1
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Ziegler LJ, Sansom DM, Gavin MA, Walker LSK, Campbell DJ. An IL-2 mutein increases regulatory T cell suppression of dendritic cells via IL-10 and CTLA-4 to promote T cell anergy. Cell Rep 2024; 43:114938. [PMID: 39488830 DOI: 10.1016/j.celrep.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Matthew Lawrance
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lauren J Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - David M Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Marc A Gavin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98126, USA
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London NW3 2PP, UK
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98126, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 981098, USA.
| |
Collapse
|
2
|
Ichiyama K, Long J, Kobayashi Y, Horita Y, Kinoshita T, Nakamura Y, Kominami C, Georgopoulos K, Sakaguchi S. Transcription factor Ikzf1 associates with Foxp3 to repress gene expression in Treg cells and limit autoimmunity and anti-tumor immunity. Immunity 2024; 57:2043-2060.e10. [PMID: 39111316 DOI: 10.1016/j.immuni.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/16/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
The master transcription factor of regulatory T (Treg) cells, forkhead box protein P3 (Foxp3), controls Treg cell function by targeting certain genes for activation or repression, but the specific mechanisms by which it mediates this activation or repression under different conditions remain unclear. We found that Ikzf1 associates with Foxp3 via its exon 5 (IkE5) and that IkE5-deficient Treg cells highly expressed genes that would otherwise be repressed by Foxp3 upon T cell receptor stimulation, including Ifng. Treg-specific IkE5-deletion caused interferon-γ (IFN-γ) overproduction, which destabilized Foxp3 expression and impaired Treg suppressive function, leading to systemic autoimmune disease and strong anti-tumor immunity. Pomalidomide, which degrades IKZF1 and IKZF3, induced IFN-γ overproduction in human Treg cells. Mechanistically, the Foxp3-Ikzf1-Ikzf3 complex competed with epigenetic co-activators, such as p300, for binding to target gene loci via chromatin remodeling. Therefore, the Ikzf1 association with Foxp3 is essential for the gene-repressive function of Foxp3 and could be exploited to treat autoimmune disease and cancer.
Collapse
Affiliation(s)
- Kenji Ichiyama
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Jia Long
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yusuke Kobayashi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Yuji Horita
- Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takeshi Kinoshita
- Joint Research Chair of Immune-therapeutic Drug Discovery, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Research Management, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Yamami Nakamura
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Chizuko Kominami
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Experimental Pathology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Chowdhary K, Léon J, Mathis D, Benoist C. An integrated transcription factor framework for Treg identity and diversity. Proc Natl Acad Sci U S A 2024; 121:e2411301121. [PMID: 39196621 PMCID: PMC11388289 DOI: 10.1073/pnas.2411301121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Vertebrate cell identity depends on the combined activity of scores of transcription factors (TF). While TFs have often been studied in isolation, a systematic perspective on their integration has been missing. Focusing on FoxP3+ regulatory T cells (Tregs), key guardians of immune tolerance, we combined single-cell chromatin accessibility, machine learning, and high-density genetic variation, to resolve a validated framework of diverse Treg chromatin programs, each shaped by multi-TF inputs. This framework identified previously unrecognized Treg controllers (Smarcc1) and illuminated the mechanism of action of FoxP3, which amplified a pre-existing Treg identity, diversely activating or repressing distinct programs, dependent on different regulatory partners. Treg subpopulations in the colon relied variably on FoxP3, Helios+ Tregs being completely dependent, but RORγ+ Tregs largely independent. These differences were rooted in intrinsic biases decoded by the integrated framework. Moving beyond master regulators, this work unravels how overlapping TF activities coalesce into Treg identity and diversity.
Collapse
Affiliation(s)
| | - Juliette Léon
- Department of Immunology, Harvard Medical School, Boston, MA 02115
- INSERM UMR 1163, Imagine Institute, University of Paris, Paris, France 75015
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
4
|
Schmidleithner L, Stüve P, Feuerer M. FOXP3 snatches transcription factors depending on the context. J Exp Med 2024; 221:e20240940. [PMID: 38949640 PMCID: PMC11215522 DOI: 10.1084/jem.20240940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
FOXP3 hijacks DNA-binding proteins to regulate gene expression. In this issue of JEM, He et al. (https://doi.org/10.1084/jem.20232068) propose a dynamic model in which FOXP3 associates with DNA-binding proteins to regulate Treg cell function in response to environmental cues.
Collapse
Affiliation(s)
- Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Sumida TS, Lincoln MR, He L, Park Y, Ota M, Oguchi A, Son R, Yi A, Stillwell HA, Leissa GA, Fujio K, Murakawa Y, Kulminski AM, Epstein CB, Bernstein BE, Kellis M, Hafler DA. An autoimmune transcriptional circuit drives FOXP3 + regulatory T cell dysfunction. Sci Transl Med 2024; 16:eadp1720. [PMID: 39196959 DOI: 10.1126/scitranslmed.adp1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 08/30/2024]
Abstract
Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew R Lincoln
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M6R 1B5, Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON M6R 1B5, Canada
| | - Liang He
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Yongjin Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Raku Son
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alice Yi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Helen A Stillwell
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Greta A Leissa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8303, Japan
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | | | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Simon M, Stüve P, Schmidleithner L, Bittner S, Beumer N, Strieder N, Schmidl C, Pant A, Gebhard C, Eigenberger A, Rehli M, Prantl L, Hehlgans T, Brors B, Imbusch CD, Delacher M, Feuerer M. Single-cell chromatin accessibility and transposable element landscapes reveal shared features of tissue-residing immune cells. Immunity 2024; 57:1975-1993.e10. [PMID: 39047731 DOI: 10.1016/j.immuni.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.
Collapse
Affiliation(s)
- Malte Simon
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Philipp Stüve
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Lisa Schmidleithner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Bittner
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Niklas Beumer
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany; DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, 68167 Mannheim, Germany; Division of Personalized Medical Oncology, DKFZ, 69120 Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | | | | | - Asmita Pant
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Andreas Eigenberger
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Rehli
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand, and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany; Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany; Chair for Immunology, University Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
7
|
Aubert N, Purcarea M, Novarino J, Schopp J, Audibert A, Li W, Fornier M, Cagnet L, Naturel M, Casrouge A, Dieu-Nosjean MC, Blanchard N, Dietrich G, Peirs C, Marodon G. Enkephalin-mediated modulation of basal somatic sensitivity by regulatory T cells in mice. eLife 2024; 13:RP91359. [PMID: 39110619 PMCID: PMC11305673 DOI: 10.7554/elife.91359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.
Collapse
Affiliation(s)
- Nicolas Aubert
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Madeleine Purcarea
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Novarino
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Julien Schopp
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Wangtianrui Li
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Fornier
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Léonie Cagnet
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie Naturel
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Armanda Casrouge
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Marie-Caroline Dieu-Nosjean
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM, CNRS, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Gilles Dietrich
- Institut de Recherche sur la Santé Digestive (IRSD), Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III - Paul Sabatier (UPS)ToulouseFrance
| | - Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Neuro-DolClermont FerrandFrance
| | - Gilles Marodon
- Centre d’Immunologie et des Maladies Infectieuses (CIMI-PARIS), INSERM, CNRS, Sorbonne UniversitéParisFrance
| |
Collapse
|
8
|
Burton OT, Bricard O, Tareen S, Gergelits V, Andrews S, Biggins L, Roca CP, Whyte C, Junius S, Brajic A, Pasciuto E, Ali M, Lemaitre P, Schlenner SM, Ishigame H, Brown BD, Dooley J, Liston A. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Immunity 2024; 57:1586-1602.e10. [PMID: 38897202 DOI: 10.1016/j.immuni.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The tissues are the site of many important immunological reactions, yet how the immune system is controlled at these sites remains opaque. Recent studies have identified Foxp3+ regulatory T (Treg) cells in non-lymphoid tissues with unique characteristics compared with lymphoid Treg cells. However, tissue Treg cells have not been considered holistically across tissues. Here, we performed a systematic analysis of the Treg cell population residing in non-lymphoid organs throughout the body, revealing shared phenotypes, transient residency, and common molecular dependencies. Tissue Treg cells from different non-lymphoid organs shared T cell receptor (TCR) sequences, with functional capacity to drive multi-tissue Treg cell entry and were tissue-agnostic on tissue homing. Together, these results demonstrate that the tissue-resident Treg cell pool in most non-lymphoid organs, other than the gut, is largely constituted by broadly self-reactive Treg cells, characterized by transient multi-tissue migration. This work suggests common regulatory mechanisms may allow pan-tissue Treg cells to safeguard homeostasis across the body.
