1
|
Zhou J, Gu J, Qian Q, Zhang Y, Huang T, Li X, Liu Z, Shao Q, Liang Y, Qiao L, Xu X, Chen Q, Xu Z, Li Y, Gao J, Pan Y, Wang Y, O’Connor R, Hippen KL, Lu L, Blazar BR. Lactate supports Treg function and immune balance via MGAT1 effects on N-glycosylation in the mitochondria. J Clin Invest 2024; 134:e175897. [PMID: 39264847 PMCID: PMC11473165 DOI: 10.1172/jci175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Current research reports that lactate affects Treg metabolism, although the precise mechanism has only been partially elucidated. In this study, we presented evidence demonstrating that elevated lactate levels enhanced cell proliferation, suppressive capabilities, and oxidative phosphorylation (OXPHOS) in human Tregs. The expression levels of Monocarboxylate Transporters 1/2/4 (MCT1/2/4) regulate intracellular lactate concentration, thereby influencing the varying responses observed in naive Tregs and memory Tregs. Through mitochondrial isolation, sequencing, and analysis of human Tregs, we determined that α-1,3-Mannosyl-Glycoprotein 2-β-N-Acetylglucosaminyltransferase (MGAT1) served as the pivotal driver initiating downstream N-glycosylation events involving progranulin (GRN) and hypoxia-upregulated 1 (HYOU1), consequently enhancing Treg OXPHOS. The mechanism by which MGAT1 was upregulated in mitochondria depended on elevated intracellular lactate that promoted the activation of XBP1s. This, in turn, supported MGAT1 transcription as well as the interaction of lactate with the translocase of the mitochondrial outer membrane 70 (TOM70) import receptor, facilitating MGAT1 translocation into mitochondria. Pretreatment of Tregs with lactate reduced mortality in a xenogeneic graft-versus-host disease (GvHD) model. Together, these findings underscored the active regulatory role of lactate in human Treg metabolism through the upregulation of MGAT1 transcription and its facilitated translocation into the mitochondria.
Collapse
Affiliation(s)
- Jinren Zhou
- Jiangsu Key Laboratory of Organ transplantation and transplant immunology; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences; Hepatobiliary Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jian Gu
- Jiangsu Key Laboratory of Organ transplantation and transplant immunology; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences; Hepatobiliary Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qufei Qian
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yigang Zhang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianning Huang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiangyu Li
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhuoqun Liu
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Shao
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Qiao
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaozhang Xu
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Chen
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zibo Xu
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Li
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ji Gao
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yufeng Pan
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yiming Wang
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Roderick O’Connor
- Center for Cellular Immunotherapies and Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keli L. Hippen
- University of Minnesota, Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| | - Ling Lu
- Jiangsu Key Laboratory of Organ transplantation and transplant immunology; Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences; Hepatobiliary Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bruce R. Blazar
- University of Minnesota, Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Zhou Z, Xu J, Liu S, Lv Y, Zhang R, Zhou X, Zhang Y, Weng S, Xu H, Ba Y, Zuo A, Han X, Liu Z. Infiltrating treg reprogramming in the tumor immune microenvironment and its optimization for immunotherapy. Biomark Res 2024; 12:97. [PMID: 39227959 PMCID: PMC11373505 DOI: 10.1186/s40364-024-00630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Immunotherapy has shown promising anti-tumor effects across various tumors, yet it encounters challenges from the inhibitory tumor immune microenvironment (TIME). Infiltrating regulatory T cells (Tregs) are important contributors to immunosuppressive TIME, limiting tumor immunosurveillance and blocking effective anti-tumor immune responses. Although depletion or inhibition of systemic Tregs enhances the anti-tumor immunity, autoimmune sequelae have diminished expectations for the approach. Herein, we summarize emerging strategies, specifically targeting tumor-infiltrating (TI)-Tregs, that elevate the capacity of organisms to resist tumors by reprogramming their phenotype. The regulatory mechanisms of Treg reprogramming are also discussed as well as how this knowledge could be utilized to develop novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jiaxin Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Department of Human Anatomy, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Khan A, Roy P, Ley K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat Rev Immunol 2024; 24:670-679. [PMID: 38472321 PMCID: PMC11682649 DOI: 10.1038/s41577-024-01010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a chronic inflammatory disease of the arterial walls and is characterized by the accumulation of lipoproteins that are insufficiently cleared by phagocytes. Following the initiation of atherosclerosis, the pathological progression is accelerated by engagement of the adaptive immune system. Atherosclerosis triggers the breakdown of tolerance to self-components. This loss of tolerance is reflected in defective expression of immune checkpoint molecules, dysfunctional antigen presentation, and aberrations in T cell populations - most notably in regulatory T (Treg) cells - and in the production of autoantibodies. The breakdown of tolerance to self-proteins that is observed in ASCVD may be linked to the conversion of Treg cells to 'exTreg' cells because many Treg cells in ASCVD express T cell receptors that are specific for self-epitopes. Alternatively, or in addition, breakdown of tolerance may trigger the activation of naive T cells, resulting in the clonal expansion of T cell populations with pro-inflammatory and cytotoxic effector phenotypes. In this Perspective, we review the evidence that atherosclerosis is associated with a breakdown of tolerance to self-antigens, discuss possible immunological mechanisms and identify knowledge gaps to map out future research. Rational approaches aimed at re-establishing immune tolerance may become game changers in treating ASCVD and in preventing its downstream sequelae, which include heart attacks and strokes.
Collapse
Affiliation(s)
- Amir Khan
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Payel Roy
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Klaus Ley
- Immunology Center of Georgia, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
4
|
Song X, Chen R, Li J, Zhu Y, Jiao J, Liu H, Chen Z, Geng J. Fragile Treg cells: Traitors in immune homeostasis? Pharmacol Res 2024; 206:107297. [PMID: 38977207 DOI: 10.1016/j.phrs.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T (Treg) cells play a key role in maintaining immune tolerance and tissue homeostasis. However, in some disease microenvironments, Treg cells exhibit fragility, which manifests as preserved FoxP3 expression accompanied by inflammation and loss of immunosuppression. Fragile Treg cells are formatively, phenotypically and functionally diverse in various diseases, further complicating the role of Treg cells in the immunotherapeutic response and offering novel targets for disease treatment by modulating specific Treg subsets. In this review, we summarize findings on fragile Treg cells to provide a framework for characterizing the formation and role of fragile Treg cells in different diseases, and we discuss how this information may guide the development of more specific Treg-targeted immunotherapies.
Collapse
Affiliation(s)
- Xiyu Song
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jiaxin Li
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jianhua Jiao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Hongjiao Liu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Jiejie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, PR China.
| |
Collapse
|
5
|
Wang Y, Li J, Nakahata S, Iha H. Complex Role of Regulatory T Cells (Tregs) in the Tumor Microenvironment: Their Molecular Mechanisms and Bidirectional Effects on Cancer Progression. Int J Mol Sci 2024; 25:7346. [PMID: 39000453 PMCID: PMC11242872 DOI: 10.3390/ijms25137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.
Collapse
Affiliation(s)
- Yu Wang
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
| | - Jiazhou Li
- Division of Biological Information Technology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Yufu 879-5593, Japan;
- Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
6
|
Jones DM, Tuazon JA, Read KA, Leonard MR, Pokhrel S, Sreekumar BK, Warren RT, Yount JS, Collins PL, Oestreich KJ. Cytotoxic Programming of CD4+ T Cells Is Regulated by Opposing Actions of the Related Transcription Factors Eos and Aiolos. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1129-1141. [PMID: 38363226 PMCID: PMC10948294 DOI: 10.4049/jimmunol.2300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
In contrast to the "helper" activities of most CD4+ T effector subsets, CD4+ cytotoxic T lymphocytes (CD4-CTLs) perform functions normally associated with CD8+ T and NK cells. Specifically, CD4-CTLs secrete cytotoxic molecules and directly target and kill compromised cells in an MHC class II-restricted fashion. The functions of these cells have been described in diverse immunological contexts, including their ability to provide protection during antiviral and antitumor responses, as well as being implicated in autoimmunity. Despite their significance to human health, the complete mechanisms that govern their programming remain unclear. In this article, we identify the Ikaros zinc finger transcription factor Eos (Ikzf4) as a positive regulator of CD4-CTL differentiation during murine immune responses against influenza virus infection. We find that the frequency of Eos+ cells is elevated in lung CD4-CTL populations and that the cytotoxic gene program is compromised in Eos-deficient CD4+ T cells. Consequently, we observe a reduced frequency and number of lung-residing, influenza virus-responsive CD4-CTLs in the absence of Eos. Mechanistically, we determine that this is due, at least in part, to reduced expression of IL-2 and IL-15 cytokine receptor subunits on the surface of Eos-deficient CD4+ T cells, both of which support the CD4-CTL program. Finally, we find that Aiolos, a related Ikaros family member and known CD4-CTL antagonist, represses Eos expression by antagonizing STAT5-dependent activation of the Ikzf4 promoter. Collectively, our findings reveal a mechanism wherein Eos and Aiolos act in opposition to regulate cytotoxic programming of CD4+ T cells.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Biomedical Sciences Graduate Program, Columbus, OH
| | - Jasmine A Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Biomedical Sciences Graduate Program, Columbus, OH
- Medical Scientist Training Program, Columbus, OH
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Biomedical Sciences Graduate Program, Columbus, OH
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA
| | - Melissa R Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Combined Anatomic Pathology Residency/Ph.D. Program, The Ohio State University College of Veterinary Medicine, Columbus, OH
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| | - Bharath K Sreekumar
