1
|
Ma J, Zhang Y, Li J, Dang Y, Hu D. Regulation of histone H3K27 methylation in inflammation and cancer. MOLECULAR BIOMEDICINE 2025; 6:14. [PMID: 40042761 PMCID: PMC11882493 DOI: 10.1186/s43556-025-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Inflammation is a multifaceted defense mechanism of the immune system against infection. Chronic inflammation is intricately linked to all stages of tumorigenesis and is therefore associated with an elevated risk of developing serious cancers. Epigenetic mechanisms have the capacity to trigger inflammation as well as facilitate tumor development and transformation within an inflammatory context. They achieve this by dynamically modulating the expression of both pro-inflammatory and anti-inflammatory cytokines, which in turn sustains chronic inflammation. The aberrant epigenetic landscape reconfigures the transcriptional programs of inflammatory and oncogenic genes. This reconfiguration is pivotal in dictating the biological functions of both tumor cells and immune cells. Aberrant histone H3 lysine 27 site (H3K27) methylation has been shown to be involved in biological behaviors such as inflammation development, tumor progression, and immune response. The establishment and maintenance of this repressive epigenetic mark is dependent on the involvement of the responsible histone modifying enzymes enhancer of zeste homologue 2 (EZH2), jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat gene X (UTX) as well as multiple cofactors. In addition, specific pharmacological agents have been shown to modulate H3K27 methylation levels, thereby modulating inflammation and carcinogenesis. This review comprehensively summarises the current characteristics and clinical significance of epigenetic regulation of H3K27 methylation in the context of inflammatory response and tumor progression.
Collapse
Affiliation(s)
- Jing Ma
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Yalin Zhang
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jingyuan Li
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, (Shanghai University of Traditional Chinese Medicine), Shanghai, 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, (Shanghai University of Traditional Chinese Medicine), Shanghai, 200032, China.
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
2
|
Stanisic T, Ewing EU, Lindell A, Al-Jaberi F, Kongsbak-Wismann M. Vitamin D 3-VDR and vitamin A-RAR affect IL-13 and IFNγ secretion from human CD4 + T cells directly and indirectly via competition for their shared co-receptor RXR. Scand J Immunol 2025; 101:e13429. [PMID: 39822032 DOI: 10.1111/sji.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/19/2025]
Abstract
The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D3 (1,25(OH)2D3) and 9-cis retinoic acid (9cRA) on T helper (TH)1 and TH2 cytokines and transcription factors in primary human blood-derived CD4+ T cells. We aimed to address the discrepancies in this field, particularly regarding the effects of 9cRA and the vitamins in combination. 1,25(OH)2D3 upregulated IL-13 and suppressed IFNγ, while 9cRA had the opposite effects. This was largely independent of a TH1/TH2 phenotype shift. Combined vitamin supplementation produced intermediate cytokine levels, not only through transcriptional regulation by VDR-RXR and RAR-RXR but also through 1,25(OH)2D3 counteracting the effects of 9cRA on solely 9cRA-responsive genes. Similar results were observed in hereditary vitamin D-resistant rickets (HVDRR) patient T cells, where VDR cannot bind to DNA, indicating that RXR binding to either receptor can limit the other's activity. Additionally, we observed downregulated RAR upon 9cRA supplementation and its re-localization out of the nucleus upon 1,25(OH)2D3 supplementation, suggesting a mechanism of indirect regulation by VDR. VDR protein levels were also upregulated upon 9cRA supplementation, suggesting a novel negative feedback mechanism of 9cRA transcriptional activity, whereby 9cRA promotes its own competitor. This study sets the stage for future research into the combined immunomodulatory mechanisms of 1,25(OH)2D3 and 9cRA, involving both direct transcriptional regulation and indirect regulation via RXR competitive binding.
Collapse
Affiliation(s)
- Tiana Stanisic
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma Uttrup Ewing
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alma Lindell
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fatima Al-Jaberi
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kongsbak-Wismann
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Luo CH, Hu LH, Liu JY, Xia L, Zhou L, Sun RH, Lin CC, Qiu X, Jiang B, Yang MY, Zhang XH, Yang XB, Chen GQ, Lu Y. CDK9 recruits HUWE1 to degrade RARα and offers therapeutic opportunities for cutaneous T-cell lymphoma. Nat Commun 2024; 15:10594. [PMID: 39632829 PMCID: PMC11618697 DOI: 10.1038/s41467-024-54354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous non-Hodgkin lymphoma originating in the skin and invading the systemic hematopoietic system. Current treatments, including chemotherapy and monoclonal antibodies yielded limited responses with high incidence of side effects, highlighting the need for targeted therapy. Screening with small inhibitors library, herein we identify cyclin dependent kinase 9 (CDK9) as a driver of CTCL growth. Single-cell RNA-seq analysis reveals a CDK9high malignant T cell cluster with a unique actively proliferating feature. Inhibition, depletion or proteolysis targeting chimera (PROTAC)-mediated degradation of CDK9 significantly reduces CTCL cell growth in vitro and in murine models. CDK9 also promotes degradation of retinoic acid receptor α (RARα) via recruiting the E3 ligase HUWE1. Co-administration of CDK9-PROTAC (GT-02897) with all-trans retinoic acid (ATRA) leads to synergistic attenuation of tumor growth in vitro and in xenograft models, providing a potential translational treatment for complete eradication of CTCL.
Collapse
MESH Headings
- Humans
- Animals
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Mice
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Line, Tumor
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/genetics
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Proteolysis/drug effects
- Female
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Chen-Hui Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Hong Hu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Yang Liu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Hong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chen-Cen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xing Qiu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xiao-Bao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Karim A, Garg R, Saikia B, Tiwari A, Sahu S, Malhotra M, Minz RW, Rawat A, Singh S, Suri D. Unraveling the unphosphorylated STAT3-unphosphorylated NF-κB pathway in loss of function STAT3 Hyper IgE syndrome. Front Immunol 2024; 15:1332817. [PMID: 39229272 PMCID: PMC11369709 DOI: 10.3389/fimmu.2024.1332817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background Patients with loss of function signal transducer and activator of transcription 3-related Hyper IgE Syndrome (LOF STAT3 HIES) present with recurrent staphylococcal skin and pulmonary infections along with the elevated serum IgE levels, eczematous rashes, and skeletal and facial abnormalities. Defective STAT3 signaling results in reduced Th17 cells and an impaired IL-17/IL-22 response primarily due to a compromised canonical Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway that involves STAT3 phosphorylation, dimerization, nuclear translocation, and gene transcription. The non-canonical pathway involving unphosphorylated STAT3 and its role in disease pathogenesis, however, is unexplored in HIES. Objective This study aims to elucidate the role of unphosphorylated STAT3-unphosphorylated NF-κB (uSTAT3-uNF-κB) activation pathway in LOF STAT3 HIES patients. Methodology The mRNA expression of downstream molecules of unphosphorylated STAT3-unphosphorylated NF-κB pathway was studied in five LOF STAT3 HIES patients and transfected STAT3 mutants post-IL-6 stimulation. Immunoprecipitation assays were performed to assess the binding of STAT3 and NF-κB to RANTES promoter. Results A reduced expression of the downstream signaling molecules of the uSTAT3-uNF-κB complex pathway, viz., RANTES, STAT3, IL-6, IL-8, ICAM1, IL-8, ZFP36L2, CSF1, MRAS, and SOCS3, in LOF STAT3 HIES patients as well as the different STAT3 mutant plasmids was observed. Immunoprecipitation studies showed a reduced interaction of STAT3 and NF-κB to RANTES in HIES patients. Conclusion The reduced expression of downstream signaling molecules, specially RANTES and STAT3, confirmed the impaired uSTAT3-uNF-κB pathway in STAT3 LOF HIES. Decreased levels of RANTES and STAT3 could be a significant component in the disease pathogenesis of Hyper IgE Syndrome.
Collapse
Affiliation(s)
- Adil Karim
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rashi Garg
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abha Tiwari
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Smrity Sahu
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mehak Malhotra
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W. Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Palmer AC, Bedsaul-Fryer JR, Stephensen CB. Interactions of Nutrition and Infection: The Role of Micronutrient Deficiencies in the Immune Response to Pathogens and Implications for Child Health. Annu Rev Nutr 2024; 44:99-124. [PMID: 38724105 DOI: 10.1146/annurev-nutr-062122-014910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Approximately five million children die each year from preventable causes, including respiratory infections, diarrhea, and malaria. Roughly half of those deaths are attributable to undernutrition, including micronutrient deficiencies (MNDs). The influence of infection on micronutrient status is well established: The inflammatory response to pathogens triggers anorexia, while pathogens and the immune response can both alter nutrient absorption and cause nutrient losses. We review the roles of vitamin A, vitamin D, iron, zinc, and selenium in the immune system, which act in the regulation of molecular- or cellular-level host defenses, directly affecting pathogens or protecting against oxidative stress or inflammation. We further summarize high-quality evidence regarding the synergistic or antagonistic interactions between MNDs, pathogens, and morbidity or mortality relevant to child health in low- and middle-income countries. We conclude with a discussion of gaps in the literature and future directions for multidisciplinary research on the interactions of MNDs, infection, and inflammation.
Collapse
Affiliation(s)
- Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Jacquelyn R Bedsaul-Fryer
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Charles B Stephensen
- Department of Nutrition, University of California, Davis, California, USA
- Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| |
Collapse
|
6
|
Farazuddin M, Acker G, Zourob J, O’Konek JJ, Wong PT, Morris S, Rasky AJ, Kim CH, Lukacs NW, Baker JR. Inhibiting retinoic acid signaling in dendritic cells suppresses respiratory syncytial virus infection through enhanced antiviral immunity. iScience 2024; 27:110103. [PMID: 39045100 PMCID: PMC11263793 DOI: 10.1016/j.isci.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
Retinoic acid (RA), controls the immunoregulatory functions of many immune cells, including dendritic cells (DCs), and is important for mucosal immunity. In DCs, RA regulates the expression of pattern recognition receptors and stimulates interferon production. Here, we investigated the role of RA in DCs in mounting immunity to respiratory syncytial virus (RSV). To abolish RA signaling in DCs, we used mice expressing a dominant negative form of retinoic acid receptor-α (RARα) under the CD11c promoter (CD11c-dnRARα). Paradoxically, upon RSV challenge, these animals had lower viral burden, reduced pathology, and greater Th1 polarized immunity than wild-type (WT) mice. Moreover, CD11c-dnRARα DCs infected with RSV showed enhancement in innate and adaptive immunity genes, while genes associated with viral replication were downregulated. These findings suggest that the absence of RA signaling in DCs enhances innate immunity against RSV infection leading to decreased viral load and reduced pathogenicity.