Collapse
Affiliation(s)
- Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Orian Bricard
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Samar Tareen
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Vaclav Gergelits
- Department of Pathology, University of Cambridge, Cambridge, UK; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Simon Andrews
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Laura Biggins
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carlos P Roca
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Carly Whyte
- Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Emanuela Pasciuto
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; University of Antwerp, Center of Molecular Neurology, Antwerp, Belgium
| | - Magda Ali
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Susan M Schlenner
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Harumichi Ishigame
- Laboratory for Tissue Dynamics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Near-InfraRed Photo-Immunotherapy Research Institute, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Brian D Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK; VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Leuven, Belgium; Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
9
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Wang T, Guo J, Liping Li, Jin Q, Zhang F, Hou B, Zhang Y, Zhou X. The histone lysine methyltransferase MLL1 regulates the activation and functional specialization of regulatory T cells. Cell Rep 2024; 43:114222. [PMID: 38735046 DOI: 10.1016/j.celrep.2024.114222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
The activation and specialization of regulatory T cells (Tregs) are crucial for maintaining immune self-tolerance; however, the regulation of these processes by histone modifications is not fully understood. Here, we show that T cell-specific deletion of the lysine methyltransferase MLL1 results in a spontaneous lymphocyte proliferation phenotype in aged mice without disturbing the development of conventional T cells and Tregs. Treg-specific MLL1 ablation leads to a systemic autoimmune disease associated with Treg dysfunction. Moreover, RNA sequencing demonstrates that the induction of multiple genes involved in Treg activation, functional specialization, and tissue immigration is defective in MLL1-deficient Tregs. This dysregulation is associated with defects in H3K4 trimethylation at these genes' transcription start sites. Finally, using a T-bet fate-mapping mouse system, we determine that MLL1 is required to establish stable Th1-type Tregs. Thus, MLL1 is essential in optimal Treg function by providing a coordinated chromatin context for activation and specialization.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Liping Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuzhu Jin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
13
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Ding R, Yu X, Hu Z, Dong Y, Huang H, Zhang Y, Han Q, Ni ZY, Zhao R, Ye Y, Zou Q. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells. Immunity 2024; 57:528-540.e6. [PMID: 38417442 DOI: 10.1016/j.immuni.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
RNA splicing is involved in cancer initiation and progression, but how it influences host antitumor immunity in the metabolically abnormal tumor microenvironment (TME) remains unclear. Here, we demonstrate that lactate modulates Foxp3-dependent RNA splicing to maintain the phenotypic and functional status of tumor-infiltrating regulatory T (Treg) cells via CTLA-4. RNA splicing in Treg cells was correlated with the Treg cell signatures in the TME. Ubiquitin-specific peptidase 39 (USP39), a component of the RNA splicing machinery, maintained RNA-splicing-mediated CTLA-4 expression to control Treg cell function. Mechanistically, lactate promoted USP39-mediated RNA splicing to facilitate CTLA-4 expression in a Foxp3-dependent manner. Moreover, the efficiency of CTLA-4 RNA splicing was increased in tumor-infiltrating Treg cells from patients with colorectal cancer. These findings highlight the immunological relevance of RNA splicing in Treg cells and provide important insights into the environmental mechanism governing CTLA-4 expression in Treg cells.
Collapse
Affiliation(s)
- Rui Ding
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoyan Yu
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhilin Hu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, the School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu Dong
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuerong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiaoqiao Han
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi-Yu Ni
- Clinical Medical College, Hebei University of Engineering, Handan 056038, Hebei, China; Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China.
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Youqiong Ye
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiang Zou
- Hongqiao International Institute of Medicine, Tongren Hospital & Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
15
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Borna S, Meffre E, Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol Rev 2024; 322:244-258. [PMID: 37994657 DOI: 10.1111/imr.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.
Collapse
Affiliation(s)
- Simon Borna
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eric Meffre
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
17
|
Cohen JN, Gouirand V, Macon CE, Lowe MM, Boothby IC, Moreau JM, Gratz IK, Stoecklinger A, Weaver CT, Sharpe AH, Ricardo-Gonzalez RR, Rosenblum MD. Regulatory T cells in skin mediate immune privilege of the hair follicle stem cell niche. Sci Immunol 2024; 9:eadh0152. [PMID: 38181095 PMCID: PMC11003870 DOI: 10.1126/sciimmunol.adh0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (Tregs) only in skin. Selective depletion of skin Tregs resulted in T cell-mediated inflammation of hair follicles (HFs). Suppression did not rely on CTLA-4, but instead on high-affinity interleukin-2 (IL-2) receptor expression by skin Tregs, functioning exclusively in a cell-extrinsic manner. In a novel model of HF stem cell (HFSC)-driven autoimmunity, we reveal that skin Tregs immunologically protect the HFSC niche. Finally, we used spatial transcriptomics to identify aberrant IL-2 signaling at stromal-HF interfaces in a rare form of human alopecia characterized by HFSC destruction and alopecia areata. Collectively, these results reveal the fundamental biology of Tregs in skin uncoupled from the systemic pool and elucidate a mechanism of self-tolerance.
