respond differentially to environmental and/or endogenous stimuli, exerting either proinflammatory or anti-inflammatory effects. Current knowledge about LCs mainly originates from studies utilizing mouse models, whereas with the development of single-cell techniques, there has been significant progress for human LCs, which has updated our understanding of the phenotype, ontogeny, differentiation regulation, and function of LCs. In this review, we delineated the progress of human LCs and summarized LCs' function in inflammatory skin diseases, providing new ideas for precise regulation of LC function in the prevention and treatment of skin diseases.
Collapse
Affiliation(s)
- Ronghui Zhu
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan, P. R. China
| | - Xu Yao
- Department, of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, P. R. China
| | - Wei Li
- Department of Dermatology, Shanghai Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
3
|
Appios A, Davies J, Sirvent S, Henderson S, Trzebanski S, Schroth J, Law ML, Carvalho IB, Pinto MM, Carvalho C, Kan HYH, Lovlekar S, Major C, Vallejo A, Hall NJ, Ardern-Jones M, Liu Z, Ginhoux F, Henson SM, Gentek R, Emmerson E, Jung S, Polak ME, Bennett CL. Convergent evolution of monocyte differentiation in adult skin instructs Langerhans cell identity. Sci Immunol 2024; 9:eadp0344. [PMID: 39241057 PMCID: PMC7616733 DOI: 10.1126/sciimmunol.adp0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/14/2024] [Indexed: 09/08/2024]
Abstract
Langerhans cells (LCs) are distinct among phagocytes, functioning both as embryo-derived, tissue-resident macrophages in skin innervation and repair and as migrating professional antigen-presenting cells, a function classically assigned to dendritic cells (DCs). Here, we demonstrate that both intrinsic and extrinsic factors imprint this dual identity. Using ablation of embryo-derived LCs in the murine adult skin and tracking differentiation of incoming monocyte-derived replacements, we found intrinsic intraepidermal heterogeneity. We observed that ontogenically distinct monocytes give rise to LCs. Within the epidermis, Jagged-dependent activation of Notch signaling, likely within the hair follicle niche, provided an initial site of LC commitment before metabolic adaptation and survival of monocyte-derived LCs. In the human skin, embryo-derived LCs in newborns retained transcriptional evidence of their macrophage origin, but this was superseded by DC-like immune modules after postnatal expansion. Thus, adaptation to adult skin niches replicates conditioning of LC at birth, permitting repair of the embryo-derived LC network.
Collapse
Affiliation(s)
- Anna Appios
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - James Davies
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Sofia Sirvent
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre, Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Johannes Schroth
- William Harvey Research Institute, Barts & London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | - Morven L. Law
- William Harvey Research Institute, Barts & London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | - Inês Boal Carvalho
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Marlene Magalhaes Pinto
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Cyril Carvalho
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Howard Yuan-Hao Kan
- Bill Lyons Informatics Centre, Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Shreya Lovlekar
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| | - Christina Major
- University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Andres Vallejo
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Nigel J. Hall
- University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Michael Ardern-Jones
- University Hospital Southampton NHS Foundation Trust, SouthamptonSO16 6YD, UK
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSo17 1BJ, UK
- Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore138648, Singapore
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif94800, France
| | - Sian M. Henson
- William Harvey Research Institute, Barts & London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, LondonEC1M 6BQ, UK
| | - Rebecca Gentek
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Elaine Emmerson
- Institute for Regeneration and Repair, University of Edinburgh, EdinburghEH16 4UU, UK
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Marta E. Polak
- Systems Immunology Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, SouthamptonSO17 1BJ, UK
| | - Clare L. Bennett
- Department of Haematology, UCL Cancer Institute, University College London, LondonWC1E 6DD, UK
| |
Collapse
|
4
|
Pan Y, Hochgerner M, Cichoń MA, Benezeder T, Bieber T, Wolf P. Langerhans cells: Central players in the pathophysiology of atopic dermatitis. J Eur Acad Dermatol Venereol 2024. [PMID: 39157943 DOI: 10.1111/jdv.20291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/21/2024] [Indexed: 08/20/2024]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide. AD is a highly complex disease with different subtypes. Many elements of AD pathophysiology have been described, but if/how they interact with each other or which mechanisms are important in which patients is still unclear. Langerhans cells (LCs) are antigen-presenting cells (APCs) in the epidermis. Depending on the context, they can act either pro- or anti-inflammatory. Many different studies have investigated LCs in the context of AD and found them to be connected to all major mechanisms of AD pathophysiology. As APCs, LCs recruit other immune cells and shape the immune response, especially adaptive immunity via polarization of T cells. As sentinel cells, LCs are primary sensors of the skin microbiome and are important for the decision of immunity versus tolerance. LCs are also involved with the integrity of the skin barrier by influencing tight junctions. Finally, LCs are important cells in the neuro-immune crosstalk in the skin. In this review, we provide an overview about the many different roles of LCs in AD. Understanding LCs might bring us closer to a more complete understanding of this highly complex disease. Potentially, modulating LCs might offer new options for targeted therapies for AD patients.
Collapse
Affiliation(s)
- Yi Pan
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
| | | | - Theresa Benezeder
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
- CK-CARE, Medicine Campus, Davos, Switzerland
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | - Peter Wolf
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| |
Collapse
|
5
|
Vine EE, Austin PJ, O'Neil TR, Nasr N, Bertram KM, Cunningham AL, Harman AN. Epithelial dendritic cells vs. Langerhans cells: Implications for mucosal vaccines. Cell Rep 2024; 43:113977. [PMID: 38512869 DOI: 10.1016/j.celrep.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present. Importantly, there are functional differences in how LCs and DCs take up and process pathogens as well as their ability to activate and polarize T cells, though whether DCs participate in neuroimmune interactions like LCs is yet to be elucidated. A correct definition and functional characterization of APCs in the skin and anogenital tissues are of utmost importance for the design of better vaccines and blocking pathogen transmission. Here, we provide a historical perspective on the evolution of our understanding of the APCs that inhabit the SSE, including a detailed review of the most recent literature.
Collapse
Affiliation(s)
- Erica Elizabeth Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; Westmead Clinic School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Paul Jonathon Austin
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia
| | - Thomas Ray O'Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Kirstie Melissa Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Anthony Lawrence Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
6
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
7
|
Bennett CL, Perona-Wright G. Metabolic adaption of mucosal macrophages: Is metabolism a driver of persistence across tissues? Mucosal Immunol 2023; 16:753-763. [PMID: 37385586 PMCID: PMC10564628 DOI: 10.1016/j.mucimm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Macrophages play essential roles in tissue homeostasis, defense, and repair. Their functions are highly tissue-specific, and when damage and inflammation stimulate repopulation by circulating monocytes, the incoming monocytes rapidly acquire the same, tissue-specific functions as the previous, resident macrophages. Several environmental factors are thought to guide the functional differentiation of recruited monocytes, including metabolic pressures imposed by the fuel sources available in each tissue. Here we discuss whether such a model of metabolic determinism can be applied to macrophage differentiation across barrier sites, from the lung to the skin. We suggest an alternative model, in which metabolic phenotype is a consequence of macrophage longevity rather than an early driver of tissue-specific adaption.
