1
|
George AF, Neidleman J, Luo X, Frouard J, Elphick N, Yin K, Young KC, Ma T, Andrew AK, Ezeonwumelu IJ, Pedersen JG, Chaillon A, Porrachia M, Woodworth B, Jakobsen MR, Thomas R, Smith DM, Gianella S, Roan NR. Anatomical, subset, and HIV-dependent expression of viral sensors and restriction factors. Cell Rep 2025; 44:115202. [PMID: 39798087 DOI: 10.1016/j.celrep.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
We developed viral sensor and restriction factor-cytometry by time of flight (VISOR-CyTOF), which profiles 19 viral sensors and restriction factors (VISORs) simultaneously in single cells, and applied it to 41 postmortem tissues from people with HIV. Mucosal myeloid cells are well equipped with SAMHD1 and sensors of viral capsid and DNA while CD4+ T cells are not. In lymph node CD4+ Tfh, VISOR expression patterns reflect those favoring integration but blocking HIV gene expression, thus favoring viral latency. We also identify small subsets of bone marrow-, lung-, and gut-associated CD4+ T and myeloid cells expressing high levels of restriction factors targeting most stages of the HIV replication cycle. In vitro, HIV preferentially fuses to CD4+ T cells with a permissive VISOR profile, but early induction of select VISORs by T1IFN prevents productive HIV infection. Our findings document the diverse patterns of VISOR profiles across tissues and cellular subsets and define their association with susceptibility to HIV.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Jason Neidleman
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Xiaoyu Luo
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Julie Frouard
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | | | - Kailin Yin
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Kyrlia C Young
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Tongcui Ma
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Alicer K Andrew
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | - Ifeanyi J Ezeonwumelu
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA
| | | | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Magali Porrachia
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Brendon Woodworth
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | | | | | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, UCSD, La Jolla, CA, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA, USA; Department of Urology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
2
|
Raehtz KD, Xu C, Deleage C, Ma D, Policicchio BB, Brocca-Cofano E, Piccolo D, Weaver K, Keele BF, Estes JD, Apetrei C, Pandrea I. Rapid systemic spread and minimal immune responses following SIVsab intrarectal transmission in African green monkeys. JCI Insight 2024; 9:e183751. [PMID: 39641272 PMCID: PMC11623940 DOI: 10.1172/jci.insight.183751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
African green monkeys (AGMs) are natural hosts of SIV whose infection does not progress to AIDS. Since early events of infection may be critical to pathogenesis in nonnatural hosts, we investigated early SIV infection in 29 adult male AGMs intrarectally inoculated with SIVsab92018 (SIVsab) and serially sacrificed throughout acute into early chronic infection to understand patterns of viral establishment, dissemination, and their effect on disease progression. Using this model, we showed that foci of virus replication could be detected at the site of inoculation and in the draining lymphatics as early as 1-3 days postinfection (dpi). Furthermore, testing with ultrasensitive assays showed rapid onset of viremia (2-4 dpi). After systemic spread, virus was detected in all tissues surveyed. Multiple transmitted/founder viruses were identified, confirming an optimal challenge dose, while demonstrating a moderate mucosal genetic bottleneck. Resident CD4+ T cells were the initial target cells; other immune cell populations were not significantly altered at the site of entry. Thus, intrarectal SIVsab infection is characterized by swift dissemination of the virus, a lack of major target cell recruitment, and no window of opportunity for interventions to prevent virus dissemination during the earliest stages of infection, similar to intrarectal transmission but different from vaginal transmission in macaques.
