1
|
Zheng Y, Ren Z, Liu Y, Yan J, Chen C, He Y, Shi Y, Cheng F, Wang Q, Li C, Wang X. T cell interactions with microglia in immune-inflammatory processes of ischemic stroke. Neural Regen Res 2025; 20:1277-1292. [PMID: 39075894 PMCID: PMC11624874 DOI: 10.4103/nrr.nrr-d-23-01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 07/31/2024] Open
Abstract
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1β, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-β, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
Collapse
Affiliation(s)
- Yuxiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zilin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juntang Yan
- Library, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanhui He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Kwon GJ, Jeck WR, McCall S, Su Z, Pendse AA. T-cells are significantly reduced in the luminal gastrointestinal tract of patients with "complete" 22q11.2 deletion syndrome (DiGeorge syndrome): Utilization of chromogenic multiplex immunohistochemistry to define cellular populations. Ann Diagn Pathol 2025; 74:152391. [PMID: 39549523 DOI: 10.1016/j.anndiagpath.2024.152391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Patients with 22q11.2 deletion syndrome or DiGeorge syndrome commonly report gastrointestinal symptoms in addition to more widely understood cardiac and immunodeficiency abnormalities. However, the morphologic features of gastrointestinal tract pathology in these patients are poorly understood. We previously reported that plasma cells are essentially absent from the luminal gastrointestinal tract of patients with "complete" DiGeorge syndrome. Herein, we add to the current understanding of the luminal gastrointestinal tract changes in patients with DiGeorge syndrome. Patients with cytogenetically confirmed DiGeorge syndrome were identified after approval from our institutional review board. Gastrointestinal tract biopsies from patients with DiGeorge syndrome that were severely immunosuppressed (complete DiGeorge syndrome, DGS-I), partially immunocompromised (partial DiGeorge syndrome, DGS), and from control patients were reviewed. Two panels of chromogenic multiplex immunohistochemistry (IHC) were performed to evaluate the immune cell infiltrate in the lamina propria of the duodenum and colon. "Panel #1" was composed of antibodies targeting CD3, CD20, and CD68. "Panel #2" was composed of antibodies targeting CD4, CD8, CD56, and TCRϒδ. Assessment of cell types identified by these antibody targets demonstrated a significant reduction of duodenal and colonic T-cells in patients with complete DiGeorge syndrome. In addition to establishing the morphologic phenotype of the luminal gastrointestinal tract of patients with DiGeorge syndrome, we also highlight our chosen technology of chromogenic multiplex IHC as a relatively accessible research and diagnostic tool with wide potential to be utilized across various disease processes.
Collapse
Affiliation(s)
- Grace J Kwon
- Department of Pathology, Duke University Health System, Durham, NC 27710, USA.
| | - William R Jeck
- Department of Pathology, Duke University Health System, Durham, NC 27710, USA; Duke BioRepository and Precision Pathology Center, Duke University Health System, Durham, NC 27710, USA.
| | - Shannon McCall
- Department of Pathology, Duke University Health System, Durham, NC 27710, USA; Duke BioRepository and Precision Pathology Center, Duke University Health System, Durham, NC 27710, USA.
| | - Zuowei Su
- Duke BioRepository and Precision Pathology Center, Duke University Health System, Durham, NC 27710, USA.
| | - Avani A Pendse
- Department of Pathology, Duke University Health System, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Huo FF, Zou XY, Zhang Y, Lu YP, Zhao MW, Yu XY, Cao FG, Yang W. Aire attenuate collagen-induced arthritis by suppressing T follicular helper cells through ICOSL. Int Immunopharmacol 2025; 144:113732. [PMID: 39626537 DOI: 10.1016/j.intimp.2024.113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE To assess the expression levels of autoimmune regulator (Aire) and inducible costimulator molecule ligand (ICOSL), as well as T follicular helper (Tfh) cell numbers in rheumatoid arthritis (RA) patients, and to explore their relationship with RA severity. We also aimed to investigate the effect of Aire on arthritis and its underlying mechanisms. METHODS The expression levels of Aire, ICOSL, and Tfh cell numbers were measured in RA patients. The relationship between these factors and the levels of anticyclic citrullinated peptide antibodies (Anti-CCP) as well as the Disease Activity Score in 28 joints (DAS28) was analyzed. To investigate the effect of Aire on arthritis, Aire-overexpressing bone marrow-derived dendritic cells (Aire-BMDCs) and recombinant ICOSL were transferred into collagen-induced arthritis (CIA) mice, the symptoms, clinical scores, anti-collagen type II antibodies (anti-CII Abs), rheumatoid factor (RF), proportions of Tfh cells, and percentages of germinal center (GC) B cells in CIA mice were examined. RESULTS The results showed that Aire levels were significantly decreased in CD14+ PBMCs from patients with RA, and there were negative correlations between ICOSL expression levels, Tfh cell numbers, and Aire expression. Additionally, these factors were correlated with Anti-CCP levels and DAS28. Aire-BMDCs could influence Tfh differentiation, GC B cell development, as well as the levels of anti-CII Abs and RF, which further alleviate the symptoms and reduce clinical scores partly through ICOSL in CIA mice. CONCLUSIONS The findings suggest that Aire may alleviate rheumatoid arthritis by inhibiting ICOSL, which further inhibits Tfh cell differentiation and autoantibody production.
Collapse
Affiliation(s)
- Fei-Fei Huo
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xue-Yang Zou
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yi Zhang
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yao-Ping Lu
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Meng-Wei Zhao
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xin-Yue Yu
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Fu-Guo Cao
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Department of Immunology, College of Basic Medical Sciences. Clinical Laboratory, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Wei L, Zhu W, Dong C, Kim JK, Ma Y, Denning TL, Kang SM, Wang BZ. Lipid nanoparticles encapsulating both adjuvant and antigen mRNA improve influenza immune cross-protection in mice. Biomaterials 2024; 317:123039. [PMID: 39724768 DOI: 10.1016/j.biomaterials.2024.123039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The rapid approval of SARS-CoV-2 mRNA lipid nanoparticle (LNP) vaccines indicates the versatility of mRNA LNPs in an urgent vaccine need. However, the mRNA vaccines do not induce mucosal cellular responses or broad protection against recent variants. To improve cross-protection of mRNA vaccines, here we engineered a pioneered mRNA LNP encapsulating with mRNA constructs encoding cytokine adjuvant and influenza A hemagglutinin (HA) antigen for intradermal vaccination. The adjuvant mRNA encodes a novel fusion cytokine GIFT4 comprising GM-CSF and IL-4. We found that the adjuvanted mRNA LNP vaccine induced high levels of humoral antibodies and systemic T cell responses against heterologous influenza antigens and protected immunized mice against influenza A viral infections. Also, the adjuvanted mRNA LNP vaccine elicited early germinal center reactions in draining lymph nodes and promoted antibody-secreting B cell responses. In addition, we generated another adjuvant mRNA encoding CCL27, which enhanced systemic immune responses. We found the two adjuvant mRNAs both showed effective adjuvanticity in enhancing humoral and cellular responses in mice. Interestingly, intradermal immunizations of GIFT4 or CCL27 mRNA adjuvanted mRNA LNP vaccines induced significant lung tissue-resident T cells. Our findings demonstrate that the cytokine mRNA can be a promising adjuvant flexibly formulated into mRNA LNP vaccines to provoke strong immunity against viral variants.
Collapse
Affiliation(s)
- Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Russum S, Sayin I, Shwetar J, Baughan E, Jeong JC, Kim A, Reyentovich A, Moazami N, Zeevi A, Chong AS, Habal M. Donor HLA-DQ reactive B cells clonally expand under chronic immunosuppression and include atypical CD21 low CD27 - B cells with high-avidity germline B-cell receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627284. [PMID: 39713394 PMCID: PMC11661077 DOI: 10.1101/2024.12.06.627284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-term allograft survival is limited by humoral-associated chronic allograft rejection, suggesting inadequate constraint of humoral alloimmunity by contemporary immunosuppression. Heterogeneity in alloreactive B cells and the incomplete definition of which B cells participate in chronic rejection in immunosuppressed transplant recipients limits our ability to develop effective therapies. Using a double-fluorochrome single-HLA tetramer approach combined with single-cell in vitro culture, we investigated the B-cell receptor (BCR) repertoire characteristics, avidity, and phenotype of donor HLA-DQ reactive B cells in a transplant recipient with end-stage donor specific antibody (DSA)-associated cardiac allograft vasculopathy while receiving maintenance immunosuppression (tacrolimus, mycophenolate mofetil, prednisone). Donor DQB1*03:02/DQA1*03:01 (DQ8)-reactive IgG+ B cells were enriched for minimally mutated and germline encoded high avidity BCRs (median K D 4.26×10 -09 ) with an atypical, antigen-experienced and proliferative phenotype (CD27 - CD21 low CD71 + CD11c +/- ). These B cells coexisted with a smaller subset of more highly mutated, affinity matured IgG+CD27+ B cells. Circulating donor-reactive B cells and DSA remained detectable after rituximab, contrasting with the marked reduction in DSA after allograft explant and retransplant. Together, these findings define the persistence of germline high-avidity HLA-DQ alloreactive B cells and their co-existence with affinity matured clones that were both driven by the allograft despite conventional immunosuppression.