Collapse
Affiliation(s)
- Jarish N. Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Courtney E. Macon
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret M. Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Ian C. Boothby
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Iris K. Gratz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angelika Stoecklinger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical, University of Salzburg, Salzburg, Austria
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Wang X, Geng S, Meng J, Kang N, Liu X, Xu Y, Lyu H, Xu Y, Xu X, Song X, Zhang B, Wang X, Nuerbulati N, Zhang Z, Zhai D, Mao X, Sun R, Wang X, Wang R, Guo J, Chen SW, Zhou X, Xia T, Qi H, Hu X, Shi Y. Foxp3-mediated blockage of ryanodine receptor 2 underlies contact-based suppression by regulatory T cells. J Clin Invest 2023; 133:e163470. [PMID: 38099494 PMCID: PMC10721146 DOI: 10.1172/jci163470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
The suppression mechanism of Tregs remains an intensely investigated topic. As our focus has shifted toward a model centered on indirect inhibition of DCs, a universally applicable effector mechanism controlled by the transcription factor forkhead box P3 (Foxp3) expression has not been found. Here, we report that Foxp3 blocked the transcription of ER Ca2+-release channel ryanodine receptor 2 (RyR2). Reduced RyR2 shut down basal Ca2+ oscillation in Tregs, which reduced m-calpain activities that are needed for T cells to disengage from DCs, suggesting a persistent blockage of DC antigen presentation. RyR2 deficiency rendered the CD4+ T cell pool immune suppressive and caused it to behave in the same manner as Foxp3+ Tregs in viral infection, asthma, hypersensitivity, colitis, and tumor development. In the absence of Foxp3, Ryr2-deficient CD4+ T cells rescued the systemic autoimmunity associated with scurfy mice. Therefore, Foxp3-mediated Ca2+ signaling inhibition may be a central effector mechanism of Treg immune suppression.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Shuang Geng
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta, Canada
| | - Junchen Meng
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, and
| | - Ning Kang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xinyi Liu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Yanni Xu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Huiyun Lyu
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ying Xu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xun Xu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xinrong Song
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Zhang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Wang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Nuerdida Nuerbulati
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ze Zhang
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Di Zhai
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Xin Mao
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Ruya Sun
- Department of Basic Medical Sciences, School of Medicine, and
| | - Xiaoting Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University and Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu, China
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - S.R. Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tie Xia
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| | - Hai Qi
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| | - Xiaoyu Hu
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| | - Yan Shi
- Department of Basic Medical Sciences, School of Medicine, and
- Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta, Canada
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Jamison BL, Lawrance M, Wang CJ, DeBerg HA, Sansom DM, Gavin MA, Walker LS, Campbell DJ. An IL-2 mutein increases IL-10 and CTLA-4-dependent suppression of dendritic cells by regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569613. [PMID: 38106196 PMCID: PMC10723345 DOI: 10.1101/2023.12.01.569613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and TCR-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface MHC class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 costimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
Collapse
Affiliation(s)
- Braxton L. Jamison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
| | | | - Chun Jing Wang
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - David M. Sansom
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | | | - Lucy S.K. Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection & Immunity, London, UK
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
21
|
Schleussner N, Cauchy P, Franke V, Giefing M, Fornes O, Vankadari N, Assi SA, Costanza M, Weniger MA, Akalin A, Anagnostopoulos I, Bukur T, Casarotto MG, Damm F, Daumke O, Edginton-White B, Gebhardt JCM, Grau M, Grunwald S, Hansmann ML, Hartmann S, Huber L, Kärgel E, Lusatis S, Noerenberg D, Obier N, Pannicke U, Fischer A, Reisser A, Rosenwald A, Schwarz K, Sundararaj S, Weilemann A, Winkler W, Xu W, Lenz G, Rajewsky K, Wasserman WW, Cockerill PN, Scheidereit C, Siebert R, Küppers R, Grosschedl R, Janz M, Bonifer C, Mathas S. Transcriptional reprogramming by mutated IRF4 in lymphoma. Nat Commun 2023; 14:6947. [PMID: 37935654 PMCID: PMC10630337 DOI: 10.1038/s41467-023-41954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Medical Center Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vedran Franke
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marco G Casarotto
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Benjamin Edginton-White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Michael Grau
- Department of Physics, University of Marburg, 35052, Marburg, Germany
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Grunwald
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lionel Huber
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simone Lusatis
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Daniel Noerenberg
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anja Reisser
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Srinivasan Sundararaj
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andre Weilemann
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wiebke Winkler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Wendan Xu
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125, Berlin, Germany
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Ralf Küppers
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany.
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Ramanan D, Pratama A, Zhu Y, Venezia O, Sassone-Corsi M, Chowdhary K, Galván-Peña S, Sefik E, Brown C, Gélineau A, Mathis D, Benoist C. Regulatory T cells in the face of the intestinal microbiota. Nat Rev Immunol 2023; 23:749-762. [PMID: 37316560 DOI: 10.1038/s41577-023-00890-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Regulatory T cells (Treg cells) are key players in ensuring a peaceful coexistence with microorganisms and food antigens at intestinal borders. Startling new information has appeared in recent years on their diversity, the importance of the transcription factor FOXP3, how T cell receptors influence their fate and the unexpected and varied cellular partners that influence Treg cell homeostatic setpoints. We also revisit some tenets, maintained by the echo chambers of Reviews, that rest on uncertain foundations or are a subject of debate.
Collapse
Affiliation(s)
| | - Alvin Pratama
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yangyang Zhu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Olivia Venezia
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Esen Sefik
- Department of Immunology, Yale University, New Haven, CT, USA
| | - Chrysothemis Brown
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
23
|
Khatun A, Wu X, Qi F, Gai K, Kharel A, Kudek MR, Fraser L, Ceicko A, Kasmani MY, Majnik A, Burns R, Chen Y, Salzman N, Taparowsky EJ, Fang D, Williams CB, Cui W. BATF is Required for Treg Homeostasis and Stability to Prevent Autoimmune Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206692. [PMID: 37587835 PMCID: PMC10558681 DOI: 10.1002/advs.202206692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Regulatory T (Treg) cells are inevitable to prevent deleterious immune responses to self and commensal microorganisms. Treg function requires continuous expression of the transcription factor (TF) FOXP3 and is divided into two major subsets: resting (rTregs) and activated (aTregs). Continuous T cell receptor (TCR) signaling plays a vital role in the differentiation of aTregs from their resting state, and in their immune homeostasis. The process by which Tregs differentiate, adapt tissue specificity, and maintain stable phenotypic expression at the transcriptional level is still inconclusivei. In this work, the role of BATF is investigated, which is induced in response to TCR stimulation in naïve T cells and during aTreg differentiation. Mice lacking BATF in Tregs developed multiorgan autoimmune pathology. As a transcriptional regulator, BATF is required for Treg differentiation, homeostasis, and stabilization of FOXP3 expression in different lymphoid and non-lymphoid tissues. Epigenetically, BATF showed direct regulation of Treg-specific genes involved in differentiation, maturation, and tissue accumulation. Most importantly, FOXP3 expression and Treg stability require continuous BATF expression in Tregs, as it regulates demethylation and accessibility of the CNS2 region of the Foxp3 locus. Considering its role in Treg stability, BATF should be considered an important therapeutic target in autoimmune disease.
Collapse
Affiliation(s)
- Achia Khatun
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Xiaopeng Wu
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Fu Qi
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Kexin Gai
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Arjun Kharel
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Matthew R. Kudek
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Lisa Fraser
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Ashley Ceicko
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
| | - Moujtaba Y. Kasmani
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Amber Majnik
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Children's Mercy Hospital in Kansas City2401 Gillham RdKansas CityMO64108USA
| | - Robert Burns
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
| | - Yi‐Guang Chen
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Max McGee National Research Center for Juvenile DiabetesMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Nita Salzman
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | | | - Dayu Fang
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| | - Calvin B. Williams
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Department of PediatricsMedical College of Wisconsin8701 Watertown Plank RoadMilwaukeeWI53226USA
| | - Weiguo Cui
- Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeWI53226USA
- Versiti Blood Research InstituteVersiti WisconsinMilwaukeeWI53226USA
- Department of PathologyFeinberg School of MedicineNorthwestern University303 E Chicago AveChicagoIL60611USA
| |
Collapse
|
24
|