- Department of Medicine; Gladstone Institute of Virology and Immunology, San Francisco, CA
| | - Robert T Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| | - Patrick L Collins
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, OH
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, OH
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH
| |
Collapse
|
7
|
Weng N, Zhou C, Zhou Y, Zhong Y, Jia Z, Rao X, Qiu H, Zeng G, Jin X, Zhang J, Zhuang Z, Liang Z, Deng Y, Li Q, Yang S, Luo H, Wang H, Wu X. IKZF4/NONO-RAB11FIP3 axis promotes immune evasion in gastric cancer via facilitating PD-L1 endosome recycling. Cancer Lett 2024; 584:216618. [PMID: 38211652 DOI: 10.1016/j.canlet.2024.216618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
As an immune checkpoint protein expressed by diverse cancer cells, programmed death ligand 1 (PD-L1) facilitates immune evasion by interacting with programmed cell death-1 (PD-1) on T cells. Despite the clinical benefits observed in various cancer types, strategies targeting PD-1/PD-L1 have demonstrated limited efficacy in gastric cancer (GC). Furthermore, the regulation of PD-L1, especially at post-translational modification levels, remains largely unknown. Therefore, it is crucial to elucidate the mechanisms governing PD-L1 expression to enhance anti-tumor immunity. In this study, we have identified that IKAROS family zinc finger 4 (IKZF4) and Non-POU domain-containing octamer-binding (NONO) synergistically regulate and enhance the expression of RAB11 family-interacting protein 3 (RAB11FIP3) in GC. The IKZF4/NONO-RAB11FIP3 axis facilitates the endosomal recycling of PD-L1, particularly on the cell membrane of GC cells. Moreover, overexpression of RAB11FIP3 mitigates the hypo-expression of PD-L1 protein resulting from IKZF4 or NONO deletion. Functionally, the silencing of RAB11FIP3 or IKZF4 promotes T cell proliferation, and enhances T-cell cytotoxicity towards GC cells in vitro, which further inhibits tumor immune evasion in mice via increasing the infiltration of CD8+ T cells into the tumor microenvironment (TME) to suppress GC progression. Our study suggests that the IKZF4/NONO-RAB11FIP3 axis promotes immune evasion by facilitating PD-L1 endosome recycling, thus presenting a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Chuzhou Zhou
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yuhang Zhou
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yanping Zhong
- Department of Health Management, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhe Jia
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Xionghui Rao
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Huaiyu Qiu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Guangyan Zeng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Xinghan Jin
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Jianbao Zhang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhehong Zhuang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhihao Liang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yuan Deng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qinghai Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Shasha Yang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Huixing Luo
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Huiyun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Luo J, Ning T, Li X, Jiang T, Tan S, Ma D. Targeting IL-12 family cytokines: A potential strategy for type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2024; 170:115958. [PMID: 38064968 DOI: 10.1016/j.biopha.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Diabetes is a common metabolic disease characterized by an imbalance in blood glucose levels. The pathogenesis of diabetes involves the essential role of cytokines, particularly the IL-12 family cytokines. These cytokines, which have a similar structure, play multiple roles in regulating the immune response. Recent studies have emphasized the importance of IL-12 family cytokines in the development of both type 1 and type 2 diabetes mellitus. As a result, they hold promise as potential therapeutic targets for the treatment of these conditions. This review focuses on the potential of targeting IL-12 family cytokines for diabetes therapy based on their roles in the pathogenesis of both types of diabetes. We have summarized various therapies that target IL-12 family cytokines, including drug therapy, combination therapy, cell therapy, gene therapy, cytokine engineering therapy, and gut microbiota modulation. By analyzing the advantages and disadvantages of these therapies, we have evaluated their feasibility for clinical application and proposed possible solutions to overcome any challenges. In conclusion, targeting IL-12 family cytokines for diabetes therapy provides updated insights into their potential benefits, such as controlling inflammation, preserving islet β cells, reversing the onset of diabetes, and impeding the development of diabetic complications.
Collapse
Affiliation(s)
- Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tingting Ning
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xing Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tao Jiang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shenglong Tan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Zhang Z, Guo J, Jia R. Treg plasticity and human diseases. Inflamm Res 2023; 72:2181-2197. [PMID: 37878023 DOI: 10.1007/s00011-023-01808-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION As a subset of CD4+ T cells, regulatory T cells (Tregs) with the characteristic expression of transcription factor FOXP3 play a key role in maintaining self-tolerance and regulating immune responses. However, in some inflammatory circumstances, Tregs can express cytokines of other T help (Th) cells by internal reprogramming, which is called Treg plasticity. These reprogrammed Tregs with impaired suppressive ability contribute to the progression of diseases by secreting pro-inflammatory cytokines. However, in the tumor microenvironment (TME), such changes in phenotype rarely occur in Tregs, on the contrary, Tregs usually display a stronger suppressive function and inhibit anti-tumor immunity. It is important to understand the mechanisms of Treg plasticity in inflammatory diseases and cancers. OBJECTIVES In this review, we summarize the characteristics of different Th-like Tregs and discuss the potential mechanisms of these changes in phenotype. Furthermore, we summarize the Treg plasticity in human diseases and discuss the effects of these changes in phenotype on disease progression, as well as the potential application of drugs or reagents that regulate Treg plasticity in human diseases. CONCLUSIONS Treg plasticity is associated with inflammatory diseases and cancers. Regulating Treg plasticity is a promising direction for the treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Freuchet A, Roy P, Armstrong SS, Oliaeimotlagh M, Kumar S, Orecchioni M, Ali AJ, Khan A, Makings J, Lyu Q, Winkels H, Wang E, Durant C, Ghosheh Y, Gulati R, Nettersheim F, Ley K. Identification of human exT reg cells as CD16 +CD56 + cytotoxic CD4 + T cells. Nat Immunol 2023; 24:1748-1761. [PMID: 37563308 PMCID: PMC11022744 DOI: 10.1038/s41590-023-01589-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
In atherosclerosis, some regulatory T (Treg) cells become exTreg cells. We crossed inducible Treg and exTreg cell lineage-tracker mice (FoxP3eGFP-Cre-ERT2ROSA26CAG-fl-stop-fl-tdTomato) to atherosclerosis-prone Apoe-/- mice, sorted Treg cells and exTreg cells and determined their transcriptomes by bulk RNA sequencing (RNA-seq). Genes that were differentially expressed between mouse Treg cells and exTreg cells and filtered for their presence in a human single-cell RNA-sequencing (scRNA-seq) panel identified exTreg cell signature genes as CST7, NKG7, GZMA, PRF1, TBX21 and CCL4. Projecting these genes onto the human scRNA-seq with CITE-seq data identified human exTreg cells as CD3+CD4+CD16+CD56+, which was validated by flow cytometry. Bulk RNA-seq of sorted human exTreg cells identified them as inflammatory and cytotoxic CD4+T cells that were significantly distinct from both natural killer and Treg cells. DNA sequencing for T cell receptor-β showed clonal expansion of Treg cell CDR3 sequences in exTreg cells. Cytotoxicity was functionally demonstrated in cell killing and CD107a degranulation assays, which identifies human exTreg cells as cytotoxic CD4+T cells.
Collapse
Affiliation(s)
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Sunil Kumar
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Marco Orecchioni
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Amal J Ali
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amir Khan
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | | | - Qingkang Lyu
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Erpei Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
11
|
Polak K, Marchal P, Taroni C, Ebel C, Kirstetter P, Kastner P, Chan S. CD4 + regulatory T cells lacking Helios and Eos. Biochem Biophys Res Commun 2023; 674:83-89. [PMID: 37413709 DOI: 10.1016/j.bbrc.2023.06.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
The transcriptional regulators that drive regulatory T (Treg) cell development and function remain partially understood. Helios (Ikzf2) and Eos (Ikzf4) are closely-related members of the Ikaros family of transcription factors. They are highly expressed in CD4+ Treg cells and functionally important for Treg cell biology, as mice deficient for either Helios or Eos are susceptible to autoimmune diseases. However, it remains unknown if these factors exhibit specific or partially redundant functions in Treg cells. Here we show that mice with germline deletions of both Ikzf2 and Ikzf4 are not very different from animals with single Ikzf2 or Ikzf4 deletions. Double knockout Treg cells differentiate normally, and efficiently suppress effector T cell proliferation in vitro. Both Helios and Eos are required for optimal Foxp3 protein expression. Surprisingly, Helios and Eos regulate different, largely non-overlapping, sets of genes. Only Helios is required for proper Treg cell aging, as Helios deficiency results in reduced Treg cell frequencies in the spleen of older animals. These results indicate that Helios and Eos are required for distinct aspects of Treg cell function.
Collapse
Affiliation(s)
- Katarzyna Polak
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Patricia Marchal
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Chiara Taroni
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Claudine Ebel
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France; Flow Cytometry Service, IGBMC, Illkirch, France
| | - Peggy Kirstetter
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France
| | - Philippe Kastner
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France.
| | - Susan Chan
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France; CNRS, UMR 7104, F-67400 Illkirch, France; Inserm, UMR-S 1258, F-67400 Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, F-67400 Illkirch, France.
| |
Collapse
|
12
|
Ma Y, Xu X, Wang H, Liu Y, Piao H. Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy. Front Immunol 2023; 14:1228331. [PMID: 37671150 PMCID: PMC10475737 DOI: 10.3389/fimmu.2023.1228331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| |
Collapse
|
13
|
Tuazon JA, Read KA, Sreekumar BK, Roettger JE, Yaeger MJ, Varikuti S, Pokhrel S, Jones DM, Warren RT, Powell MD, Rasheed MN, Duncan EG, Childs LM, Gowdy KM, Oestreich KJ. Eos Promotes TH2 Differentiation by Interacting with and Propagating the Activity of STAT5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:365-376. [PMID: 37314436 PMCID: PMC10524986 DOI: 10.4049/jimmunol.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.