Collapse
|
6
|
Mondello P, Casulo C. The POD24 challenge: where do we go from here for early progressors? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:301-309. [PMID: 39643981 DOI: 10.1182/hematology.2024000662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Follicular lymphoma is the most common indolent lymphoma, with a favorable prognosis and survival measured in decades. However, approximately 15% to 20% of patients encounter early disease progression, termed POD24, within 24 months from diagnosis or treatment initiation. Recognizing the correlation between POD24 and a heightened risk of lymphoma-related death has sparked intensive investigations into the clinical and biological determinants of POD24 and the development of innovative treatment strategies targeting this group. Research is also ongoing to understand the varying impact of POD24 based on different clinical contexts and the implications of early histologic transformation on POD24 prognosis. Recent investigations have uncovered potential new predictors of POD24, including genetic and nongenetic alterations as well as some conflicting F-fludeoxyglucose-positron emission tomography characteristics such as maximum standardized uptake value and total metabolic tumor volume. These developments, together with clinical predictors, have led to the emergence of several clinicopathologic tools to help identify at diagnosis patients who may be at higher risk for POD24. As these models are not routinely used, more work is needed to develop new risk-stratification strategies integrating clinical and molecular risk profiling that can be easily implemented in clinical practice to drive therapeutic choice. This review aims to delineate the modest but incremental progress achieved in our understanding of POD24, both clinically and biologically. Furthermore, we offer insights into the best practices to approach POD24 in the current era, aspiring to chart a new path forward to optimize patient outcomes.
Collapse
Affiliation(s)
| | - Carla Casulo
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester, Rochester, NY
| |
Collapse
|
7
|
Sears TJ, Pagadala MS, Castro A, Lee KH, Kong J, Tanaka K, Lippman SM, Zanetti M, Carter H. Integrated Germline and Somatic Features Reveal Divergent Immune Pathways Driving Response to Immune Checkpoint Blockade. Cancer Immunol Res 2024; 12:1780-1795. [PMID: 39255339 PMCID: PMC11612627 DOI: 10.1158/2326-6066.cir-24-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment; however, the mechanisms determining patient response remain poorly understood. Here, we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher infiltration of T-follicular helper cells had responses even in the presence of defects in the MHC class-I (MHC-I). Further investigation uncovered different ICB responses in tumors when responses were reliant on MHC-I versus MHC-II neoantigens. Despite similar response rates, MHC II-reliant responses were associated with significantly longer durable clinical benefits (discovery: median overall survival of 63.6 vs. 34.5 months; P = 0.0074; validation: median overall survival of 37.5 vs. 33.1 months; P = 0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC II-reliant but not MHC I-reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.
Collapse
Affiliation(s)
- Timothy J. Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
| | - Meghana S. Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, California
| | - Andrea Castro
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Ko-han Lee
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
| | - JungHo Kong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Kairi Tanaka
- School of Biological Sciences, University of California San Diego, La Jolla, California
| | - Scott M. Lippman
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, California
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, California
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
8
|
Gaur V, Tyagi W, Das S, Ganguly S, Bhattacharyya J. CD40 agonist engineered immunosomes modulated tumor microenvironment and showed pro-immunogenic response, reduced toxicity, and tumor free survival in mice bearing glioblastoma. Biomaterials 2024; 311:122688. [PMID: 38943821 DOI: 10.1016/j.biomaterials.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
CD40 agonist antibodies (αCD40) have shown promising anti-tumor response in both preclinical and early clinical studies. However, its systemic administration is associated with immune- and hepato-toxicities which hampers its clinical usage. In addition, αCD40 showed low tumor retention and induced PD-L1 expression which makes tumor microenvironment (TME) immunosuppressive. To overcome these issues, in this study, we have developed a multifunctional Immunosome where αCD40 is conjugated on the surface and RRX-001, a small molecule immunomodulator was encapsulated inside it. Immunosomes showed higher tumor accumulation till 96 h of administration and displayed sustained release of αCD40 in vivo. Immunosomes significantly delayed tumor growth and showed tumor free survival in mice bearing GL-261 glioblastoma by increasing the population of CD45+CD8+ T cells, CD45+CD20+ B cells, CD45+CD11c+ DCs and F4/80+CD86+ cells in TME. Immunosome significantly reduced the population of T-regulatory cells, M2 macrophage, and MDSCs and lowered the PD-L1 expression. Moreover, Immunosomes significantly enhanced the levels of Th1 cytokines (IFN-γ, IL-6, IL-2) over Th2 cytokines (IL-4 and IL-10) which supported anti-tumor response. Most interestingly, Immunosomes averted the in vivo toxicities associated with free αCD40 by lowering the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), IL-6, IL-1α and reduced the degree of liver damage. In addition, Immunosomes treated long-term surviving mice showed tumor specific immune memory response which prevented tumor growth upon rechallenge. Our results suggested that this novel formulation can be further explored in clinics to improve in vivo anti-tumor efficacy of αCD40 with long-lasting tumor specific immunity while reducing the associated toxicities.
Collapse
Affiliation(s)
- Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India
| | - Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Surajit Ganguly
- Department of Molecular Medicine, Jamia Hamdard University, Delhi, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India.
| |
Collapse
|
9
|
Du S, Zhao L, Wu J, Shi X, Liu R. FOXP3 gene polymorphisms increase the risk of systemic lupus erythematosus in a Han Chinese population. Ann Med 2024; 56:2363937. [PMID: 38848045 PMCID: PMC11164044 DOI: 10.1080/07853890.2024.2363937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND FOXP3 is a transcription factor that regulates the development and function of Treg, playing an essential role in preventing autoimmune diseases. Variation in FOXP3 can impair the function of Treg cells, thus destroying their inhibitory capacity and leading to autoimmune diseases. This paper investigated whether the three SNPs in the FOXP3 gene (-3279 C/A, -924 A/G and -6054 del/ATT) are associated with systemic lupus erythematosus (SLE) susceptibility in the Han Chinese population. MATERIALS AND METHODS The study cohort comprised 122 SLE patients and 268 healthy controls. Genotyping was performed by polymerase chain reaction sequence-specific primer (PCR-SSP). Furthermore, we examined the potential clinical manifestations associated with FOXP3 polymorphisms in SLE patients. RESULTS The results showed that the -3279 (C > A) was significantly associated with the SLE risk in a homozygote (OR = 3.24, 95% CI = 1.23-8.52, p = .013, AA vs. CC), dominant (OR = 1.68, 95% CI = 1.07-2.65, p = .025, AC + AA vs. CC), recessive (OR = 2.90, 95% CI = 1.12-7.55, p = .023, AA vs. AC + CC) and allelic (OR = 1.72, 95% CI = 1.18-2.53, p = .005, A vs. C) models. In addition, -924 (A > G) was positively associated with SLE risk in the heterozygote (OR = 1.66, 95% CI = 1.04-2.66, p = .033, AG vs. AA) and dominant (OR = 1.59, 95% CI = 1.01-2.49, p = .042, AG + GG vs. AA) models, whereas -6054 (del > ATT) was not associated with SLE. Moreover, the immunological index analysis suggested that decreased complement C4 occurred more frequently in SLE patients carrying the minor allele (A) -3279 (C > A) than those not (p = .005). CONCLUSIONS We demonstrated that -3279 (C > A) and -924 (A > G) were associated with an increased risk of SLE and the immunological index, indicating that the FOXP3 variation is potentially related to the occurrence and development of SLE.
Collapse
Affiliation(s)
- Shushu Du
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
- Qingpu Traditional Chinese Medicine Hospital, Shanghai, China
| | - Lili Zhao
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jiaming Wu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Rongzeng Liu
- Department of Immunology, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Kim D, Kim J, Yeo H, Chung Y. Immunometabolic regulation of germinal centers and its implications for aging. Curr Opin Immunol 2024; 91:102485. [PMID: 39357081 DOI: 10.1016/j.coi.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Aging, metabolism, and immunity have long been considered distinct domains. Aging is primarily associated with the gradual decline of physiological functions, metabolism regulates energy production and maintains cellular processes, and the immune system manages innate and adaptive responses against pathogens and vaccines. However, recent studies have revealed that these three systems are intricately interconnected, collectively influencing an individual's response to stress and disease. This review explores the interplay between immunometabolism, T follicular helper cells, B cells, and aging, focusing on how these interactions impact immune function in the elderly.
Collapse
Affiliation(s)
- Daehong Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Jaemin Kim
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Hyeonuk Yeo
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea
| | - Yeonseok Chung
- Institute of Pharmaceutical Sciences, College of Pharmacy, and Seoul National University, Seoul 08826, Seoul, Republic of Korea; BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul 08826, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Holmes S, Li H, Shen X, Martin M, Tuck R, Chen Y, Giorgi EE, Kirshner HF, Berry M, Van Italie E, Venkatayogi S, Martin Beem JS, Edwards RJ, Mansouri K, Singh A, Kuykendall C, Gurley T, Anthony Moody M, DeNayer N, Demarco T, Denny TN, Wang Y, Evangelous TD, Clinton JT, Hora B, Wagh K, Seaman MS, Saunders KO, Solomotis N, Misamore J, Lewis MG, Wiehe K, Montefiori DC, Shaw GM, Williams WB. Neonatal immunity associated with heterologous HIV-1 neutralizing antibody induction in SHIV-infected Rhesus Macaques. Nat Commun 2024; 15:10302. [PMID: 39604409 PMCID: PMC11603298 DOI: 10.1038/s41467-024-54753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
The details of the pediatric immune system that supports induction of antibodies capable of neutralizing geographically-diverse or heterologous HIV-1 is currently unclear. Here we explore the pediatric immune environment in neonatal macaque undergoing Simian-HIV infection. Simian-HIV infection of 11 pairs of therapy-naive dams and infant rhesus macaques for 24 months results in heterologous HIV-1 neutralizing antibodies in 64% of young macaques compared to 18% of adult macaques. Heterologous HIV-1 neutralizing antibodies emerge by 12 months post-infection in young macaques, in association with lower expression of immunosuppressive genes, fewer germinal center CD4 + T regulatory cells, and a lower ratio of CD4 + T follicular regulatory to helper cells. Antibodies from peripheral blood B cells in two young macaques following SHIV infection neutralize 13% of 119 heterologous HIV-1 strains and map to regions of canonical broadly neutralizing antibody epitopes on the envelope surface protein. Here we show that pediatric immunity to SHIV infection in a macaque model may inform vaccine strategies to induce effective HIV-1 neutralizing antibodies in infants and children prior to viral exposure.