Collapse
Affiliation(s)
- Mohammad Farazuddin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Grant Acker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joseph Zourob
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica J. O’Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pamela T. Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Susan Morris
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew J. Rasky
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chang H. Kim
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James R. Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Chen Y, Tong X, Lu R, Zhang Z, Ma T. All-trans retinoic acid in hematologic disorders: not just acute promyelocytic leukemia. Front Pharmacol 2024; 15:1404092. [PMID: 39027338 PMCID: PMC11254857 DOI: 10.3389/fphar.2024.1404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Tong
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Rongyuan Lu
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Zhengfu Zhang
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| |
Collapse
|
8
|
Li X, Tan J, Zhang Z. cRARα: Derailleur nuclear retinoic acid chain to TCR. Allergy 2024; 79:1383-1385. [PMID: 38240138 DOI: 10.1111/all.16034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/02/2024]
Affiliation(s)
- Xingjie Li
- Inflammation and Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinzhuo Tan
- Inflammation and Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zongde Zhang
- Inflammation and Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Lokken-Toyli KL, Diaz-Ochoa VE, Camacho L, Stull-Lane AR, Van Hecke AER, Mooney JP, Muñoz AD, Walker GT, Hampel D, Jiang X, Labuda JC, Depew CE, McSorley SJ, Stephensen CB, Tsolis RM. Vitamin A deficiency impairs neutrophil-mediated control of Salmonella via SLC11A1 in mice. Nat Microbiol 2024; 9:727-736. [PMID: 38374245 PMCID: PMC10914596 DOI: 10.1038/s41564-024-01613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
In sub-Saharan Africa, multidrug-resistant non-typhoidal Salmonella serovars are a common cause of fatal bloodstream infection. Malnutrition is a predisposing factor, but the underlying mechanisms are unknown. Here we show that vitamin A deficiency, one of the most prevalent micronutrient deficits afflicting African children, increases susceptibility to disseminated non-typhoidal Salmonella disease in mice and impairs terminal neutrophil maturation. Immature neutrophils had reduced expression of Slc11a1, a gene that encodes a metal ion transporter generally thought to restrict pathogen growth in macrophages. Adoptive transfer of SLC11A1-proficient neutrophils, but not SLC11A1-deficient neutrophils, reduced systemic Salmonella burden in Slc11a1-/- mice or mice with vitamin A deficiency. Loss of terminal granulopoiesis regulator CCAAT/enhancer-binding protein ϵ (C/EBPϵ) also decreased neutrophil-mediated control of Salmonella, but not that mediated by peritoneal macrophages. Susceptibility to infection increased in Cebpe-/- Slc11a1+/+ mice compared with wild-type controls, in an Slc11a1-expression-dependent manner. These data suggest that SLC11A1 deficiency impairs Salmonella control in part by blunting neutrophil-mediated defence.
Collapse
Affiliation(s)
- Kristen L Lokken-Toyli
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Vladimir E Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Lizbeth Camacho
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Annica R Stull-Lane
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Amber E R Van Hecke
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Jason P Mooney
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Ariel D Muñoz
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Gregory T Walker
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Daniela Hampel
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Xiaowen Jiang
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
| | - Jasmine C Labuda
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Claire E Depew
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Charles B Stephensen
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
10
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
11
|
Nehzat N, Browne RW, Ghazal D, Tamaño-Blanco M, Jakimovski D, Weinstock-Guttman B, Zivadinov R, Ramanathan M. Exploratory 5-year follow-up study of retinol, tocopherols, and carotenoids in multiple sclerosis. Mult Scler Relat Disord 2024; 81:105143. [PMID: 38039941 DOI: 10.1016/j.msard.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Retinol, tocopherols, and carotenoids (RTC) have physiological roles as vitamins, pro-vitamins, and antioxidants, and provide biomarkers of dietary vegetable and fruit intake. The goal was to investigate RTC in multiple sclerosis (MS). METHODS This exploratory study included 106 people with MS (71 relapsing-remitting MS or RR-MS; and 35 progressive MS or PMS) and 31 healthy controls (HC) at baseline and 5-year follow-up (5YFU). Serum retinol, α-carotene, β-carotene, α-tocopherol, δ-tocopherol, γ-tocopherol, β-cryptoxanthin, lutein/zeaxanthin, and lycopene were measured using high performance liquid chromatography. Serum neurofilament light chain (sNfL) levels were measured using the single molecule array method. Expanded Disability Status Scale (EDSS) and low contrast letter acuity (LCLA) were used as disability measures. RESULTS Retinol in MS was positively correlated with α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, and α-tocopherol but negatively correlated with δ-tocopherol. EDSS was associated with α-tocopherol, δ-tocopherol, and lycopene. Greater retinol levels were associated with greater LCLA in RR-MS and PMS; high contrast visual acuity was not associated. Greater γ-tocopherol levels were associated with lower LCLA and high contrast visual acuity in PMS. CONCLUSIONS RTC exhibit distinctive associations with LCLA and EDSS in MS.
Collapse
Affiliation(s)
- Nasim Nehzat
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Diala Ghazal
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Miriam Tamaño-Blanco
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Buffalo Neuroimaging Analysis Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, University at Buffalo, The State University of New York, Buffalo, NY, United States; Buffalo Neuroimaging Analysis Center, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States; Department of Neurology, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
12
|
Larange A, Takazawa I, Kakugawa K, Thiault N, Ngoi S, Olive ME, Iwaya H, Seguin L, Vicente-Suarez I, Becart S, Verstichel G, Balancio A, Altman A, Chang JT, Taniuchi I, Lillemeier B, Kronenberg M, Myers SA, Cheroutre H. A regulatory circuit controlled by extranuclear and nuclear retinoic acid receptor α determines T cell activation and function. Immunity 2023; 56:2054-2069.e10. [PMID: 37597518 PMCID: PMC10552917 DOI: 10.1016/j.immuni.2023.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Ligation of retinoic acid receptor alpha (RARα) by RA promotes varied transcriptional programs associated with immune activation and tolerance, but genetic deletion approaches suggest the impact of RARα on TCR signaling. Here, we examined whether RARα would exert roles beyond transcriptional regulation. Specific deletion of the nuclear isoform of RARα revealed an RARα isoform in the cytoplasm of T cells. Extranuclear RARα was rapidly phosphorylated upon TCR stimulation and recruited to the TCR signalosome. RA interfered with extranuclear RARα signaling, causing suboptimal TCR activation while enhancing FOXP3+ regulatory T cell conversion. TCR activation induced the expression of CRABP2, which translocates RA to the nucleus. Deletion of Crabp2 led to increased RA in the cytoplasm and interfered with signalosome-RARα, resulting in impaired anti-pathogen immunity and suppressed autoimmune disease. Our findings underscore the significance of subcellular RA/RARα signaling in T cells and identify extranuclear RARα as a component of the TCR signalosome and a determinant of immune responses.
Collapse
Affiliation(s)
- Alexandre Larange
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ikuo Takazawa
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kiyokazu Kakugawa
- Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Nicolas Thiault
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - SooMun Ngoi
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Hitoshi Iwaya
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Laetitia Seguin
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ildefonso Vicente-Suarez
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephane Becart
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Greet Verstichel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ann Balancio
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Amnon Altman
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - John T Chang
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Bjorn Lillemeier
- Immunobiology and Microbial Pathogenesis Laboratory, IMPL-L, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Samuel A Myers
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
| | - Hilde Cheroutre
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Laboratory for Immune Crosstalk, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
13
|
Wang L, Li D, Zhu Z, Liao Y, Wu J, Liu Y, Yang R, Dai H, Wu Z, Sun X. Knockout of Sema4D alleviates liver fibrosis by suppressing AOX1 expression. Pharmacol Res 2023; 195:106886. [PMID: 37591326 DOI: 10.1016/j.phrs.2023.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Liver fibrosis can occur in many chronic liver diseases, and no effective treatments are available due to the poorly characterized molecular pathogenesis. Semaphorin 4D (Sema4D) has immune functions and serves important roles in T cell priming. Here, we found that Sema4D was highly expressed in fibrotic liver, and the expression of Sema4D increased with hepatic stellate cells (HSCs) activation. Knockout of Sema4D alleviated liver fibrosis. Mechanistically, knockout of Sema4D alleviated liver fibrosis by suppressing the expression of AOX1 in retinol metabolism. Further investigation demonstrated that retinoic acid receptor α (RARA), an important nuclear receptor of retinoic acid, was reduced by Sema4D knockout during liver fibrogenesis. Sema4D knockout-mediated suppression of liver fibrosis was partly mediated by regulating the balance of Th1, Th2, Th17, and T-bet+Treg cells via inhibiting AOX1/RARA. Thus, targeting Sema4D may hold promise as a potential therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
| | - Yao Liao
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Wu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuheng Liu
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 511436, China
| | - Ruibing Yang
- Guangzhou KingMed Diagnostic Laboratory Group Co Ltd, Guangzhou 510310, China
| | - Hanqiao Dai
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China.
| |
Collapse
|
14
|
Ono K, Sujino T, Miyamoto K, Harada Y, Kojo S, Yoshimatsu Y, Tanemoto S, Koda Y, Zheng J, Sayama K, Koide T, Teratani T, Mikami Y, Takabayashi K, Nakamoto N, Hosoe N, London M, Ogata H, Mucida D, Taniuchi I, Kanai T. Downregulation of chemokine receptor 9 facilitates CD4 +CD8αα + intraepithelial lymphocyte development. Nat Commun 2023; 14:5152. [PMID: 37620389 PMCID: PMC10449822 DOI: 10.1038/s41467-023-40950-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) reside in the gut epithelial layer, where they help in maintaining intestinal homeostasis. Peripheral CD4+ T cells can develop into CD4+CD8αα+ IELs upon arrival at the gut epithelium via the lamina propria (LP). Although this specific differentiation of T cells is well established, the mechanisms preventing it from occurring in the LP remain unclear. Here, we show that chemokine receptor 9 (CCR9) expression is low in epithelial CD4+CD8αα+ IELs, but CCR9 deficiency results in CD4+CD8αα+ over-differentiation in both the epithelium and the LP. Single-cell RNA sequencing shows an enriched precursor cell cluster for CD4+CD8αα+ IELs in Ccr9-/- mice. CD4+ T cells isolated from the epithelium of Ccr9-/- mice also display increased expression of Cbfβ2, and the genomic occupancy modification of Cbfβ2 expression reveals its important function in CD4+CD8αα+ differentiation. These results implicate a link between CCR9 downregulation and Cbfb2 splicing upregulation to enhance CD4+CD8αα+ IEL differentiation.