Collapse
Affiliation(s)
- Jasmine A. Tuazon
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | | | - Jack E. Roettger
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Michael J. Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Michael D. Powell
- Department of Microbiology and Immunology; Emory University School of Medicine, Atlanta, GA, 30322; USA
| | - Mustafa N. Rasheed
- Department of Emergency Medicine; Emory University Medical Center, Atlanta, GA, 30322; USA
| | | | - Lauren M. Childs
- Department of Mathematics; Virginia Tech, Blacksburg, VA, 24061; USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| |
Collapse
|
14
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
15
|
Javed A, Santos-França PL, Mattar P, Cui A, Kassem F, Cayouette M. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development 2023; 150:286611. [PMID: 36537580 DOI: 10.1242/dev.200436] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Temporal identity factors regulate competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc-finger transcription factor Ikzf1 regulates production of early-born cell types, except cone photoreceptors. In this study we show that, during early stages of retinal development, another Ikaros family protein, Ikzf4, functions redundantly with Ikzf1 to regulate cone photoreceptor production. Using CUT&RUN and functional assays, we show that Ikzf4 binds and represses genes involved in late-born rod photoreceptor specification, hence favoring cone production. At late stages, when Ikzf1 is no longer expressed in progenitors, we show that Ikzf4 re-localizes to target genes involved in gliogenesis and is required for Müller glia production. We report that Ikzf4 regulates Notch signaling genes and is sufficient to activate the Hes1 promoter through two Ikzf GGAA-binding motifs, suggesting a mechanism by which Ikzf4 may influence gliogenesis. These results uncover a combinatorial role for Ikaros family members during nervous system development and provide mechanistic insights on how they temporally regulate cell fate output.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pedro L Santos-França
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Allie Cui
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
| | - Fatima Kassem
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montreal H2W 1R7, Canada
- Molecular Biology Program, Université de Montréal, Montreal H3T 1J4, Canada
- Integrated Program in Neuroscience, McGill University, Montreal H3A 0G4, Canada
- Department of Medicine, Université de Montréal, Montreal H3T 1J4, Canada
- Department of Anatomy and Cell Biology, Division of Experimental Medicine, McGill University, Montreal H3A 0G4, Canada
| |
Collapse
|
16
|
Perez-Castro L, Garcia R, Venkateswaran N, Barnes S, Conacci-Sorrell M. Tryptophan and its metabolites in normal physiology and cancer etiology. FEBS J 2023; 290:7-27. [PMID: 34687129 PMCID: PMC9883803 DOI: 10.1111/febs.16245] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Within the growing field of amino acid metabolism, tryptophan (Trp) catabolism is an area of increasing interest. Trp is essential for protein synthesis, and its metabolism gives rise to biologically active catabolites including serotonin and numerous metabolites in the kynurenine (Kyn) pathway. In normal tissues, the production of Trp metabolites is directly regulated by the tissue-specific expression of Trp-metabolizing enzymes. Alterations of these enzymes in cancers can shift the balance and lead to an increased production of specific byproducts that can function as oncometabolites. For example, increased expression of the enzyme indoleamine 2,3-dioxygenase, which converts Trp into Kyn, leads to an increase in Kyn levels in numerous cancers. Kyn functions as an oncometabolite in cancer cells by promoting the activity of the transcription factor aryl hydrocarbon receptor, which regulates progrowth genes. Moreover, Kyn also inhibits T-cell activity and thus allows cancer cells to evade clearance by the immune system. Therefore, targeting the Kyn pathway has become a therapeutic focus as a novel means to abrogate tumor growth and immune resistance. This review summarizes the biological role and regulation of Trp metabolism and its catabolites with an emphasis on tumor cell growth and immune evasion and outlines areas for future research focus.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Spencer Barnes
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Dittrich-Salamon M, Meyer A, Yan S, Steinbach-Knödgen E, Kotschenreuther K, Stahl D, tho Pesch C, Schiller J, Byrtus F, Jochimsen D, Golumba-Nagy V, Kofler DM. Regulatory T Cells from Patients with Rheumatoid Arthritis Are Characterized by Reduced Expression of Ikaros Zinc Finger Transcription Factors. Cells 2022; 11:cells11142171. [PMID: 35883614 PMCID: PMC9316388 DOI: 10.3390/cells11142171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Regulatory T (Treg) cells play an important role in immune tolerance and contribute to the prevention of autoimmune diseases, including rheumatoid arthritis (RA). The differentiation, function and stability of Treg cells is controlled by members of the Ikaros zinc finger transcription factor family. In this study, we aimed to reveal how the expression of Ikaros transcription factors is affected by disease activity in RA. Therefore, we analyzed the ex vivo expression of Ikaros, Helios, Aiolos and Eos in Treg cells, Th17 cells and Th1 cells from RA patients by flow cytometry. We found significantly reduced expression of Helios, Aiolos and Eos in Treg cells from RA patients as compared to healthy controls. Moreover, Helios and Aiolos levels correlated with disease activity, as assessed by DAS28-CRP. In addition, Ikaros, Helios and Aiolos were significantly downregulated in Th1 cells from RA patients, while no difference between healthy individuals and RA was observed in Th17 cells. In summary, Helios and Aiolos expression in Treg cells correlates with disease activity and the expression levels of Ikaros transcription factors are diminished in Treg cells from RA patients. This observation could explain the reduced stability of Treg cells in RA.
Collapse
Affiliation(s)
- Mara Dittrich-Salamon
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Anja Meyer
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Eva Steinbach-Knödgen
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - David Stahl
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Carola tho Pesch
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Joanna Schiller
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Franziska Byrtus
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Dorothee Jochimsen
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
| | - Viktoria Golumba-Nagy
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (M.D.-S.); (A.M.); (S.Y.); (E.S.-K.); (K.K.); (V.G.-N.)
- Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpenerstr. 62, 50937 Cologne, Germany; (D.S.); (C.t.P.); (J.S.); (F.B.); (D.J.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Kerpenerstr. 62, 50937 Cologne, Germany
- Correspondence: ; Tel.: +49-221-47842882; Fax: +49-221-4781422322
| |
Collapse
|
18
|
Context-Dependent Effects Explain Divergent Prognostic Roles of Tregs in Cancer. Cancers (Basel) 2022; 14:cancers14122991. [PMID: 35740658 PMCID: PMC9221270 DOI: 10.3390/cancers14122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Immune cells play an important role in cancer, with regard to classification, diagnostic or prognostic matters. In particular, we focused on the prognostic value of Tregs in this meta-analysis. We took into account the local context and their heterogeneity in order to solve their apparent ambiguous role. We used three proxies to recapitulate the complexity of the context: the neighboring cell, the tissue and the quantification method; and we carefully dissected the regulatory population into existing subsets. We showed that CD45RO+ Tregs had a reproducible negative prognostic value across all five cancer types studied (breast, colorectal, gastric, lung and ovarian). It suggests that Tregs from an homogeneous context have a consistent prognostic role across cancer types. Abstract Assessing cancer prognosis is a challenging task, given the heterogeneity of the disease. Multiple features (clinical, environmental, genetic) have been used for such assessments. The tumor immune microenvironment (TIME) is a key feature, and describing the impact of its many components on cancer prognosis is an active field of research. The complexity of the tumor microenvironment context makes it difficult to use the TIME to assess prognosis, as demonstrated by the example of regulatory T cells (Tregs). The effect of Tregs on prognosis is ambiguous, with different studies considering them to be negative, positive or neutral. We focused on five different cancer types (breast, colorectal, gastric, lung and ovarian). We clarified the definition of Tregs and their utility for assessing cancer prognosis by taking the context into account via the following parameters: the Treg subset, the anatomical location of these cells, and the neighboring cells. With a meta-analysis on these three parameters, we were able to clarify the prognostic role of Tregs. We found that CD45RO+ Tregs had a reproducible negative effect on prognosis across cancer types, and we gained insight into the contributions of the anatomical location of Tregs and of their neighboring cells on their prognostic value. Our results suggest that Tregs play a similar prognostic role in all cancer types. We also establish guidelines for improving the design of future studies addressing the pathophysiological role of Tregs in cancer.
Collapse
|
19
|
Liu Y, Qu HQ, Qu J, Chang X, Mentch FD, Nguyen K, Tian L, Glessner J, Sleiman PMA, Hakonarson H. Burden of rare coding variants reveals genetic heterogeneity between obese and non-obese asthma patients in the African American population. Respir Res 2022; 23:116. [PMID: 35524249 PMCID: PMC9078008 DOI: 10.1186/s12931-022-02039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Asthma is a complex condition largely attributed to the interactions among genes and environments as a heterogeneous phenotype. Obesity is significantly associated with asthma development, and genetic studies on obese vs. non-obese asthma are warranted. Methods To investigate asthma in the minority African American (AA) population with or without obesity, we performed a whole genome sequencing (WGS) study on blood-derived DNA of 4289 AA individuals, included 2226 asthma patients (1364 with obesity and 862 without obesity) and 2006 controls without asthma. The burden analysis of functional rare coding variants was performed by comparing asthma vs. controls and by stratified analysis of obese vs. non-obese asthma, respectively. Results Among the top 66 genes with P < 0.01 in the asthma vs. control analysis, stratified analysis by obesity showed inverse correlation of natural logarithm (LN) of P value between obese and non-obese asthma (r = − 0.757, P = 1.90E−13). Five genes previously reported in a genome-wide association study (GWAS) on asthma, including TSLP, SLC9A4, PSMB8, IGSF5, and IKZF4 were demonstrated association in the asthma vs. control analysis. The associations of IKZF4 and IGSF5 are only associated with obese asthma; and the association of SLC9A4 is only observed in non-obese asthma. In addition, the association of RSPH3 (the gene is related to primary ciliary dyskinesia) is observed in non-obese asthma. Conclusions These findings highlight genetic heterogeneity between obese and non-obese asthma in patients of AA ancestry. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02039-0.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lifeng Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
20
|
Ahmad Z, Somanath PR. AKT Isoforms in the Immune Response in Cancer. Curr Top Microbiol Immunol 2022; 436:349-366. [PMID: 36243852 DOI: 10.1007/978-3-031-06566-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
AKT is a protein kinase that exists in three isoforms: AKT1, AKT2, and AKT3. Though similar in structure, these isoforms display different effects. AKT is activated downstream of PI3K, and together, this signaling pathway helps regulate cellular processes including cell growth, proliferation, metabolism, survival, and apoptosis. Disruption in these pathways has been associated with disorders including cardiovascular diseases, developmental disorders, inflammatory responses, autoimmune diseases, neurologic disorders, type 2 diabetes, and several cancers. In cancer, deregulation in the PI3K/AKT pathway can be manifested as tumorigenesis, pathological angiogenesis, and metastasis. Increased activity has been correlated with tumor progression and resistance to cancer treatments. Recent studies have suggested that inhibition of the PI3K/AKT pathway plays a significant role in the development, expansion, and proliferation of cells of the immune system. Additionally, AKT has been found to play an important role in differentiating regulatory T cells, activating B cells, and augmenting tumor immunosurveillance. This emphasizes AKT as a potential target for inhibition in cancer therapy. This chapter reviews AKT structure and regulation, its different isoforms, its role in immune cells, and its modulation in oncotherapy.