Collapse
Affiliation(s)
- Sommer Holmes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Mitchell Martin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ryan Tuck
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yue Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Madison Berry
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Van Italie
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Joshua S Martin Beem
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ajay Singh
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cindy Kuykendall
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thaddeus Gurley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nicole DeNayer
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Todd Demarco
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Tyler D Evangelous
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - John T Clinton
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - George M Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Han Q, Xu H, Li L, Lei S, Li Z, Zhao L, Liu F. Higher density of CD4+ T cell infiltration predicts severe renal lesions and renal function decline in patients with diabetic nephropathy. Front Immunol 2024; 15:1474377. [PMID: 39654881 PMCID: PMC11625791 DOI: 10.3389/fimmu.2024.1474377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background More evidence have shown that the combination of immune and inflammatory mechanism was critical in diabetic nephropathy (DN). However, the relationship between CD4+ T cells and the development of DN is still unclear. Therefore, this study will focus on this issue from the perspective of clinicopathology. Methods From September 2019 to December 2022, a total of 112 adult patients with DN were enrolled in the study. According to the density of CD4+ T cell infiltration based on immunostaining, the patients were divided into high-CD4 group (56 patients) and low-CD4 group (56 patients). Another 25 diabetic patients with minimal change disease (non-diabetic nephropathy, NDN) was reviewed as control group in clinical and molecular analysis. The clinical parameters, morphological features, and molecular characteristics were compared. The predictive value of CD4+ T cells for DN prognosis was also investigated. Results DN patients in the high-CD4 group suffered from higher proteinuria and lower estimated glomerular filtration rate (eGFR) level than those in the low-CD4 group and NDN patients. Renal biopsy in the high-CD4 group presented with more severe glomerular lesions, higher density of interstitial inflammation, and more severe tubular atrophy/interstitial fibrosis than in the low-CD4 group. Multivariate logistic analysis indicated that the density of CD4+ T cell infiltration could independently predict the severity of tubular atrophy/interstitial fibrosis. In addition, more severe mitochondrial damage of renal tubular epithelial cells and a more obvious expression of Bcl6, IL-6, STAT3, and TGFβ1 were observed in DN patients of the high-CD4 group, indicating the possible mechanism of CD4+ T cells involving the progression of DN. Multivariate Cox regression analysis revealed that a higher intensity of interstitial CD4+ T cell deposition remained as an independent predictor of the double endpoint with doubling of baseline serum creatinine or end-stage renal disease. Conclusion The high density of CD4+ T cell infiltration was associated with renal function decline and severity of renal lesions and predicted poor renal survival for DN patients.
Collapse
Affiliation(s)
- Qianqian Han
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Xu
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Li
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Song Lei
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Ziyao Li
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Laboratory of Diabetic Kidney Disease, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lyu F, Gong H, Wu X, Liu X, Lu Y, Wei X, Liu C, Shen Y, Wang Y, Lei L, Chen J, Ma S, Sun H, Yu D, Han J, Xu Y, Wu D. Dimethyl fumarate ameliorates chronic graft-versus-host disease by inhibiting Tfh differentiation via Nrf2. Leukemia 2024:10.1038/s41375-024-02475-5. [PMID: 39580582 DOI: 10.1038/s41375-024-02475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Chronic graft-versus-host disease (cGVHD), characterized by chronic tissue inflammation and fibrosis involving multiple organs, remains a major complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Dimethyl fumarate (DMF) is an anti-inflammatory drug approved for the treatment of multiple sclerosis and psoriasis. We previously reported that DMF effectively inhibits acute GVHD (aGVHD) while preserving the graft-versus-leukemia effect. However, the role of DMF in cGVHD progression remains unknown. Here, we found that DMF administration significantly suppresses follicular helper T cell (Tfh) differentiation, and germinal center formation and alleviates disease severity in different murine cGVHD models. Mechanistically, DMF treatment downregulates IL-21 transcription by activation of Nrf2, thus orchestrating Tfh-related gene programs both in mice and humans. The inhibitory role of DMF on Tfh cell differentiation was diminished in Nrf2 deficient T cells. Importantly, the therapeutic potential of DMF in clinical cGVHD has been validated in human data whereby DMF effectively reduces IL-21 production and Tfh cell generation in peripheral blood mononuclear cells from active cGVHD patients and further attenuates xenograft GVHD. Collectively, our findings reveal that DMF potently inhibits cGVHD development by repressing Tfh cell differentiation via Nrf2, paving the way for the treatment of cGVHD in the clinic.
Collapse
Affiliation(s)
- Fulian Lyu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xin Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yinghao Lu
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiya Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chenchen Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yaoyao Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yuhang Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, USA
| | - Hongjian Sun
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - JingJing Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China.
| |
Collapse
|
14
|
Meléndez DC, Laniewski N, Jusko TA, Qiu X, Paige Lawrence B, Rivera-Núñez Z, Brunner J, Best M, Macomber A, Leger A, Kannan K, Miller RK, Barrett ES, O'Connor TG, Scheible K. In utero exposure to per - and polyfluoroalkyl substances (PFAS) associates with altered human infant T helper cell development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.18.24317489. [PMID: 39606350 PMCID: PMC11601683 DOI: 10.1101/2024.11.18.24317489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Environmental exposures to chemical toxicants during gestation and infancy can dysregulate multiple developmental processes, causing lifelong effects. There is compelling evidence of PFAS-associated immunotoxicity in adults and children. However, the effect of developmental PFAS exposure on infant T-cell immunity is unreported, and, if present, could be implicated in immune-related health outcomes. Objectives We seek to model longitudinal changes in CD4+ T-cell subpopulations from birth through 12 months and their association with in-utero PFAS exposure and postnatal CD4+ T-cell frequencies and functions. Methods Maternal-infant dyads were recruited as part of the UPSIDE-ECHO cohort during the first trimester between 2015 and 2019 in Rochester, New York; dyads were followed through the infant's first birthday. Maternal PFAS concentrations (PFOS, PFOA, PFNA, and PFHXS) were quantified in serum during the second trimester using high-performance liquid chromatography and tandem mass spectrometry. Infant lymphocyte frequencies were assessed at birth, 6- and 12-months using mass cytometry and high-dimensional clustering methods. Linear mixed-effects models were employed to analyze the relationship between maternal PFAS concentrations and CD4+ T-cell subpopulations (n=200). All models included a PFAS and age interaction and were adjusted for parity, infant sex, and pre-pregnancy body mass index. Results In-utero PFAS exposure correlated with multiple CD4+ T-cell subpopulations in infants. The greatest effect sizes were seen in T-follicular helper (Tfh) and T-helper 2 (Th2) cells at 12 months. A log 2 -unit increase in PFOS was associated with lower Tfh [0.17% (95%CI: -0.30, -0.40)] and greater Th2 [0.27% (95%CI: 0.18, 0.35)] cell percentages at 12 months. Similar trends were observed for PFOA, PFNA, and PFHXS. Discussion Maternal PFAS exposures correlate with cell-specific changes in the infant T-cell compartment, including key CD4+ T-cell subpopulations that play central roles in coordinating well-regulated, protective immunity. Future studies into the role of PFAS-associated T-cell distribution and risk of adverse immune-related health outcomes in children are warranted.
Collapse
|
15
|
Li Y, Chen P, Huang X, Huang H, Ma Q, Lin Z, Qiu L, Ou C, Liu W. Pathogenic Th17 cells are a potential therapeutic target for tacrolimus in AChR-myasthenia gravis patients. J Neuroimmunol 2024; 396:578464. [PMID: 39393213 DOI: 10.1016/j.jneuroim.2024.578464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
In our study, we investigated the impact of tacrolimus (TAC) on CD4+ T cell subsets in 41 AChR-MG patients over 12 weeks. Twenty-seven patients were classified as the response group (RG) (improved myasthenia gravis composite scores ≥3), while 14 were non-response. We found that TAC treatment significantly reduced Th17 and pathogenic Th17 cells, along with IL-17 levels in RG, while Th1 and Tfh cells slightly decreased without affecting Th2 or Treg subsets. This indicates that TAC's clinical benefits may be due to its inhibitory effect on the Th17 response, enhancing our insight into its immunomodulatory mechanisms in MG management.
Collapse
Affiliation(s)
- Yingkai Li
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Neuromuscular division, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pei Chen
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao Huang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongqiang Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Li Qiu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Changyi Ou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
16
|
Verstegen NJM, Jorritsma T, ten Brinke A, Barberis M, van Ham SM. TCR-CD3 signal strength regulates plastic coexpression of IL-4 and IFN-γ in Tfh-like cells. Front Immunol 2024; 15:1481243. [PMID: 39582865 PMCID: PMC11581847 DOI: 10.3389/fimmu.2024.1481243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
The development of T follicular helper (Tfh) cells is an ongoing process resulting in the formation of various Tfh subsets. Despite advancements, the precise impact of T cell receptor (TCR) stimulation on this process remains incompletely understood. This study explores how TCR-CD3 signaling strength influences naive CD4+ T cell differentiation into Tfh-like cells and the concurrent expression of interleukin-21 (IL-21), interleukin-4 (IL-4), and interferon-gamma (IFN-γ). Strong TCR-CD3 stimulation induces proliferation and increased IL-21 expression in Tfh-like cells, which exhibit a characteristic phenotype expressing CXCR5 and PD1. The coexpression of IL-4 and IFN-γ in IL-21-producing Tfh-like cells is controlled by the strength TCR-CD3 stimulation; low stimulation favors IL-4, while strong stimulation enhances IFN-γ secretion. Exogenous addition of the effector cytokines IL-21 and IL-4 further modulate cytokine coexpression. These findings highlight the intricate regulatory mechanisms governing cytokine production and plasticity in Tfh-like cells, providing insights into B cell response modulation. In vivo, antigen availability may regulate Tfh cell plasticity, impacting subsequent B cell differentiation, emphasizing the need for further exploration through animal models or antigen-specific Tfh cell analyses in human lymph node biopsies.