Collapse
Affiliation(s)
- Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical Co., Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Immunology and Stem Cell Biology, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Jiawen Zheng
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazutoshi Sayama
- Applied Life Science Course, College of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
16
|
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X, Yvonne Wan YJ. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther 2023; 31:1829-1845. [PMID: 37143325 PMCID: PMC10277895 DOI: 10.1016/j.ymthe.2023.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
MicroRNA-22 (miR-22) can be induced by beneficial metabolites that have metabolic and immune effects, including retinoic acids, bile acids, vitamin D3, and short-chain fatty acids. The tumor suppressor effects of miR-22 have been suggested, but whether miR-22 treats orthotopic hepatocellular carcinoma (HCC) is not established. The role of miR-22 in regulating tumor immunity is also poorly understood. Our data showed that miR-22 delivered by adeno-associated virus serotype 8 effectively treated HCC. Compared with FDA-approved lenvatinib, miR-22 produced better survival outcomes without noticeable toxicity. miR-22 silenced hypoxia-inducible factor 1 (HIF1α) and enhanced retinoic acid signaling in both hepatocytes and T cells. Moreover, miR-22 treatment improved metabolism and reduced inflammation. In the liver, miR-22 reduced the abundance of IL17-producing T cells and inhibited IL17 signaling by reducing the occupancy of HIF1α in the Rorc and Il17a genes. Conversely, increasing IL17 signaling ameliorated the anti-HCC effect of miR-22. Additionally, miR-22 expanded cytotoxic T cells and reduced regulatory T cells (Treg). Moreover, depleting cytotoxic T cells also abolished the anti-HCC effects of miR-22. In patients, miR-22 high HCC had upregulated metabolic pathways and reduced IL17 pro-inflammatory signaling compared with miR-22 low HCC. Together, miR-22 gene therapy can be a novel option for HCC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|
17
|
Farazuddin M, Ludka N, Friesen L, Landers JJ, O’Konek JJ, Kim CH, Baker JR. Retinoic Acid Signaling Is Required for Dendritic Cell Maturation and the Induction of T Cell Immunity. Immunohorizons 2023; 7:480-492. [PMID: 37341756 PMCID: PMC10580129 DOI: 10.4049/immunohorizons.2300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Vitamin A and its biologically active metabolites, all-trans and 9-cis retinoic acid (RA), are thought to be important in generating and modulating immune function. However, RA modulates the function of many types of immune cells, and its specific role in dendritic cell (DC) activation, Ag presentation, and T cell effector function has not been fully characterized. Because RA works primarily through RA receptor (RAR)α, we examined mice with a myeloid cell-specific defect in RA signaling. These transgenic mice have a CD11c-cre-driven expression of a truncated form of RARα that specifically blocks the signaling of all forms of RARs in myeloid cells. This defect results in abnormal DC function, with impaired DC maturation and activation, and reduced Ag uptake and processing. These DC abnormalities were associated with a reduced ability to mount Ag-specific T cell responses to immunization despite having normally functioning T cells. In contrast, the loss of DC-specific RA signaling did not significantly alter levels of Ag-specific Abs postimmunization and resulted in an increase in bronchial IgA. Our findings indicate that RA signaling in DCs is crucial for immune activation, and its absence impairs the development of Ag-specific effector functions of T cell immunity.
Collapse
Affiliation(s)
- Mohammad Farazuddin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI
| | - Nicholas Ludka
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI
| | - Leon Friesen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - Jeffrey J. Landers
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI
| | - Jessica J. O’Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI
| | - Chang H. Kim
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - James R. Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
18
|
Zhu YN, Gu XL, Wang LY, Guan N, Li CG. All-Trans Retinoic Acid Promotes M2 Macrophage Polarization in Vitro by Activating the p38MAPK/STAT6 Signaling Pathway. Immunol Invest 2023; 52:298-318. [PMID: 36731128 DOI: 10.1080/08820139.2023.2173077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND M2-type macrophages are inflammation-suppressing cells that are differentiated after induction by cytokines such as IL-4 or IL-13, which play an important regulatory role in inflammation and influence the regression of inflammation-related diseases. All-trans retinoic acid (ATRA) has an important role in suppressing immune-mediated inflammatory responses but the effect and underlying mechanism of ATRA on the polarization of M2 macrophages remains unclear. METHODS Macrophages were isolated from peritoneal wash fluid, and IL-4 (20 ng/mL) was used to construct a m2-type macrophage polarization model. The model was incubated with different concentrations of ATRA (15 µg/ml, 30 µg/ml, 45 µg/ml) for 24 h, and pretreated macrophages with p38MAPKα inhibitor SB202190 (20 μM). MTT, Trypan blue staining, Annexin V-PE/7-AAD staining, flow cytometry, real-time PCR and western blotting were used to investigate the effect and mechanism of ATRA on the polarization of M2 macrophages. RESULTS Compared with the IL-4 group, the proportion of F4/80+CD206+ M2-type macrophages was significantly higher in the ATRA group (P < 0.01). mRNA and protein expression levels of Arg-1, IL-10 and TGF-β1 were as significantly higher (P < 0.01) in the ATRA group as phosphorylation levels of STAT6 and p38MAPK (P < 0.01). After pretreatment with the addition of the inhibitor SB202190, M2-type macrophages proportion and their associated factors expression were significantly (P < 0.01) reduced, as compared with those in the ATRA group, but they were comparable (P > 0.05) with the IL-4 group. CONCLUSION The combination of ATRA and IL-4 activated the p38MAPK/STAT6-signaling pathway to promote polarization of M2 macrophages.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xiao-Li Gu
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Lin-Yuan Wang
- Department of Periodontics and Mucasa, The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Ning Guan
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chen-Guang Li
- Key Laboratory of Brain and Spinal Cord Injury Research, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
19
|
Nasl-Khameneh AM, Mirshafiey A, Moghadasi AN, Yekaninejad MS, Parastouei K, Nejati S, Saboor-Yaraghi AA. The immunomodulatory effects of all-trans retinoic acid and docosahexaenoic acid combination treatment on the expression of IL-2, IL-4, T-bet, and GATA3 genes in PBMCs of multiple sclerosis patients. Neurol Res 2023; 45:510-519. [PMID: 36598970 DOI: 10.1080/01616412.2022.2162222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a potentially disabling autoimmune disease of the central nervous system. Neither the pathogenesis nor the effectiveness of treatment of MS has been fully understood. This in vitro trial evaluated the beneficial immunomodulatory effects of single and combined treatments of all-trans retinoic acid (ATRA) and docosahexaenoic acid (DHA) on the peripheral blood mononuclear cells (PBMCs) of relapsing-remitting MS (RRMS) patients who were receiving interferon beta (IFN-β). METHODS The PBMCs of 15 RRMS patients were isolated, cultured, and treated with single and combined treatments of ATRA and DHA. The expressions of IL-2, IL-4, T-bet, and GATA3 genes were evaluated using real-time PCR. RESULTS The results showed that a single treatment of ATRA could significantly suppress the gene expression of the pro-inflammatory cytokine, IL-2 (P < 0.05), and related transcription factor, T-bet (P < 0.001). The gene expression level of the anti-inflammatory cytokine, IL-4, and its transcription factor, GATA3, were not significantly changed. The expression of IL-2 and T-bet genes was significantly decreased in combination treatments of ATRA and DHA (P < 0.001). Significant suppression of IL-2 and T-bet (P < 0.001) was observed in ATRA and DHA combination therapy with half doses of their single treatment, which suggested a synergistic effect of these components. DISCUSSION Co-administration of vitamin A and DHA, an omega-3 fatty acid derivative, may exert a synergistic effect in modulating the immune system in MS patients; however, more studies are needed to evaluate the exact effects and mechanism of their actions on the immune cells.
Collapse
Affiliation(s)
- Ateke Mousavi Nasl-Khameneh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Department of Neurology and MS Research Center, Neuroscience Institute, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Karim Parastouei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Nejati
- Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Saboor-Yaraghi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, International Campus, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Friesen L, Kostlan R, Liu Q, Yu H, Zhu J, Lukacs N, Kim CH. Cutting Edge: The Expression of Transcription Inhibitor GFI1 Is Induced by Retinoic Acid to Rein in Th9 Polarization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1237-1242. [PMID: 36165199 PMCID: PMC9522314 DOI: 10.4049/jimmunol.2200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/07/2022] [Indexed: 11/07/2022]
Abstract
IL-9, produced mainly by specialized T cells, mast cells, and group 2 innate lymphoid cells, regulates immune responses, including anti-helminth and allergic responses. Polarization of naive CD4 T cells into IL-9-producing T cells (Th9s) is induced by IL-4 and TGF-β1 or IL-1β. In this article, we report that the transcription factor growth factor-independent 1 transcriptional repressor (GFI1) plays a negative role in mouse Th9 polarization. Moreover, the expression of GFI1 is controlled by liganded RARα, allowing GFI1 to mediate the negative effect of retinoic acid on IL-9 expression. The Gfi1 gene has multiple RARα binding sites in the promoter region for recruiting nuclear coactivator steroid receptor coactivator-3 and p300 for histone epigenetic modifications in a retinoic acid-dependent manner. Retinoic acid-induced GFI1 binds the Il9 gene and suppresses its expression. Thus, GFI1 is a novel negative regulator of Il9 gene expression. The negative GFI1 pathway for IL-9 regulation provides a potential control point for Th9 activity.