Collapse
Affiliation(s)
- Zayd Ahmad
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
- Georgia Cancer Center, Vascular Biology Center and Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
21
|
Sharma MD, Pacholczyk R, Shi H, Berrong ZJ, Zakharia Y, Greco A, Chang CSS, Eathiraj S, Kennedy E, Cash T, Bollag RJ, Kolhe R, Sadek R, McGaha TL, Rodriguez P, Mandula J, Blazar BR, Johnson TS, Munn DH. Inhibition of the BTK-IDO-mTOR axis promotes differentiation of monocyte-lineage dendritic cells and enhances anti-tumor T cell immunity. Immunity 2021; 54:2354-2371.e8. [PMID: 34614413 PMCID: PMC8516719 DOI: 10.1016/j.immuni.2021.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/19/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023]
Abstract
Monocytic-lineage inflammatory Ly6c+CD103+ dendritic cells (DCs) promote antitumor immunity, but these DCs are infrequent in tumors, even upon chemotherapy. Here, we examined how targeting pathways that inhibit the differentiation of inflammatory myeloid cells affect antitumor immunity. Pharmacologic inhibition of Bruton's tyrosine kinase (BTK) and the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) or deletion of Btk or Ido1 allowed robust differentiation of inflammatory Ly6c+CD103+ DCs during chemotherapy, promoting antitumor T cell responses and inhibiting tumor growth. Immature Ly6c+c-kit+ precursor cells had epigenetic profiles similar to conventional DC precursors; deletion of Btk or Ido1 promoted differentiation of these cells. Mechanistically, a BTK-IDO axis inhibited a tryptophan-sensitive differentiation pathway driven by GATOR2 and mTORC1, and disruption of the GATOR2 in monocyte-lineage precursors prevented differentiation into inflammatory DCs in vivo. IDO-expressing DCs and monocytic cells were present across a range of human tumors. Thus, a BTK-IDO axis represses differentiation of inflammatory DCs during chemotherapy, with implications for targeted therapies.
Collapse
Affiliation(s)
- Madhav D Sharma
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rafal Pacholczyk
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zuzana J Berrong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Austin Greco
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chang-Sheng S Chang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Georgia Cancer Center, Bioinformatics Shared Resource, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | | | - Thomas Cash
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Roni J Bollag
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ramses Sadek
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Paulo Rodriguez
- Immunology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jessica Mandula
- Immunology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bruce R Blazar
- Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Theodore S Johnson
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
22
|
Browning LM, Miller C, Kuczma M, Pietrzak M, Jing Y, Rempala G, Muranski P, Ignatowicz L, Kraj P. Bone Morphogenic Proteins Are Immunoregulatory Cytokines Controlling FOXP3 + T reg Cells. Cell Rep 2021; 33:108219. [PMID: 33027660 DOI: 10.1016/j.celrep.2020.108219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Bone morphogenic proteins (BMPs) are members of the transforming growth factor β (TGF-β) cytokine family promoting differentiation, homeostasis, and self-renewal of multiple tissues. We show that signaling through the bone morphogenic protein receptor 1α (BMPR1α) sustains expression of FOXP3 in Treg cells in peripheral lymphoid tissues. BMPR1α signaling promotes molecular circuits supporting acquisition and preservation of Treg cell phenotype and inhibiting differentiation of pro-inflammatory effector Th1/Th17 CD4+ T cell. Mechanistically, increased expression of KDM6B (JMJD3) histone demethylase, an antagonist of the polycomb repressive complex 2, underlies lineage-specific changes of T cell phenotypes associated with abrogation of BMPR1α signaling. These results reveal that BMPs are immunoregulatory cytokines mediating maturation and stability of peripheral FOXP3+ regulatory T cells (Treg cells) and controlling generation of iTreg cells. Thus, we establish that BMPs, a large cytokine family, are an essential link between stromal tissues and the adaptive immune system involved in sustaining tissue homeostasis by promoting immunological tolerance.
Collapse
Affiliation(s)
- Lauren M Browning
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Caroline Miller
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, VA 23529, USA
| | - Grzegorz Rempala
- College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Pawel Muranski
- Columbia University Medical Center, New York, NY 10032, USA
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Piotr Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
23
|
McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, Shah P, Tackett M, Jones D, Jepson T, Falk Z, Wargodsky R, Shtakalo D, Antonets D, Ertle J, Kim JH, Lai Y, Arslan Z, Aledort E, Alfaraidy M, Laurent GS. RNA sequencing of blood in coronary artery disease: involvement of regulatory T cell imbalance. BMC Med Genomics 2021; 14:216. [PMID: 34479557 PMCID: PMC8414682 DOI: 10.1186/s12920-021-01062-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography. Surprisingly, despite well-established clinical indications, up to 40% of the one million invasive cardiac catheterizations return a result of 'no blockage'. The present studies employed RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. METHODS Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by single-molecule sequencing of RNA (RNAseq) to identify transcripts associated with CAD (TRACs) in a discovery group of 96 patients presenting for elective coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs). RESULTS Surprisingly, 98% of DEGs/TRACs were down-regulated ~ 1.7-fold in patients with mild to severe CAD (> 20% stenosis). The TRACs were independent of comorbid risk factors for CAD, such as sex, hypertension, and smoking. Bioinformatic analysis identified an enrichment in transcripts such as FoxP1, ICOSLG, IKZF4/Eos, SMYD3, TRIM28, and TCF3/E2A that are likely markers of regulatory T cells (Treg), consistent with known reductions in Tregs in CAD. A validation cohort of 80 patients confirmed the overall pattern (92% down-regulation) and supported many of the Treg-related changes. TRACs were enriched for transcripts associated with stress granules, which sequester RNAs, and ciliary and synaptic transcripts, possibly consistent with changes in the immune synapse of developing T cells. CONCLUSIONS These studies identify a novel mRNA signature of a Treg-like defect in CAD patients and provides a blueprint for a diagnostic test for CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.
Collapse
Affiliation(s)
- Timothy A McCaffrey
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA.
- The St. Laurent Institute, Vancouver, WA, USA.
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
- True Bearing Diagnostics, Washington, DC, 20037, USA.
| | - Ian Toma
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
- Department of Clinical Research and Leadership, The George Washington University, Washington, DC, 20037, USA
- True Bearing Diagnostics, Washington, DC, 20037, USA
| | - Zhaoquing Yang
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | - Richard Katz
- Division of Cardiology, Department of Medicine, The George Washington University , Washington, DC, 20037, USA
| | - Jonathan Reiner
- Division of Cardiology, Department of Medicine, The George Washington University , Washington, DC, 20037, USA
| | - Ramesh Mazhari
- Division of Cardiology, Department of Medicine, The George Washington University , Washington, DC, 20037, USA
| | - Palak Shah
- Inova Heart and Vascular Institute, Fairfax, VA, USA
| | | | | | - Tisha Jepson
- SeqLL, Inc., Woburn, MA, USA
- The St. Laurent Institute, Vancouver, WA, USA
- True Bearing Diagnostics, Washington, DC, 20037, USA
| | - Zachary Falk
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | - Richard Wargodsky
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | - Dmitry Shtakalo
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentjeva Ave, Novosibirsk, Russia, 630090
| | - Denis Antonets
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentjeva Ave, Novosibirsk, Russia, 630090
| | - Justin Ertle
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | - Ju H Kim
- Division of Cardiology, Department of Medicine, The George Washington University , Washington, DC, 20037, USA
| | - Yinglei Lai
- Department of Statistics, Biostatistics Center, The George Washington University, Washington, DC, 20037, USA
| | - Zeynep Arslan
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | - Emily Aledort
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | - Maha Alfaraidy
- Division of Genomic Medicine, Department of Medicine, The George Washington Medical Center, The George Washington University, 2300 I Street NW, Ross Hall 443A, Washington, DC, 20037, USA
| | | |
Collapse
|
24
|
Berg M, Polyzos KA, Agardh H, Baumgartner R, Forteza MJ, Kareinen I, Gisterå A, Bottcher G, Hurt-Camejo E, Hansson GK, Ketelhuth DFJ. 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr-/- mice. Cardiovasc Res 2021; 116:1948-1957. [PMID: 31589306 PMCID: PMC7519886 DOI: 10.1093/cvr/cvz258] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/02/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Aims Atherosclerosis is a chronic inflammatory disease involving immunological and metabolic processes. Metabolism of tryptophan (Trp) via the kynurenine pathway has shown immunomodulatory properties and the ability to modulate atherosclerosis. We identified 3-hydroxyanthranilic acid (3-HAA) as a key metabolite of Trp modulating vascular inflammation and lipid metabolism. The molecular mechanisms driven by 3-HAA in atherosclerosis have not been completely elucidated. In this study, we investigated whether two major signalling pathways, activation of SREBPs and inflammasome, are associated with the 3-HAA-dependent regulation of lipoprotein synthesis and inflammation in the atherogenesis process. Moreover, we examined whether inhibition of endogenous 3-HAA degradation affects hyperlipidaemia and plaque formation. Methods and results In vitro, we showed that 3-HAA reduces SREBP-2 expression and nuclear translocation and apolipoprotein B secretion in HepG2 cell cultures, and inhibits inflammasome activation and IL-1β production by macrophages. Using Ldlr−/− mice, we showed that inhibition of 3-HAA 3,4-dioxygenase (HAAO), which increases the endogenous levels of 3-HAA, decreases plasma lipids and atherosclerosis. Notably, HAAO inhibition led to decreased hepatic SREBP-2 mRNA levels and lipid accumulation, and improved liver pathology scores. Conclusions We show that the activity of SREBP-2 and the inflammasome can be regulated by 3-HAA metabolism. Moreover, our study highlights that targeting HAAO is a promising strategy to prevent and treat hypercholesterolaemia and atherosclerosis.