Collapse
Affiliation(s)
- Niels J. M. Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Tineke Jorritsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology (CMCB), University of Surrey, Guildford, United Kingdom
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Sainz TP, Sahu V, Gomez JA, Dcunha NJ, Basi AV, Kettlun C, Sarami I, Burks JK, Sampath D, Vega F. Role of the Crosstalk B:Neoplastic T Follicular Helper Cells in the Pathobiology of Nodal T Follicular Helper Cell Lymphomas. J Transl Med 2024; 104:102147. [PMID: 39389311 DOI: 10.1016/j.labinv.2024.102147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL), the most common form of peripheral T-cell lymphoma, originates from follicular helper T (Tfh) cells and is notably resistant to current treatments. The disease progression and maintenance, at least in early stages, are driven by a complex interplay between neoplastic Tfh and clusters of B-cells within the tumor microenvironment, mirroring the functional crosstalk observed inside germinal centers. This interaction is further complicated by recurrent mutations, such as TET2 and DNMT3A, which are present in both Tfh cells and B-cells. These findings suggest that the symbiotic relationship between these 2 cell types could represent a therapeutic vulnerability. This review examines the key components and signaling mechanisms involved in the synapses between B-cells and Tfh cells, emphasizing their significant role in the pathobiology of AITL and potential as therapeutic targets.
Collapse
Affiliation(s)
- Tania P Sainz
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Vishal Sahu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Javier A Gomez
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Nicholas J Dcunha
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Akshay V Basi
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Claudia Kettlun
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Iman Sarami
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Deepa Sampath
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas.
| |
Collapse
|
18
|
Ono K, Ide K, Nakano R, Sakai H, Shimizu S, Tahara H, Ohira M, Tanaka Y, Ohdan H. Polymorphisms in genes involved in regulating follicular helper T cell differentiation predict de novo donor-specific antibody formation after liver transplantation. Hum Immunol 2024; 85:111103. [PMID: 39255558 DOI: 10.1016/j.humimm.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND De novo donor-specific antibodies (dnDSAs) significantly affect the long-term outcomes of liver transplantation (LT), highlighting the importance of risk prediction. Follicular helper T (Tfh) cells have been implicated in dnDSA formation after transplantation. Considering the influence of immune response gene polymorphisms on transplantation outcomes, we investigated the association between polymorphisms in Tfh cell-related genes and dnDSA formation after LT. METHODS Fifty-three living-donor LT patients were included in this study. Single nucleotide polymorphisms (SNPs) were identified in six Tfh cell-related genes crucial for differentiation and maturation (BCL6, CXCR5, CXCL13, ICOS, CD40L, and IL-21); their association with the development of dnDSA after LT was evaluated. RESULTS Among the 53 recipients, 9 developed dnDSAs. BCL6 and IL-21 SNPs showed potential associations with dnDSA formation, enabling risk stratification. CONCLUSIONS Variations in Tfh cell-related genes may predispose individuals to dnDSA formation after LT, emphasizing the importance of genetic factors for predicting post-transplant complications.
Collapse
Affiliation(s)
- Kosuke Ono
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kentaro Ide
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Ryosuke Nakano
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Sakai
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Seiichi Shimizu
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Tahara
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Ohira
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastrointestinal and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
19
|
Wan J, Wang C, Wang Z, Wang L, Wang H, Zhou M, Fu ZF, Zhao L. CXCL13 promotes broad immune responses induced by circular RNA vaccines. Proc Natl Acad Sci U S A 2024; 121:e2406434121. [PMID: 39436660 PMCID: PMC11536096 DOI: 10.1073/pnas.2406434121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
Antibody responses induced by current vaccines for influenza and SARS-CoV-2 often lack robust cross-reactivity. As hubs where diverse immune cells converge and interact, the alterations in the immune microenvironment within lymph nodes (LNs) are intricately linked to immune responses. Herein, we designed a lipid nanoparticle (LNP) loaded with circular RNA (circRNA) and targeted to LNs, in which CXCL13 was directly integrated into antigen-encoding circRNA strands. We demonstrated that CXCL13 alters the transcriptomic profiles of LNs, especially the upregulation of IL-21 and IL-4. Meanwhile, CXCL13 promotes the formation of germinal center and elicits robust antigen-specific T cell responses. With the codelivery of CXCL13 and the antigen, CXCL13 enhances cross-reactive antibodies against influenza virus and SARS-CoV-2, achieving protection against both homologous and heterologous influenza virus challenges in a mouse model. Notably, the targeted modification of LNP surfaces with antibodies helps address some of the challenges associated with lyophilized LNP vaccines, which is crucial for the long-term storage of LNP-circRNA vaccines. Overall, the circRNA-based antigen-CXCL13 coexpression system developed herein provides a simple and robust platform that enhances the magnitude and breadth of antibody responses against multiple viral glycoproteins, highlighting the potential utility of CXCL13 in inducing broad immune responses.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
20
|
Hui L, Li Y, Huang MK, Jiang YM, Liu T. CXCL13: a common target for immune-mediated inflammatory diseases. Clin Exp Med 2024; 24:244. [PMID: 39443356 PMCID: PMC11499446 DOI: 10.1007/s10238-024-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
CXCL13 is a chemokine that plays an important role in the regulation and development of secondary lymphoid organs. CXCL13 is also involved in the regulation of pathological processes, particularly inflammatory responses, of many diseases. The function of CXCL13 varies depending on the condition of the host. In a healthy condition, CXCL13 is mainly secreted by mouse stromal cells or human follicular helper T cells, whereas in diseases conditions, they are produced by human peripheral helper T cells and macrophages in non-lymphoid tissues; this is termed ectopic expression of CXCL13. Ectopic CXCL13 expression is involved in the pathogenesis of various immune-mediated inflammatory diseases as it regulates the migration of B lymphocytes, T lymphocytes, and other immune cells in inflammatory sites as well as influences the expression of inflammatory factors. Additionally, ectopic expression of CXCL13 plays a key role in ectopic lymphoid organ formation. In this review, we focused on the sources of CXCL13 in different conditions and its regulatory mechanisms in immune-mediated inflammatory diseases, providing novel ideas for further research on targeting CXCL13 for the treatment of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lu Hui
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ye Li
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meng-Ke Huang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center/National Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
21
|
Tomita Y, Uehara S, Terada M, Yamamoto N, Nakamura M. Impaired SARS-CoV-2-specific responses via activated T follicular helper cells in immunocompromised kidney transplant recipients. Sci Rep 2024; 14:24571. [PMID: 39427014 PMCID: PMC11490627 DOI: 10.1038/s41598-024-76251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Activated T follicular helper (aTfh) cells are likely important in host immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. We characterized the immune responses of aTfh cells to the second (D2) and third (booster; D3) doses of an mRNA vaccine in the peripheral blood of 40 kidney transplant recipients (KTRs) and 17 healthy control volunteers (HCs). A significant increase in SARS-CoV-2-specific IgG antibody was seen after D3 in the KTRs; nonetheless, the levels after D2 and D3 were significantly lower than in the HCs. After D2, dramatic increases in activated CD45RA-CXCR5+ICOS+PD1+ circulating Tfh (acTfh) cells were observed in the HCs, as well as the seropositive patients among the KTRs, when compared with the seronegative patients among the KTRs. Unlike the HCs, KTRs had less prominent immune responses, including the acTfh and T cells that produce interferon gamma, tumor necrosis factor alpha, and interleukin 21. In addition, the increase in acTfh cells was significantly associated with anti-IgG antibody levels after D3. These results indicate impaired SARS-CoV-2-specific responses via acTfh cells in KTRs, and they suggest that acTfh cells in peripheral blood may play an important role in antibody maintenance following SARS-CoV-2 mRNA vaccination.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Saeko Uehara
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Mari Terada
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Norio Yamamoto
- Department of Virology, Division of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
22
|
Xiong F, Shen K, Long D, Zhou S, Ruan P, Xin Y, Xiao Y, Peng W, Yang M, Wu H, Lu Q. Quercetin ameliorates lupus symptoms by promoting the apoptosis of senescent Tfh cells via the Bcl-2 pathway. Immun Ageing 2024; 21:69. [PMID: 39407236 PMCID: PMC11476537 DOI: 10.1186/s12979-024-00474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that commonly affects the skin, kidneys, joints, and various other systemic tissues, with its development intricately linked to the process of immunosenescence. Quercetin (QC), a phytochemical that occurs naturally, demonstrates many different biological capabilities, such as antibacterial, antioxidant, and anti-inflammatory activities. Our investigation found that QC effectively reduced kidney damage and relieved mesenteric lymph nodes (mLNs) swelling in MRL/lpr lupus mice. Moreover, QC has been found to decrease the number of senescent follicular helper T (Tfh) cells, a pivotal kind of T cells that contribute to the progression of SLE. In vitro, QC exhibited the capacity to modulate mRNA expression levels, with the downregulation of IL-6, IL21-AS1, IL-27, BCL6, and BCL2L12, and the upregulation of FOXP1 and BIM. This modulation resulted in the suppression of Tfh cells differentiation and the enhancement of apoptosis in senescent CD4+ T cells. In addition, the HuProtTM Human Proteome Microarray revealed that QC can directly bind to BCL-2 protein and therefore promote the apoptosis of senescent CD4+ T cell. As a result, our investigative elucidate the potent inhibitory action of QC on the ontogeny of Tfh cells, along with its capacity to abrogate the immunosenescent phenotype. This positions QC as a promising therapeutic strategy for treating SLE.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Kai Shen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Di Long
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Suqing Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Pinglang Ruan
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yue Xin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yuezheng Xiao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
23
|
Haga Y, Coates S, Ray R. Hepatitis C virus chronicity and oncogenic potential: Vaccine development progress. Mol Aspects Med 2024; 99:101305. [PMID: 39167987 DOI: 10.1016/j.mam.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Hepatitis C virus (HCV) infection is a major health problem worldwide. It can cause liver cirrhosis and hepatocellular carcinoma (HCC), making it a cause of morbidity from liver disease. Thus, there is an urgent need for a prophylactic HCV vaccine. Fortunately, modern medicine has transformed the therapy for HCV infection through development of direct-acting antiviral agents (DAAs), achieving high rates of sustained virologic response and giving significant relief from HCC and associated mortality, but unfortunately it fails to eradicate the risk of HCC, especially in HCV-cleared patients with already advanced liver disease. Additionally, DAA-cured patients do not develop sufficient antiviral immunity and are susceptible to reinfection. A comprehensive strategy to control HCV infection must include a vaccine development approach in which the host can develop humoral and cellular immunity to eradicate HCV successfully; however, this remains a challenge as HCV has developed systems to evade immune attacks from its host. This review highlights the current understanding of HCV's effect on liver disease and cancer progression, the nature of immune responses from cell populations interacting with HCV, and the current strategies for vaccine development. The information in this review will advance prophylactic intervention strategies for HCV infection, with the end goal being to prevent chronicity and subsequent liver disease leading to HCC.