Collapse
Affiliation(s)
- Leon Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Raymond Kostlan
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Hao Yu
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IL
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Nicholas Lukacs
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI;
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI
| |
Collapse
|
21
|
Thangavelu G, Andrejeva G, Bolivar-Wagers S, Jin S, Zaiken MC, Loschi M, Aguilar EG, Furlan SN, Brown CC, Lee YC, Hyman CM, Feser CJ, Panoskaltsis-Mortari A, Hippen KL, MacDonald KP, Murphy WJ, Maillard I, Hill GR, Munn DH, Zeiser R, Kean LS, Rathmell JC, Chi H, Noelle RJ, Blazar BR. Retinoic acid signaling acts as a rheostat to balance Treg function. Cell Mol Immunol 2022; 19:820-833. [PMID: 35581350 PMCID: PMC9243059 DOI: 10.1038/s41423-022-00869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/14/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T cells (Tregs) promote immune homeostasis by maintaining self-tolerance and regulating inflammatory responses. Under certain inflammatory conditions, Tregs can lose their lineage stability and function. Previous studies have reported that ex vivo exposure to retinoic acid (RA) enhances Treg function and stability. However, it is unknown how RA receptor signaling in Tregs influences these processes in vivo. Herein, we employed mouse models in which RA signaling is silenced by the expression of the dominant negative receptor (DN) RARα in all T cells. Despite the fact that DNRARα conventional T cells are hypofunctional, Tregs had increased CD25 expression, STAT5 pathway activation, mTORC1 signaling and supersuppressor function. Furthermore, DNRARα Tregs had increased inhibitory molecule expression, amino acid transporter expression, and metabolic fitness and decreased antiapoptotic proteins. Supersuppressor function was observed when wild-type mice were treated with a pharmacologic pan-RAR antagonist. Unexpectedly, Treg-specific expression of DNRARα resulted in distinct phenotypes, such that a single allele of DNRARα in Tregs heightened their suppressive function, and biallelic expression led to loss of suppression and autoimmunity. The loss of Treg function was not cell intrinsic, as Tregs that developed in a noninflammatory milieu in chimeric mice reconstituted with DNRARα and wild-type bone marrow maintained the enhanced suppressive capacity. Fate mapping suggested that maintaining Treg stability in an inflammatory milieu requires RA signaling. Our findings indicate that RA signaling acts as a rheostat to balance Treg function in inflammatory and noninflammatory conditions in a dose-dependent manner.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Gabriela Andrejeva
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Bolivar-Wagers
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Sujeong Jin
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael C Zaiken
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Loschi
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Ethan G Aguilar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Scott N Furlan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chrysothemis C Brown
- Howard Hughes Medical Institute, Immunology Program, and Ludwig Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Chi Lee
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Cameron McDonald Hyman
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Colby J Feser
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Keli L Hippen
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kelli P MacDonald
- Department of Immunology, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute and School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - David H Munn
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| | - Leslie S Kean
- Boston Children's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jeffrey C Rathmell
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, USA
| | - Bruce R Blazar
- Department of Pediatrics, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
22
|
Deng Q, Chen J. Potential Therapeutic Effect of All-Trans Retinoic Acid on Atherosclerosis. Biomolecules 2022; 12:869. [PMID: 35883425 PMCID: PMC9312697 DOI: 10.3390/biom12070869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is a major risk factor for myocardial infarction and ischemic stroke, which are the leading cause of death worldwide. All-trans retinoic acid (ATRA) is a natural derivative of essential vitamin A. Numerous studies have shown that ATRA plays an important role in cell proliferation, cell apoptosis, cell differentiation, and embryonic development. All-trans retinoic acid (ATRA) is a ligand of retinoic acid receptors that regulates various biological processes by activating retinoic acid signals. In this paper, the metabolic processes of ATRA were reviewed, with emphasis on the effects of ATRA on inflammatory cells involved in the process of atherosclerosis.
Collapse
Affiliation(s)
| | - Jixiang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| |
Collapse
|
23
|
郭 莉, 张 燕, 罗 文, 赵 天, 杨 德. [Regulatory Effect of All-Trans Retinoic Acid on the Expression of IL-1β in Macrophages and the Mechanisms Involved]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:444-451. [PMID: 35642153 PMCID: PMC10409436 DOI: 10.12182/20220560507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 06/15/2023]
Abstract
Objective To investigate the regulatory effect of all-trans retinoic acid (ATRA) on the expression interleukin-1β (IL-1β) in macrophages and the mechanisms involved. Methods Macrophages were treated with 1 μmol/L ATRA for 24 h before RNA-Sequence. Differentially expressed genes (DEGs) were screened out and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene ontology (GO) functional analysis, and protein-protein interaction networks (PPI) analysis. After treatment with different doses of ATRA for 24 h, the expression of IL-1β was examined with qRT-PCR and Western blot. The activation of NF-κB signaling and caspase-1 was observed by Western blot and immunofluorescence staining. Results Compared with the blank control group, a total of 71 DEGs of macrophages were upregulated in the ATRA treatment group. KEGG analysis showed that the up-regulated DEGs were involved in IL-17 signaling pathway, tumor necrosis factor (TNF) signaling pathway, etc. GO analysis indicated that the up-regulated DEGs were involved in the biological processes of the production of IL-1β, response to lipopolysaccharide, etc. PPI analysis revealed that inflammatory cytokines, adhesion molecules, and chemokines were the key genes that ATRA acted on. In vitro experiments showed that ATRA promoted IL-1β expression in macrophages in a concentration-dependent manner. The expression of p-NF-κB, NF-κB, and caspase-1 were significantly increased by ATRA compared with those of the control group ( P<0.05), and p-NF-κB translocated to the cell nucleus in the ATRA group. Conclusion ATRA may promote the expression of IL-1β by activating NF-κB signaling and caspase-1 in macrophages, this study may provide evidence for the immune regulatory function of ATRA on macrophages.
Collapse
Affiliation(s)
- 莉 郭
- 重庆医科大学附属口腔医院 (重庆 401147)Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Institutions, Chongqing 401147, China
| | - 燕 张
- 重庆医科大学附属口腔医院 (重庆 401147)Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Institutions, Chongqing 401147, China
| | - 文萍 罗
- 重庆医科大学附属口腔医院 (重庆 401147)Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Institutions, Chongqing 401147, China
| | - 天宇 赵
- 重庆医科大学附属口腔医院 (重庆 401147)Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Institutions, Chongqing 401147, China
| | - 德琴 杨
- 重庆医科大学附属口腔医院 (重庆 401147)Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
- 口腔疾病与生物医学重庆市重点实验室 (重庆 401147)Chongqing Municipal Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- 重庆市高校市级口腔生物医学工程重点实验室(重庆 401147)Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Institutions, Chongqing 401147, China
| |
Collapse
|
24
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
25
|
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol 2022; 15:562-572. [PMID: 35418672 DOI: 10.1038/s41385-022-00509-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023]
Abstract
Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
Collapse
Affiliation(s)
- Amelie Bos
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Surgery, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina Mebius
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Thangavelu G, Zaiken MC, Mohamed FA, Flynn R, Du J, Rhee SY, Riddle MJ, Aguilar EG, Panoskaltsis-Mortari A, Sanders ME, Blazar BR. Targeting the Retinoid X Receptor Pathway Prevents and Ameliorates Murine Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:765319. [PMID: 35359939 PMCID: PMC8963714 DOI: 10.3389/fimmu.2022.765319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/26/2022] [Indexed: 02/03/2023] Open
Abstract
Most allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients receive peripheral blood stem cell grafts resulting in a 30%-70% incidence of chronic graft-versus-host disease (cGVHD), a major cause of mortality and morbidity in long-term survivors. While systemic steroids remain the standard of care for first-line therapy, patients may require long-term administration, and those with steroid-resistant or refractory cGVHD have a worse prognosis. Although durable and deep responses with second-line therapies can be achieved in some patients, there remains an urgent need for new therapies. In this study, we evaluated the efficacy of IRX4204, a novel agonist that activates RXRs and is in clinical trials for cancer treatment to prevent and treat cGVHD in two complementary murine models. In a major histocompatibility complex mismatched, non-sclerodermatous multiorgan system model with bronchiolitis obliterans, IRX4204 prevented and reversed cGVHD including associated pulmonary dysfunction with restoration of germinal center T-follicular helper: T-follicular regulatory cell balance. In a minor histocompatibility antigen disparate sclerodermatous model, IRX4204 treatment significantly prevented and ameliorated skin cGVHD by reducing Th1 and Th17 differentiation due to anti-inflammatory properties. Together, these results indicate that IRX4204 is a promising therapeutic option to treat cGVHD with bronchiolitis obliterans or sclerodermatous manifestations.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael C. Zaiken
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Flynn
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Jing Du
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Megan J. Riddle
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G. Aguilar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Stephensen CB, Lietz G. Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr 2021; 126:1663-1672. [PMID: 33468263 PMCID: PMC7884725 DOI: 10.1017/s0007114521000246] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV2 infects respiratory epithelial cells via its cellular receptor angiotensin-converting enzyme 2, causing a viral pneumonia with pronounced inflammation resulting in significant damage to the lungs and other organ systems, including the kidneys, though symptoms and disease severity are quite variable depending on the intensity of exposure and presence of underlying conditions that may affect the immune response. The resulting disease, coronavirus disease 2019 (COVID-19), can cause multi-organ system dysfunction in patients requiring hospitalisation and intensive care treatment. Serious infections like COVID-19 often negatively affect nutritional status, and the resulting nutritional deficiencies may increase disease severity and impair recovery. One example is the viral infection measles, where associated vitamin A (VA) deficiency increases disease severity and appropriately timed supplementation during recovery reduces mortality and hastens recovery. VA may play a similar role in COVID-19. First, VA is important in maintaining innate and adaptive immunity to promote clearance of a primary infection as well as minimise risks from secondary infections. Second, VA plays a unique role in the respiratory tract, minimising damaging inflammation, supporting repair of respiratory epithelium and preventing fibrosis. Third, VA deficiency may develop during COVID-19 due to specific effects on lung and liver stores caused by inflammation and impaired kidney function, suggesting that supplements may be needed to restore adequate status. Fourth, VA supplementation may counteract adverse effects of SARS-CoV2 on the angiotensin system as well as minimises adverse effects of some COVID-19 therapies. Evaluating interactions of SARS-CoV2 infection with VA metabolism may thus provide improved COVID-19 therapy.