Collapse
Affiliation(s)
- Clare L Bennett
- Department of Haematology, UCL Cancer Institute, University College London, London, UK.
| | | |
Collapse
|
8
|
Lang M, Krump C, Meshcheryakova A, Tam-Amersdorfer C, Schwarzenberger E, Passegger C, Connolly S, Mechtcheriakova D, Strobl H. Microenvironmental and cell intrinsic factors governing human cDC2 differentiation and monocyte reprogramming. Front Immunol 2023; 14:1216352. [PMID: 37539048 PMCID: PMC10395083 DOI: 10.3389/fimmu.2023.1216352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 08/05/2023] Open
Abstract
cDC2s occur abundantly in peripheral tissues and arise from circulating blood cDC2s. However, the factors governing cDC2 differentiation in tissues, especially under inflammatory conditions, remained poorly defined. We here found that psoriatic cDC2s express the efferocytosis receptor Axl and exhibit a bone morphogenetic protein (BMP) and p38MAPK signaling signature. BMP7, strongly expressed within the lesional psoriatic epidermis, cooperates with canonical TGF-β1 signaling for inducing Axl+cDC2s from blood cDC2s in vitro. Moreover, downstream induced p38MAPK promotes Axl+cDC2s at the expense of Axl+CD207+ Langerhans cell differentiation from blood cDC2s. BMP7 supplementation allowed to model cDC2 generation and their further differentiation into LCs from CD34+ hematopoietic progenitor cells in defined serum-free medium. Additionally, p38MAPK promoted the generation of another cDC2 subset lacking Axl but expressing the non-classical NFkB transcription factor RelB in vitro. Such RelB+cDC2s occurred predominantly at dermal sites in the inflamed skin. Finally, we found that cDC2s can be induced to acquire high levels of the monocyte lineage identity factor kruppel-like-factor-4 (KLF4) along with monocyte-derived DC and macrophage phenotypic characteristics in vitro. In conclusion, inflammatory and psoriatic epidermal signals instruct blood cDC2s to acquire phenotypic characteristics of several tissue-resident cell subsets.
Collapse
Affiliation(s)
- Magdalena Lang
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anastasia Meshcheryakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Carmen Tam-Amersdorfer
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Elke Schwarzenberger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sally Connolly
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Diana Mechtcheriakova
- Insitute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Wang J, Parajuli N, Wang Q, Khalasawi N, Peng H, Zhang J, Yin C, Mi QS, Zhou L. MiR-23a Regulates Skin Langerhans Cell Phagocytosis and Inflammation-Induced Langerhans Cell Repopulation. BIOLOGY 2023; 12:925. [PMID: 37508356 PMCID: PMC10376168 DOI: 10.3390/biology12070925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
Langerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-β and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown. miR-23a is the first member of the miR-23a-27a-24-2 cluster, a direct downstream target of PU.1 and TGF-b, which regulate the determination of myeloid versus lymphoid fates. Therefore, we used a myeloid-specific miR-23a deletion mouse model to explore whether and how miR-23a affects LC ontogeny and function in the skin. We observed the indispensable role of miR-23a in LC antigen uptake and inflammation-induced LC epidermal repopulation; however, embryonic LC development and postnatal homeostasis were not affected by cells lacking miR23a. Our results suggest that miR-23a controls LC phagocytosis by targeting molecules that regulate efferocytosis and endocytosis, whereas miR-23a promotes homeostasis in bone marrow-derived LCs that repopulate the skin after inflammatory insult by targeting Fas and Bcl-2 family proapoptotic molecules. Collectively, the context-dependent regulatory role of miR-23a in LCs represents an extra-epigenetic layer that incorporates TGF-b- and PU.1-mediated regulation during steady-state and inflammation-induced repopulation.
Collapse
Affiliation(s)
- Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Nirmal Parajuli
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Qiyan Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Namir Khalasawi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Hongmei Peng
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Jun Zhang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Congcong Yin
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health, Detroit, MI 48202, USA; (J.W.); (N.P.); (Q.W.); (C.Y.)
- Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Department of Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Hong YK, Chang YH, Lin YC, Chen B, Guevara BEK, Hsu CK. Inflammation in Wound Healing and Pathological Scarring. Adv Wound Care (New Rochelle) 2023; 12:288-300. [PMID: 36541356 DOI: 10.1089/wound.2021.0161] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance: The aberrant inflammation during wound healing results in pathological scarring, such as hypertrophic scars and keloids. This adversely affects the quality of life of patients due to the disfiguring appearance as well as the symptoms of itch and pain. This review summarizes the up-to-date knowledge of the immunopathogenesis and treatment options for pathological scars. Recent Advances: With the advent of new technologies, combined with in vitro and in vivo wound models, several inflammatory cells have been shown to have both direct and indirect effects on both wound healing and pathological scarring. Critical Issues: Expansion of pro-fibrotic immune cells such as M2 macrophages, dendritic cells, mast cells, and Th2 cells leads to fibroblast transition to myofibroblasts via transforming growth factor-β1 signaling pathway. Appropriate management of such inflammatory responses during wound healing remains a critical issue during clinical practice. Future Directions: Regulating inflammation response during wound healing may be a potential therapeutic option for avoiding or reducing pathological scars.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Yi-Han Chang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan
| | - Brandon Chen
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bryan Edgar K Guevara
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Department of Dermatology, Southern Philippines Medical Center, Davao, Philippines
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Howell R, Davies J, Clarke MA, Appios A, Mesquita I, Jayal Y, Ringham-Terry B, Boned Del Rio I, Fisher J, Bennett CL. Localized immune surveillance of primary melanoma in the skin deciphered through executable modeling. SCIENCE ADVANCES 2023; 9:eadd1992. [PMID: 37043573 PMCID: PMC10096595 DOI: 10.1126/sciadv.add1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs), the primary antigen-presenting cells at the site of melanoma development. The model predicts that melanomas fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive TNF-α feedback loop within melanomas, in line with our observations of murine tumors. In silico drug screening, supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a molecular mechanism that explains how early melanomas develop under the radar of immune surveillance by LC.
Collapse
Affiliation(s)
| | | | - Matthew A. Clarke
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Anna Appios
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Inês Mesquita
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Yashoda Jayal
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Ben Ringham-Terry
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Isabel Boned Del Rio
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | | | | |
Collapse
|
13
|
Shkhyan R, Flynn C, Lamoure E, Sarkar A, Van Handel B, Li J, York J, Banks N, Van der Horst R, Liu NQ, Lee S, Bajaj P, Vadivel K, Harn HIC, Tassey J, Lozito T, Lieberman JR, Chuong CM, Hurtig MS, Evseenko D. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Sci Transl Med 2023; 15:eabq2395. [PMID: 36947594 PMCID: PMC10792550 DOI: 10.1126/scitranslmed.abq2395] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/17/2023] [Indexed: 03/24/2023]
Abstract
Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.
Collapse
Affiliation(s)
- Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Candace Flynn
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Emma Lamoure
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Benjamin Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jinxiu Li
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jesse York
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nicholas Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Robert Van der Horst
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Paul Bajaj
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Kanagasabai Vadivel
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Hans I.-Chen Harn
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701401 Taiwan
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Thomas Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Mark S. Hurtig
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Zhang J, Peng Y, Hu Y, Guo H, Sun Y, Zhang X, Mi QS, Xu Y. TFAM Deficiency‒Mediated Mitochondrial Disorder Affects Langerhans Cell Maintenance and Function. J Invest Dermatol 2023; 143:508-513.e2. [PMID: 36049540 DOI: 10.1016/j.jid.2022.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Jun Zhang
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yu Peng
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfei Hu
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huifang Guo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Yuzhe Sun
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoqian Zhang
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Yingping Xu
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
16
|
von Máriássy D, Reibke R, Verbeek M, Gätjens B, Schiller R, Anslinger K. STR typing of skin swabs from individuals after an allogeneic hematopoietic stem cell transplantation. Int J Legal Med 2023; 137:227-236. [PMID: 35657433 PMCID: PMC9816181 DOI: 10.1007/s00414-022-02847-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/27/2022] [Indexed: 01/11/2023]
Abstract
One of the pre-requisites for forensic DNA analysis is the fact that all nucleated cells of a person carry the same genetic information. However, this is not the case for individuals who have received an allogeneic hematopoietic stem cell or bone marrow transplantation, as all new cells formed by the bone marrow no longer show the genetic information of the recipient but that of the donor, while all other cells still carry the original information before transplantation. Thus, STR typing of a blood sample after successful transplantation yields a DNA profile that differs from the recipient's original profile and corresponds to the donor genotype instead. Evidence from a routine case suggests that transplanted individuals may show donor alleles in skin swabs, as well. In order to examine this issue more closely, various skin swabs from 28 patients who have received an allogeneic hematopoietic stem cell transplantation were examined in this study. Swabs from the right and left palm, the back of the hand, one of the two upper arms, and the neck were collected from each person. Ninety-one of the 140 resulting swabs delivered useful results. All of those samples showed mixtures of recipient and donor DNA with different mixture ratios and the proportions of donor and recipient alleles revealed inter- and intra-individual differences. Those results were discussed with respect to graft versus host disease.