Collapse
Affiliation(s)
- Yuki Haga
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Sydney Coates
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, MO, 63104, USA; Department Molecular Microbiology & Immunology, Saint Louis University, Missouri, MO, 63104, USA.
| |
Collapse
|
24
|
Mickael ME, Kubick N, Dragan M, Atanasov AG, Ławiński M, Paszkiewicz J, Horbańczuk JO, Religa P, Thorne A, Sacharczuk M. The impact of BDNF and CD4 + T cell crosstalk on depression. Immunol Res 2024; 72:883-894. [PMID: 38980567 DOI: 10.1007/s12026-024-09514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Małgorzata Dragan
- Faculty of Psychology, University of Warsaw, Krakowskie Przedmieście26/28, 00-927, Warsaw, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Michał Ławiński
- Department of General, Gastroenterology and Oncologic Surgery, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Justyna Paszkiewicz
- Department of Health, John Paul II University of Applied Sciences in Biala Podlaska, Sidorska 95/97, 21-500, Biała Podlaska, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77, Solna, Sweden
| | - Ana Thorne
- Medical Faculty, University of Nis, Bulevar Dr Zorana Djidjica 81, 18000, Nis, Serbia
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552, JastrzebiecMagdalenka, Poland.
| |
Collapse
|
25
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
26
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024; 96:20-41. [PMID: 39233381 PMCID: PMC11579829 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical OdontologyUniversity of OsloOsloNorway
| | - Yngvar Gundersen
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Per Kristian Opstad
- Division for ProtectionNorwegian Defence Research EstablishmentKjellerNorway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of PsychologyUniversity of BergenBergenNorway
| | - Anders Hugoson
- Department of Periodontology, Institute of OdontologyThe Sahlgrenska Academy at University of Gothenburg and School of Health and WelfareGothenburgSweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental CenterFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergenNorway
| |
Collapse
|
27
|
Zhang Y, Chen A, Li D, Yuan Q, Zhu A, Deng J, Wang Y, Liu J, Liang C, Li W, Fang Q, Xie J, Zhang X, Zhang X, Zhang Y, Chen R, Pan T, Zhang H, He X. Development of T follicular helper cell-independent nanoparticle vaccines for SARS-CoV-2 or HIV-1 by targeting ICOSL. NPJ Vaccines 2024; 9:176. [PMID: 39341822 PMCID: PMC11438966 DOI: 10.1038/s41541-024-00971-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
T helper cells, particularly T follicular helper (TFH) cells, are essential for the neutralizing antibody production elicited by pathogens or vaccines. However, in immunocompromised individuals, the inefficient support from TFH cells could lead to limited protection after vaccine inoculation. Here we showed that the conjugation of inducible T cell costimulatory (ICOS) onto the nanoparticle, together with immunogen, significantly enhanced the immune response of the vaccines specific for SARS-CoV-2 or human immunodeficiency virus type-1 (HIV-1) in TFH-deficient mice. Further studies indicated that ICOSL on B cells was triggered by ICOS binding, subsequently activated the PKCβ signaling pathway, and enhanced the survival and proliferation of B cells. Our findings revealed that the stimulation of ICOS-ICOSL interaction by adding ICOS on the nanoparticle vaccine significantly substitutes the function of TFH cells to support B cell response, which is significant for the immunocompromised people, such as the elderly or HIV-1-infected individuals.
Collapse
Affiliation(s)
- Yongli Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Achun Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Daiying Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Quyu Yuan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Airu Zhu
- Guangzhou Laboratory, Bio-island, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieyi Deng
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalin Wang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chaofeng Liang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiatong Xie
- Shenzhen College of International Education, No. 3 Antuoshan 6th Road, Futian District, Shenzhen, China
| | - Xiantao Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ran Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangzhou Laboratory, Bio-island, Guangzhou, China
| | - Xin He
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Bhagchandani SH, Yang L, Lam JH, Maiorino L, Ben-Akiva E, Rodrigues KA, Romanov A, Suh H, Aung A, Wu S, Wadhera A, Chakraborty AK, Irvine DJ. Two-dose priming immunization amplifies humoral immunity by synchronizing vaccine delivery with the germinal center response. Sci Immunol 2024; 9:eadl3755. [PMID: 39303017 PMCID: PMC11492009 DOI: 10.1126/sciimmunol.adl3755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Prolonging exposure to subunit vaccines during the primary immune response enhances humoral immunity. Escalating-dose immunization (EDI), administering vaccines every other day in an increasing pattern over 2 weeks, is particularly effective but challenging to implement clinically. Here, using an HIV Env trimer/saponin adjuvant vaccine, we explored simplified EDI regimens and found that a two-shot regimen administering 20% of the vaccine followed by the remaining 80% of the dose 7 days later increased TFH responses 6-fold, antigen-specific germinal center (GC) B cells 10-fold, and serum antibody titers 10-fold compared with bolus immunization. Computational modeling of TFH priming and the GC response suggested that enhanced activation/antigen loading on dendritic cells and increased capture of antigen delivered in the second dose by follicular dendritic cells contribute to these effects, predictions we verified experimentally. These results suggest that a two-shot priming approach can be used to substantially enhance responses to subunit vaccines.
Collapse
Affiliation(s)
- Sachin H Bhagchandani
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leerang Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jonathan H Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Laura Maiorino
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Elana Ben-Akiva
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Kristen A Rodrigues
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Anna Romanov
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aereas Aung
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Anika Wadhera
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
29
|
Wang C, Khatun MS, Ellsworth CR, Chen Z, Islamuddin M, Nisperuza Vidal AK, Afaque Alam M, Liu S, Mccombs JE, Maness NJ, Blair RV, Kolls JK, Qin X. Deficiency of Tlr7 and Irf7 in mice increases the severity of COVID-19 through the reduced interferon production. Commun Biol 2024; 7:1162. [PMID: 39289468 PMCID: PMC11408513 DOI: 10.1038/s42003-024-06872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Toll-like receptor 7 (Tlr7) deficiency-accelerated severe COVID-19 is associated with reduced production of interferons (IFNs). However, the underlying mechanisms remain elusive. To address these questions, we utilize Tlr7 and Irf7 deficiency mice, single-cell RNA analysis together with bone marrow transplantation approaches. We demonstrate that at the early phase of infection, SARS-CoV-2 causes the upregulation of Tlr7, Irf7, and IFN pathways in the lungs of the infected mice. The deficiency of Tlr7 and Irf7 globally and/or in immune cells in mice increases the severity of COVID-19 via impaired IFN activation in both immune and/or non-immune cells, leading to increased lung viral loads. These effects are associated with reduced IFN alpha and gamma levels in the circulation. The deficiency of Tlr7 tends to cause the reduced production and nuclear translocation of interferon regulatory factor 7 (IRF7) in the lungs of the infected mice, indicative of reduced IRF7 activation. Despite higher amounts of lung viral antigen, Tlr7 or Irf7 deficiency resulted in substantially reduced production of antibodies against SARS-CoV-2, thereby delaying the viral clearance. These results highlight the importance of the activation of TLR7 and IRF7 leading to IFN production on the development of innate and adaptive immunity against COVID-19.
Collapse
Affiliation(s)
- Chenxiao Wang
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mst Shamima Khatun
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Calder R Ellsworth
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Zheng Chen
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mohammad Islamuddin
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ana Karina Nisperuza Vidal
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Mohammad Afaque Alam
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shumei Liu
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Janet E Mccombs
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas J Maness
- Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Robert V Blair
- Tulane National Primate Research Center, Covington, LA, USA
| | - Jay K Kolls
- Departments of Medicine and Pediatrics, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xuebin Qin
- Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
30
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
31
|
Wang M, Wang H, Wang X, Shen Y, Zhou D, Jiang Y. Identification of cellular senescence-related genes and immune cell infiltration characteristics in intervertebral disc degeneration. Front Immunol 2024; 15:1439976. [PMID: 39328407 PMCID: PMC11424418 DOI: 10.3389/fimmu.2024.1439976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) progression involves multiple factors, including loss of nucleus pulposus cells and extracellular matrix as the basic pathological mechanism of degeneration, and is closely related to cellular senescence and immune cell infiltration. The aim of study was to identify critical cellular senescence-related genes and immune cell infiltration characteristics in IDD. Methods Four datasets, including GSE70362, GSE112216, GSE114169, and GSE150408, were downloaded from the Gene Expression Omnibus database. The senescence-related genes were acquired from the CellAge Database and intersected with differentially expressed genes (DEGs) between IDD and control samples for senescence-related DEGs (SRDEGs). Protein-protein interaction (PPI) network analysis was performed to obtain ten hub SRDEGs. A consensus cluster analysis based on these hub genes was performed to divide the patients into clusters. The functional enrichment, and immune infiltration statuses of the clusters were compared. Weighted gene co-expression network analysis was used to identified key gene modules. The overlapping genes from key modules, DEGs of clusters and hub SRDEGs were intersected to obtain potential biomarkers. To verify the expression of potential biomarkers, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were performed by using human intervertebral disc tissues. Results In the GSE70362 dataset, a total of 364 DEGs were identified, of which 150 were upregulated and 214 were downregulated, and 35 genes were selected as SRDEGs. PPI analysis revealed ten hub SRDEGs and consensus cluster analysis divided the patients into two clusters. Compared to Cluster 2, Cluster 1 was highly enriched in extracellular matrix organization and various metabolic process. The level of Follicular T helper cells in the Cluster 1 was significantly higher than that in the Cluster 2. IGFBP3 and NQO1 were identified as potential biomarkers. The remaining 3 datasets, and the result of qPCR and immunohistochemistry showed that the expression levels of NQO1 and IGFBP3 in the degenerated group were higher than those in the control or treatment groups. Conclusion Senescence-related genes play a key role in the development and occurrence of IDD. IGFBP3 and NQO1 are strongly correlated with immune infiltration in the IDD and could become novel therapeutic targets that prevent the progression of IDD.