Collapse
Affiliation(s)
- C. B. Stephensen
- Immunity and Disease Prevention Research Unit, USDA Western Human Nutrition Research Center, and Nutrition Department, University of California, Davis, CA, USA
| | - G. Lietz
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
28
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
29
|
Sarohan AR, Kızıl M, İnkaya AÇ, Mahmud S, Akram M, Cen O. A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cell Signal 2021; 87:110121. [PMID: 34438017 PMCID: PMC8380544 DOI: 10.1016/j.cellsig.2021.110121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 virus has caused a worldwide COVID-19 pandemic. In less than a year and a half, more than 200 million people have been infected and more than four million have died. Despite some improvement in the treatment strategies, no definitive treatment protocol has been developed. The pathogenesis of the disease has not been clearly elucidated yet. A clear understanding of its pathogenesis will help develop effective vaccines and drugs. The immunopathogenesis of COVID-19 is characteristic with acute respiratory distress syndrome and multiorgan involvement with impaired Type I interferon response and hyperinflammation. The destructive systemic effects of COVID-19 cannot be explained simply by the viral tropism through the ACE2 and TMPRSS2 receptors. In addition, the recently identified mutations cannot fully explain the defect in all cases of Type I interferon synthesis. We hypothesize that retinol depletion and resulting impaired retinoid signaling play a central role in the COVID-19 pathogenesis that is characteristic for dysregulated immune system, defect in Type I interferon synthesis, severe inflammatory process, and destructive systemic multiorgan involvement. Viral RNA recognition mechanism through RIG-I receptors can quickly consume a large amount of the body's retinoid reserve, which causes the retinol levels to fall below the normal serum levels. This causes retinoid insufficiency and impaired retinoid signaling, which leads to interruption in Type I interferon synthesis and an excessive inflammation. Therefore, reconstitution of the retinoid signaling may prove to be a valid strategy for management of COVID-19 as well for some other chronic, degenerative, inflammatory, and autoimmune diseases.
Collapse
Affiliation(s)
- Aziz Rodan Sarohan
- Department of Obstetrics and Gynecology, Medicina Plus Medical Center, 75. Yıl Mah., İstiklal Cad. 1305 Sk., No: 16 Sultangazi, İstanbul, Turkey.
| | - Murat Kızıl
- Department of Chemistry, Faculty of Science, Dicle University. Diyarbakır, Turkey
| | - Ahmet Çağkan İnkaya
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Shokhan Mahmud
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Muhammad Akram
- Department of Eastern Medicine Government College, University Faisalabad, Pakistan
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America; Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, United States of America
| |
Collapse
|
30
|
Wang L, Liao Y, Yang R, Zhu Z, Zhang L, Wu Z, Sun X. An engineered probiotic secreting Sj16 ameliorates colitis via Ruminococcaceae/butyrate/retinoic acid axis. Bioeng Transl Med 2021; 6:e10219. [PMID: 34589596 PMCID: PMC8459592 DOI: 10.1002/btm2.10219] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Most inflammatory bowel disease (IBD) patients are unable to maintain a lifelong remission. Developing a novel therapeutic strategy is urgently needed. In this study, we adopt a new strategy to attenuate colitis using the Escherichia coli Nissle 1917 probiotic strain to express a schistosome immunoregulatory protein (Sj16) in the gastrointestinal tract. The genetically engineered Nissle 1917 (EcN-Sj16) highly expressed Sj16 in the gastrointestinal tracts of dextran sulfate sodium-induced colitis mice and significantly attenuated the clinical activity of colitis mice. Mechanistically, EcN-Sj16 increased the intestinal microbiota diversity and selectively promoted the growth of Ruminococcaceae and therefore enhanced the butyrate production. Butyrate induced the expression of retinoic acid, which further attenuated the clinical activity of colitis mice by increasing Treg cells and decreasing Th17. Strikingly, retinoic acid inhibitor inhibited the therapeutic effects of EcN-Sj16 in colitis mice. These findings suggest that EcN-Sj16 represents a novel engineered probiotic that may be used to treat IBD.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Yao Liao
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Ruibing Yang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Zifeng Zhu
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Lichao Zhang
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| | - Xi Sun
- Department of Parasitology, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Disease ControlMinistry of Education, Sun Yat‐sen UniversityGuangzhouChina
- Provincial Engineering Technology Research Center for Biological Vector ControlGuangzhouChina
| |
Collapse
|
31
|
Midha IK, Kumar N, Kumar A, Madan T. Mega doses of retinol: A possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol 2021; 31:1-14. [PMID: 33382930 PMCID: PMC7883262 DOI: 10.1002/rmv.2204] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Of all the nutrients, vitamin A has been the most extensively evaluated for its impact on immunity. There are three main forms of vitamin A, retinol, retinal and retinoic acid (RA) with the latter being most biologically active and all-trans-RA (ATRA) its main derivative. Vitamin A is a key regulator of the functions of various innate and adaptive immune cells and promotes immune-homeostasis. Importantly, it augments the interferon-based innate immune response to RNA viruses decreasing RNA virus replication. Several clinical trials report decreased mortality in measles and Ebola with vitamin A supplementation.During the Covid-19 pandemic interventions such as convalescent plasma, antivirals, monoclonal antibodies and immunomodulator drugs have been tried but most of them are difficult to implement in resource-limited settings. The current review explores the possibility of mega dose vitamin A as an affordable adjunct therapy for Covid-19 illness with minimal reversible side effects. Insight is provided into the effect of vitamin A on ACE-2 expression in the respiratory tract and its association with the prognosis of Covid-19 patients. Vitamin A supplementation may aid the generation of protective immune response to Covid-19 vaccines. An overview of the dosage and safety profile of vitamin A is presented along with recommended doses for prophylactic/therapeutic use in randomised controlled trials in Covid-19 patients.
Collapse
Affiliation(s)
| | | | - Amit Kumar
- Dwight D. Eisenhower VA Medical CenterLeavenworthKansasUSA
| | - Taruna Madan
- Department of Innate ImmunityICMR‐National Institute for Research in Reproductive HealthMumbaiIndia
| |
Collapse
|
32
|
Džopalić T, Božić-Nedeljković B, Jurišić V. The role of vitamin A and vitamin D in modulation of the immune response with a focus on innate lymphoid cells. Cent Eur J Immunol 2021; 46:264-269. [PMID: 34764797 PMCID: PMC8568032 DOI: 10.5114/ceji.2021.103540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/03/2021] [Indexed: 01/21/2023] Open
Abstract
The immune system with its numerous and complex interactions helps to protect the host from pathogenic microorganisms, and enables cleaning of damaged tissues. It is also associated with constant "monitoring" of the appearance of malignant cells and their elimination that can occur in the human body. Such a role depends on many factors including adequate intake of nutrients, including vitamins. The effect of vitamin supplementation on the modulation of the immune response has always been the focus of numerous studies. Vitamins A and D have been shown to have the greatest immune-modulatory effect. In this review, we discuss and consider the possible roles of vitamins A and D on the immune response through innate and adaptive immune cells, with special focus on the cell population recently characterized as innate lymphoid cells. Recent literature data indicate that vitamin A and its metabolites modulate the balance between Th1 and Th2 immunity. In addition, vitamin D expresses protective effects on the innate immune system and inhibitory effects on adaptive immunity.
Collapse
Affiliation(s)
- Tanja Džopalić
- Department of Immunology, University of Niš, Medical Faculty, Niš, Serbia
| | - Biljana Božić-Nedeljković
- Institute for Physiology and Biochemistry “Ivan Djaja” Belgrade, Faculty of Biology, University of Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
33
|
Repurposing a novel anti-cancer RXR agonist to attenuate murine acute GVHD and maintain graft-versus-leukemia responses. Blood 2021; 137:1090-1103. [PMID: 32976550 PMCID: PMC7907720 DOI: 10.1182/blood.2020005628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) subclass, retinoid X receptors (RXRs), exert immunomodulatory functions that control inflammation and metabolism via homodimers and heterodimers, with several other NRs, including retinoic acid receptors. IRX4204 is a novel, highly specific RXR agonist in clinical trials that potently and selectively activates RXR homodimers, but not heterodimers. In this study, in vivo IRX4204 compared favorably with FK506 in abrogating acute graft-versus-host disease (GVHD), which was associated with inhibiting allogeneic donor T-cell proliferation, reducing T-helper 1 differentiation, and promoting regulatory T-cell (Treg) generation. Recipient IRX4204 treatment reduced intestinal injury and decreased IFN-γ and TNF-α serum levels. Transcriptional analysis of donor T cells isolated from intestines of GVHD mice treated with IRX4204 revealed significant decreases in transcripts regulating proinflammatory pathways. In vitro, inducible Treg differentiation from naive CD4+ T cells was enhanced by IRX4204. In vivo, IRX4204 increased the conversion of donor Foxp3- T cells into peripheral Foxp3+ Tregs in GVHD mice. Using Foxp3 lineage-tracer mice in which both the origin and current FoxP3 expression of Tregs can be tracked, we demonstrated that IRX4204 supports Treg stability. Despite favoring Tregs and reducing Th1 differentiation, IRX4204-treated recipients maintained graft-versus-leukemia responses against both leukemia and lymphoma cells. Notably, IRX4204 reduced in vitro human T-cell proliferation and enhanced Treg generation in mixed lymphocyte reaction cultures. Collectively, these beneficial effects indicate that targeting RXRs with IRX4204 could be a novel approach to preventing acute GVHD in the clinic.