Collapse
Affiliation(s)
- Martin Berg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Konstantinos A Polyzos
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Hanna Agardh
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Roland Baumgartner
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Maria J Forteza
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Ilona Kareinen
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Anton Gisterå
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Gerhard Bottcher
- Pathology, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, SE-43189 Gothenburg, Sweden
| | - Eva Hurt-Camejo
- Cardiovascular, Renal and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, SE-43183 Gothenburg, Sweden
| | - Göran K Hansson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
25
|
Hippen KL, Furlan SN, Roychoudhuri R, Wang E, Zhang Y, Osborn MJ, Merkel SC, Hani S, MacMillan ML, Cichocki F, Miller JS, Wagner JE, Restifo NP, Kean LS, Blazar BR. Multiply restimulated human thymic regulatory T cells express distinct signature regulatory T-cell transcription factors without evidence of exhaustion. Cytotherapy 2021; 23:704-714. [PMID: 33893050 PMCID: PMC9275118 DOI: 10.1016/j.jcyt.2021.02.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Adoptive transfer of suppressive CD4+CD25+ thymic regulatory T cells (tTregs) can control auto- and alloimmune responses but typically requires in vitro expansion to reach the target cell number for efficacy. Although the adoptive transfer of expanded tTregs purified from umbilical cord blood ameliorates graft-versus-host disease in patients receiving hematopoietic stem cell transplantation for lymphohematopoietic malignancy, individual Treg products of 100 × 106 cells/kg are manufactured over an extended 19-day time period using a process that yields variable products and is both laborious and costly. These limitations could be overcome with the availability of 'off the shelf' Treg. RESULTS Previously, the authors reported a repetitive restimulation expansion protocol that maintains Treg phenotype (CD4+25++127-Foxp3+), potentially providing hundreds to thousands of patient infusions. However, repetitive stimulation of effector T cells induces a well-defined program of exhaustion that leads to reduced T-cell survival and function. Unexpectedly, the authors found that multiply stimulated human tTregs do not develop an exhaustion signature and instead maintain their Treg gene expression pattern. The authors also found that tTregs expanded with one or two rounds of stimulation and tTregs expanded with three or five rounds of stimulation preferentially express distinct subsets of a group of five transcription factors that lock in Treg Foxp3expression, Treg stability and suppressor function. Multiply restimulated Tregs also had increased transcripts characteristic of T follicular regulatory cells, a Treg subset. DISCUSSION These data demonstrate that repetitively expanded human tTregs have a Treg-locking transcription factor with stable FoxP3 and without the classical T-cell exhaustion gene expression profile-desirable properties that support the possibility of off-the-shelf Treg therapeutics.
Collapse
Affiliation(s)
- Keli L Hippen
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA.
| | - Scott N Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | - Ena Wang
- Translational Oncology, Allogene Therapeutics, San Francisco, California, USA
| | - Yigang Zhang
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Sarah C Merkel
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Sophia Hani
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Margaret L MacMillan
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Frank Cichocki
- Department of Medicine, Division of Hematology/Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology/Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - John E Wagner
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Nicholas P Restifo
- Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA.
| |
Collapse
|
26
|
Dixon ML, Leavenworth JD, Leavenworth JW. Lineage Reprogramming of Effector Regulatory T Cells in Cancer. Front Immunol 2021; 12:717421. [PMID: 34394124 PMCID: PMC8355732 DOI: 10.3389/fimmu.2021.717421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory T-cells (Tregs) are important for maintaining self-tolerance and tissue homeostasis. The functional plasticity of Tregs is a key feature of this lineage, as it allows them to adapt to different microenvironments, adopt transcriptional programs reflective of their environments and tailor their suppressive capacity in a context-dependent fashion. Tregs, particularly effector Tregs (eTregs), are abundant in many types of tumors. However, the functional and transcriptional plasticity of eTregs in tumors remain largely to be explored. Although depletion or inhibition of systemic Tregs can enhance anti-tumor responses, autoimmune sequelae have diminished the enthusiasm for such approaches. A more effective approach should specifically target intratumoral Tregs or subvert local Treg-mediated suppression. This mini-review will discuss the reported mechanisms by which the stability and suppressive function of tumoral Tregs are modulated, with the focus on eTregs and a subset of eTregs, follicular regulatory T (TFR) cells, and how to harness this knowledge for the future development of new effective cancer immunotherapies that selectively target the tumor local response while sparing the systemic side effects.
Collapse
Affiliation(s)
- Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Junius S, Mavrogiannis AV, Lemaitre P, Gerbaux M, Staels F, Malviya V, Burton O, Gergelits V, Singh K, Tito Tadeo RY, Raes J, Humblet-Baron S, Liston A, Schlenner SM. Unstable regulatory T cells, enriched for naïve and Nrp1 neg cells, are purged after fate challenge. Sci Immunol 2021; 6:6/61/eabe4723. [PMID: 34301799 DOI: 10.1126/sciimmunol.abe4723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/27/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T cells (Tregs) are indispensable for the control of immune homeostasis and have clinical potential as a cell therapy for treating autoimmunity. Tregs can lose expression of the lineage-defining Foxp3 transcription factor and acquire effector T cell (Teff) characteristics, a process referred to as Treg plasticity. The extent and reversibility of such plasticity during immune responses remain unknown. Here, using a murine genetic fate-mapping system, we show that Treg stability is maintained even during exposure to a complex microbial/antigenic environment. Furthermore, we demonstrate that the observed plasticity of Tregs after adoptive transfer into a lymphopenic environment is a property limited to only a subset of the Treg population, with the nonconverting majority of Tregs being resistant to plasticity upon secondary stability challenge. The unstable Treg fraction is a complex mixture of phenotypically distinct Tregs, enriched for naïve and neuropilin-1-negative Tregs, and includes peripherally induced Tregs and recent thymic emigrant Tregs These results suggest that a "purging" process can be used to purify stable Tregs that are capable of robust fate retention, with potential implications for improving cell transfer therapy.
Collapse
Affiliation(s)
- Steffie Junius
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB Center for Brain and Disease Research, Leuven 3000, Belgium
| | - Adamantios V Mavrogiannis
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Pierre Lemaitre
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Margaux Gerbaux
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Frederik Staels
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB Center for Brain and Disease Research, Leuven 3000, Belgium
| | - Vanshika Malviya
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Oliver Burton
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Václav Gergelits
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Kailash Singh
- Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Raul Yhossef Tito Tadeo
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Jeroen Raes
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.,VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Stephanie Humblet-Baron
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium
| | - Adrian Liston
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium. .,VIB Center for Brain and Disease Research, Leuven 3000, Belgium.,Immunology Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Susan M Schlenner
- KU Leuven-University of Leuven, Department of Microbiology, Immunology and Transplantation, Leuven 3000, Belgium.
| |
Collapse
|
28
|
Chandran S, Leung J, Hu C, Laszik ZG, Tang Q, Vincenti FG. Interleukin-6 blockade with tocilizumab increases Tregs and reduces T effector cytokines in renal graft inflammation: A randomized controlled trial. Am J Transplant 2021; 21:2543-2554. [PMID: 33331082 DOI: 10.1111/ajt.16459] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine and key regulator of Treg: T effector cell (Teff) balance. We hypothesized that IL-6 blockade with tocilizumab, a monoclonal antibody to IL-6R, would increase Tregs, dampen Teff function, and control graft inflammation. We conducted a randomized controlled clinical trial (2014-2018) of clinically stable kidney transplant recipients on calcineurin inhibitor, mycophenolate mofetil, and prednisone, with subclinical graft inflammation noted on surveillance biopsies during the first year posttransplant. Subjects received tocilizumab (8 mg/kg IV every 4 weeks; 6 doses; n = 16) or no treatment (controls; n = 14) on top of usual maintenance immunosuppression. Kidney biopsies pre- and post-treatment were analyzed using Banff criteria. Blood was analyzed for serum cytokines, Treg frequencies, and T cell effector molecule expression (IFN-γ, IL-17, granzyme B) post-stimulation ex vivo. Tocilizumab-treated subjects were more likely to show improved Banff ti-score (62.5% vs. 21.4%, p = .03), increased Treg frequency (7.1% ± 5.55% vs. 3.6% ± 1.7%, p = .0168), and a blunted Teff cytokine response compared to controls. Changes in Banff i- and t-scores were not significantly different. The treatment was relatively well tolerated with no patient deaths or graft loss. Blockade of IL-6 is a novel and promising treatment option to regulate the T cell alloimmune response in kidney transplant recipients. NCT02108600.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California, San Francisco, California, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, California, USA
| | - Crystal Hu
- Department of Surgery, University of California, San Francisco, California, USA
| | - Zoltan G Laszik
- Department of Pathology, University of California, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, California, USA
| | - Flavio G Vincenti
- Department of Medicine, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
29
|
Dong Y, Wan Z, Gao X, Yang G, Liu L. Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies. Front Immunol 2021; 12:609762. [PMID: 33968014 PMCID: PMC8097044 DOI: 10.3389/fimmu.2021.609762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death and a major public health problem all over the world. Immunotherapy is becoming a revolutionary clinical management for various cancer types. Restoration of aberrant immune surveillance on cancers has achieved markable progress in the past years by either in vivo or ex vivo engineering of the immune cells. Here, we summarized the central roles of immune cells in tumor progression and regression, and the existing and emerging strategies for different immune cell-based immunotherapies. In addition, the current challenges and the potential solutions in translating the immunotherapies into the clinic are also discussed.