Shan F, Cillo AR, Cardello C, Yuan DY, Kunning SR, Cui J, Lampenfeld C, Williams AM, McDonough AP, Pennathur A, Luketich JD, Kirkwood JM, Ferris RL, Bruno TC, Workman CJ, Benos PV, Vignali DAA. Integrated BATF transcriptional network regulates suppressive intratumoral regulatory T cells. Sci Immunol 2023; 8:eadf6717. [PMID: 37713508 PMCID: PMC11045170 DOI: 10.1126/sciimmunol.adf6717] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Human regulatory T cells (Tregs) are crucial regulators of tissue repair, autoimmune diseases, and cancer. However, it is challenging to inhibit the suppressive function of Tregs for cancer therapy without affecting immune homeostasis. Identifying pathways that may distinguish tumor-restricted Tregs is important, yet the transcriptional programs that control intratumoral Treg gene expression, and that are distinct from Tregs in healthy tissues, remain largely unknown. We profiled single-cell transcriptomes of CD4+ T cells in tumors and peripheral blood from patients with head and neck squamous cell carcinomas (HNSCC) and those in nontumor tonsil tissues and peripheral blood from healthy donors. We identified a subpopulation of activated Tregs expressing multiple tumor necrosis factor receptor (TNFR) genes (TNFR+ Tregs) that is highly enriched in the tumor microenvironment (TME) compared with nontumor tissue and the periphery. TNFR+ Tregs are associated with worse prognosis in HNSCC and across multiple solid tumor types. Mechanistically, the transcription factor BATF is a central component of a gene regulatory network that governs key aspects of TNFR+ Tregs. CRISPR-Cas9-mediated BATF knockout in human activated Tregs in conjunction with bulk RNA sequencing, immunophenotyping, and in vitro functional assays corroborated the central role of BATF in limiting excessive activation and promoting the survival of human activated Tregs. Last, we identified a suite of surface molecules reflective of the BATF-driven transcriptional network on intratumoral Tregs in patients with HNSCC. These findings uncover a primary transcriptional regulator of highly suppressive intratumoral Tregs, highlighting potential opportunities for therapeutic intervention in cancer without affecting immune homeostasis.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daniel Y. Yuan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Asia M. Williams
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alexandra P. McDonough
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Arjun Pennathur
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M. Kirkwood
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert L. Ferris
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Alvarez F, Piccirillo CA. The functional adaptation of effector Foxp3 + regulatory T cells to pulmonary inflammation. Eur J Immunol 2023; 53:e2250273. [PMID: 37366319 DOI: 10.1002/eji.202250273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
During infections, the timings of effector differentiation of pulmonary immune responses are of paramount importance, as pathogen persistence and unsuppressed inflammation can rapidly lead to a loss of function, increased frailty, and death. Thus, both an efficient clearance of the danger and a rapid resolution of inflammation are critical to host survival. We now know that tissue-localized FoxP3+ regulatory T cells, a subset of CD4+ T cells, are highly attuned to the type of immune response, acquiring unique phenotypic characteristics that allow them to adapt their suppressive functions with the nature of inflammatory cells. To achieve this, activated effector TREG cells acquire specialized TH 1, TH 2, and TH 17-like characteristics that allow them to migrate, survive, and time their function(s) through refined mechanisms. Herein, we describe how this process requires a unique developmental path that includes the acquisition of master transcription factors and the expression of receptors adapted to sense local danger signals that are found during pulmonary inflammation. In turn, we offer an overview of how these characteristics promote the capacity of local effector TREG cells to proliferate, survive, and display suppressive strategies to resolve lung injury.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), McGill University, Montréal, Québec, Canada
| |
Collapse
|
26
|
Gu Q, Zhao X, Guo J, Jin Q, Wang T, Xu W, Li L, Zhang J, Zhang W, Hong S, Zhang F, Hou B, Zhou X. The splicing isoform Foxp3Δ2 differentially regulates tTreg and pTreg homeostasis. Cell Rep 2023; 42:112877. [PMID: 37498744 DOI: 10.1016/j.celrep.2023.112877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Foxp3 is the master transcription factor for regulatory T cells (Tregs). Alternative splicing of human Foxp3 results in the expression of two isoforms: the full length and an exon 2-deleted protein. Here, AlphaFold2 predictions and in vitro experiments demonstrate that the N-terminal domain of Foxp3 inhibits DNA binding by moving toward the C terminus and that this movement is mediated by exon 2. Consequently, we find that Foxp3Δ2-bearing thymus-derived Tregs (tTregs) in the peripheral lymphoid organ are less sensitive to T cell receptor (TCR) stimulation due to the enhanced binding of Foxp3Δ2 to the Batf promoter and are hyporesponsive to interleukin-2 (IL-2). In contrast, among RORγt+ peripherally induced Tregs (pTregs) in the large intestine, Foxp3Δ2 pTregs express many more RORγt-related genes, conferring a competitive advantage. Together, our results reveal that alternative splicing of exon 2 generates an active form of Foxp3, which plays a differential role in regulating tTreg and pTreg homeostasis.
Collapse
Affiliation(s)
- Qianchong Gu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Xiufeng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Qiuzhu Jin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Ting Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Wei Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Liping Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China
| | - Sheng Hong
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science (CAS), Beijing 100101, China; Department of Savaid Medical School, University of Chinese Academy of Sciences (CAS), Beijing 100049, China.
| |
Collapse
|
27
|
Leon J, Chowdhary K, Zhang W, Ramirez RN, André I, Hur S, Mathis D, Benoist C. Mutations from patients with IPEX ported to mice reveal different patterns of FoxP3 and Treg dysfunction. Cell Rep 2023; 42:113018. [PMID: 37605532 PMCID: PMC10565790 DOI: 10.1016/j.celrep.2023.113018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Mutations of the transcription factor FoxP3 in patients with "IPEX" (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) disrupt regulatory T cells (Treg), causing an array of multiorgan autoimmunity. To understand the functional impact of mutations across FoxP3 domains, without genetic and environmental confounders, six human FOXP3 missense mutations are engineered into mice. Two classes of mutations emerge from combined immunologic and genomic analyses. A mutation in the DNA-binding domain shows the same lymphoproliferation and multiorgan infiltration as complete FoxP3 knockouts but delayed by months. Tregs expressing this mutant FoxP3 are destabilized by normal Tregs in heterozygous females compared with hemizygous males. Mutations in other domains affect chromatin opening differently, involving different cofactors and provoking more specific autoimmune pathology (dermatitis, colitis, diabetes), unmasked by immunological challenges or incrossing NOD autoimmune-susceptibility alleles. This work establishes that IPEX disease heterogeneity results from the actual mutations, combined with genetic and environmental perturbations, explaining then the intra-familial variation in IPEX.
Collapse
Affiliation(s)
- Juliette Leon
- Department of Immunology, Harvard Medical School, Boston, MA, USA; INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France
| | | | - Wenxiang Zhang
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | - Isabelle André
- INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France
| | - Sun Hur
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
28
|
Yang EJ, Rahim MA, Griggs E, Iban-Arias R, Pasinetti GM. Transient anxiety-and depression-like behaviors are linked to the depletion of Foxp3-expressing cells via inflammasome in the brain. PNAS NEXUS 2023; 2:pgad251. [PMID: 37614669 PMCID: PMC10443660 DOI: 10.1093/pnasnexus/pgad251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Forkhead box P3 (Foxp3) is a transcription factor that influences functioning of regulatory T cells (Tregs) that modulate peripheral immune response. Treg-mediated innate immunity and Treg-mediated adaptive immunity are receiving considerable attention for their implication in mechanisms associated with anxiety and depression. Here, we demonstrated that depletion of Foxp3-expressing cells causally promotes transient anxiety- and depression-like behaviors associated with inflammasome activation in "depletion of regulatory T cell" (DEREG) mice. We found that restoration of Foxp3-expressing cells causally reverses neurobehavioral changes through alteration of innate immune responses as assessed by caspase-1 activity and interleukin-1β (IL-1β) release in the hippocampal formation of DEREG mice. Moreover, we found that depletion of Foxp3-expressing cells induces a significant elevation of granulocytes, monocytes, and macrophages in the blood, which are associated with transient expression of the matrix metalloprotease-9. Similarly, we found that depletion of Foxp3-expressing cells in 5xFAD, a mouse model of Alzheimer's disease (AD), exhibits elevated activated caspase-1 and promotion of IL-1β secretion and increased the level of amyloid-beta (Aβ)1-42 and Aβ plaque burden in the hippocampal formation that coincided with an acceleration of cognitive decline at a presymptomatic age in the 5xFAD mice. Thus, our study provides evidence supporting the idea that Foxp3 may have a causal influence on peripheral immune responses. This, in turn, can promote an innate immune response within the brain, potentially leading to anxiety- and depression-like behaviors or cognitive decline.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
29
|
Jarosch S, Köhlen J, Ghimire S, Orberg ET, Hammel M, Gaag D, Evert M, Janssen KP, Hiergeist A, Gessner A, Weber D, Meedt E, Poeck H, D'Ippolito E, Holler E, Busch DH. Multimodal immune cell phenotyping in GI biopsies reveals microbiome-related T cell modulations in human GvHD. Cell Rep Med 2023; 4:101125. [PMID: 37467715 PMCID: PMC10394271 DOI: 10.1016/j.xcrm.2023.101125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is a significant complication after allogeneic hematopoietic stem cell transplantation (aHSCT), but major factors determining disease severity are not well defined yet. By combining multiplexed tissue imaging and single-cell RNA sequencing on gastrointestinal biopsies from aHSCT-treated individuals with fecal microbiome analysis, we link high microbiome diversity and the abundance of short-chain fatty acid-producing bacteria to the sustenance of suppressive regulatory T cells (Tregs). Furthermore, aGvHD severity strongly associates with the clonal expansion of mainly CD8 T cells, which we find distributed over anatomically distant regions of the gut, persistent over time, and inversely correlated with the presence of suppressive Tregs. Overall, our study highlights the pathophysiological importance of expanded CD8 T cell clones in the progression of aGvHD toward more severe clinical manifestations and strongly supports the further development of microbiome interventions as GvHD treatment via repopulation of the gut Treg niche to suppress inflammation.