Collapse
|
34
|
Retinoic acid-responsive CD8 effector T cells are selectively increased in IL-23-rich tissue in gastrointestinal GVHD. Blood 2021; 137:702-717. [PMID: 32905596 DOI: 10.1182/blood.2020005170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023] Open
Abstract
Gastrointestinal (GI) graft-versus-host disease (GVHD) is a major barrier in allogeneic hematopoietic stem cell transplantation (allo-HSCT). The metabolite retinoic acid (RA) potentiates GI-GVHD in mice via alloreactive T cells expressing the RA receptor-α (RARα), but the role of RA-responsive cells in human GI-GVHD remains undefined. Therefore, we used conventional and novel sequential immunostaining and flow cytometry to scrutinize RA-responsive T cells in tissues and blood of patients who had received allo-HSCT and to characterize the impact of RA on human T-cell alloresponses. Expression of RARα by human mononuclear cells was increased after exposure to RA. RARαhi mononuclear cells were increased in GI-GVHD tissue, contained more cellular RA-binding proteins, localized with tissue damage, and correlated with GVHD severity and mortality. By using a targeted candidate protein approach, we predicted the phenotype of RA-responsive T cells in the context of increased microenvironmental interleukin-23 (IL-23). Sequential immunostaining confirmed the presence of a population of RARαhi CD8 T cells with the predicted phenotype that coexpressed the effector T-cell transcription factor T-bet and the IL-23-specific receptor (IL-23R). These cells were increased in GI- but not skin-GVHD tissues and were also selectively expanded in the blood of patients with GI-GVHD. Finally, functional approaches demonstrated that RA predominantly increased alloreactive GI-tropic RARαhi CD8 effector T cells, including cells with the phenotype identified in vivo. IL-23-rich conditions potentiated this effect by selectively increasing β7 integrin expression on CD8 effector T cells and reducing CD4 T cells with a regulatory cell phenotype. In summary, we have identified a population of RA-responsive effector T cells with a distinctive phenotype that is selectively expanded in human GI-GVHD and that represents a potential new therapeutic target.
Collapse
|
35
|
Borges GSM, Lima FA, Carneiro G, Goulart GAC, Ferreira LAM. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin Drug Deliv 2021; 18:1335-1354. [PMID: 33896323 DOI: 10.1080/17425247.2021.1919619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: All-trans retinoic acid (ATRA, tretinoin) is the main drug used in the treatment of acute promyelocytic leukemia (APL). Despite its impressive activity against APL, the same could not be clinically observed in other types of cancer. Nanotechnology can be a tool to enhance ATRA anticancer efficacy and resolve its drawbacks in APL as well as in other malignancies.Areas covered: This review covers ATRA use in APL and non-APL cancers, the problems that were found in ATRA therapy and how nanoencapsulation can aid to circumvent them. Pre-clinical results obtained with nanoencapsulated ATRA are shown as well as the two ATRA products based on nanotechnology that were clinically tested: ATRA-IV® and Apealea®.Expert opinion: ATRA presents interesting properties to be used in anticancer therapy with a notorious differentiation and antimetastatic activity. Bioavailability and resistance limitations impair the use of ATRA in non-APL cancers. Nanotechnology can circumvent these issues and provide tools to enhance its anticancer activities, such as co-loading of multiple drug and active targeting to tumor site.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Alves Lima
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Carneiro
- Departamento De Farmácia, Faculdade De Ciências Biológicas E Da Saúde, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Brazil
| | - Gisele Assis Castro Goulart
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
36
|
Scholz J, Kuhrau J, Heinrich F, Heinz GA, Hutloff A, Worm M, Heine G. Vitamin A controls the allergic response through T follicular helper cell as well as plasmablast differentiation. Allergy 2021; 76:1109-1122. [PMID: 32895937 DOI: 10.1111/all.14581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Vitamin A regulates the adaptive immune response and a modulatory impact on type I allergy is discussed. The cellular mechanisms are largely unknown. OBJECTIVE To determine the vitamin A-responding specific lymphocyte reaction in vivo. METHODS Antigen-specific B and T lymphocytes were analyzed in an adoptive transfer airway inflammation mouse model in response to 9-cis retinoic acid (9cRA) and after lymphocyte-specific genetic targeting of the receptor RARα. Flow cytometry, quantitative PCR, next-generation sequencing, and specific Ig-ELISA were used to characterize the cells functionally. RESULTS Systemic 9cRA profoundly enhanced the specific IgA-secreting B-cell frequencies in the lung tissue and serum IgA while reducing serum IgE concentrations. RARα overexpression in antigen-specific B cells promoted differentiation into plasmablasts at the expense of germinal center B cells. In antigen-specific T cells, RARα strongly promoted the differentiation of T follicular helper cells followed by an enhanced germinal center response. CONCLUSIONS 9cRA signaling via RARα impacts the allergen-specific immunoglobulin response directly by the differentiation of B cells and indirectly by promoting T follicular helper cells.
Collapse
Affiliation(s)
- Josephine Scholz
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Julia Kuhrau
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Institute of Immunology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| | - Frederik Heinrich
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Gitta Anne Heinz
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
| | - Andreas Hutloff
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Institute of Immunology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
- Institute of Clinical Molecular Biology University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| | - Margitta Worm
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
| | - Guido Heine
- Division of Allergy and Immunology Department of Dermatology, Venereology and Allergy Charité – Universitätsmedizin Berlin Freie Universität BerlinHumboldt‐Universität zu BerlinBerlin Institute of Health Berlin Germany
- Deutsches Rheuma‐Forschungszentrum, A Leibniz Institute Berlin Germany
- Department of Dermatology and Allergy University Hospital Schleswig‐HolsteinCampus Kiel Kiel Germany
| |
Collapse
|
37
|
Leipe J, Pirronello F, Schulze-Koops H, Skapenko A. Altered T cell plasticity favours Th17 cells in early arthritis. Rheumatology (Oxford) 2021; 59:2754-2763. [PMID: 32030419 DOI: 10.1093/rheumatology/kez660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The predominance of differentiated Th17 cells has been implied as a key driver of autoimmune arthritis, including early RA. Because accumulating evidence suggests that Th cell differentiation is a plastic process, we investigated plasticity and underlying molecular mechanisms to address the shift towards the Th17 phenotype in early RA. METHODS A cohort of 61 patients with early, active, untreated RA and 45 age- and sex-matched healthy controls were studied. Viable in vitro- and in vivo-generated Th1, Th2 and Th17 cells were FACS-sorted and transdifferentiated under Th1-, Th2- or Th17-inducing conditions. The cytokine Th profile of the transdifferentiated cells was assessed by flow cytometry. Th cell-associated cytokine and transcription factor gene loci were analysed by chromatin immunoprecipitation assay and their expression by quantitative real-time PCR. RESULTS In vitro-generated Th cells showed substantial plasticity, which was similar between RA and healthy controls, whereas in vivo-derived Th1 and Th2 cells from RA patients demonstrated an enhanced plasticity towards IL-17-expressing phenotypes compared with healthy controls. Further, in vivo-generated Th17 cells from RA patients showed a resistance to transdifferentiate into Th1 or Th2 cells. The serum/glucocorticoid-regulated kinase 1-forkhead box protein O1-IL-23 receptor (SGK1-FOXO1-IL-23R) axis together with increased RORC expression was associated with the predominant Th17 phenotype in early RA. CONCLUSIONS Our data indicate that in vivo-originated Th subsets are prone to Th17 cell transdifferentiation in early RA, while Th17 cells are resistant to changes in their phenotype. Together, the data imply that an altered plasticity contributes to the Th17 shift in early RA.
Collapse
Affiliation(s)
- Jan Leipe
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany.,Division of Rheumatology, Department of Medicine V, University Hospital Mannheim, Mannheim, Germany ∗Jan Leipe and Fausto Pirronello contributed equally to this work
| | - Fausto Pirronello
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology and Clinical Immunology, Medizinische Klinik and Poliklinik IV, University of Munich, Munich, Germany
| |
Collapse
|
38
|
Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. J Immunol Res 2021; 2021:8816041. [PMID: 33553436 PMCID: PMC7846404 DOI: 10.1155/2021/8816041] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Autoimmune diseases (such as rheumatoid arthritis, asthma, autoimmune bowel disease) are a complex disease. Improper activation of the immune system or imbalance of immune cells can cause the immune system to transform into a proinflammatory state, leading to autoimmune pathological damage. Recent studies have shown that autoimmune diseases are closely related to CD4+ T helper cells (Th). The original CD4 T cells will differentiate into different T helper (Th) subgroups after activation. According to their cytokines, the types of Th cells are different to produce lineage-specific cytokines, which play a role in autoimmune homeostasis. When Th differentiation and its cytokines are not regulated, it will induce autoimmune inflammation. Autoimmune bowel disease (IBD) is an autoimmune disease of unknown cause. Current research shows that its pathogenesis is closely related to Th17 cells. This article reviews the role and plasticity of the upstream and downstream cytokines and signaling pathways of Th17 cells in the occurrence and development of autoimmune bowel disease and summarizes the new progress of IBD immunotherapy.
Collapse
|
39
|
Friesen L, Gu B, Kim C. A ligand-independent fast function of RARα promotes exit from metabolic quiescence upon T cell activation and controls T cell differentiation. Mucosal Immunol 2021; 14:100-112. [PMID: 32518366 PMCID: PMC7725911 DOI: 10.1038/s41385-020-0311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023]
Abstract
Vitamin A metabolites play important roles in T cell activation and differentiation. A conventional model of RARα function relies upon retinoic acid (RA)-liganded RARα binding to specific DNA motifs to regulate gene expression in the nucleus. However, this genomic function fails to explain many of the biological responses of the RA-RARα axis on T cells. We generated a mouse line where RARα is over-expressed in T cells to probe RARα function with unprecedented sensitivity. Using this model together with mice specifically lacking RARα in T cells, we found that RARα is required for prompt exit from metabolic quiescence in resting T cells upon T cell activation. The positive effect of RARα on metabolism is mediated through PI3K and subsequent activation of the Akt and mTOR signaling pathway. This largely non-genomic function of RARα is surprisingly ligand-independent and controls the differentiation of effector and regulatory T cell subsets.