Collapse
Affiliation(s)
- Muyi Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hao Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xin Wang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yifei Shen
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Dong Zhou
- Department of Orthopedics, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yuqing Jiang
- Department of Orthopedics, Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
32
|
Zhang L, Zhong H, Fan J, Mao J, Li Y. Clinical significance of T helper cell subsets in the peripheral blood and bone marrow of patients with multiple myeloma. Front Immunol 2024; 15:1445530. [PMID: 39324138 PMCID: PMC11422089 DOI: 10.3389/fimmu.2024.1445530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Background T helper (Th) cell subsets primarily assist B cells in differentiating into plasma cells in the germinal center. The mechanism of malignant transformation of plasma cells is an important target for the clinical treatment of MM; however, the mechanism remains unclear. Methods We collected the peripheral blood (PB) and bone marrow (BM) samples of 33 patients with MM. In addition, the PB was also collected from 25 normal healthy controls (HCs). We analyzed the percentages of Th cell subsets in the PB and BM samples of patients with MM. Results Tfh/CD4+ were positively correlated with the proportion of myeloma cells in the BM and PB samples (r = 0.592, P = 0.002 and r = 0.510, P = 0.010 respectively), and showed a strong correlation between the BM and PB samples (r = 0.6559, P = 0.0095). In the PB samples, the percentages of Th2/CD4+ and Tfh2/Tfh cells were significantly lower in patients with MM than in HCs (P = 0.00013 and P = 0.0004, respectively), whereas the percentage of Th17/CD4+ and Tfh17/Tfh was significantly higher in newly diagnosed patients with MM than in HCs (P = 0.0037 and P = 0.03, respectively), and all these cells showed a good predictive value for MM (area under the curve [AUC] 0.781, = 0.792, = 0.837, and 0.723 respectively). In the PB samples, all subsets of PD-1+ICOS- Tfh showed a noticeable downward trend in MM from newly diagnosed to non-remission and remission groups. In contrast, all subsets of PD-1-ICOS+ Tfh increased gradually. Conclusion Th cell subsets play an important role in the occurrence and development of MM and may provide a fundamental basis for identifying new immunotherapy targets and prognosis.
Collapse
Affiliation(s)
- Liangjun Zhang
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Huixiu Zhong
- Department of Laboratory Medicine, Zigong First People’s Hospital, Zigong, China
| | - Jiwen Fan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiansen Mao
- Department of Laboratory Medicine, Nanjing International School, Nanjing, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Seong H, Yoon JG, Nham E, Choi YJ, Noh JY, Cheong HJ, Kim WJ, Kim EH, Kim C, Han YH, Lim S, Song JY. The gut microbiota modifies antibody durability and booster responses after SARS-CoV-2 vaccination. J Transl Med 2024; 22:827. [PMID: 39242525 PMCID: PMC11380214 DOI: 10.1186/s12967-024-05637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are pivotal in combating coronavirus disease 2019 (COVID-19); however, the declining antibody titers postvaccination pose challenges for sustained protection and herd immunity. Although gut microbiome is reported to affect the early antibody response after vaccination, its impact on the longevity of vaccine-induced antibodies remains unexplored. METHODS A prospective cohort study was conducted involving 44 healthy adults who received two doses of either the BNT162b2 or ChAdOx1 vaccine, followed by a BNT162b2 booster at six months. The gut microbiome was serially analyzed using 16S rRNA and shotgun sequencing, while humoral immune response was assessed using a SARS-CoV-2 spike protein immunoassay. RESULTS Faecalibacterium prausnitzii was associated with robust and persistent antibody responses post-BNT162b2 vaccination. In comparison, Escherichia coli was associated with a slower antibody decay following ChAdOx1 vaccination. The booster immune response was correlated with metabolic pathways involving cellular functions and aromatic amino acid synthesis. CONCLUSIONS The findings of this study underscored the potential interaction between the gut microbiome and the longevity/boosting effect of antibodies following vaccination against SARS-CoV-2. The identification of specific microbial associations suggests the prospect of microbiome-based strategies for enhancing vaccine efficacy.
Collapse
Affiliation(s)
- Hye Seong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eliel Nham
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Yu Jung Choi
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Chulwoo Kim
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young-Hee Han
- Department of Food and Nutrition, Chungbuk National University, Cheongju, Republic of Korea
| | - Sooyeon Lim
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| | - Joon Young Song
- Department of Internal Medicine, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Asia Pacific Influenza Institute, Guro Hospital, Korea University College of Medicine, Gurodong-Ro 148, Guro-Gu, Seoul, 08308, Republic of Korea.
- Vaccine Innovation Center-KU Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Meng Q, Ma J, Cui J, Gu Y, Shan Y. Subpopulation dynamics of T and B lymphocytes in Sjögren's syndrome: implications for disease activity and treatment. Front Immunol 2024; 15:1468469. [PMID: 39290700 PMCID: PMC11405198 DOI: 10.3389/fimmu.2024.1468469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder primarily affecting the body's exocrine glands, particularly the salivary and lacrimal glands, which lead to severe symptoms of dry eyes and mouth. The pathogenesis of SS involves the production of autoantibodies by activated immune cells, and secretion of multiple cytokines, which collectively lead to tissue damage and functional impairment. In SS, the Immune interaction among T and B cells is particularly significant. Lymphocytic infiltration in the salivary glands is predominantly composed of CD4+ T cells, whose activation cause the death of glandular epithelial cells and subsequent tissue destruction. The excessive activity of T cells contributes significantly to the disease mechanism, with helper T cells (CD4+) differentiating into various subgroups including Th1/Th2, Th17, as well as Treg, each contributing to the pathological process through distinct cytokine secretion. In patients with SS, B cells are excessively activated, leading to substantial production of autoantibodies. These antibodies can attack self-tissues, especially the lacrimal and salivary glands, causing inflammation and tissue damage. Changes in B cell subpopulations in SS patients, such as increases in plasmablasts and plasma cells, correlate positively with serum autoantibody levels and disease progression. Therapies targeting T cells and B cells are extensively researched with the aim of alleviating symptoms and improving the quality of life for patients. Understanding how these cells promote disease development through various mechanisms, and further identifying novel T and B cell subgroups with functional characterization, will facilitate the development of more effective strategies to treat SS.
Collapse
Affiliation(s)
- Qingliang Meng
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Junfu Ma
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiakang Cui
- Department of Rheumatism, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yangyi Gu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Mansourabadi Z, Ariafar A, Chenari N, Hakimellahi H, Vahidi Y, Faghih Z. Clinical and prognostic significance of follicular helper and regulatory T cells in bladder cancer draining lymph nodes. Sci Rep 2024; 14:20358. [PMID: 39223192 PMCID: PMC11369110 DOI: 10.1038/s41598-024-70675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Follicular helper and regulatory T cells (Tfh/TFR) cells are distinct subsets of CD4+ cells that have been recognized for their critical role in regulating cellular reactions within the germinal centers of lymphoid follicles. In the present study, we aimed to determine the presence and the frequency of these cells in draining lymph nodes of patients with bladder cancer (BC). Forty-six patients with BC who had undergone radical cystectomy and pelvic lymph node dissection were enrolled. Following routine pathological examination, a portion of the dissected lymph nodes was minced to obtain a single-cell suspension. Mononuclear cells were then separated using Ficoll-Hypaque gradient centrifugation, and the samples with proper viability (> 95%) were subjected to further analysis. To phenotype the follicular subsets, cells were stained with appropriate fluorochrome-conjugated antibodies specific for CD4, CXCR5, BCL6, and FOXP3. The cells were then acquired on a four-color flow cytometer. The data were analyzed with the FlowJo software version 10.8.1 package. Our analysis indicated that, on average 37.89 ± 16.36% of CD4+ lymphocytes in draining lymph nodes of patients with BC expressed CXCR5. The majority of them were negative for FOXP3, representing helper subsets (28.73 ± 13.66). A small percent simultaneously expressed BCL6 transcription factor (1.65% ± 1.35), designated as Tfh (CD4+BCL6+CXCR5+FOXP3-). While less than 10% of CD4+ lymphocytes expressed CXCR5 and FOXP3, 1.78 ± 2.54 were also positive for BCL6, known as TFR. Statistical analysis revealed that the frequency of both Tfh and TFR cells was higher in draining lymph nodes of patients with tumor-infiltrated nodes (P = 0.035 and P = 0.079, respectively) compared to those with negative ones. The percentage of these cells was also higher in high-grade tumors compared to low-grade ones (P = 0.031 for both). Our data collectively indicated that however approximately one third of CD4+ lymphocytes expressed CXCR5 and accordingly had the capacity to enter the follicles, less than 2% of them represented Tfh and TFR phenotypes. The percentage of these cells increased in progressed tumors and showed an association with negative prognostic factors.