Collapse
Affiliation(s)
- Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88397 Biberach an der Riß, Germany
| | - Jan Köhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany
| | - Erik Thiele Orberg
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine, Klinikum rechts der Isar TUM, 81675 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Doris Gaag
- Institute for Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Matthias Evert
- Institute for Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Medical Center, 93053 Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany
| | - Elisabeth Meedt
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany; Leibniz Institute for Immuntherapie (LIT), Regensburg, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany
| | - Ernst Holler
- Department of Internal Medicine 3, University Medical Center, 93053 Regensburg, Germany.
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), 81675 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany.
| |
Collapse
|
30
|
Hou AN, Wang Y, Pan YQ. A Case Report of IPEX Syndrome with Neonatal Diabetes Mellitus and Congenital Hypothyroidism as the Initial Presentation, and a Systematic Review of neonatal IPEX. J Clin Immunol 2023; 43:979-988. [PMID: 36867340 DOI: 10.1007/s10875-023-01456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is a serious disorder, which may comprise diabetes, thyroid disease, enteropathy, cytopenias, eczema, and other multi-system autoimmune dysfunction features. IPEX syndrome is caused by mutations in the forkhead box P3 (FOXP3) gene. Here, we report the clinical manifestations of a patient with IPEX syndrome onset in the neonatal period. A de novo mutation at exon 11 of the FOXP3 gene (c.1190G > A, p.R397Q) was found, and its main clinical manifestations included hyperglycemia and hypothyroidism. Subsequently, we comprehensively reviewed the clinical characteristics and FOXP3 mutations of 55 reported neonatal IPEX cases. The most frequent clinical presentation included symptoms of gastrointestinal involvement (n = 51, 92.7%), followed by skin-related symptoms (n = 37, 67.3%), diabetes mellitus (DM) (n = 33, 60.0%), elevated IgE (n = 28, 50.9%), hematological abnormality (n = 23, 41.8%), thyroid dysfunction (n = 18, 32.7%), and kidney-related symptoms (n = 13, 23.6%). In total, 38 variants were observed in the 55 neonatal patients. The most frequent mutation was c.1150G > A (n = 6; 10.9%), followed by c.1189C > T (n = 4; 7.3%), c.816 + 5G > A (n = 3; 5.5%), and C.1015C > G (n = 3; 5.5%), which were reported more than twice. The genotype-phenotype relationship showed that the repressor domain mutations were associated with DM (P = 0.020), and the leucine zipper mutations were associated with nephrotic syndrome (P = 0.020). The survival analysis suggested that treatment with glucocorticoids increased the survival of the neonatal patients. This literature review provides an informative reference for the diagnosis and treatment of IPEX syndrome in the neonatal period.
Collapse
Affiliation(s)
- A-Na Hou
- Department of Pediatrics, People's Republic of China, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yu-Qing Pan
- Department of Pediatrics, People's Republic of China, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
31
|
Cheru N, Hafler DA, Sumida TS. Regulatory T cells in peripheral tissue tolerance and diseases. Front Immunol 2023; 14:1154575. [PMID: 37197653 PMCID: PMC10183596 DOI: 10.3389/fimmu.2023.1154575] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Maintenance of peripheral tolerance by CD4+Foxp3+ regulatory T cells (Tregs) is essential for regulating autoreactive T cells. The loss of function of Foxp3 leads to autoimmune disease in both animals and humans. An example is the rare, X-linked recessive disorder known as IPEX (Immune Dysregulation, Polyendocrinopathy, Enteropathy X-linked) syndrome. In more common human autoimmune diseases, defects in Treg function are accompanied with aberrant effector cytokines such as IFNγ. It has recently become appreciated that Tregs plays an important role in not only maintaining immune homeostasis but also in establishing the tissue microenvironment and homeostasis of non-lymphoid tissues. Tissue resident Tregs show profiles that are unique to their local environments which are composed of both immune and non-immune cells. Core tissue-residence gene signatures are shared across different tissue Tregs and are crucial to homeostatic regulation and maintaining the tissue Treg pool in a steady state. Through interaction with immunocytes and non-immunocytes, tissue Tregs exert a suppressive function via conventional ways involving contact dependent and independent processes. In addition, tissue resident Tregs communicate with other tissue resident cells which allows Tregs to adopt to their local microenvironment. These bidirectional interactions are dependent on the specific tissue environment. Here, we summarize the recent advancements of tissue Treg studies in both human and mice, and discuss the molecular mechanisms that maintain tissue homeostasis and prevent pathogenesis.
Collapse
Affiliation(s)
- Nardos Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - David A. Hafler
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Tomokazu S. Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
32
|
Bittner S, Hehlgans T, Feuerer M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol 2023; 44:468-483. [PMID: 37100644 DOI: 10.1016/j.it.2023.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Regulatory T (Treg) cells ensure tolerance against self-antigens, limit excessive inflammation, and support tissue repair processes. Therefore, Treg cells are currently attractive candidates for the treatment of certain inflammatory diseases, autoimmune disorders, or transplant rejection. Early clinical trials have proved the safety and efficacy of certain Treg cell therapies in inflammatory diseases. We summarize recent advances in engineering Treg cells, including the concept of biosensors for inflammation. We assess Treg cell engineering possibilities for novel functional units, including Treg cell modifications influencing stability, migration, and tissue adaptation. Finally, we outline perspectives of engineered Treg cells going beyond inflammatory diseases by using custom-designed receptors and read-out systems, aiming to use Treg cells as in vivo diagnostic tools and drug delivery vehicles.
Collapse
Affiliation(s)
- Sebastian Bittner
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
33
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
34
|
Hanna BS, Yaghi OK, Langston PK, Mathis D. The potential for Treg-enhancing therapies in tissue, in particular skeletal muscle, regeneration. Clin Exp Immunol 2023; 211:138-148. [PMID: 35972909 PMCID: PMC10019136 DOI: 10.1093/cei/uxac076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Foxp3+CD4+ regulatory T cells (Tregs) are famous for their role in maintaining immunological tolerance. With their distinct transcriptomes, growth-factor dependencies and T-cell receptor (TCR) repertoires, Tregs in nonlymphoid tissues, termed "tissue-Tregs," also perform a variety of functions to help assure tissue homeostasis. For example, they are important for tissue repair and regeneration after various types of injury, both acute and chronic. They exert this influence by controlling both the inflammatory tenor and the dynamics of the parenchymal progenitor-cell pool in injured tissues, thereby promoting efficient repair and limiting fibrosis. Thus, tissue-Tregs are seemingly attractive targets for immunotherapy in the context of tissue regeneration, offering several advantages over existing therapies. Using skeletal muscle as a model system, we discuss the existing literature on Tregs' role in tissue regeneration in acute and chronic injuries, and various approaches for their therapeutic modulation in such contexts, including exercise as a natural Treg modulator.