Collapse
Affiliation(s)
- L.R. Friesen
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - B. Gu
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906
| | - C.H. Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109,Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
40
|
Ruiter B, Smith NP, Fleming E, Patil SU, Hurlburt BK, Maleki SJ, Shreffler WG. Peanut protein acts as a T H2 adjuvant by inducing RALDH2 in human antigen-presenting cells. J Allergy Clin Immunol 2020; 148:182-194.e4. [PMID: 33378690 DOI: 10.1016/j.jaci.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/26/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Peanut is a potent inducer of proallergenic TH2 responses in susceptible individuals. Antigen-presenting cells (APCs) including dendritic cells and monocytes instruct naive T cells to differentiate into various effector cells, determining immune responses such as allergy and tolerance. OBJECTIVE We sought to detect peanut protein (PN)-induced changes in gene expression in human myeloid dendritic cells (mDCs) and monocytes, identify signaling receptors that mediate these changes, and assess how PN-induced genes in mDCs impact their ability to promote T-cell differentiation. METHODS mDCs, monocytes, and naive CD4+ T cells were isolated from blood bank donors and peanut-allergic patients. APCs were incubated with PN and other stimulants, and gene expression was measured using microarray and RT quantitative PCR. To assess T-cell differentiation, mDCs were cocultured with naive TH cells. RESULTS PN induced a unique gene expression profile in mDCs, including the gene that encodes retinaldehyde dehydrogenase 2 (RALDH2), a rate-limiting enzyme in the retinoic acid (RA)-producing pathway. Stimulation of mDCs with PN also induced a 7-fold increase in the enzymatic activity of RALDH2. Blocking antibodies against Toll-like receptor (TLR)1/TLR2, as well as small interfering RNA targeting TLR1/TLR2, reduced the expression of RALDH2 in PN-stimulated APCs by 70%. Naive TH cells cocultured with PN-stimulated mDCs showed an RA-dependent 4-fold increase in production of IL-5 and expression of integrin α4β7. CONCLUSIONS PN induces RALDH2 in human APCs by signaling through the TLR1/TLR2 heterodimer. This leads to production of RA, which acts on TH cells to induce IL-5 and gut-homing integrin. RALDH2 induction by PN in APCs and RA-promoted TH2 differentiation could be an important factor determining allergic responses to peanut.
Collapse
Affiliation(s)
- Bert Ruiter
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.
| | - Neal P Smith
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth Fleming
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Sarita U Patil
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass
| | - Barry K Hurlburt
- US Department of Agriculture, Agricultural Research Service, New Orleans, La
| | - Soheila J Maleki
- US Department of Agriculture, Agricultural Research Service, New Orleans, La
| | - Wayne G Shreffler
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass; Food Allergy Center, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
41
|
Kasatskaya SA, Ladell K, Egorov ES, Miners KL, Davydov AN, Metsger M, Staroverov DB, Matveyshina EK, Shagina IA, Mamedov IZ, Izraelson M, Shelyakin PV, Britanova OV, Price DA, Chudakov DM. Functionally specialized human CD4 + T-cell subsets express physicochemically distinct TCRs. eLife 2020; 9:57063. [PMID: 33289628 PMCID: PMC7773335 DOI: 10.7554/elife.57063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4+ T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput approach to profile the αβ TCR repertoires of human naive and effector/memory CD4+ T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical and recombinatorial features were encoded on a subset-specific basis in the effector/memory compartment. Clonal tracking further identified forbidden and permitted transition pathways, mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which also displayed hardwired repertoire features in the naive compartment. Accordingly, these cumulative repertoire portraits establish a link between clonotype fate decisions in the complex world of CD4+ T cells and the intrinsic properties of somatically rearranged TCRs.
Collapse
Affiliation(s)
- Sofya A Kasatskaya
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Evgeniy S Egorov
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Alexey N Davydov
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czech Republic
| | - Maria Metsger
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czech Republic
| | - Dmitry B Staroverov
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Elena K Matveyshina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Irina A Shagina
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Ilgar Z Mamedov
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mark Izraelson
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Pavel V Shelyakin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga V Britanova
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Dmitriy M Chudakov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation.,Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Institute of Translational Medicine, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| |
Collapse
|
42
|
Zhao Y, Hu W, Chen P, Cao M, Zhang Y, Zeng C, Hara H, Cooper DKC, Mou L, Luan S, Gao H. Immunosuppressive and metabolic agents that influence allo‐ and xenograft survival by in vivo expansion of T regulatory cells. Xenotransplantation 2020; 27:e12640. [PMID: 32892428 DOI: 10.1111/xen.12640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Yanli Zhao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | | | - Pengfei Chen
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Mengtao Cao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Yingwei Zhang
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Changchun Zeng
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hidetaka Hara
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - David K. C. Cooper
- Xenotransplantation Program Department of Surgery University of Alabama at Birmingham Birmingham AL USA
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
| | - Shaodong Luan
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| | - Hanchao Gao
- Department of Nephrology Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center Institute of Translational Medicine Shenzhen University Health Science Center, Shenzhen University School of Medicine First Affiliated Hospital of Shenzhen UniversityShenzhen Second People’s Hospital Shenzhen China
- Department of Medical Laboratory Shenzhen Longhua District Central Hospital Affiliated Central Hospital of Shenzhen Longhua District Guangdong Medical University Shenzhen China
| |
Collapse
|
43
|
Rossetti S, Sacchi N. Emerging Cancer Epigenetic Mechanisms Regulated by All-Trans Retinoic Acid. Cancers (Basel) 2020; 12:E2275. [PMID: 32823855 PMCID: PMC7465226 DOI: 10.3390/cancers12082275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
All-trans retinoic acid (RA), which is the dietary bioactive derivative obtained from animal (retinol) and plant sources (beta-carotene), is a physiological lipid signal of both embryonic and postembryonic development. During pregnancy, either RA deficiency or an excessive RA intake is teratogenic. Too low or too high RA affects not only prenatal, but also postnatal, developmental processes such as myelopoiesis and mammary gland morphogenesis. In this review, we mostly focus on emerging RA-regulated epigenetic mechanisms involving RA receptor alpha (RARA) and Annexin A8 (ANXA8), which is a member of the Annexin family, as well as ANXA8 regulatory microRNAs (miRNAs). The first cancer showing ANXA8 upregulation was reported in acute promyelocytic leukemia (APL), which induces the differentiation arrest of promyelocytes due to defective RA signaling caused by RARA fusion genes as the PML-RARA gene. Over the years, ANXA8 has also been found to be upregulated in other cancers, even in the absence of RARA fusion genes. Mechanistic studies on human mammary cells and mammary glands of mice showed that ANXA8 upregulation is caused by genetic mutations affecting RARA functions. Although not all of the underlying mechanisms of ANXA8 upregulation have been elucidated, the interdependence of RA-RARA and ANXA8 seems to play a relevant role in some normal and tumorigenic settings.
Collapse
Affiliation(s)
| | - Nicoletta Sacchi
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
44
|
Ko HJ, Hong SW, Verma R, Jung J, Lee M, Kim N, Kim D, Surh CD, Kim KS, Rudra D, Im SH. Dietary Glucose Consumption Promotes RALDH Activity in Small Intestinal CD103 +CD11b + Dendritic Cells. Front Immunol 2020; 11:1897. [PMID: 32849649 PMCID: PMC7433714 DOI: 10.3389/fimmu.2020.01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
Retinal dehydrogenase (RALDH) enzymatic activities catalyze the conversion of vitamin A to its metabolite Retinoic acid (RA) in intestinal dendritic cells (DCs) and promote immunological tolerance. However, precise understanding of the exogenous factors that act as initial trigger of RALDH activity in these cells is still evolving. By using germ-free (GF) mice raised on an antigen free (AF) elemental diet, we find that certain components in diet are critically required to establish optimal RALDH expression and activity, most prominently in small intestinal CD103+CD11b+ DCs (siLP-DCs) right from the beginning of their lives. Surprisingly, systematic screens using modified diets devoid of individual dietary components indicate that proteins, starch and minerals are dispensable for this activity. On the other hand, in depth comparison between subtle differences in dietary composition among different dietary regimes reveal that adequate glucose concentration in diet is a critical determinant for establishing RALDH activity specifically in siLP-DCs. Consequently, pre-treatment of siLP-DCs, and not mesenteric lymph node derived MLNDCs with glucose, results in significant enhancement in the in vitro generation of induced Regulatory T (iTreg) cells. Our findings reveal previously underappreciated role of dietary glucose concentration in establishing regulatory properties in intestinal DCs, thereby extending a potential therapeutic module against intestinal inflammation.
Collapse
Affiliation(s)
- Hyun-Ja Ko
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea
| | - Sung-Wook Hong
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea
| | - Ravi Verma
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| | - Jisun Jung
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Minji Lee
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Nahyun Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Daeun Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang-si, South Korea.,Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Kwang Soon Kim
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Dipayan Rudra
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology, Department of Life Sciences, Pohang University of Science and Technology, Pohang-si, South Korea.,ImmunoBiome Inc., Pohang-si, South Korea
| |
Collapse
|
45
|
Tang D, Liu S, Sun H, Qin X, Zhou N, Zheng W, Zhang M, Zhou H, Tuersunayi A, Duan C, Chen J. All-trans-retinoic acid shifts Th1 towards Th2 cell differentiation by targeting NFAT1 signalling to ameliorate immune-mediated aplastic anaemia. Br J Haematol 2020; 191:906-919. [PMID: 32729137 DOI: 10.1111/bjh.16871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Severe acquired aplastic anaemia (AA) is a serious disease characterised by autoreactive T cells attacking haematopoietic stem cells, leading to marrow hypoplasia and pancytopenia. Immunosuppressive therapy combined with antithymocyte globulin and ciclosporin can rescue most patients with AA. However, the relapse after ciclosporin withdrawal and the severe side effects of long-term ciclosporin administration remain unresolved. As such, new strategies should be developed to supplement current therapeutics and treat AA. In this study, the possibility of all-trans-retinoic acid (ATRA) as an alternative AA treatment was tested by using an immune-mediated mouse model of AA. Results revealed that ATRA inhibited T-cell proliferation, activation and effector function. It also restrained the Fas/Fasl pathway, shifted Th1 towards Th2 cell development, rebalanced T-cell subsets at a relatively high level and corrected the Th1/Th2 ratio by targeting NFAT1 signalling. In addition, ATRA inhibited Th17 cell differentiation and promoted regulatory T-cell development. Therefore, ATRA was an effective agent to improve AA treatment outcomes.