Collapse
Affiliation(s)
- Dagmar von Máriássy
- Institute of Legal Medicine, Ludwig-Maximilians-University, Nußbaumstr. 26, 80336, Munich, Germany.
| | - Roland Reibke
- Department of Internal Medicine I, Klinikum Bad Trissl, Oberaudorf, Germany
| | - Mareike Verbeek
- Department of Internal Medicine III, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Britta Gätjens
- Institute of Legal Medicine, Ludwig-Maximilians-University, Nußbaumstr. 26, 80336, Munich, Germany
| | - Roberta Schiller
- Institute of Legal Medicine, Ludwig-Maximilians-University, Nußbaumstr. 26, 80336, Munich, Germany
| | - Katja Anslinger
- Institute of Legal Medicine, Ludwig-Maximilians-University, Nußbaumstr. 26, 80336, Munich, Germany
| |
Collapse
|
17
|
Wasko R, Bridges K, Pannone R, Sidhu I, Xing Y, Naik S, Miller-Jensen K, Horsley V. Langerhans cells are essential components of the angiogenic niche during murine skin repair. Dev Cell 2022; 57:2699-2713.e5. [PMID: 36493773 PMCID: PMC10848275 DOI: 10.1016/j.devcel.2022.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/28/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
Angiogenesis, the growth of new blood vessels from pre-existing vessels, occurs during development, injury repair, and tumorigenesis to deliver oxygen, immune cells, and nutrients to tissues. Defects in angiogenesis occur in cardiovascular and inflammatory diseases, and chronic, non-healing wounds, yet treatment options are limited. Here, we provide a map of the early angiogenic niche by analyzing single-cell RNA sequencing of mouse skin wound healing. Our data implicate Langerhans cells (LCs), phagocytic, skin-resident immune cells, in driving angiogenesis during skin repair. Using lineage-driven reportersw, three-dimensional (3D) microscopy, and mouse genetics, we show that LCs are situated at the endothelial cell leading edge in mouse skin wounds and are necessary for angiogenesis during repair. These data provide additional future avenues for the control of angiogenesis to treat disease and chronic wounds and extend the function of LCs beyond their canonical role in antigen presentation and T cell immunity.
Collapse
Affiliation(s)
- Renee Wasko
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Rebecca Pannone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Yue Xing
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Shruti Naik
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Kathryn Miller-Jensen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Neagu M, Constantin C, Jugulete G, Cauni V, Dubrac S, Szöllősi AG, Zurac S. Langerhans Cells-Revising Their Role in Skin Pathologies. J Pers Med 2022; 12:2072. [PMID: 36556292 PMCID: PMC9782496 DOI: 10.3390/jpm12122072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Langerhans cells (LCs) constitute a cellular immune network across the epidermis. Because they are located at the skin barrier, they are considered immune sentinels of the skin. These antigen-presenting cells are capable of migrating to skin draining lymph nodes to prime adaptive immune cells, namely T- and B-lymphocytes, which will ultimately lead to a broad range of immune responses. Moreover, LCs have been shown to possess important roles in the anti-cancer immune responses. Indeed, the literature nicely highlights the role of LCs in melanoma. In line with this, LCs have been found in melanoma tissues where they contribute to the local immune response. Moreover, the immunogenic properties of LCs render them attractive targets for designing vaccines to treat melanoma and autoimmune diseases. Overall, future studies will help to enlarge the portfolio of immune properties of LCs, and aid the prognosis and development of novel therapeutic approaches to treating skin pathologies, including cancers.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 76201 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Gheorghita Jugulete
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Clinical Section IX—Pediatrics, “Prof. Dr. Matei Balş” National Institute for Infectious Diseases, 050474 Bucharest, Romania
| | - Victor Cauni
- Department of Urology, Colentina University Hospital, 050474 Bucharest, Romania
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sabina Zurac
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in Skin Wounds: Functions and Therapeutic Potential. Biomolecules 2022; 12:1659. [PMID: 36359009 PMCID: PMC9687369 DOI: 10.3390/biom12111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/29/2023] Open
Abstract
Macrophages regulate cutaneous wound healing by immune surveillance, tissue repair and remodelling. The depletion of dermal macrophages during the early and middle stages of wound healing has a detrimental impact on wound closure, characterised by reduced vessel density, fibroblast and myofibroblast proliferation, delayed re-epithelization and abated post-healing fibrosis and scar formation. However, in some animal species, oral mucosa and foetal life, cutaneous wounds can heal normally and remain scarless without any involvement of macrophages. These paradoxical observations have created much controversy on macrophages' indispensable role in skin wound healing. Advanced knowledge gained by characterising macrophage subsets, their plasticity in switching phenotypes and molecular drivers provides new insights into their functional importance during cutaneous wound healing. In this review, we highlight the recent findings on skin macrophage subsets, their functional role in adult cutaneous wound healing and the potential benefits of targeting them for therapeutic use.
Collapse
Affiliation(s)
- Seen Ling Sim
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Snehlata Kumari
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Simranpreet Kaur
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, The University of Queensland, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
20
|
Chopra A, Gupta A. Skin as an immune organ and the site of biomimetic, non-invasive vaccination. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
22
|
N-Linked Glycans Shape Skin Immune Responses during Arthritis and Myositis after Intradermal Infection with Ross River Virus. J Virol 2022; 96:e0099922. [PMID: 36000846 PMCID: PMC9472629 DOI: 10.1128/jvi.00999-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthritogenic alphaviruses are mosquito-borne arboviruses that include several re-emerging human pathogens, including the chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), and o'nyong-nyong (ONNV) virus. Arboviruses are transmitted via a mosquito bite to the skin. Herein, we describe intradermal RRV infection in a mouse model that replicates the arthritis and myositis seen in humans with Ross River virus disease (RRVD). We show that skin infection with RRV results in the recruitment of inflammatory monocytes and neutrophils, which together with dendritic cells migrate to draining lymph nodes (LN) of the skin. Neutrophils and monocytes are productively infected and traffic virus from the skin to LN. We show that viral envelope N-linked glycosylation is a key determinant of skin immune responses and disease severity. RRV grown in mammalian cells elicited robust early antiviral responses in the skin, while RRV grown in mosquito cells stimulated poorer early antiviral responses. We used glycan mass spectrometry to characterize the glycan profile of mosquito and mammalian cell-derived RRV, showing deglycosylation of the RRV E2 glycoprotein is associated with curtailed skin immune responses and reduced disease following intradermal infection. Altogether, our findings demonstrate skin infection with an arthritogenic alphavirus leads to musculoskeletal disease and envelope glycoprotein glycosylation shapes disease outcome. IMPORTANCE Arthritogenic alphaviruses are transmitted via mosquito bites through the skin, potentially causing debilitating diseases. Our understanding of how viral infection starts in the skin and how virus systemically disseminates to cause disease remains limited. Intradermal arbovirus infection described herein results in musculoskeletal pathology, which is dependent on viral envelope N-linked glycosylation. As such, intradermal infection route provides new insights into how arboviruses cause disease and could be extended to future investigations of skin immune responses following infection with other re-emerging arboviruses.