Collapse
Affiliation(s)
- Bola S Hanna
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Omar K Yaghi
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - P Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital; Boston, USA
| |
Collapse
|
35
|
Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Rep 2023; 42:112193. [PMID: 36870061 PMCID: PMC10066577 DOI: 10.1016/j.celrep.2023.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Interleukin (IL)-10 is a main player in peripheral immune tolerance, the physiological mechanism preventing immune reactions to self/harmless antigens. Here, we investigate IL-10-induced molecular mechanisms generating tolerogenic dendritic cells (tolDC) from monocytes. Using genomic studies, we show that IL-10 induces a pattern of accessible enhancers exploited by aryl hydrocarbon receptor (AHR) to promote expression of a set of core genes. We demonstrate that AHR activity occurs downstream of IL-10 signaling in myeloid cells and is required for the induction of tolerogenic activities in DC. Analyses of circulating DCs show that IL-10/AHR genomic signature is active in vivo in health. In multiple sclerosis patients, we instead observe significantly altered signature correlating with functional defects and reduced frequencies of IL-10-induced-tolDC in vitro and in vivo. Our studies identify molecular mechanisms controlling tolerogenic activities in human myeloid cells and may help in designing therapies to re-establish immune tolerance.
Collapse
|
36
|
Tikka C, Beasley L, Xu C, Yang J, Cooper S, Lechner J, Gutch S, Kaplan MH, Capitano M, Yang K. BATF sustains homeostasis and functionality of bone marrow Treg cells to preserve homeostatic regulation of hematopoiesis and development of B cells. Front Immunol 2023; 14:1026368. [PMID: 36911703 PMCID: PMC9992736 DOI: 10.3389/fimmu.2023.1026368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Bone marrow Treg cells (BM Tregs) orchestrate stem cell niches crucial for hematopoiesis. Yet little is known about the molecular mechanisms governing BM Treg homeostasis and function. Here we report that the transcription factor BATF maintains homeostasis and functionality of BM Tregs to facilitate homeostatic regulation of hematopoiesis and B cell development. Treg-specific ablation of BATF profoundly compromised proportions of BM Tregs associated with reduced expression of Treg effector molecules, including CD44, ICOS, KLRG1, and TIGIT. Moreover, BATF deficiency in Tregs led to increased numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and granulocyte-macrophage progenitors (GMPs), while reducing the functionality of myeloid progenitors and the generation of common lymphoid progenitors. Furthermore, Tregs lacking BATF failed to support the development of B cells in the BM. Mechanistically, BATF mediated IL-7 signaling to promote expression of effector molecules on BM Tregs and their homeostasis. Our studies reveal a previously unappreciated role for BATF in sustaining BM Treg homeostasis and function to ensure hematopoiesis.
Collapse
Affiliation(s)
- Chiranjeevi Tikka
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lindsay Beasley
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chengxian Xu
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jing Yang
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Joseph Lechner
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sarah Gutch
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Maegan Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kai Yang
- Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
37
|
Nakajima A, Murakami R, Hori S. Functional Analysis of Foxp3 and Its Mutants by Retroviral Transduction of Murine Primary CD4 + T Cells. Methods Mol Biol 2023; 2559:79-94. [PMID: 36180628 DOI: 10.1007/978-1-0716-2647-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The transcription factor Foxp3/FOXP3 orchestrates regulatory T (Treg) cell development and function by interacting with numerous target genes and partner proteins. Functional analysis of naturally occurring or engineered Foxp3/FOXP3 mutations has provided important insights into how the complex Foxp3/FOXP3-centered molecular network operates. Here, we describe detailed protocols for retroviral transduction of murine primary conventional CD4+ T cells to determine the impacts of Foxp3 mutations on the Treg-cell-like phenotype and function conferred by Foxp3.
Collapse
Affiliation(s)
- Akira Nakajima
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
38
|
The role of FOXP3 in non-small cell lung cancer and its therapeutic potentials. Pharmacol Ther 2023; 241:108333. [PMID: 36528259 DOI: 10.1016/j.pharmthera.2022.108333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Although in the last few decades we have witnessed the rapid development of treatments for non-small cell lung cancer (NSCLC), it still remains the leading cause of cancer-related death. Increasing efforts have been devoted to exploring potential biomarkers and molecular targets for NSCLC. Foxp3, a transcription factor that was discovered as a master regulator of regulatory T cells (Tregs), has been found to express abnormally in tumoral cells including lung cancer cells. In recent years, increasing evidence have surfaced, revealing the carcinogenic effect of FOXP3 in lung cancer. In this review, we analyzed and summarized the function of FOXP3, its regulation and therapeutic potentials in NSCLC, with a hope to facilitate the development of novel treatments for NSCLC.
Collapse
|
39
|
Itahashi K, Irie T, Yuda J, Kumagai S, Tanegashima T, Lin YT, Watanabe S, Goto Y, Suzuki J, Aokage K, Tsuboi M, Minami Y, Ishii G, Ohe Y, Ise W, Kurosaki T, Suzuki Y, Koyama S, Nishikawa H. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors. Sci Immunol 2022; 7:eabk0957. [PMID: 36206353 DOI: 10.1126/sciimmunol.abk0957] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Regulatory T (Treg) cells suppress effective antitumor immunity in tumor-bearing hosts, thereby becoming promising targets in cancer immunotherapy. Despite the importance of Treg cells in tumor immunity, little is known about their differentiation process and epigenetic profiles in the tumor microenvironment (TME). Here, we showed that Treg cells in the TME of human lung cancers harbored a completely different open chromatin profile compared with CD8+ T cells, conventional CD4+ T cells in the TME, and peripheral Treg cells. The integrative sequencing analyses including ATAC, single-cell RNA, and single-cell ATAC sequencing revealed that BATF, IRF4, NF-κB, and NR4A were important transcription factors for Treg cell differentiation in the TME. In particular, BATF was identified as a key regulator, which leveraged Treg cell differentiation through epigenetically controlling activation-associated gene expression, resulting in the robustness of Treg cells in the TME. The single-cell sequencing approaches also revealed that tissue-resident and tumor-infiltrating Treg cells followed a common pathway for differentiation and activation in a BATF-dependent manner heading toward Treg cells with the most differentiated and activated phenotypes in tissues and tumors. BATF deficiency in Treg cells remarkably inhibited tumor growth, and high BATF expression was associated with poor prognosis in lung cancer, kidney cancer, and melanoma. These findings indicate one of the specific chromatin remodeling and differentiation programs of Treg cells in the TME, which can be applied in the development of Treg cell-targeted therapies.
Collapse
Affiliation(s)
- Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Junichiro Yuda
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan.,Department of Hematology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tokiyoshi Tanegashima
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Yi-Tzu Lin
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sho Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Yasushi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Genichiro Ishii
- Division of Pathology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Wataru Ise
- Regulation of Host Defense Team, Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
40
|
Tang Z, Li T, Dai H, Feng C, Xie X, Peng F, Lan G, Yu S, Wang Y, Fang C, Nie M, Yuan X, Tang X, Jiang X, Zhu X, Fan Y, Peng J, Sun S, Zhong M, Zhang H, Peng L. Drug-induced Fanconi syndrome in patients with kidney allograft transplantation. Front Immunol 2022; 13:979983. [PMID: 36059468 PMCID: PMC9437944 DOI: 10.3389/fimmu.2022.979983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPatients after kidney transplantation need to take long-term immunosuppressive and other drugs. Some of these drug side effects are easily confused with the symptoms of Fanconi syndrome, resulting in misdiagnosis and missed diagnosis, and causing serious consequences to patients. Therefore, improving awareness, early diagnosis and treatment of Fanconi syndrome after kidney transplantation is critical.MethodsThis retrospective study analyzed 1728 cases of allogeneic kidney transplant patients admitted to the Second Xiangya Hospital of Central South University from July 2016 to January 2021. Two patients with Fanconi syndrome secondary to drugs, adefovir dipivoxil (ADV) and tacrolimus, were screened. We summarized the diagnostic process, clinical data, and prognosis.ResultsThe onset of Fanconi syndrome secondary to ADV after renal transplantation was insidious, and the condition developed after long-term medication (>10 years). It mainly manifested as bone pain, osteomalacia, and scoliosis in the late stage and was accompanied by obvious proximal renal tubular damage (severe hypophosphatemia, hypokalemia, hypocalcemia, hypouricemia, glycosuria, protein urine, acidosis, etc.) and renal function damage (increased creatinine and azotemia). The pathological findings included mitochondrial swelling and deformity in renal tubular epithelial cells. The above symptoms and signs were relieved after drug withdrawal, but the scoliosis was difficult to rectify. Fanconi syndrome secondary to tacrolimus has a single manifestation, increased creatinine, which can be easily confused with tacrolimus nephrotoxicity. However, it is often ineffective to reduce the dose of tacrolomus, and proximal renal failure can be found in the later stage of disease development. There was no abnormality in the bone metabolism index and imageological examination findings. The creatinine level decreased rapidly, the proximal renal tubule function returned to normal, and no severe electrolyte imbalance or urinary component loss occurred when the immunosuppression was changed from tacrolimus to cyclosporine A.ConclusionsFor the first time, drug-induced Fanconi syndrome after kidney transplantation was reported. These results confirmed that the long-term use of ADV or tacrolimus after kidney transplantation may have serious consequences, some of which are irreversible. Greater understanding of Fanconi syndrome after kidney transplantation is necessary in order to avoid incorrect and missed diagnosis.