Collapse
Affiliation(s)
- Zahra Mansourabadi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ariafar
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nooshafarin Chenari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
| | - Hossein Hakimellahi
- Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasmin Vahidi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 7134845550, Shiraz, Iran.
| |
Collapse
|
36
|
Deguine J, Xavier RJ. B cell tolerance and autoimmunity: Lessons from repertoires. J Exp Med 2024; 221:e20231314. [PMID: 39093312 PMCID: PMC11296956 DOI: 10.1084/jem.20231314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive immune cell function is regulated by a highly diverse receptor recombined from variable germline-encoded segments that can recognize an almost unlimited array of epitopes. While this diversity enables the recognition of any pathogen, it also poses a risk of self-recognition, leading to autoimmunity. Many layers of regulation are present during both the generation and activation of B cells to prevent this phenomenon, although they are evidently imperfect. In recent years, our ability to analyze immune repertoires at scale has drastically increased, both through advances in sequencing and single-cell analyses. Here, we review the current knowledge on B cell repertoire analyses, focusing on their implication for autoimmunity. These studies demonstrate that a failure of tolerance occurs at multiple independent checkpoints in different autoimmune contexts, particularly during B cell maturation, plasmablast differentiation, and within germinal centers. These failures are marked by distinct repertoire features that may be used to identify disease- or patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Deguine
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
37
|
Xing Q, Chang D, Xie S, Zhao X, Zhang H, Wang X, Bai X, Dong C. BCL6 is required for the thymic development of TCRαβ +CD8αα + intraepithelial lymphocyte lineage. Sci Immunol 2024; 9:eadk4348. [PMID: 38335269 DOI: 10.1126/sciimmunol.adk4348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/13/2023] [Indexed: 02/12/2024]
Abstract
TCRαβ+CD8αα+ intraepithelial lymphocytes (CD8αα+ αβ IELs) are a specialized subset of T cells in the gut epithelium that develop from thymic agonist selected IEL precursors (IELps). The molecular mechanisms underlying the selection and differentiation of this T cell type in the thymus are largely unknown. Here, we found that Bcl6 deficiency in αβ T cells resulted in the near absence of CD8αα+ αβ IELs. BCL6 was expressed by approximately 50% of CD8αα+ αβ IELs and by the majority of thymic PD1+ IELps after agonist selection. Bcl6 deficiency blocked early IELp generation in the thymus, and its expression in IELps was induced by thymic TCR signaling in an ERK-dependent manner. As a result of Bcl6 deficiency, the precursors of IELps among CD4+CD8+ double-positive thymocytes exhibited increased apoptosis during agonist selection and impaired IELp differentiation and maturation. Together, our results elucidate BCL6 as a crucial transcription factor during the thymic development of CD8αα+ αβ IELs.
Collapse
Affiliation(s)
- Qi Xing
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dehui Chang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shiyuan Xie
- Institute for Advanced Interdisciplinary Studies and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, New Cornerstone Science Laboratory, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai 200127, China
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
- Westlake University School of Medicine-affiliated Hangzhou First Hospital, Hangzhou 310024, China
| |
Collapse
|
38
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
39
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
40
|
Mohammad Piri S, Amin Habibi M, Shool S, Khazaeli Najafabadi M, Ahmadpour S, Alemi F, Aria Nejadghaderi S, Shokri P, Abdi M, Asghari N, Amir Asef-Agah S, Tavakolpour S. Role of T follicular helper cells in autoimmune rheumatic Diseases: A systematic review on immunopathogenesis and response to treatment. Hum Immunol 2024; 85:110838. [PMID: 38970880 DOI: 10.1016/j.humimm.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND T follicular helper (Tfh) cells are a subdivision of T helper cells involved in antigen-specific B cell immunity. Tfh cells play an essential role in the interaction of T cells/B cells in the germinal centers (GC), and dysregulation of Tfh actions can offer pathogenic autoantibody formation and lead to the development of autoimmune diseases. This study seeks to evaluate changes in Tfh frequency and its related cytokines in autoimmune disease, its association with disease phase, severity, prognosis, and the effect of immunosuppressive treatment on the Tfh population. METHOD The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement. Electronic databases, including PubMed, Scopus, Web of Science, and Embase, were systematically searched for potentially eligible studies up to January 1, 2024. RESULTS We identified 4998 articles in the initial search, from which 1686 similar titles were removed. A total of 3312 articles were initially screened, and 3051 articles were excluded by title/abstract screening. A total of 261 studies were considered for full-text assessment, and 205 articles were excluded by reason. Finally, a total of 56 studies were included in our review. CONCLUSION The population of Tfh cells is generally higher in autoimmune diseases versus Health control. Moreover, the number of Tfh cells is associated with the disease severity and can be considered for determining the prognosis of studies. Also, peripheral blood circulating Tfh (cTfh) cells are an available sample that can be used as an indicator for diagnosing diseases.
Collapse
Affiliation(s)
- Seyed Mohammad Piri
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Shool
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fakhroddin Alemi
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Aria Nejadghaderi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Pourya Shokri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohtaram Abdi
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Negin Asghari
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Seyed Amir Asef-Agah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
41
|
Inoue T, Baba Y, Kurosaki T. BCR signaling in germinal center B cell selection. Trends Immunol 2024; 45:693-704. [PMID: 39168721 DOI: 10.1016/j.it.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
When mature B cells are activated by antigens, the selection of these activated B cells takes place particularly during T cell-dependent immune responses in which an improved antibody repertoire is generated through somatic hypermutation in germinal centers (GCs). In this process the importance of antigen presentation by GC B cells, and subsequent T follicular helper (Tfh) cell help in positive selection of GC B cells, has been well appreciated. By contrast, the role of B cell receptor (BCR) signaling per se remains unclear. Strong experimental support for the involvement of BCR signaling in GC B cell selection has now been provided. Interestingly, these studies suggest that several checkpoints operating through the BCR ensure affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Molecular Systems Immunology, University of Tokyo Pandemic Preparedness, Infection, and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
42
|
Gu Q, Yin S, Tong X, Rui F, Zhu Y, Ma X, Huang R, Wu C, Li J. Current research insights into the role of CTLA-4 in hepatitis B virus (HBV) infection. J Viral Hepat 2024; 31:557-564. [PMID: 38771314 DOI: 10.1111/jvh.13958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is a significant global public health concern, and the clearance of HBV is closely linked to the activity of HBV-specific T cells, which is regulated by various co-suppressor molecules. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is among these co-suppressor molecules which induces T cell exhaustion by competitively inhibiting CD28 and dampening the function of HBV-specific T cells. CTLA-4 also plays a role in the regulation of T helper (Th) cell differentiation and influences cytokine release. In addition, CTLA-4 can impact glucose metabolism in hepatocellular carcinoma through its interaction with T regulatory (Treg) cells. This review aims to provide a comprehensive overview of the existing literature related to the role of CTLA-4 in HBV patients across different subsets of T cells. Additionally, we propose a discussion on the possible mechanisms through which CTLA-4 may contribute to HBV infection, as well as the development of HBV-induced cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Qi Gu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Fajuan Rui
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yixuan Zhu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Ma
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
44
|
Sircy LM, Ramstead AG, Gibbs LC, Joshi H, Baessler A, Mena I, García-Sastre A, Emerson LL, Fairfax KC, Williams MA, Hale JS. Generation of antigen-specific memory CD4 T cells by heterologous immunization enhances the magnitude of the germinal center response upon influenza infection. PLoS Pathog 2024; 20:e1011639. [PMID: 39283916 PMCID: PMC11404825 DOI: 10.1371/journal.ppat.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
Current influenza vaccine strategies have yet to overcome significant obstacles, including rapid antigenic drift of seasonal influenza viruses, in generating efficacious long-term humoral immunity. Due to the necessity of germinal center formation in generating long-lived high affinity antibodies, the germinal center has increasingly become a target for the development of novel or improvement of less-efficacious vaccines. However, there remains a major gap in current influenza research to effectively target T follicular helper cells during vaccination to alter the germinal center reaction. In this study, we used a heterologous infection or immunization priming strategy to seed an antigen-specific memory CD4+ T cell pool prior to influenza infection in mice to evaluate the effect of recalled memory T follicular helper cells in increased help to influenza-specific primary B cells and enhanced generation of neutralizing antibodies. We found that heterologous priming with intranasal infection with acute lymphocytic choriomeningitis virus (LCMV) or intramuscular immunization with adjuvanted recombinant LCMV glycoprotein induced increased antigen-specific effector CD4+ T and B cellular responses following infection with a recombinant influenza strain that expresses LCMV glycoprotein. Heterologously primed mice had increased expansion of secondary Th1 and Tfh cell subsets, including increased CD4+ TRM cells in the lung. However, the early enhancement of the germinal center cellular response following influenza infection did not impact influenza-specific antibody generation or B cell repertoires compared to primary influenza infection. Overall, our study suggests that while heterologous infection or immunization priming of CD4+ T cells is able to enhance the early germinal center reaction, further studies to understand how to target the germinal center and CD4+ T cells specifically to increase long-lived antiviral humoral immunity are needed.
Collapse
Affiliation(s)
- Linda M. Sircy
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew G. Ramstead
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Lisa C. Gibbs
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hemant Joshi
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Lyska L. Emerson
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Keke C. Fairfax
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Matthew A. Williams
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - J. Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
45
|
Schattgen SA, Turner JS, Ghonim MA, Crawford JC, Schmitz AJ, Kim H, Zhou JQ, Awad W, Mettelman RC, Kim W, McIntire KM, Haile A, Klebert MK, Suessen T, Middleton WD, Teefey SA, Presti RM, Ellebedy AH, Thomas PG. Influenza vaccination stimulates maturation of the human T follicular helper cell response. Nat Immunol 2024; 25:1742-1753. [PMID: 39164477 PMCID: PMC11362011 DOI: 10.1038/s41590-024-01926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
The differentiation and specificity of human CD4+ T follicular helper cells (TFH cells) after influenza vaccination have been poorly defined. Here we profiled blood and draining lymph node (LN) samples from human volunteers for over 2 years after two influenza vaccines were administered 1 year apart to define the evolution of the CD4+ TFH cell response. The first vaccination induced an increase in the frequency of circulating TFH (cTFH) and LN TFH cells at week 1 postvaccination. This increase was transient for cTFH cells, whereas the LN TFH cells further expanded during week 2 and remained elevated in frequency for at least 3 months. We observed several distinct subsets of TFH cells in the LN, including pre-TFH cells, memory TFH cells, germinal center (GC) TFH cells and interleukin-10+ TFH cell subsets beginning at baseline and at all time points postvaccination. The shift toward a GC TFH cell phenotype occurred with faster kinetics after the second vaccine compared to the first vaccine. We identified several influenza-specific TFH cell clonal lineages, including multiple responses targeting internal influenza virus proteins, and found that each TFH cell state was attainable within a clonal lineage. Thus, human TFH cells form a durable and dynamic multitissue network.