Collapse
Affiliation(s)
- Yan Dong
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaotong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Iwaszkiewicz-Grzes D, Piotrowska M, Gliwinski M, Urban-Wójciuk Z, Trzonkowski P. Antigenic Challenge Influences Epigenetic Changes in Antigen-Specific T Regulatory Cells. Front Immunol 2021; 12:642678. [PMID: 33868279 PMCID: PMC8044853 DOI: 10.3389/fimmu.2021.642678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Background Human regulatory T cells (Tregs) are the fundamental component of the immune system imposing immune tolerance via control of effector T cells (Teffs). Ongoing attempts to improve Tregs function have led to the creation of a protocol that produces antigen-specific Tregs, when polyclonal Tregs are stimulated with monocytes loaded with antigens specific for type 1 diabetes. Nevertheless, the efficiency of the suppression exerted by the produced Tregs depended on the antigen with the best results when insulin β chain peptide 9-23 was used. Here, we examined epigenetic modifications, which could influence these functional differences. Methods The analysis was pefromed in the sorted specific (SPEC, proliferating) and unspecific (UNSPEC, non-proliferating) subsets of Tregs and Teffs generated by the stimulation with monocytes loaded with either whole insulin (INS) or insulin β chain peptide 9-23 (B:9-23) or polyclonal cells stimulated with anti-CD3/anti-CD28 beads (POLY). A relative expression of crucial Tregs genes was determined by qRT-PCR. The Treg-specific demethylated region (TSDR) in FoxP3 gene methylation levels were assessed by Quantitative Methylation Specific PCR (qMSP). ELISA was used to measure genomic DNA methylation and histone H3 post-translational modifications (PTMs). Results Tregs SPECB:9-23 was the only subset expressing all assessed genes necessary for regulatory function with the highest level of expression among all analyzed conditions. The methylation of global DNA as well as TSDR were significantly lower in Tregs SPECB:9-23 than in Tregs SPECINS. When compared to Teffs, Tregs were characterized by a relatively lower level of PTMs but it varied in respective Tregs/Teffs pairs. Importantly, whenever the difference in PTM within Tregs/Teffs pair was significant, it was always low in one subset from the pair and high in the other. It was always low in Tregs SPECINS and high in Teffs SPECINS, while it was high in Tregs UNSPECINS and low in Teffs UNSPECINS. There were no differences in Tregs/Teffs SPECB:9-23 pair and the level of modifications was low in Tregs UNSPECB:9-23 and high in Teffs UNSPECB:9-23. The regions of PTMs in which differences were significant overlapped only partially between particular Tregs/Teffs pairs. Conclusions Whole insulin and insulin β chain peptide 9-23 affected epigenetic changes in CD4+ T cells differently, when presented by monocytes. The peptide preferably favored specific Tregs, while whole insulin activated both Tregs and Teffs.
Collapse
Affiliation(s)
| | | | - Mateusz Gliwinski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
31
|
Opstelten R, Amsen D. Separating the wheat from the chaff: Making sense of Treg heterogeneity for better adoptive cellular therapy. Immunol Lett 2021; 239:96-112. [PMID: 33676975 DOI: 10.1016/j.imlet.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Regulatory T (Treg) cells are essential for immunological tolerance and can be used to suppress unwanted or excessive immune responses through adoptive cellular therapy. It is increasingly clear that many subsets of Treg cells exist, which have different functions and reside in different locations. Treg cell therapies may benefit from tailoring the selected subset to the tissue that must be protected as well as to characteristics of the immune response that must be suppressed, but little attention is given to this topic in current therapies. Here, we will discuss how three major axes of heterogeneity can be discerned among the Treg cell population, which determine function and lineage fidelity. A first axis relates to the developmental route, as Treg cells can be generated from immature T cells in the thymus or from already mature Tconv cells in the immunological periphery. Heterogeneity furthermore stems from activation history (naïve or effector) and location (lymphoid or peripheral tissues). Each of these axes bestows specific properties on Treg cells, which are further refined by additional processes leading to yet further variation. A critical aspect impacting on Treg cell heterogeneity is TCR specificity, which determines when and where Treg cells are generated as well as where they exhibit their effector functions. We will discuss the implications of this heterogeneity and the role of the TCR for the design of next generation adoptive cellular therapy with Treg cells.
Collapse
Affiliation(s)
- Rianne Opstelten
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Winkels H, Wolf D. Heterogeneity of T Cells in Atherosclerosis Defined by Single-Cell RNA-Sequencing and Cytometry by Time of Flight. Arterioscler Thromb Vasc Biol 2021; 41:549-563. [PMID: 33267666 PMCID: PMC7837690 DOI: 10.1161/atvbaha.120.312137] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
The infiltration and accumulation of pro- and anti-inflammatory leukocytes within the intimal layer of the arterial wall is a hallmark of developing and progressing atherosclerosis. While traditionally perceived as macrophage- and foam cell-dominated disease, it is now established that atherosclerosis is a partial autoimmune disease that involves the recognition of peptides from ApoB (apolipoprotein B), the core protein of LDL (low-density lipoprotein) cholesterol particles, by CD4+ T-helper cells and autoantibodies against LDL and ApoB. Autoimmunity in the atherosclerotic plaque has long been understood as a pathogenic T-helper type-1 driven response with proinflammatory cytokine secretion. Recent developments in high-parametric cell immunophenotyping by mass cytometry, single-cell RNA-sequencing, and in tools exploring antigen-specificity have established the existence of several unforeseen layers of T-cell diversity with mixed TH1 and T regulatory cells transcriptional programs and unpredicted fates. These findings suggest that pathogenic ApoB-reactive T cells evolve from atheroprotective and immunosuppressive CD4+ T regulatory cells that lose their protective properties over time. Here, we discuss T-cell heterogeneity in atherosclerosis with a focus on plasticity, antigen-specificity, exhaustion, maturation, tissue residency, and its potential use in clinical prediction.
Collapse
Affiliation(s)
- Holger Winkels
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Germany. Department of Cardiology and Angiology I, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology, Clinic III for Internal Medicine, University of Cologne, Germany. Department of Cardiology and Angiology I, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
33
|
Accogli T, Bruchard M, Végran F. Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment. Cancers (Basel) 2021; 13:cancers13030373. [PMID: 33498483 PMCID: PMC7864169 DOI: 10.3390/cancers13030373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The advancement of knowledge on tumor biology over the past decades has demonstrated a close link between tumor cells and cells of the immune system. In this context, cytokines have a major role because they act as intermediaries in the communication into the tumor bed. Cytokines play an important role in the homeostasis of innate and adaptive immunity. In particular, they participate in the differentiation of CD4 T lymphocytes. These cells play essential functions in the anti-tumor immune response but can also be corrupted by tumors. The differentiation of naïve CD4 T cells depends on the cytokine environment in which they are activated. Additionally, at the tumor site, their activity can also be modulated according to the cytokines of the tumor microenvironment. Thus, polarized CD4 T lymphocytes can see their phenotype evolve, demonstrating functional plasticity. Knowledge of the impact of these cytokines on the functions of CD4 T cells is currently a source of innovation, for therapeutic purposes. In this review, we discuss the impact of the major cytokines present in tumors on CD4 T cells. In addition, we summarize the main therapeutic strategies that can modulate the CD4 response through their impact on cytokine production.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France; (T.A.); (M.B.)
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, Dijon 21000, France
- LipSTIC LabEx, 21000 Dijon, France
| | - Mélanie Bruchard
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France; (T.A.); (M.B.)
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, Dijon 21000, France
- LipSTIC LabEx, 21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
| | - Frédérique Végran
- Faculté des Sciences de Santé, Université Bourgogne Franche-Comté, 21000 Dijon, France; (T.A.); (M.B.)
- Team “CAdIR”, CRI INSERM UMR1231 “Lipids, Nutrition and Cancer”, Dijon 21000, France
- LipSTIC LabEx, 21000 Dijon, France
- Centre Georges François Leclerc, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
34
|
Luo L, Hu X, Dixon ML, Pope BJ, Leavenworth JD, Raman C, Meador WR, Leavenworth JW. Dysregulated follicular regulatory T cells and antibody responses exacerbate experimental autoimmune encephalomyelitis. J Neuroinflammation 2021; 18:27. [PMID: 33468194 PMCID: PMC7814531 DOI: 10.1186/s12974-021-02076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Follicular regulatory T (TFR) cells are essential for the regulation of germinal center (GC) response and humoral self-tolerance. Dysregulated follicular helper T (TFH) cell-GC-antibody (Ab) response secondary to dysfunctional TFR cells is the root of an array of autoimmune disorders. The contribution of TFR cells to the pathogenesis of multiple sclerosis (MS) and murine experimental autoimmune encephalomyelitis (EAE) remains largely unclear. Methods To determine the impact of dysregulated regulatory T cells (Tregs), TFR cells, and Ab responses on EAE, we compared the MOG-induced EAE in mice with a FoxP3-specific ablation of the transcription factor Blimp1 to control mice. In vitro co-culture assays were used to understand how Tregs and Ab regulate the activity of microglia and central nervous system (CNS)-infiltrating myeloid cells. Results Mice with a FoxP3-specific deletion of Blimp1 developed severe EAE and failed to recover compared to control mice, reflecting conversion of Tregs into interleukin (IL)-17A/granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector T cells associated with increased TFH-Ab responses, more IgE deposition in the CNS, and inability to regulate CNS CD11b+ myeloid cells. Notably, serum IgE titers were positively correlated with EAE scores, and culture of CNS CD11b+ cells with sera from these EAE mice enhanced their activation, while transfer of Blimp1-deficient TFR cells promoted Ab production, activation of CNS CD11b+ cells, and EAE. Conclusions Blimp1 is essential for the maintenance of TFR cells and Ab responses in EAE. Dysregulated TFR cells and Ab responses promote CNS autoimmunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02076-4.
Collapse
Affiliation(s)
- Lin Luo
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.,Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA
| | - Xianzhen Hu
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA
| | - Michael L Dixon
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA
| | - Brandon J Pope
- NIH Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jonathan D Leavenworth
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - William R Meador
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA. .,Department of Microbiology, University of Alabama at Birmingham, 1600 6th Avenue South, CHB 118A, Birmingham, AL, 35233, USA.