Collapse
Affiliation(s)
- Zhouqi Tang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Tengfang Li
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
- Clinical Immunology Center, Central South University, Changsha, China
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou Peole’s Hosital), Zhengzhou, China
| | - Chen Feng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Fenghua Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Shaojie Yu
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Yu Wang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Chunhua Fang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Manhua Nie
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xiaoqiong Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xiaotian Tang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou Peole’s Hosital), Zhengzhou, China
| | - Xuejing Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuxi Fan
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Jiawei Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Siyu Sun
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Mingda Zhong
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
- *Correspondence: Longkai Peng,
| |
Collapse
|
41
|
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022; 13:911151. [PMID: 36032083 PMCID: PMC9411801 DOI: 10.3389/fimmu.2022.911151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.
Collapse
Affiliation(s)
- Arielle Raugh
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Maria Bettini,
| |
Collapse
|
42
|
Itahashi K, Irie T, Nishikawa H. Regulatory T-cell development in the tumor microenvironment. Eur J Immunol 2022; 52:1216-1227. [PMID: 35879813 DOI: 10.1002/eji.202149358] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/01/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Regulatory T (Treg) cells are required for maintaining self-tolerance and preventing the development of autoimmune diseases. However, Treg cells are abundant in tumors and suppress antitumor immunity, contributing to tumor development and growth. Thus, the selective deletion of tumor-infiltrating Treg cells is important for successful Treg cell-targeted therapies, providing effective antitumor immunity without inducing deleterious autoimmune disorders. Advancements in sequencing technologies have exposed the diversity and heterogeneity of human Treg cells during activation and differentiation, further emphasizing the importance of understanding tumor-infiltrating Treg cells for the development of Treg cell-targeted therapies. This review provides an overview of the classification and function of Treg cells and summarizes recent knowledge on the activation and differentiation of Treg cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
43
|
Yamamoto S, Matsui A, Ohyagi M, Kikutake C, Harada Y, Iizuka-Koga M, Suyama M, Yoshimura A, Ito M. In Vitro Generation of Brain Regulatory T Cells by Co-culturing With Astrocytes. Front Immunol 2022; 13:960036. [PMID: 35911740 PMCID: PMC9335882 DOI: 10.3389/fimmu.2022.960036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) are normally born in the thymus and activated in secondary lymphoid tissues to suppress immune responses in the lymph node and at sites of inflammation. Tregs are also resident in various tissues or accumulate in damaged tissues, which are now called tissue Tregs, and contribute to homeostasis and tissue repair by interacting with non-immune cells. We have shown that Tregs accumulate in the brain during the chronic phase in a mouse cerebral infarction model, and these Tregs acquire the characteristic properties of brain Tregs and contribute to the recovery of neurological damage by interacting with astrocytes. However, the mechanism of tissue Treg development is not fully understood. We developed a culture method that confers brain Treg characteristics in vitro. Naive Tregs from the spleen were activated and efficiently amplified by T-cell receptor (TCR) stimulation in the presence of primary astrocytes. Furthermore, adding IL-33 and serotonin could confer part of the properties of brain Tregs, such as ST2, peroxisome proliferator-activated receptor γ (PPARγ), and serotonin receptor 7 (Htr7) expression. Transcriptome analysis revealed that in vitro generated brain Treg-like Tregs (induced brain Tregs; iB-Tregs) showed similar gene expression patterns as those in in vivo brain Tregs, although they were not identical. Furthermore, in Parkinson’s disease models, in which T cells have been shown to be involved in disease progression, iB-Tregs infiltrated into the brain more readily and ameliorated pathological symptoms more effectively than splenic Tregs. These data indicate that iB-Tregs contribute to our understanding of brain Treg development and could also be therapeutic for inflammatory brain diseases.
Collapse
Affiliation(s)
- Shinichi Yamamoto
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ako Matsui
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masaki Ohyagi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Harada
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mana Iizuka-Koga
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- *Correspondence: Minako Ito,
| |
Collapse
|
44
|
Differentiation and homeostasis of effector Treg cells are regulated by inositol polyphosphates modulating Ca 2+ influx. Proc Natl Acad Sci U S A 2022; 119:e2121520119. [PMID: 35776543 PMCID: PMC9271192 DOI: 10.1073/pnas.2121520119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activated Foxp3+ regulatory T (Treg) cells differentiate into effector Treg (eTreg) cells to maintain peripheral immune homeostasis and tolerance. T cell receptor (TCR)-mediated induction and regulation of store-operated Ca2+ entry (SOCE) is essential for eTreg cell differentiation and function. However, SOCE regulation in Treg cells remains unclear. Here, we show that inositol polyphosphate multikinase (IPMK), which generates inositol tetrakisphosphate and inositol pentakisphosphate, is a pivotal regulator of Treg cell differentiation downstream of TCR signaling. IPMK is highly expressed in TCR-stimulated Treg cells and promotes a TCR-induced Treg cell program. IPMK-deficient Treg cells display aberrant T cell activation and impaired differentiation into RORγt+ Treg cells and tissue-resident Treg cells. Mechanistically, IPMK controls the generation of higher-order inositol phosphates, thereby promoting Ca2+ mobilization and Treg cell effector functions. Our findings identify IPMK as a critical regulator of TCR-mediated Ca2+ influx and highlight the importance of IPMK in Treg cell-mediated immune homeostasis.
Collapse
|
45
|
Du J, Wang Q, Yang S, Chen S, Fu Y, Spath S, Domeier P, Hagin D, Anover-Sombke S, Haouili M, Liu S, Wan J, Han L, Liu J, Yang L, Sangani N, Li Y, Lu X, Janga SC, Kaplan MH, Torgerson TR, Ziegler SF, Zhou B. FOXP3 exon 2 controls T reg stability and autoimmunity. Sci Immunol 2022; 7:eabo5407. [PMID: 35749515 PMCID: PMC9333337 DOI: 10.1126/sciimmunol.abo5407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differing from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.