Collapse
|
23
|
Baess SC, Burkhart AK, Cappello S, Graband A, Seré K, Zenke M, Niemann C, Iden S. Lrig1- and Wnt-dependent niches dictate segregation of resident immune cells and melanocytes in murine tail epidermis. Development 2022; 149:275959. [PMID: 35815643 PMCID: PMC9382897 DOI: 10.1242/dev.200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
The barrier-forming, self-renewing mammalian epidermis comprises keratinocytes, pigment-producing melanocytes and resident immune cells as first-line host defense. In murine tail skin, interfollicular epidermis patterns into pigmented ‘scale’ and hypopigmented ‘interscale’ epidermis. Why and how mature melanocytes accumulate in scale epidermis is unresolved. Here, we delineate a cellular hierarchy among epidermal cell types that determines skin patterning. Already during postnatal development, melanocytes co-segregate with newly forming scale compartments. Intriguingly, this process coincides with partitioning of both Langerhans cells and dendritic epidermal T cells to interscale epidermis, suggesting functional segregation of pigmentation and immune surveillance. Analysis of non-pigmented mice and of mice lacking melanocytes or resident immune cells revealed that immunocyte patterning is melanocyte and melanin independent and, vice versa, immune cells do not control melanocyte localization. Instead, genetically enforced progressive scale fusion upon Lrig1 deletion showed that melanocytes and immune cells dynamically follow epithelial scale:interscale patterns. Importantly, disrupting Wnt-Lef1 function in keratinocytes caused melanocyte mislocalization to interscale epidermis, implicating canonical Wnt signaling in organizing the pigmentation pattern. Together, this work uncovers cellular and molecular principles underlying the compartmentalization of tissue functions in skin. Summary: Pigmentation and immune surveillance functions in murine tail skin are spatially segregated by Lrig1- and Wnt-Lef1-dependent keratinocyte lineages that control the partitioning of melanocytes and tissue-resident immune cells into distinct epidermal niches.
Collapse
Affiliation(s)
- Susanne C. Baess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Ann-Kathrin Burkhart
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Sabrina Cappello
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Annika Graband
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| | - Kristin Seré
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Martin Zenke
- Institute for Biomedical Engineering 4 , Department of Cell Biology , , 52074 Aachen , Germany
- RWTH Aachen University Medical School 4 , Department of Cell Biology , , 52074 Aachen , Germany
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University 5 , 52074 Aachen , Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Center of Biochemistry 6 , Faculty of Medicine , , 50931 Cologne , Germany
- University Hospital Cologne 6 , Faculty of Medicine , , 50931 Cologne , Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 1 , 50931 Cologne , Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne 2 , 50931 Cologne , Germany
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University 3 , Faculty of Medicine, 66421 Homburg/Saar , Germany
| |
Collapse
|
24
|
Kamata M, Tada Y. Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis. Front Immunol 2022; 13:941071. [PMID: 35837394 PMCID: PMC9274091 DOI: 10.3389/fimmu.2022.941071] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by scaly indurated erythema. This disease impairs patients’ quality of life enormously. Pathological findings demonstrate proliferation and abnormal differentiation of keratinocytes and massive infiltration of inflammatory immune cells. The pathogenesis of psoriasis is complicated. Among immune cells, dendritic cells play a pivotal role in the development of psoriasis in both the initiation and the maintenance phases. In addition, it has been indicated that macrophages contribute to the pathogenesis of psoriasis especially in the initiation phase, although studies on macrophages are limited. In this article, we review the roles of dendritic cells and macrophages in the pathogenesis of psoriasis.
Collapse
|
25
|
Ronicke M, Baur A, Kirr M, Erdmann M, Erfurt-Berge C, Ostalecki C. Epidermotropie von Immunzellen unterscheidet Pyoderma gangraenosum vom Ulcus cruris venosum. J Dtsch Dermatol Ges 2022; 20:619-628. [PMID: 35578412 DOI: 10.1111/ddg.14708_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
HINTERGRUND UND ZIELE Pyoderma gangraenosum ist eine ulzerierende, autoinflammatorische Erkrankung. Es gibt keine eindeutigen histopathologischen Merkmale zur Differenzierung von anderen Ursachen chronischer Wunden wie dem Ulcus cruris venosum. Ziel dieser Studie war es, histopathologische Merkmale von Pyoderma gangraenosum und Unterschiede zu venösen Ulzerationen zu detektieren. PATIENTEN UND METHODIK Acht Gewebeproben von Pyoderma gangraenosum, zwölf Proben von Ulcus cruris venosum und sechs Proben von gesunder Haut wurden einer immunhistologischen Multi-Antigen-Analyse unterzogen. Das Immuninfiltrat und seine räumliche Verteilung wurden anhand von Fluoreszenzbildern mit einer Gewebezytometriesoftware analysiert. ERGEBNISSE Die dichte epidermale Präsenz von CD45RO+ -T-Gedächtnis-Zellen und die Rarefizierung von CD1a+ -Langerhans-Zellen in der Epidermis waren Marker für Pyoderma gangraenosum, welche auch auf eine epidermale Immunreaktion schließen lassen. Darüber hinaus konnte dermal eine hohe Anzahl CD11c+ CD68+ pro-inflammatorischer M1-Makrophagen nachgewiesen werden. Diese überstieg die Anzahl der in venösen Ulzerationen beobachteten Makrophagen deutlich. SCHLUSSFOLGERUNGEN Die histopathologischen Unterschiede zwischen Pyoderma gangraenosum und Ulcus cruris venosum können zur Unterscheidung der beiden Erkrankungen herangezogen werden und somit eine wichtige Hilfe zur schnellen Einleitung einer adäquaten Therapie sein. Darüber hinaus deuten unsere Daten auf einen antigengesteuerten Prozess in der Epidermis hin, möglicherweise unter Beteiligung von CD1a+ Langerhans-Zellen.
Collapse
Affiliation(s)
- Moritz Ronicke
- Hautklinik, Universitätsklinikum Erlangen.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg, Erlangen.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
| | - Andreas Baur
- Hautklinik, Universitätsklinikum Erlangen.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg, Erlangen.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
| | | | - Michael Erdmann
- Hautklinik, Universitätsklinikum Erlangen.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg, Erlangen.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
| | - Cornelia Erfurt-Berge
- Hautklinik, Universitätsklinikum Erlangen.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nürnberg, Erlangen.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
| | - Christian Ostalecki
- Hautklinik, Universitätsklinikum Erlangen.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen
| |
Collapse
|
26
|
Ronicke M, Baur A, Kirr M, Erdmann M, Erfurt-Berge C, Ostalecki C. Epidermotropism of inflammatory cells differentiates pyoderma gangrenosum from venous leg ulcers. J Dtsch Dermatol Ges 2022; 20:619-627. [PMID: 35487858 DOI: 10.1111/ddg.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Pyoderma gangrenosum is an ulcerative autoinflammatory disease, lacking distinct histopathological characteristics to differentiate from other ulcerating conditions, like venous leg ulcers. The objective of this study was therefore to find histopathological characteristics of pyoderma gangrenosum in a head-to-head comparison to venous leg ulcers. PATIENTS AND METHODS Eight tissue samples of pyoderma gangrenosum, twelve samples of venous leg ulcers and six samples of healthy skin were stained using an immunohistological multi antigen staining technology. The immune infiltrate and its spatial distribution were analyzed with contextual tissue cytometry software using fluorescence images. RESULTS The dense epidermal presence of CD45RO+ memory T cells and the rarefication of CD1a+ Langerhans cells in the epidermis were defining markers for pyoderma gangrenosum, implicating an epidermal immune reaction. In addition, high numbers of CD11c+ CD68+ pro-inflammatory M1 macrophages were detected in the dermis, significantly extending the numbers seen in venous leg ulcers. CONCLUSIONS The histopathological differences found between pyoderma gangrenosum and venous leg ulcer can be used to distinguish between the two diseases and thus provide an important aid for the rapid initiation of adequate therapy. In addition, our data hint at an antigen-driven process in the epidermis, possibly involving CD1a+ Langerhans cells.