Collapse
Affiliation(s)
- Dabin Tang
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Shengli Liu
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huiying Sun
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xia Qin
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Neng Zhou
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Weiwei Zheng
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mengyi Zhang
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hang Zhou
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Abudureheman Tuersunayi
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Caiwen Duan
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jing Chen
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
46
|
Interplay between Cytokine Circuitry and Transcriptional Regulation Shaping Helper T Cell Pathogenicity and Plasticity in Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21093379. [PMID: 32403220 PMCID: PMC7247009 DOI: 10.3390/ijms21093379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder manifested as Crohn’s disease (CD) and ulcerative colitis (UC) characterized by intestinal inflammation and involves a dysregulated immune response against commensal microbiota through the activation of CD4 T helper cells. T helper cell differentiation to effector or regulatory phenotypes is controlled by cytokine networks and transcriptional regulators. Distinct polarized T helper cells are able to alter their phenotypes to adapt to diverse and fluctuating physiological environments. T helper cells exhibit intrinsic instability and flexibility to express cytokines of other lineages or transdifferentiate from one T helper cell type to another in response to various perturbations from physiological cytokine milieu as a means of promoting local immunity in response to injury or ensure tissue homeostasis. Furthermore, functional plasticity and diversity of T helper cells are associated with pathogenicity and are critical for immune homeostasis and prevention of autoimmunity. In this review, we provide deeper insights into the combinatorial extrinsic and intrinsic signals that control plasticity and transdifferentiation of T helper cells and also highlight the potential of exploiting the genetic reprogramming plasticity of T helper cells in the treatment of IBD.
Collapse
|
47
|
Huang H, Long L, Zhou P, Chapman NM, Chi H. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol Rev 2020; 295:15-38. [PMID: 32212344 PMCID: PMC8101438 DOI: 10.1111/imr.12845] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022]
Abstract
The evolutionarily conserved serine/threonine kinase mTOR (mechanistic target of rapamycin) forms the distinct protein complexes mTORC1 and mTORC2 and integrates signals from the environment to coordinate downstream signaling events and various cellular processes. T cells rely on mTOR activity for their development and to establish their homeostasis and functional fitness. Here, we review recent progress in our understanding of the upstream signaling and downstream targets of mTOR. We also provide an updated overview of the roles of mTOR in T-cell development, homeostasis, activation, and effector-cell fate decisions, as well as its important impacts on the suppressive activity of regulatory T cells. Moreover, we summarize the emerging roles of mTOR in T-cell exhaustion and transdifferentiation. A better understanding of the contribution of mTOR to T-cell fate decisions will ultimately aid in the therapeutic targeting of mTOR in human disease.
Collapse
Affiliation(s)
- Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lingyun Long
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Peipei Zhou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Equal contribution
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
48
|
Kadekar D, Agerholm R, Rizk J, Neubauer HA, Suske T, Maurer B, Viñals MT, Comelli EM, Taibi A, Moriggl R, Bekiaris V. The neonatal microenvironment programs innate γδ T cells through the transcription factor STAT5. J Clin Invest 2020; 130:2496-2508. [PMID: 32281944 PMCID: PMC7190909 DOI: 10.1172/jci131241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
IL-17-producing RORγt+ γδ T cells (γδT17 cells) are innate lymphocytes that participate in type 3 immune responses during infection and inflammation. Herein, we show that γδT17 cells rapidly proliferate within neonatal lymph nodes and gut, where, upon entry, they upregulate T-bet and coexpress IL-17, IL-22, and IFN-γ in a STAT3- and retinoic acid-dependent manner. Neonatal expansion was halted in mice conditionally deficient in STAT5, and its loss resulted in γδT17 cell depletion from all adult organs. Hyperactive STAT5 mutant mice showed that the STAT5A homolog had a dominant role over STAT5B in promoting γδT17 cell expansion and downregulating gut-associated T-bet. In contrast, STAT5B preferentially expanded IFN-γ-producing γδ populations, implying a previously unknown differential role of STAT5 gene products in lymphocyte lineage regulation. Importantly, mice lacking γδT17 cells as a result of STAT5 deficiency displayed a profound resistance to experimental autoimmune encephalomyelitis. Our data identify that the neonatal microenvironment in combination with STAT5 is critical for post-thymic γδT17 development and tissue-specific imprinting, which is essential for infection and autoimmunity.
Collapse
Affiliation(s)
- Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Rizk
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Suske
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Maurer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Elena M. Comelli
- Department of Nutritional Sciences and
- Department of Nutritional Sciences and Joannah and Brian Lawson Centre for Child Nutrition, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
49
|
Iyer N, Grizotte-Lake M, Duncan K, Gordon SR, Palmer ACS, Calvin C, Zhong G, Isoherranen N, Vaishnava S. Epithelium intrinsic vitamin A signaling co-ordinates pathogen clearance in the gut via IL-18. PLoS Pathog 2020; 16:e1008360. [PMID: 32330185 PMCID: PMC7202665 DOI: 10.1371/journal.ppat.1008360] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 05/06/2020] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
Intestinal epithelial cells (IECs) are at the forefront of host-pathogen interactions, coordinating a cascade of immune responses to protect against pathogens. Here we show that IEC-intrinsic vitamin A signaling restricts pathogen invasion early in the infection and subsequently activates immune cells to promote pathogen clearance. Mice blocked for retinoic acid receptor (RAR) signaling selectively in IECs (stopΔIEC) showed higher Salmonella burden in colonic tissues early in the infection that associated with higher luminal and systemic loads of the pathogen at later stages. Higher pathogen burden in stopΔIEC mice correlated with attenuated mucosal interferon gamma (IFNγ) production by underlying immune cells. We found that, at homeostasis, the intestinal epithelium of stopΔIEC mice produced significantly lower amounts of interleukin 18 (IL-18), a potent inducer of IFNγ. Regulation of IL-18 by vitamin A was also observed in a dietary model of vitamin A supplementation. IL-18 reconstitution in stopΔIEC mice restored resistance to Salmonella by promoting epithelial cell shedding to eliminate infected cells and limit pathogen invasion early in infection. Further, IL-18 augmented IFNγ production by underlying immune cells to restrict pathogen burden and systemic spread. Our work uncovers a critical role for vitamin A in coordinating a biphasic immune response to Salmonella infection by regulating IL-18 production by IECs. Epithelial cells line the intestinal lumen, forming a barrier between the body and dietary and microbial contents in the lumen. Apart from absorbing nutrients from diet, these epithelial cells help mediate a stable, symbiotic relationship between commensal bacteria and the immune cells. During infection, they help co-ordinate the immune response to counter the infection. How dietary micronutrients, such as vitamin A, inform epithelial cell function during infection is poorly understood. Using a model where epithelial cells in the gut cannot respond to vitamin A signals, we find that epithelial vitamin A signaling promotes resistance to Salmonella infection. We show that, vitamin A increases the production of a key cytokine, interleukin 18, by epithelial cells. IL-18 promotes shedding of infected epithelial cells to reduce the pathogen invasion while also inducing the production of interferon gamma by immune cells to mediate pathogen clearance. Thus, epithelial cells dynamically respond to dietary vitamin A to regulate interleukin 18 production and potentiate resistance to infection.
Collapse
Affiliation(s)
- Namrata Iyer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States of America
| | - Mayara Grizotte-Lake
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States of America
| | - Kellyanne Duncan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States of America
| | - Sarah R. Gordon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America
| | - Ana C. S. Palmer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States of America
| | - Crystle Calvin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States of America
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States of America
| | - Shipra Vaishnava
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
50
|
Liang Y, Yi P, Wang X, Zhang B, Jie Z, Soong L, Sun J. Retinoic Acid Modulates Hyperactive T Cell Responses and Protects Vitamin A-Deficient Mice against Persistent Lymphocytic Choriomeningitis Virus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:2984-2994. [PMID: 32284332 DOI: 10.4049/jimmunol.1901091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Vitamin A deficiency (VAD) is a major public health problem and is associated with increased host susceptibility to infection; however, how VAD influences viral infection remains unclear. Using a persistent lymphocytic choriomeningitis virus infection model, we showed in this study that although VAD did not alter innate type I IFN production, infected VAD mice had hyperactive, virus-specific T cell responses at both the acute and contraction stages, showing significantly decreased PD-1 but increased cytokine (IFN-γ, TNF-α, and IL-2) expression by T cells. Compared with control mice, VAD mice displayed excessive inflammation and more severe liver pathology, with increased death during persistent infection. Of note, supplements of all-trans retinoic acid (RA), one of the important metabolites of vitamin A, downregulated hyperactive T cell responses and rescued the persistently infected VAD mice. By using adoptive transfer of splenocytes, we found that the environmental vitamin A or its metabolites acted as rheostats modulating antiviral T cells. The analyses of T cell transcriptional factors and signaling pathways revealed the possible mechanisms of RA, as its supplements inhibited the abundance of NFATc1 (NFAT 1), a key regulator for T cell activation. Also, following CD3/CD28 cross-linking stimulation, RA negatively regulated the TCR-proximal signaling in T cells, via decreased phosphorylation of Zap70 and its downstream signals, including phosphorylated AKT, p38, ERK, and S6, respectively. Together, our data reveal VAD-mediated alterations in antiviral T cell responses and highlight the potential utility of RA for modulating excessive immune responses and tissue injury in infectious diseases.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555;
| | - Panpan Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Biao Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Zuliang Jie
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; and.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; and.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|