| |
Collapse
|
35
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev 2020; 300:82-99. [PMID: 33331000 DOI: 10.1111/imr.12936] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Ikaros zinc finger transcription factors are important regulators of the gene programs underlying the development of hematopoietic cell lineages. The family consists of five members: Ikaros, Helios, Aiolos, Eos, and Pegasus, which engage in both homo- and heterotypic intrafamilial interactions to exert diverse functional effects. Pioneering studies focused on the role of these factors in early lymphoid development, as their absence resulted in severe defects in lymphocyte populations. More recent work has now begun to define nuanced, stage-specific roles for Ikaros family members in the differentiation and function of mature T, B, and innate lymphoid cell populations including natural killer (NK) cells. The precise transcriptional mechanisms by which these factors function, both independently and collaboratively, is an area of active investigation. However, several key themes appear to be emerging regarding the pathways influenced by Ikaros family members, including the end-to-end regulation of cytokine signaling. Here, we review roles for Ikaros factors in lymphoid cell development, differentiation, and function, including a discussion of the current understanding of the transcriptional mechanisms they employ and considerations for the future study of this important transcription factor family.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Aharon G Freud
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
37
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
38
|
Ketelhuth DFJ. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovasc Res 2020; 115:1408-1415. [PMID: 30847484 DOI: 10.1093/cvr/cvz067] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/30/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Coronary heart disease and stroke, the two most common cardiovascular diseases worldwide, are triggered by complications of atherosclerosis. Atherosclerotic plaques are initiated by a maladaptive immune response triggered by accumulation of lipids in the artery wall. Hence, disease is influenced by several non-modifiable and modifiable risk factors, including dyslipidaemia, hypertension, smoking, and diabetes. Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the kynurenine pathway of tryptophan (Trp) degradation, is modulated by inflammation and regarded as a key molecule driving immunotolerance and immunosuppressive mechanisms. A large body of evidence indicates that IDO-mediated Trp metabolism is involved directly or indirectly in atherogenesis. This review summarizes evidence from basic and clinical research showing that IDO is a major regulatory enzyme involved in the maintenance of immunohomeostasis in the vascular wall, as well as current knowledge about promising targets for the development of new anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, Univ. of Southern Denmark, J. B. Winsløws Vej 21(3), Odense C, Denmark
| |
Collapse
|
39
|
Wang J, Tannous BA, Poznansky MC, Chen H. CXCR4 antagonist AMD3100 (plerixafor): From an impurity to a therapeutic agent. Pharmacol Res 2020; 159:105010. [PMID: 32544428 DOI: 10.1016/j.phrs.2020.105010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
AMD3100 (plerixafor), a CXCR4 antagonist, has opened a variety of avenues for potential therapeutic approaches in different refractory diseases. The CXCL12/CXCR4 axis and its signaling pathways are involved in diverse disorders including HIV-1 infection, tumor development, non-Hodgkin lymphoma, multiple myeloma, WHIM Syndrome, and so on. The mechanisms of action of AMD3100 may relate to mobilizing hematopoietic stem cells, blocking infection of X4 HIV-1, increasing circulating neutrophils, lymphocytes and monocytes, reducing myeloid-derived suppressor cells, and enhancing cytotoxic T-cell infiltration in tumors. Here, we first revisit the pharmacological discovery of AMD3100. We then review monotherapy of AMD3100 and combination use of AMD3100 with other agents in various diseases. Among those, we highlight the perspective of AMD3100 as an immunomodulator to regulate immune responses particularly in the tumor microenvironment and synergize with other therapeutics. All the pre-clinical studies support the clinical testing of the monotherapy and combination therapies with AMD3100 and further development for use in humans.
Collapse
Affiliation(s)
- Jingzhe Wang
- Jiangsu Key Laboratory of Clinical Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Huabiao Chen
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA; Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Kumar S, Jaipuri FA, Waldo JP, Potturi H, Marcinowicz A, Adams J, Van Allen C, Zhuang H, Vahanian N, Link C, Brincks EL, Mautino MR. Discovery of indoximod prodrugs and characterization of clinical candidate NLG802. Eur J Med Chem 2020; 198:112373. [PMID: 32422549 DOI: 10.1016/j.ejmech.2020.112373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
A series of different prodrugs of indoximod, including estesrs and peptide amides were synthesized with the aim of improving its oral bioavailability in humans. The pharmacokinetics of prodrugs that were stable in buffers, plasma and simulated gastric and intestinal fluids was first assessed in rats after oral dosing in solution or in capsule formulation. Two prodrugs that produced the highest exposure to indoximod in rats were further tested in Cynomolgus monkeys, a species in which indoximod has oral bioavailability of 6-10% and an equivalent dose-dependent exposure profile as humans. NLG802 was selected as the clinical development candidate after increasing oral bioavailability (>5-fold), Cmax (6.1-3.6 fold) and AUC (2.9-5.2 fold) in monkeys, compared to equivalent molar oral doses of indoximod. NLG802 is extensively absorbed and rapidly metabolized to indoximod in all species tested and shows a safe toxicological profile at the anticipated therapeutic doses. NLG802 markedly enhanced the anti-tumor responses of tumor-specific pmel-1 T cells in a melanoma tumor model. In conclusion, NLG802 is a prodrug of indoximod expected to increase clinical drug exposure to indoximod above the current achievable levels, thus increasing the possibility of therapeutic effects in a larger fraction of the target patient population.
Collapse
Affiliation(s)
| | | | | | - Hima Potturi
- NewLink Genetics, Ames, IA, 50010, United States
| | | | - James Adams
- NewLink Genetics, Ames, IA, 50010, United States
| | | | - Hong Zhuang
- NewLink Genetics, Ames, IA, 50010, United States
| | | | - Charles Link
- NewLink Genetics, Ames, IA, 50010, United States
| | - Erik L Brincks
- NewLink Genetics, Ames, IA, 50010, United States; Lumos Pharma, Inc., Ames, IA, 50010, United States.
| | | |
Collapse
|
41
|
Xie M, Wei J, Xu J. Inducers, Attractors and Modulators of CD4 + Treg Cells in Non-Small-Cell Lung Cancer. Front Immunol 2020; 11:676. [PMID: 32425930 PMCID: PMC7212357 DOI: 10.3389/fimmu.2020.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated deaths worldwide, with non-small cell-lung cancer (NSCLC) accounting for approximately 80% of cases. Immune escape has been demonstrated to play a key role in the initiation and progression of NSCLC, although the underlying mechanisms are diverse and their puzzling nature is far from being understood. As a critical participant in immune escape, the CD4+ T cell subset of regulatory T (Treg) cells, with their immunosuppressive functions, has been implicated in the occurrence of many types of cancers. Additionally, therapies based on Treg blockade have benefited a portion of cancer patients, including those with NSCLC. Accumulating literature has noted high Treg infiltration in NSCLC tumor tissues, bone marrow, lymph nodes and/or blood; moreover, the tumor milieu is involved in regulating the proliferation, differentiation, recruitment and suppressive functions of Treg cells. Multifarious mechanisms by which CD4+ Treg cells are generated, attracted and modulated in the NSCLC milieu will be discussed in this review.
Collapse
Affiliation(s)
- Mengxiao Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jia Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
42
|
Seng A, Krausz KL, Pei D, Koestler DC, Fischer RT, Yankee TM, Markiewicz MA. Coexpression of FOXP3 and a Helios isoform enhances the effectiveness of human engineered regulatory T cells. Blood Adv 2020; 4:1325-1339. [PMID: 32259202 PMCID: PMC7160257 DOI: 10.1182/bloodadvances.2019000965] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Tregs) are a subset of immune cells that suppress the immune response. Treg therapy for inflammatory diseases is being tested in the clinic, with moderate success. However, it is difficult to isolate and expand Tregs to sufficient numbers. Engineered Tregs (eTregs) can be generated in larger quantities by genetically manipulating conventional T cells to express FOXP3. These eTregs can suppress in vitro and in vivo but not as effectively as endogenous Tregs. We hypothesized that ectopic expression of the transcription factor Helios along with FOXP3 is required for optimal eTreg immunosuppression. To test this theory, we generated eTregs by retrovirally transducing total human T cells (CD4+ and CD8+) with FOXP3 alone or with each of the 2 predominant isoforms of Helios. Expression of both FOXP3 and the full-length isoform of Helios was required for eTreg-mediated disease delay in a xenogeneic graft-versus-host disease model. In vitro, this corresponded with superior suppressive function of FOXP3 and full-length Helios-expressing CD4+ and CD8+ eTregs. RNA sequencing showed that the addition of full-length Helios changed gene expression in cellular pathways and the Treg signature compared with FOXP3 alone or the other major Helios isoform. Together, these results show that functional human CD4+ and CD8+ eTregs can be generated from total human T cells by coexpressing FOXP3 and full-length Helios.
Collapse
Affiliation(s)
- Amara Seng
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | - Kelsey L Krausz
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS; and
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS; and
| | - Ryan T Fischer
- Pediatric Gastroenterology, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO
| | - Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, and
| | | |
Collapse
|
43
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|
44
|
Mirlekar B. Co-expression of master transcription factors determines CD4 + T cell plasticity and functions in auto-inflammatory diseases. Immunol Lett 2020; 222:58-66. [PMID: 32220615 DOI: 10.1016/j.imlet.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Master CD4+ T cell lineage determined transcription factors are found to be dysregulated in pathogenesis of autoimmune and inflammatory diseases. CD4+ T cells categorized into different lineages based on their functions, cell surface markers and master transcription factors those required for expression of lineage specific cytokines. T-bet, GATA3, RORγt and Foxp3 are major transcription regulators of Th1, Th2, Th17 and Treg cells respectively. Significant progress has been made in understanding expression of lineage specific master regulators that drives CD4+ T cell differentiation. It is known that each CD4+ T cell lineage express precise determined transcription factor and due to cross regulation between these factors the CD4+ T cells able to maintain thier specific phenotype. However, recent studies shows that the lineage specifying transcription factors frequently co-expressed. There is an emerging area of research revealing that the co-expression of lineage-specifying transcription factors alters the potential function and flexibility of subsets of CD4+ T cell, this in turn favors the autoimmune pathology. Here, we discuss similarities and differences between mutually co-expressed transcription factors in CD4+ T cell subsets and then recapitulates on cell type specific and dynamic balance between the lineage restricted transcription factors in determining plasticity of CD4+ T cell subsets. Furthermore, we discuss abnormal regulation of such transcription factors that establishes a pathogenic CD4+ T cell phenotype in autoimmune diseases and how this understanding will provide further insight into potential therapeutic development.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
45
|
Bhardwaj S, Rani S, Kumaran MS, Bhatia A, Parsad D. Expression of Th17- and Treg-specific transcription factors in vitiligo patients. Int J Dermatol 2020; 59:474-481. [PMID: 31909498 DOI: 10.1111/ijd.14766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vitiligo is mainly considered an autoimmune skin disease as the number of IL-17 producing Th17 cells, involved in the development of autoimmune and inflammatory pathologies, increased in vitiligo skin. T regulatory cells (Tregs) seem to be altered during the disease. Thus, there must be some upstream molecular factors that regulate the cellular response to apoptotic and inflammatory stimuli. OBJECTIVES To investigate the expression of Th17- and Treg-specific transcription factors in PBMCs and to evaluate the correlation between these transcription factors and cytokines in vitiligo patients. METHODS We investigated 30 active NSV patients for Th17- and Treg-specific transcription factors RORγt (retinoic acid-related orphan receptor gamma t), FOXP3 (forkhead/winged helix), HELIOS, EOS, and IRF4 (Interferon Regulatory Factor 4) as well as apoptotic marker NALP1 (NACHT-leucine-rich-repeat protein 1) in PBMCs with RT-qPCR. Immunostaining was done for transcription factors and cytokines on skin sections. RESULTS The mRNA level of FOXP3 was significantly lower in patients (0.76 fold, P < 0.001), whereas RORγt was slight but not significantly increased (0.76 fold, P = 0.06). Furthermore, NALP1 in lymphocytes was found to be increased in patients (0.69 fold, P < 0.01). The immunostaining results revealed increased expression of RORγ, IL-17A, NALP1, and IL-1β in vitiligo skin when compared to normal healthy skin. CONCLUSION Reduced FOXP3/RORγt mRNA ratio suggests thriving of the Th17 cell population in PBMCs of vitiligo patients. Increased NALP1 levels indicate the existence of an apoptotic phenomenon which correlates with the increased expression of IL-1β in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Supriya Bhardwaj
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Seema Rani
- Department of Zoology, Punjab University, Chandigarh, India.,Department of Zoology, Hindu Girls College, Sonepat, India
| | - Muthu S Kumaran
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
46
|
Koskinen MK, Mikk ML, Laine AP, Lempainen J, Löyttyniemi E, Vähäsalo P, Hekkala A, Härkönen T, Kiviniemi M, Simell O, Knip M, Veijola R, Ilonen J, Toppari J. Longitudinal Pattern of First-Phase Insulin Response Is Associated With Genetic Variants Outside the Class II HLA Region in Children With Multiple Autoantibodies. Diabetes 2020; 69:12-19. [PMID: 31591105 DOI: 10.2337/db19-0329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/02/2019] [Indexed: 11/13/2022]
Abstract
A declining first-phase insulin response (FPIR) is associated with positivity for multiple islet autoantibodies, irrespective of class II HLA DR-DQ genotype. We examined the associations of FPIR with genetic variants outside the HLA DR-DQ region in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study in children with and without multiple autoantibodies. Association between FPIR and class I alleles A*24 and B*39 and eight single nucleotide polymorphisms outside the HLA region were analyzed in 438 children who had one or more FPIR results available after seroconversion. Hierarchical linear mixed models were used to analyze repeated measurements of FPIR. In children with multiple autoantibodies, the change in FPIR over time was significantly different between those with various PTPN2 (rs45450798), FUT2 (rs601338), CTSH (rs3825932), and IKZF4 (rs1701704) genotypes in at least one of the models. In general, children carrying susceptibility alleles for type 1 diabetes experienced a more rapid decline in insulin secretion compared with children without susceptibility alleles. The presence of the class I HLA A*24 allele was also associated with a steeper decline of FPIR over time in children with multiple autoantibodies. Certain genetic variants outside the class II HLA region may have a significant impact on the longitudinal pattern of FPIR.