Collapse
Affiliation(s)
- Moritz Ronicke
- University Hospital Erlangen, Dermatological Department, Ulmenweg 18, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nuremberg, Ulmenweg 18, Erlangen, 91054, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Andreas Baur
- University Hospital Erlangen, Dermatological Department, Ulmenweg 18, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nuremberg, Ulmenweg 18, Erlangen, 91054, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | | | - Michael Erdmann
- University Hospital Erlangen, Dermatological Department, Ulmenweg 18, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nuremberg, Ulmenweg 18, Erlangen, 91054, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Cornelia Erfurt-Berge
- University Hospital Erlangen, Dermatological Department, Ulmenweg 18, Erlangen, 91054, Germany.,Deutsches Zentrum für Immuntherapie (DZI), FAU Erlangen-Nuremberg, Ulmenweg 18, Erlangen, 91054, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Christian Ostalecki
- University Hospital Erlangen, Dermatological Department, Ulmenweg 18, Erlangen, 91054, Germany.,Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| |
Collapse
|
27
|
Roquilly A, Mintern JD, Villadangos JA. Spatiotemporal Adaptations of Macrophage and Dendritic Cell Development and Function. Annu Rev Immunol 2022; 40:525-557. [PMID: 35130030 DOI: 10.1146/annurev-immunol-101320-031931] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection. We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Antoine Roquilly
- Center for Research in Transplantation and Translational Immunology, INSERM, UMR 1064, CHU Nantes, University of Nantes, Nantes, France
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
28
|
Park S. Building vs. Rebuilding Epidermis: Comparison Embryonic Development and Adult Wound Repair. Front Cell Dev Biol 2022; 9:796080. [PMID: 35145968 PMCID: PMC8822150 DOI: 10.3389/fcell.2021.796080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Wound repair is essential to restore tissue function through the rebuilding of pre-existing structures. The repair process involves the re-formation of tissue, which was originally generated by embryonic development, with as similar a structure as possible. Therefore, these two processes share many similarities in terms of creating tissue architecture. However, fundamental differences still exist, such as differences in the cellular components, the status of neighboring tissues, and the surrounding environment. Recent advances in single-cell transcriptomics, in vivo lineage tracing, and intravital imaging revealed subpopulations, long-term cell fates, and dynamic cellular behaviors in live animals that were not detectable previously. This review highlights similarities and differences between adult wound repair and embryonic tissue development with a particular emphasis on the epidermis of the skin.
Collapse
Affiliation(s)
- Sangbum Park
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, United States
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
29
|
Early antitumor activity of oral Langerhans cells is compromised by a carcinogen. Proc Natl Acad Sci U S A 2022; 119:2118424119. [PMID: 35012988 PMCID: PMC8784117 DOI: 10.1073/pnas.2118424119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of oral squamous cell carcinoma (OSCC) remains an unmet clinical need. Therefore, elucidating the initial events of OSCC preceding tumor development could benefit OSCC prognosis. Here, we define the Langerhans cells (LCs) of the tongue and demonstrate that LCs protect the epithelium from carcinogen-induced OSCC by rapidly priming αβT cells capable of eliminating γH2AX+ epithelial cells, whereas γδT and natural killer cells are dispensable. The carcinogen, however, dysregulates the epithelial resident mononuclear phagocytes, reducing LC frequencies, while dendritic cells (DCs), macrophages, and plasmacytoid DCs (pDCs) populate the epithelium. Single-cell RNA-sequencing analysis indicates that these newly differentiated cells display an immunosuppressive phenotype accompanied by an expansion of T regulatory (Treg) cells. Accumulation of the Treg cells was regulated, in part, by pDCs and precedes the formation of visible tumors. This suggests LCs play an early protective role during OSCC, yet the capacity of the carcinogen to dysregulate the differentiation of mononuclear phagocytes facilitates oral carcinogenesis.
Collapse
|
30
|
Tanaka M, Kohchi C, Inagawa H, Ikemoto T, Hara-Chikuma M. Effect of topical application of lipopolysaccharide on contact hypersensitivity. Biochem Biophys Res Commun 2022; 586:100-106. [PMID: 34837833 DOI: 10.1016/j.bbrc.2021.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
Lipopolysaccharide (LPS) is the principal component of the outer membrane of gram-negative bacteria. The prior oral administration of LPS attenuates inflammatory responses, such as intestinal injury and atopic dermatitis, in mouse models; however, the underlying mechanism remains unclear. Here, we examined the effect of topical LPS application on allergic contact dermatitis and its mechanism of action using a murine contact hypersensitivity (CHS) model. Prolonged LPS application to the skin significantly suppressed 2,4-dinitrofluorobenzene (DNFB)-induced CHS. LPS application to the skin also reduced the phagocytosis of fluorescein isothiocyanate (FITC)-dextran by Langerhans and dendritic cells. Cutaneous cell migration into the skin-draining lymph nodes (LNs) induced by FITC painting was reduced by LPS application. During the CHS response, DNFB application induced T-cell proliferation and inflammatory cytokine production in skin-draining LNs, whereas prolonged LPS application inhibited DNFB-induced T-cell growth and interferon gamma production, indicating suppression of DNFB-induced sensitization. These results suggest that prolonged LPS application suppressed DNFB-induced sensitization and subsequently CHS response. Our findings imply that topical application of LPS may prevent allergic dermatitis such as CHS.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Chie Kohchi
- Macrophi Inc., 2217-6 Hayashi-cho, Takamatsu-shi, Kagawa-ken, 761-0301, Japan
| | - Hiroyuki Inagawa
- Macrophi Inc., 2217-6 Hayashi-cho, Takamatsu-shi, Kagawa-ken, 761-0301, Japan
| | - Takeshi Ikemoto
- Kyowa Co., Ltd., 1-22-2 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
31
|
Tuong ZK, Lukowski SW, Nguyen QH, Chandra J, Zhou C, Gillinder K, Bashaw AA, Ferdinand JR, Stewart BJ, Teoh SM, Hanson SJ, Devitt K, Clatworthy MR, Powell JE, Frazer IH. A model of impaired Langerhans cell maturation associated with HPV induced epithelial hyperplasia. iScience 2021; 24:103326. [PMID: 34805788 PMCID: PMC8586807 DOI: 10.1016/j.isci.2021.103326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial microorganisms. Human papillomavirus (HPV) infection can promote malignant epithelial transformation. As LCs are considered important for controlling HPV infection, we compared the transcriptome of murine LCs from skin transformed by K14E7 oncoprotein and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal skin, associated with ontogeny, cell cycle, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was significantly disturbed in HPV16 E7-transformed skin. Hyperplastic skin was depleted of immune-stimulatory LCs and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte crosstalk was dysregulated. We identified reduced expression of interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers. Single cell atlas of Langerhans cells in cutaneous skin Stimulatory and inhibitory Langerhans cell states are in balance Inhibitory Langerhans cell states dominate HPV-transformed hyperplastic skin Langerhans cell imbalance is associated with disrupted IL-34 signaling
Collapse
Affiliation(s)
- Zewen K Tuong
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Samuel W Lukowski
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Quan H Nguyen
- Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chenhao Zhou
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Kevin Gillinder
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Abate A Bashaw
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
| | - Siok Min Teoh
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sarah J Hanson
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Katharina Devitt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Trust Sanger Institute, Hinxton, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
32
|
Giza HM, Bozzacco L. Unboxing dendritic cells: Tales of multi-faceted biology and function. Immunology 2021; 164:433-449. [PMID: 34309853 PMCID: PMC8517577 DOI: 10.1111/imm.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Often referred to as the bridge between innate and adaptive immunity, dendritic cells (DCs) are professional antigen-presenting cells (APCs) that constitute a unique, yet complex cell system. Among other APCs, DCs display the unique property of inducing protective immune responses against invading microbes, or cancer cells, while safeguarding the proper homeostatic equilibrium of the immune system and maintaining self-tolerance. Unsurprisingly, DCs play a role in many diseases such as autoimmunity, allergy, infectious disease and cancer. This makes them attractive but challenging targets for therapeutics. Since their initial discovery, research and understanding of DC biology have flourished. We now recognize the presence of multiple subsets of DCs distributed across tissues. Recent studies of phenotype and gene expression at the single cell level have identified heterogeneity even within the same DC type, supporting the idea that DCs have evolved to greatly expand the flexibility of the immune system to react appropriately to a wide range of threats. This review is meant to serve as a quick and robust guide to understand the basic divisions of DC subsets and their role in the immune system. Between mice and humans, there are some differences in how these subsets are identified and function, and we will point out specific distinctions as necessary. Throughout the text, we are using both fundamental and therapeutic lens to describe overlaps and distinctions and what this could mean for future research and therapies.