Collapse
Affiliation(s)
- Stefan A Schattgen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Ghonim
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeremy Chase Crawford
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyunjin Kim
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Walid Awad
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert C Mettelman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Waggoner S, Cox A, Canaday L, Katko A, Feldman H, Warrick K, Tselikova A, Seelamneni H, Roskin K. KLF2 determines the susceptibility of T cells to immunoregulatory NK cells. RESEARCH SQUARE 2024:rs.3.rs-4921081. [PMID: 39257976 PMCID: PMC11384801 DOI: 10.21203/rs.3.rs-4921081/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Natural killer (NK) cells suppress cellular and humoral immune responses via killing of T cells, resulting in diminished vaccine responses in mice and humans. Efforts to overcome this roadblock and achieve optimal immunity require an improved understanding of the molecular mediators facilitating NK cell-targeting of discrete subsets of CD4 T cells. We employed single-cell forensic victimology and CRISPR-Cas9 editing to delineate a transcriptional program uniquely responsible for the susceptibility of a subpopulation of CD4 T cells to perforin-dependent immunoregulation by NK cells. The unique vulnerability of these CD4 T cells relative to other subsets of CD4 T cells was not associated with a pattern of NK-cell-receptor ligand expression that would favor activation of NK cells. Instead, susceptible CD4 T cells were skewed toward follicular helper T cell (Tfh) differentiation and exhibited intermediate expression of Klf2 and a related suite of KLF2-target genes (e.g. S1pr1) involved in cell migration and spatial positioning. NK-cell dependent suppression of the subset of Tfh exhibiting intermediate expression of KLF2 and S1PR1 was confirmed with single-cell proteomics. CRISPR targeting of KLF2 in CD4 T cells prevented suppression by NK cells. Thus, KLF2 regulation of spatial positioning of T cells is a key determinant of NK-cell immunoregulatory function and a possible target for strategies to enhance vaccine efficacy.
Collapse
Affiliation(s)
| | - Andrew Cox
- Cincinnati Children's Hospital Medical Center
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shamseldin MM, Read KA, Hall JM, Tuazon JA, Brown JM, Guo M, Gupta YA, Deora R, Oestreich KJ, Dubey P. The adjuvant BcfA activates antigen presenting cells through TLR4 and supports T FH and T H1 while attenuating T H2 gene programming. Front Immunol 2024; 15:1439418. [PMID: 39267766 PMCID: PMC11390363 DOI: 10.3389/fimmu.2024.1439418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Adjuvants added to subunit vaccines augment antigen-specific immune responses. One mechanism of adjuvant action is activation of pattern recognition receptors (PRRs) on innate immune cells. Bordetella colonization factor A (BcfA); an outer membrane protein with adjuvant function, activates TH1/TH17-polarized immune responses to protein antigens from Bordetella pertussis and SARS CoV-2. Unlike other adjuvants, BcfA does not elicit a TH2 response. Methods To understand the mechanism of BcfA-driven TH1/TH17 vs. TH2 activation, we screened PRRs to identify pathways activated by BcfA. We then tested the role of this receptor in the BcfA-mediated activation of bone marrow-derived dendritic cells (BMDCs) using mice with germline deletion of TLR4 to quantify upregulation of costimulatory molecule expression and cytokine production in vitro and in vivo. Activity was also tested on human PBMCs. Results PRR screening showed that BcfA activates antigen presenting cells through murine TLR4. BcfA-treated WT BMDCs upregulated expression of the costimulatory molecules CD40, CD80, and CD86 and produced IL-6, IL-12/23 p40, and TNF-α while TLR4 KO BMDCs were not activated. Furthermore, human PBMCs stimulated with BcfA produced IL-6. BcfA-stimulated murine BMDCs also exhibited increased uptake of the antigen DQ-OVA, supporting a role for BcfA in improving antigen presentation to T cells. BcfA further activated APCs in murine lungs. Using an in vitro TH cell polarization system, we found that BcfA-stimulated BMDC supernatant supported TFH and TH1 while suppressing TH2 gene programming. Conclusions Overall, these data provide mechanistic understanding of how this novel adjuvant activates immune responses.
Collapse
Affiliation(s)
- Mohamed M. Shamseldin
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Departments of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University-Ain Helwan, Helwan, Egypt
| | - Kaitlin A. Read
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jesse M. Hall
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Tuazon
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Jessica M. Brown
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Myra Guo
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Yash A. Gupta
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Rajendar Deora
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Departments of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Kenneth J. Oestreich
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Purnima Dubey
- Departments of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
48
|
Kütük T, Onbaşilar İ, Oskay-Halaçli S, Babaoğlu B, Ayhan S, Yalçin SS. Investigation of the Hepatitis-B Vaccine's Immune Response in a Non-Alcoholic Fatty Liver Disease Mouse Model. Vaccines (Basel) 2024; 12:934. [PMID: 39204057 PMCID: PMC11359425 DOI: 10.3390/vaccines12080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to investigate the immunogenicity of the hepatitis B virus (HBV) vaccine by applying a normal and high-dose hepatitis B virus vaccination program in the mice modeling of non-alcoholic fatty liver disease (NAFLD). NAFLD was induced in mouse livers via diet. At the 10-week mark, both groups were divided into 3 subgroups. While the standard dose vaccination program was applied on days 0, 7, and 21, two high-dose programs were applied: one was applied on days 0 and 7, and the other was applied on days 0, 7, and 21. All mice were euthanized. Blood samples from anti-HB titers; T follicular helper, T follicular regulatory, CD27+, and CD38+ cells; and the liver, spleen, and thymus were taken for histopathologic evaluation. NAFLD subgroups receiving high doses showed higher hepatocyte ballooning scores than normal-dose subgroup. There were differences in CD27+ and CD27+CD38+ cells in animals fed on different diets, without any differences or interactions in terms of vaccine protocols. In the NAFLD group, a negative correlation was observed between anti-HB titers and T helper and CD27+ cells, while a positive correlation was observed with CD38+ cells. NAFLD induced changes in immune parameters in mice, but there was no difference in vaccine efficacy among the applied vaccine protocols. Based on this study's results, high-dose vaccination protocols are not recommended in cases of NAFLD, as they do not enhance efficacy and may lead to increased liver damage.
Collapse
Affiliation(s)
- Tuğba Kütük
- Vaccinology Department, Institute of Vaccinology, Hacettepe University, Ankara 06430, Türkiye; (T.K.); (S.S.Y.)
- Turkish Medicines and Medical Devices Agency, Ankara 06500, Türkiye
| | - İlyas Onbaşilar
- Vaccinology Department, Institute of Vaccinology, Hacettepe University, Ankara 06430, Türkiye; (T.K.); (S.S.Y.)
- Health Science Institute, Hacettepe University, Ankara 06430, Türkiye
- Transgenic Animal Technologies Research and Application Center, Hacettepe University, Ankara 06430, Türkiye
| | - Sevil Oskay-Halaçli
- Department of Basic Sciences of Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06430, Türkiye; (S.O.-H.); (S.A.)
| | - Berrin Babaoğlu
- Department of Pathology, Hacettepe University, Ankara 06430, Türkiye;
| | - Selda Ayhan
- Department of Basic Sciences of Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06430, Türkiye; (S.O.-H.); (S.A.)
| | - Sıddika Songül Yalçin
- Vaccinology Department, Institute of Vaccinology, Hacettepe University, Ankara 06430, Türkiye; (T.K.); (S.S.Y.)
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06430, Türkiye
| |
Collapse
|
49
|
Fechtner S, Allen BE, Chriswell ME, Jubair WK, Robertson CE, Kofonow JN, Frank DN, Holers VM, Kuhn KA. 3,3-Dimethyl-1-Butanol and its Metabolite 3,3-Dimethylbutyrate Ameliorate Collagen-induced Arthritis Independent of Choline Trimethylamine Lyase Activity. Inflammation 2024:10.1007/s10753-024-02126-y. [PMID: 39153148 DOI: 10.1007/s10753-024-02126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Conflicting data exist in rheumatoid arthritis and the collagen-induced arthritis (CIA) murine model of autoimmune arthritis regarding the role of bacterial carnitine and choline metabolism into the inflammatory product trimethylamine (TMA), which is oxidized in the liver to trimethylamine-N-oxide (TMAO). Using two published inhibitors of bacterial TMA lyase, 3,3-dimethyl-1-butanol (DMB) and fluoromethylcholine (FMC), we tested if TMA/TMAO were relevant to inflammation in the development of CIA. Surprisingly, DMB-treated mice demonstrated > 50% reduction in arthritis severity compared to FMC and vehicle-treated mice, but amelioration of disease was independent of TMA/TMAO production. Given the apparent contradiction that DMB did not inhibit TMA, we then investigated the mechanism of protection by DMB. After verifying that DMB acted independently of the intestinal microbiome, we traced the metabolism of DMB within the host and identified a novel host-derived metabolite of DMB, 3,3-dimethyl-1-butyric acid (DMBut). In vivo studies of mice treated with DMB or DMBut demonstrated efficacy of both molecules in significantly reducing disease and proinflammatory cytokines in CIA, while in vitro studies suggest these molecules may act by modulating secretion of proinflammatory cytokines from macrophages. Altogether, our study suggests that DMB and/or its metabolites are protective in CIA through direct immunomodulatory effects rather than inhibition of bacterial TMA lyases.
Collapse
Affiliation(s)
- Sabrina Fechtner
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan E Allen
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Meagan E Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Widian K Jubair
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer N Kofonow
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
50
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|