Collapse
Affiliation(s)
- Maarit K Koskinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Medicity, University of Turku, Turku, Finland
| | - Mari-Liis Mikk
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Johanna Lempainen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | | | - Paula Vähäsalo
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anne Hekkala
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Taina Härkönen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Kiviniemi
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku and Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
47
|
Macciò A, Madeddu C. Blocking inflammation to improve immunotherapy of advanced cancer. Immunology 2019; 159:357-364. [PMID: 31821533 DOI: 10.1111/imm.13164] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to induce functional reprogramming of regulatory T (Treg) cells in the tumor microenvironment is an extremely important therapeutic opportunity. However, when discussing such an approach, the opposing effect that the activation of the Treg cell compartments may have in inducing the immune inflammatory response and its link with the efficacy of immunotherapy should be considered. In fact, Treg reprogramming has a dual effect: immediate, with mechanisms that activate immunosurveillance, and late, mediated by the macrophage activation that yields an inflammatory status that is deleterious for the antineoplastic efficiency of the immune system response. Persistence of the inflammatory response is associated with specific changes of oxidative and glycolytic metabolic pathways that interfere with conventional T-cell activation and function and may be one of the reasons for the failure of immunotherapy in advanced cancer patients. Therefore, in addition to modulating Treg cell action, the combined use of drugs able to block chronic inflammation mediated mainly by macrophages, to counteract the oxidative stress, and to positively regulate the metabolic derangements, could improve the effectiveness of modern immunotherapy. In conclusion, reprogramming of Treg cells may be an appropriate strategy for treating early stages of neoplastic diseases, whereas other immunosuppressive mechanisms should be the target of a combined immunotherapy approach in more advanced phases of cancer.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic Oncology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
48
|
Gokhale AS, Gangaplara A, Lopez-Occasio M, Thornton AM, Shevach EM. Selective deletion of Eos (Ikzf4) in T-regulatory cells leads to loss of suppressive function and development of systemic autoimmunity. J Autoimmun 2019; 105:102300. [PMID: 31296356 PMCID: PMC11046398 DOI: 10.1016/j.jaut.2019.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/20/2022]
Abstract
Eos (lkzf4) is a member of the Ikaros family of transcription factors and is preferentially expressed in T-regulatory (Treg) cells. However, the role of Eos in Treg function is controversial. One study using siRNA knock down of Eos demonstrated that it was critical for Treg suppressor function. In contrast, Treg from mice with a global deficiency of Eos had normal Treg function in vitro and in vivo. To further dissect the function of Eos in Tregs, we generated mice with a conditional knock out of Eos in Treg cells (lkzf4fl/fl X Foxp3YFP-cre, Eos cKO). Deletion of Eos in Treg resulted in activation of CD4+Foxp3- and CD8+ T cells at the age of 3 months, cellular infiltration in non-lymphoid tissues, hyperglobulinemia, and anti-nuclear antibodies. While Tregs from Eos cKO mice displayed normal suppressive function in vitro, Eos cKO mice developed severe Experimental Autoimmune Encephalomyletis (EAE) following immunization with myelin oligodendrocyte glycoprotein (MOG) and Eos cKO Treg were unable to suppress Inflammatory Bowel Disease (IBD). Eos cKO mice had decreased growth of the transplantable murine adenocarcinoma MC38 tumor accompanied by enhanced IFN-γ/TNF-α production by CD8+ T cells in tumor draining lymph nodes. Mice with a global deficiency of Eos or a deficiency of Eos only in T cells developed autoimmunity at a much older age (12 months or 7-8 months, respectively). Taken together, Eos appears to play an essential role in multiple aspects of Treg suppressor function, but also plays an as yet unknown role in the function of CD4+Foxp3- and CD8+ T cells and potentially in non-T cells.
Collapse
Affiliation(s)
- Ameya S Gokhale
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arunakumar Gangaplara
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Lopez-Occasio
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angela M Thornton
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Wikenius E, Moe V, Smith L, Heiervang ER, Berglund A. DNA methylation changes in infants between 6 and 52 weeks. Sci Rep 2019; 9:17587. [PMID: 31772264 PMCID: PMC6879561 DOI: 10.1038/s41598-019-54355-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/14/2019] [Indexed: 12/16/2022] Open
Abstract
Infants undergo extensive developments during their first year of life. Although the biological mechanisms involved are not yet fully understood, changes in the DNA methylation in mammals are believed to play a key role. This study was designed to investigate changes in infant DNA methylation that occurs between 6 and 52 weeks. A total of 214 infant saliva samples from 6 or 52 weeks were assessed using principal component analyses and t-distributed stochastic neighbor-embedding algorithms. Between the two time points, there were clear differences in DNA methylation. To further investigate these findings, paired two-sided student’s t-tests were performed. Differently methylated regions were defined as at least two consecutive probes that showed significant differences, with a q-value < 0.01 and a mean difference > 0.2. After correcting for false discovery rates, changes in the DNA methylation levels were found in 42 genes. Of these, 36 genes showed increased and six decreased DNA methylation. The overall DNA methylation changes indicated decreased gene expression. This was surprising because infants undergo such profound developments during their first year of life. The results were evaluated by taking into consideration the extensive development that occurs during pregnancy. During the first year of life, infants have an overall three-fold increase in weight, while the fetus develops from a single cell into a viable infant in 9 months, with an 875-million-fold increase in weight. It is possible that the findings represent a biological slowing mechanism in response to extensive fetal development. In conclusion, our study provides evidence of DNA methylation changes during the first year of life, representing a possible biological slowing mechanism. We encourage future studies of DNA methylation changes in infants to replicate the findings by using a repeated measures model and less stringent criteria to see if the same genes can be found, as well as investigating whether other genes are involved in development during this period.
Collapse
Affiliation(s)
- Ellen Wikenius
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Vibeke Moe
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway.,The Center for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
| | - Lars Smith
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Einar R Heiervang
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Oslo University Hospital, Oslo, Norway
| | - Anders Berglund
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
50
|
Powell MD, Read KA, Sreekumar BK, Oestreich KJ. Ikaros Zinc Finger Transcription Factors: Regulators of Cytokine Signaling Pathways and CD4 + T Helper Cell Differentiation. Front Immunol 2019; 10:1299. [PMID: 31244845 PMCID: PMC6563078 DOI: 10.3389/fimmu.2019.01299] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are capable of differentiating into a number of effector subsets that perform diverse functions during adaptive immune responses. The differentiation of each of these subsets is governed, in large part, by environmental cytokine signals and the subsequent activation of downstream, cell-intrinsic transcription factor networks. Ikaros zinc finger (IkZF) transcription factors are known regulators of immune cell development, including that of CD4+ T cell subsets. Over the past decade, members of the IkZF family have also been implicated in the differentiation and function of individual T helper cell subsets, including T helper 1 (TH1), TH2, TH17, T follicular (TFH), and T regulatory (TREG) cells. Now, an increasing body of literature suggests that the distinct cell-specific cytokine environments responsible for the development of each subset result in differential expression of IkZF factors across T helper populations. Intriguingly, recent studies suggest that IkZF members influence T helper subset differentiation in a feed-forward fashion through the regulation of these same cytokine-signaling pathways. Here, we review the increasingly prominent role for IkZF transcription factors in the differentiation of effector CD4+ T helper cell subsets.
Collapse
Affiliation(s)
- Michael D Powell
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kaitlin A Read
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Biomedical and Veterinary Sciences Graduate Program, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Bharath K Sreekumar
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kenneth J Oestreich
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|