Collapse
|
33
|
Distinct human Langerhans cell subsets orchestrate reciprocal functions and require different developmental regulation. Immunity 2021; 54:2305-2320.e11. [PMID: 34508661 DOI: 10.1016/j.immuni.2021.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022]
Abstract
Langerhans cells (LCs) play a pivotal role in skin homeostasis, and the heterogeneity of LCs has long been considered. In this study, we have identified two steady-state (LC1 and LC2) and two activated LC subsets in the epidermis of human skin and in LCs derived from CD34+ hemopoietic stem cells (HSC-LCs) by utilizing single-cell RNA sequencing and mass cytometry. Analysis of HSC-LCs at multiple time-points during differentiation revealed that EGR1 and Notch signaling were among the top pathways regulating the bifurcation of LC1 and LC2. LC1 were characterized as classical LCs, mainly related to innate immunity and antigen processing. LC2 were similar to monocytes or myeloid dendritic cells, involving in immune responses and leukocyte activation. LC1 remained stable under inflammatory microenvironment, whereas LC2 were prone to being activated and demonstrated elevated expression of immuno-suppressive molecules. We revealed distinct human LC subsets that require different developmental regulation and orchestrate reciprocal functions.
Collapse
|
34
|
Zhan Y, Zhang Y, Zhang S, Coughlan H, Baldoni PL, Jacquelot N, Cao WHJ, Preston S, Louis C, Rautela J, Pellegrini M, Wicks IP, Alexander WS, Harrison LC, Lew AM, Smyth GK, Nutt SL, Chopin M. Differential requirement for the Polycomb repressor complex 2 in dendritic cell and tissue-resident myeloid cell homeostasis. Sci Immunol 2021; 6:eabf7268. [PMID: 34533976 DOI: 10.1126/sciimmunol.abf7268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yifan Zhan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Drug Discovery, Shanghai Huaota Biopharma, Shanghai, China
| | - Yuxia Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Shengbo Zhang
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hannah Coughlan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pedro L Baldoni
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Jacquelot
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Wang H J Cao
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon Preston
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cynthia Louis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Warren S Alexander
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,School of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
35
|
Brandum EP, Jørgensen AS, Rosenkilde MM, Hjortø GM. Dendritic Cells and CCR7 Expression: An Important Factor for Autoimmune Diseases, Chronic Inflammation, and Cancer. Int J Mol Sci 2021; 22:ijms22158340. [PMID: 34361107 PMCID: PMC8348795 DOI: 10.3390/ijms22158340] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotactic cytokines-chemokines-control immune cell migration in the process of initiation and resolution of inflammatory conditions as part of the body's defense system. Many chemokines also participate in pathological processes leading up to and exacerbating the inflammatory state characterizing chronic inflammatory diseases. In this review, we discuss the role of dendritic cells (DCs) and the central chemokine receptor CCR7 in the initiation and sustainment of selected chronic inflammatory diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. We revisit the binary role that CCR7 plays in combatting and progressing cancer, and we discuss how CCR7 and DCs can be harnessed for the treatment of cancer. To provide the necessary background, we review the differential roles of the natural ligands of CCR7, CCL19, and CCL21 and how they direct the mobilization of activated DCs to lymphoid organs and control the formation of associated lymphoid tissues (ALTs). We provide an overview of DC subsets and, briefly, elaborate on the different T-cell effector types generated upon DC-T cell priming. In the conclusion, we promote CCR7 as a possible target of future drugs with an antagonistic effect to reduce inflammation in chronic inflammatory diseases and an agonistic effect for boosting the reactivation of the immune system against cancer in cell-based and/or immune checkpoint inhibitor (ICI)-based anti-cancer therapy.
Collapse
|
36
|
Yu Q, Parajuli N, Yi Q, Mishina Y, Elder JT, Zhou L, Mi QS. ALK3 Is Not Required for the Embryonic Development, Homeostasis, and Repopulation of Epidermal Langerhans Cells in Steady and Inflammatory States. J Invest Dermatol 2021; 141:1858-1861. [PMID: 33359325 PMCID: PMC8219812 DOI: 10.1016/j.jid.2020.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Affiliation(s)
- Qian Yu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Shanghai tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Nirmal Parajuli
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Qijun Yi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan School Medicine, Ann Arbor, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA.
| |
Collapse
|
37
|
Henneke P, Kierdorf K, Hall LJ, Sperandio M, Hornef M. Perinatal development of innate immune topology. eLife 2021; 10:67793. [PMID: 34032570 PMCID: PMC8149122 DOI: 10.7554/elife.67793] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
At the transition from intrauterine to postnatal life, drastic alterations are mirrored by changes in cellular immunity. These changes are in part immune cell intrinsic, originate in the replacement of fetal cells, or result from global regulatory mechanisms and adaptation to changes in the tissue microenvironment. Overall, longer developmental trajectories are intersected by events related to mother-infant separation, birth cues, acquisition of microbiota and metabolic factors. Perinatal alterations particularly affect immune niches, where structures with discrete functions meet, the intestinal mucosa, epidermis and lung. Accordingly, the following questions will be addressed in this review. How does the preprogrammed development supported by endogenous cues, steer innate immune cell differentiation, adaptation to tissue structures, and immunity to infection? How does the transition at birth impact on tissue immune make-up including its topology? How do postnatal cues guide innate immune cell differentiation and function at immunological niches?
Collapse
Affiliation(s)
- Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Intestinal Microbiome, School of Life Sciences, and ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
38
|
Recent Progress in Dendritic Cell-Based Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13102495. [PMID: 34065346 PMCID: PMC8161242 DOI: 10.3390/cancers13102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Cancer immunotherapy has now attracted much attention because of the recent success of immune checkpoint inhibitors. However, they are only beneficial in a limited fraction of patients most probably due to lack of sufficient CD8+ cytotoxic T-lymphocytes against tumor antigens in the host. In this regard, dendritic cells are useful tools to induce host immune responses against exogenous antigens. In particular, recently characterized cross-presenting dendritic cells are capable of inducing CD8+ cytotoxic T-lymphocytes against exogenous antigens such as tumor antigens and uniquely express the chemokine receptor XCR1. Here we focus on the recent progress in DC-based cancer vaccines and especially the use of the XCR1 and its ligand XCL1 axis for the targeted delivery of cancer vaccines to cross-presenting dendritic cells. Abstract Cancer immunotherapy aims to treat cancer by enhancing cancer-specific host immune responses. Recently, cancer immunotherapy has been attracting much attention because of the successful clinical application of immune checkpoint inhibitors targeting the CTLA-4 and PD-1/PD-L1 pathways. However, although highly effective in some patients, immune checkpoint inhibitors are beneficial only in a limited fraction of patients, possibly because of the lack of enough cancer-specific immune cells, especially CD8+ cytotoxic T-lymphocytes (CTLs), in the host. On the other hand, studies on cancer vaccines, especially DC-based ones, have made significant progress in recent years. In particular, the identification and characterization of cross-presenting DCs have greatly advanced the strategy for the development of effective DC-based vaccines. In this review, we first summarize the surface markers and functional properties of the five major DC subsets. We then describe new approaches to induce antigen-specific CTLs by targeted delivery of antigens to cross-presenting DCs. In this context, the chemokine receptor XCR1 and its ligand XCL1, being selectively expressed by cross-presenting DCs and mainly produced by activated CD8+ T cells, respectively, provide highly promising molecular tools for this purpose. In the near future, CTL-inducing DC-based cancer vaccines may provide a new breakthrough in cancer immunotherapy alone or in combination with immune checkpoint inhibitors.