Collapse
Affiliation(s)
- Jianguang Du
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qun Wang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shuangshuang Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Si Chen
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sabine Spath
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Phillip Domeier
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - David Hagin
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Stephanie Anover-Sombke
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Maya Haouili
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Han
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juli Liu
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lei Yang
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Neel Sangani
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University–Purdue University Indianapolis; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy R. Torgerson
- Allen Institute for Immunology, Seattle, WA and secondary affiliation as University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington; Center for Immunity and Immunotherapies, Seattle Children’s Hospital Research Institute, Seattle, WA 98101, USA
| | - Steven F. Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Baohua Zhou
- Department of Pediatrics, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
46
|
Gong Z, Jia H, Xue L, Li D, Zeng X, Wei M, Liu Z, Tong MCF, Chen GG. The emerging role of transcription factor FOXP3 in thyroid cancer. Rev Endocr Metab Disord 2022; 23:421-429. [PMID: 34463908 DOI: 10.1007/s11154-021-09684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
Transcription factor FOXP3 is a crucial regulator in the development and function of regulatory T cells (Treg) that are essential for immunological tolerance and homeostasis. Numerous studies have indicated the correlation of tumor infiltrating FOXP3+ Treg upregulation with poor prognostic parameters in thyroid cancer, including lymph node metastases, extrathyroidal extension, and multifocality. Most immune-checkpoint molecules are expressed in Treg. The blockage of such signals with checkpoint inhibitors has been approved for several solid tumors, but not yet for thyroid cancer. Thyroid abnormalities may be induced by checkpoint inhibitors. For example, hypothyroidism, thyrotoxicosis, painless thyroiditis, or even thyroid storm are more frequently associated with anti-PD-1 antibodies (pembrolizumab and nivolumab). Therefore, Targeting FOXP3+ Treg may have impacts on checkpoint molecules and the growth of thyroid cancer. Several factors may impact the role and stability of FOXP3, such as alternative RNA splicing, mutations, and post-translational modification. In addition, the role of FOXP3+ Treg in the tumor microenvironment is also affected by the complex regulatory network formed by FOXP3 and its transcriptional partners. Here we discussed how the expression and function of FOXP3 were regulated and how FOXP3 interacted with its targets in Treg, aiming to help the development of FOXP3 as a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Zhongqin Gong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Hao Jia
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lingbin Xue
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Dongcai Li
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang, ENT Hospital, Shenzhen, China
| | - Xianhai Zeng
- Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang, ENT Hospital, Shenzhen, China
| | - Minghui Wei
- Department of Head & Neck Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong, China
| | - Zhimin Liu
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Michael C F Tong
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | - George G Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| |
Collapse
|
47
|
Seitz C, Joly AL, Fang F, Frith K, Gray P, Andersson J. The FOXP3 full-length isoform controls the lineage-stability of CD4 +FOXP3 + regulatory T cells. Clin Immunol 2022; 237:108957. [PMID: 35247545 DOI: 10.1016/j.clim.2022.108957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 02/01/2023]
Abstract
The transcription factor FOXP3 is essential for CD4 + FOXP3+ regulatory T (Treg) cell development and function. Human FOXP3 exists in distinct isoforms and alterations in isoform expression is associated with inflammatory disease progression, however, the exact functions of FOXP3 isoforms remain poorly understood. Herein we used flow cytometry and RNA-sequencing to analyze subsets of Treg cells from two IPEX patients, and a healthy carrier, of a recently described FOXP3 mutation (c.305delT). This mutation is located in exon 2 and results in the loss of the full-length FOXP3 isoform. Treg cells lacking full-length FOXP3 are found at lower-than-expected frequencies. This loss cannot be explained solely by altered thymic output, changes in proliferation, peripheral induction of Treg cells, or apoptosis. Instead, fulllength FOXP3 control a distinct genetic program, involving the previously identified FOXP3 regulators ID3, BCL6 and eIF4E, that upholds Treg cell lineage stability, while it appears nonessential for Treg cell activation.
Collapse
Affiliation(s)
- Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Anne-Laure Joly
- Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Katie Frith
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Australia; School of Women's and Children's Health, Faculty of Medicine, UNSW, Australia
| | - Paul Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Australia; School of Women's and Children's Health, Faculty of Medicine, UNSW, Australia
| | - John Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Sweden.
| |
Collapse
|
48
|
Ulcerative colitis is characterized by a plasmablast-skewed humoral response associated with disease activity. Nat Med 2022; 28:766-779. [PMID: 35190725 PMCID: PMC9107072 DOI: 10.1038/s41591-022-01680-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvβ6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.
Collapse
|
49
|
Lutter L, van der Wal MM, Brand EC, Maschmeyer P, Vastert S, Mashreghi M, van Loosdregt J, van Wijk F. Human regulatory T cells locally differentiate and are functionally heterogeneous within the inflamed arthritic joint. Clin Transl Immunology 2022; 11:e1420. [PMID: 36204213 PMCID: PMC9525321 DOI: 10.1002/cti2.1420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Tregs are crucial for immune regulation, and environment‐driven adaptation of effector (e)Tregs is essential for local functioning. However, the extent of human Treg heterogeneity in inflammatory settings is unclear. Methods We combined single‐cell RNA‐ and TCR‐sequencing on Tregs derived from three to six patients with juvenile idiopathic arthritis (JIA) to investigate the functional heterogeneity of human synovial fluid (SF)‐derived Tregs from inflamed joints. Confirmation and suppressive function of the identified Treg clusters was assessed by flow cytometry. Results Four Treg clusters were identified; incoming, activated eTregs with either a dominant suppressive or cytotoxic profile, and GPR56+CD161+CXCL13+ Tregs. Pseudotime analysis showed differentiation towards either classical eTreg profiles or GPR56+CD161+CXCL13+ Tregs supported by TCR data. Despite its most differentiated phenotype, GPR56+CD161+CXCL13+ Tregs were shown to be suppressive. Furthermore, BATF was identified as an overarching eTreg regulator, with the novel Treg‐associated regulon BHLHE40 driving differentiation towards GPR56+CD161+CXCL13+ Tregs, and JAZF1 towards classical eTregs. Conclusion Our study reveals a heterogeneous population of Tregs at the site of inflammation in JIA. SF Treg differentiate to a classical eTreg profile with a more dominant suppressive or cytotoxic profile that share a similar TCR repertoire, or towards GPR56+CD161+CXCL13+ Tregs with a more distinct TCR repertoire. Genes characterising GPR56+CD161+CXCL13+ Tregs were also mirrored in other T‐cell subsets in both the tumor and the autoimmune setting. Finally, the identified key regulators driving SF Treg adaptation may be interesting targets for autoimmunity or tumor interventions.
Collapse
Affiliation(s)
- Lisanne Lutter
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - M Marlot van der Wal
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Eelco C Brand
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Patrick Maschmeyer
- Therapeutic Gene Regulation Deutsches Rheuma‐Forschungszentrum (DRFZ), an Institute of the Leibniz Association Berlin Germany
| | - Sebastiaan Vastert
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Mir‐Farzin Mashreghi
- Therapeutic Gene Regulation Deutsches Rheuma‐Forschungszentrum (DRFZ), an Institute of the Leibniz Association Berlin Germany
- BIH Center for Regenerative Therapies (BCRT) Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin Germany
| | - Jorg van Loosdregt
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| |
Collapse
|
50
|
Weinberg SE, Singer BD. Toward a Paradigm to Distinguish Distinct Functions of FOXP3 + Regulatory T Cells. Immunohorizons 2021; 5:944-952. [PMID: 34893512 DOI: 10.4049/immunohorizons.2100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
FOXP3+ regulatory T (Treg) cells are a unique subset of CD4+ T cells that classically function as master regulators of immune homeostasis. Besides this canonical suppressive role, which is required to maintain self-tolerance, a growing body of literature has identified Treg cells as critical orchestrators of tissue protection during acute stress and as effector cells that drive repair following tissue injury. Despite substantial interest in these distinct roles, the field has struggled to disentangle Treg cell suppressive functions from those that promote tissue defense and repair. In this article, we will examine the literature in the context of specific physiologic settings, contrasting the suppressive function of Treg cells with their emerging roles in promoting tissue homeostasis and tissue repair. Further, we will discuss a new paradigm differentiating tissue defense from tissue repair-a paradigm needed to translate Treg cell-based therapies to the clinic.
Collapse
Affiliation(s)
- Samuel E Weinberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL; and.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|