Collapse
|
39
|
Khurana P, Kolundzic N, Flohr C, Ilic D. Human pluripotent stem cells: An alternative for 3D in vitro modelling of skin disease. Exp Dermatol 2021; 30:1572-1587. [PMID: 33864704 DOI: 10.1111/exd.14358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 01/05/2023]
Abstract
To effectively study the skin and its pathology, various platforms have been used to date, with in vitro 3D skin models being considered the future gold standard. These models have generally been engineered from primary cell lines. However, their short life span leading to the use of various donors, imposes issues with genetic variation. Human pluripotent stem cell (hPSC)-technology holds great prospects as an alternative to the use of primary cell lines to study the pathophysiology of human skin diseases. This is due to their potential to generate an unlimited number of genetically identical skin models that closely mimic the complexity of in vivo human skin. During the past decade, researchers have therefore started to use human embryonic and induced pluripotent stem cells (hESC/iPSC) to derive skin resident-like cells and components. These have subsequently been used to engineer hPSC-derived 3D skin models. In this review, we focus on the advantages, recent developments, and future perspectives in using hPSCs as an alternative cell source for modelling human skin diseases in vitro.
Collapse
Affiliation(s)
- Preeti Khurana
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| | - Nikola Kolundzic
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| | - Carsten Flohr
- St John's Institute of Dermatology, King's College London and Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dusko Ilic
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Assisted Conception Unit, Guy's Hospital, London, UK
| |
Collapse
|
40
|
Lelios I, Stifter SA, Cecconi V, Petrova E, Lutz M, Cansever D, Utz SG, Becher B, van den Broek M, Greter M. Monocytes promote UV-induced epidermal carcinogenesis. Eur J Immunol 2021; 51:1799-1808. [PMID: 33759186 PMCID: PMC8359952 DOI: 10.1002/eji.202048841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 11/10/2022]
Abstract
Mononuclear phagocytes consisting of monocytes, macrophages, and DCs play a complex role in tumor development by either promoting or restricting tumor growth. Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer arising from transformed epidermal keratinocytes. While present at high numbers, the role of tumor-infiltrating and resident myeloid cells in the formation of cSCC is largely unknown. Using transgenic mice and depleting antibodies to eliminate specific myeloid cell types in the skin, we investigated the involvement of mononuclear phagocytes in the development of UV-induced cSCC in K14-HPV8-E6 transgenic mice. Although resident Langerhans cells were enriched in the tumor, their contribution to tumor formation was negligible. Equally, dermal macrophages were dispensable for the development of cSCC. In contrast, mice lacking circulating monocytes were completely resistant to UV-induced cSCC, indicating that monocytes promote tumor development. Collectively, these results demonstrate a critical role for classical monocytes in the initiation of skin cancer.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Ekaterina Petrova
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Mirjam Lutz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Toriyama M, Ishii KJ. Primary Cilia in the Skin: Functions in Immunity and Therapeutic Potential. Front Cell Dev Biol 2021; 9:621318. [PMID: 33644059 PMCID: PMC7905053 DOI: 10.3389/fcell.2021.621318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The skin is the biggest organ and provides a physical and immunological barrier against pathogen infection. The distribution of primary cilia in the skin of mice has been reported, but which cells in human skin have them has not, and we still know very little about how they change in response to immune reactions or disease. This review introduces several studies that describe mechanisms of cilia regulation by immune reaction and the physiological relevance of cilia regulating proliferation and differentiation of stroma cells, including skin-resident Langerhans cells. We discuss the possibility of primary cilia pathology in allergic atopic dermatitis and the potential for therapies targeting primary cilia signaling.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan.,Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
42
|
Leonard DA, Powell HR, Defazio MW, Shanmugarajah K, Mastroianni M, Rosales I, Farkash EA, Colvin RB, Randolph MA, Sachs DH, Kurtz JM, Cetrulo CL. Cutaneous leukocyte lineages in tolerant large animal and immunosuppressed clinical vascularized composite allograft recipients. Am J Transplant 2021; 21:582-592. [PMID: 32741100 PMCID: PMC7854956 DOI: 10.1111/ajt.16230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023]
Abstract
Vascularized composite allografts (VCAs) can restore fully functional anatomic units in patients with limb amputations or severe facial tissue loss. However, acute rejection of the skin is frequently observed and underscores the importance of developing tolerance induction protocols. In this study, we have characterized the skin immune system in VCAs. We demonstrate infiltration of recipient leukocytes, regardless of rejection status, and in tolerant mixed hematopoietic chimeras, the co-existence of these cells with donor leukocytes in the absence of rejection. Here we characterize the dermal T cell and epidermal Langerhans cell components of the skin immune system in our porcine model of VCA tolerance, and the kinetics of cutaneous chimerism in both of these populations in VCAs transplanted to tolerant and nontolerant recipients, as well as in host skin. Furthermore, in biopsies from the first patient to receive a hand transplant in our program, we demonstrate the presence of recipient T cells in the skin of the transplanted limb in the absence of clinical or histological evidence of rejection.
Collapse
Affiliation(s)
- D. A. Leonard
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts,Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, Scotland
| | - H. R. Powell
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - M. W. Defazio
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - K. Shanmugarajah
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts,Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - M. Mastroianni
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts,Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - I. Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - E. A. Farkash
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - R. B. Colvin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - M. A. Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - D. H. Sachs
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - J. M. Kurtz
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts,Department of Biology, Emmanuel College, Boston, Massachusetts
| | - C. L. Cetrulo
- Center for Transplantation Sciences, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts,Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, Massachusetts,Shriners Hospital for Children, Boston, Massachusetts
| |
Collapse
|
43
|
Bellmann L, Zelle-Rieser C, Milne P, Resteu A, Tripp CH, Hermann-Kleiter N, Zaderer V, Wilflingseder D, Hörtnagl P, Theochari M, Schulze J, Rentzsch M, Del Frari B, Collin M, Rademacher C, Romani N, Stoitzner P. Notch-Mediated Generation of Monocyte-Derived Langerhans Cells: Phenotype and Function. J Invest Dermatol 2021; 141:84-94.e6. [PMID: 32522485 PMCID: PMC7758629 DOI: 10.1016/j.jid.2020.05.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-β1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.
Collapse
Key Words
- a647, alexafluor-647
- dc, dendritic cell
- lc, langerhans cell
- mhc, major histocompatibility complex
- mlr, mixed leukocyte reaction
- molc, monocyte-derived lc
- polyi:c, polyinosinic:polycytidylic acid
- rna-seq, rna sequencing
- th, t helper
- tlr, toll-like receptor
Collapse
Affiliation(s)
- Lydia Bellmann
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Zelle-Rieser
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Milne
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christoph H Tripp
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Institute of Cell Genetics, Department for Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunological Department, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Theochari
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jessica Schulze
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Mareike Rentzsch
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew Collin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology & Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
44
|
Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology 2020; 9:e1222. [PMID: 33363732 PMCID: PMC7750014 DOI: 10.1002/cti2.1222] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| | - Andrew J Fleetwood
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Prabhakara R Nagareddy
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| |
Collapse
|
45
|
Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci 2020; 21:E8790. [PMID: 33233704 PMCID: PMC7699912 DOI: 10.3390/ijms21228790] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
As the most dominant cell type in the skin, keratinocytes play critical roles in wound repair not only as structural cells but also exerting important immune functions. This review focuses on the communications between keratinocytes and immune cells in wound healing, which are mediated by various cytokines, chemokines, and extracellular vesicles. Keratinocytes can also directly interact with T cells via antigen presentation. Moreover, keratinocytes produce antimicrobial peptides that can directly kill the invading pathogens and contribute to wound repair in many aspects. We also reviewed the epigenetic mechanisms known to regulate keratinocyte immune functions, including histone modifications, non-protein-coding RNAs (e.g., microRNAs, and long noncoding RNAs), and chromatin dynamics. Lastly, we summarized the current evidence on the dysregulated immune functions of keratinocytes in chronic nonhealing wounds. Based on their crucial immune functions in skin wound healing, we propose that keratinocytes significantly contribute to the pathogenesis of chronic wound inflammation. We hope this review will trigger an interest in investigating the immune roles of keratinocytes in chronic wound pathology, which may open up new avenues for developing innovative wound treatments.
Collapse
Affiliation(s)
| | | | - Ning Xu Landén
- Center for Molecular Medicine, Ming Wai Lau Centre for Reparative Medicine, Department of Medicine Solna, Dermatology and Venereology Division, Karolinska Institute, 17176 Stockholm, Sweden; (M.P.); (D.L.)
| |
Collapse
|
46
|
Distorted frequency of dendritic cells and their associated stimulatory and inhibitory markers augment the pathogenesis of pemphigus vulgaris. Immunol Res 2020; 68:353-362. [PMID: 33184735 DOI: 10.1007/s12026-020-09166-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
The objective of this study was to investigate the frequency and functionality of DCs and its associated stimulatory and inhibitory markers in the pathogenesis of PV Active PV patients (n = 30) having both skin and oral lesions, and 30 healthy controls were recruited in the study. The frequency of DCs was determined by flow cytometry followed by the primary culture by using recombinant IL-4 (250 IU/ml) and GM-CSF (600 IU/ml). The culture supernatant was used for ELISA. RNA was isolated from sorted DCs and used for the mRNA expression of DC-associated stimulatory (CD40 and CD80) and inhibitory (PSGL1 and ILT3) markers. Tissue localization of Langerhans cells was done by immunohistochemistry. In this study, altered frequency of myeloid DC (mDC) and plasmacytoid DC (pDC) was seen in the circulation of PV patients. The primary culture of patient-derived DCs showed anomalous cytokine profiling. In the culture supernatant of DCs, elevated levels of TNF-ɑ and IL-12 were detected in PV patients. Meanwhile, reverse trend was found in the case of IFN-ɑ and IL-10 cytokine levels. Similarly, a discrepancy in the expression of DC-associated stimulatory (CD40 and CD80) and inhibitory (PSGL1 and ILT3) markers suggested their possible involvement in the immunopathogenesis of PV. An elevated number of tissue localizing Langerhans cells was also observed in the perilesional skin. This study indicates the distorted frequency and functionality of DCs in the immunopathogenesis of PV. Targeting these functional markers in the future may generate novel therapeutic options for better management of PV.
Collapse
|
47
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
48
|
Horev Y, Salameh R, Nassar M, Capucha T, Saba Y, Barel O, Zubeidat K, Matanes D, Leibovich A, Heyman O, Eli-Berchoer L, Hanhan S, Betser-Cohen G, Shapiro H, Elinav E, Bercovier H, Wilensky A, Hovav AH. Niche rather than origin dysregulates mucosal Langerhans cells development in aged mice. Mucosal Immunol 2020; 13:767-776. [PMID: 32457449 DOI: 10.1038/s41385-020-0301-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/02/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
Abstract
Unlike epidermal Langerhans cells (LCs) that originate from embryonic precursors and are self-renewed locally, mucosal LCs arise and are replaced by circulating bone marrow (BM) precursors throughout life. While the unique lifecycle of epidermal LCs is associated with an age-dependent decrease in their numbers, whether and how aging has an impact on mucosal LCs remains unclear. Focusing on gingival LCs we found that mucosal LCs are reduced with age but exhibit altered morphology with that observed in aged epidermal LCs. The reduction of gingival but not epidermal LCs in aged mice was microbiota-dependent; nevertheless, the impact of the microbiota on gingival LCs was indirect. We next compared the ability of young and aged BM precursors to differentiate to mucosal LCs. Mixed BM chimeras, as well as differentiation cultures, demonstrated that aged BM has intact if not superior capacity to differentiate into LCs than young BM. This was in line with the higher percentages of mucosal LC precursors, pre-DCs, and monocytes, detected in aged BM. These findings suggest that while aging is associated with reduced LC numbers, the niche rather than the origin controls this process in mucosal barriers.
Collapse
Affiliation(s)
- Yael Horev
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.,Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Rana Salameh
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Maria Nassar
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Tal Capucha
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Yasmin Saba
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Barel
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Khaled Zubeidat
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Daniela Matanes
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Amit Leibovich
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Luba Eli-Berchoer
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Salem Hanhan
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Gili Betser-Cohen
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Herve Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | - Avi-Hai Hovav
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
49
|
Ferrer IR, West HC, Henderson S, Ushakov DS, Santos E Sousa P, Strid J, Chakraverty R, Yates AJ, Bennett CL. A wave of monocytes is recruited to replenish the long-term Langerhans cell network after immune injury. Sci Immunol 2020; 4:4/38/eaax8704. [PMID: 31444235 DOI: 10.1126/sciimmunol.aax8704] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
A dense population of embryo-derived Langerhans cells (eLCs) is maintained within the sealed epidermis without contribution from circulating cells. When this network is perturbed by transient exposure to ultraviolet light, short-term LCs are temporarily reconstituted from an initial wave of monocytes but thought to be superseded by more permanent repopulation with undefined LC precursors. However, the extent to which this process is relevant to immunopathological processes that damage LC population integrity is not known. Using a model of allogeneic hematopoietic stem cell transplantation, where alloreactive T cells directly target eLCs, we have asked whether and how the original LC network is ultimately restored. We find that donor monocytes, but not dendritic cells, are the precursors of long-term LCs in this context. Destruction of eLCs leads to recruitment of a wave of monocytes that engraft in the epidermis and undergo a sequential pathway of differentiation via transcriptionally distinct EpCAM+ precursors. Monocyte-derived LCs acquire the capacity of self-renewal, and proliferation in the epidermis matched that of steady-state eLCs. However, we identified a bottleneck in the differentiation and survival of epidermal monocytes, which, together with the slow rate of renewal of mature LCs, limits repair of the network. Furthermore, replenishment of the LC network leads to constitutive entry of cells into the epidermal compartment. Thus, immune injury triggers functional adaptation of mechanisms used to maintain tissue-resident macrophages at other sites, but this process is highly inefficient in the skin.
Collapse
Affiliation(s)
- Ivana R Ferrer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Heather C West
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Stephen Henderson
- Bill Lyons Informatics Centre, Cancer Institute, University College London, London WC1E 6DD, UK
| | - Dmitry S Ushakov
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, New Hunt's House, Newcomen Street, London SE1 1UL, UK
| | - Pedro Santos E Sousa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Ronjon Chakraverty
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Andrew J Yates
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Clare L Bennett
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK and Cancer Institute Department of Haematology, Division of Cancer Studies, University College London, London WC1E 6DD, UK.
| |
Collapse
|
50
|
Rajesh A, Stuart G, Real N, Ahn J, Tschirley A, Wise L, Hibma M. Depletion of langerin + cells enhances cutaneous wound healing. Immunology 2020; 160:366-381. [PMID: 32307696 DOI: 10.1111/imm.13202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Langerin is a C-type lectin receptor that is expressed on Langerhans cells and langerin-positive dermal dendritic cells in the skin. Little is known about the function of langerin+ cells in wound healing. In this study, the effects of ablation of langerin+ cells on healing of a full-thickness excision wound were investigated using the langerin-DTR depletable mouse. Strikingly, depletion of langerin+ cells resulted in more rapid reduction in wound area. Accelerated wound healing in the langerin+ -cell-depleted group was characterized by enhanced neo-epidermis and granulation tissue formation, and increased cellular proliferation within the newly formed tissues. Accelerated healing in the absence of langerin+ cells was associated with increased levels of granulocyte-macrophage colony-stimulating factor, F4/80+ cells and blood vessels within the granulation tissue. These data support an inhibitory role for langerin+ cells during wound healing. Therapies that suppress langerin+ cells or their function may therefore have utility in progressing the healing of wounds in humans.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Nicola Real
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Jenny Ahn
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|