Collapse
Affiliation(s)
| | - Cuiling Xu
- Department of Pathology and
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, USA
| | - Dongzhu Ma
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Benjamin B. Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egidio Brocca-Cofano
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory of Cancer Research, Frederick, Maryland, USA
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ivona Pandrea
- Department of Pathology and
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Pereira Ribeiro S, Strongin Z, Soudeyns H, Ten-Caten F, Ghneim K, Pacheco Sanchez G, Xavier de Medeiros G, Del Rio Estrada PM, Pelletier AN, Hoang T, Nguyen K, Harper J, Jean S, Wallace C, Balderas R, Lifson JD, Raghunathan G, Rimmer E, Pastuskovas CV, Wu G, Micci L, Ribeiro RM, Chan CN, Estes JD, Silvestri G, Gorman DM, Howell BJ, Hazuda DJ, Paiardini M, Sekaly RP. Dual blockade of IL-10 and PD-1 leads to control of SIV viral rebound following analytical treatment interruption. Nat Immunol 2024; 25:1900-1912. [PMID: 39266691 PMCID: PMC11436369 DOI: 10.1038/s41590-024-01952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Human immunodeficiency virus (HIV) persistence during antiretroviral therapy (ART) is associated with heightened plasma interleukin-10 (IL-10) levels and PD-1 expression. We hypothesized that IL-10 and PD-1 blockade would lead to control of viral rebound following analytical treatment interruption (ATI). Twenty-eight ART-treated, simian immunodeficiency virus (SIV)mac239-infected rhesus macaques (RMs) were treated with anti-IL-10, anti-IL-10 plus anti-PD-1 (combo) or vehicle. ART was interrupted 12 weeks after introduction of immunotherapy. Durable control of viral rebound was observed in nine out of ten combo-treated RMs for >24 weeks post-ATI. Induction of inflammatory cytokines, proliferation of effector CD8+ T cells in lymph nodes and reduced expression of BCL-2 in CD4+ T cells pre-ATI predicted control of viral rebound. Twenty-four weeks post-ATI, lower viral load was associated with higher frequencies of memory T cells expressing TCF-1 and of SIV-specific CD4+ and CD8+ T cells in blood and lymph nodes of combo-treated RMs. These results map a path to achieve long-lasting control of HIV and/or SIV following discontinuation of ART.
Collapse
Affiliation(s)
- Susan Pereira Ribeiro
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hugo Soudeyns
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Viral Immunopathology Unit, Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, Québec, Canada
- Department of Microbiology, Infectiology and Immunology and Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Felipe Ten-Caten
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Khader Ghneim
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabriela Pacheco Sanchez
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Giuliana Xavier de Medeiros
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Timothy Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sherrie Jean
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Chelsea Wallace
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gopalan Raghunathan
- Department of Discovery Biologics, Merck & Co. Inc., South San Francisco, CA, USA
| | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., South San Francisco, CA, USA
| | - Cinthia V Pastuskovas
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., South San Francisco, CA, USA
| | - Guoxin Wu
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Luca Micci
- Department of Discovery Oncology, Merck & Co. Inc., Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Guido Silvestri
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Daniel M Gorman
- Department of Discovery Biologics, Merck & Co. Inc., South San Francisco, CA, USA
| | - Bonnie J Howell
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Daria J Hazuda
- Department of Quantitative Biosciences, Merck & Co. Inc., Rahway, NJ, USA
| | - Mirko Paiardini
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
6
|
Strongin Z, Raymond Marchand L, Deleage C, Pampena MB, Cardenas MA, Beusch CM, Hoang TN, Urban EA, Gourves M, Nguyen K, Tharp GK, Lapp S, Rahmberg AR, Harper J, Del Rio Estrada PM, Gonzalez-Navarro M, Torres-Ruiz F, Luna-Villalobos YA, Avila-Rios S, Reyes-Teran G, Sekaly R, Silvestri G, Kulpa DA, Saez-Cirion A, Brenchley JM, Bosinger SE, Gordon DE, Betts MR, Kissick HT, Paiardini M. Distinct SIV-specific CD8 + T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat Immunol 2024; 25:1245-1256. [PMID: 38886592 DOI: 10.1038/s41590-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Laurence Raymond Marchand
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth A Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mael Gourves
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Perla M Del Rio Estrada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio Gonzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comision Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Rafick Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Asier Saez-Cirion
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Eichholz K, Fukazawa Y, Peterson CW, Haeseleer F, Medina M, Hoffmeister S, Duell DM, Varco-Merth BD, Dross S, Park H, Labriola CS, Axthelm MK, Murnane RD, Smedley JV, Jin L, Gong J, Rust BJ, Fuller DH, Kiem HP, Picker LJ, Okoye AA, Corey L. Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. J Clin Invest 2024; 134:e169309. [PMID: 38557496 PMCID: PMC10977982 DOI: 10.1172/jci169309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.
Collapse
Affiliation(s)
- Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Francoise Haeseleer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Manuel Medina
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shelby Hoffmeister
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin D. Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sandra Dross
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Robert D. Murnane
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jiaxin Gong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Blake J. Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Deborah H. Fuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Erratum to: Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:179-222. [PMID: 38505662 PMCID: PMC10949969 DOI: 10.20411/pai.v8i2.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
[This corrects the article DOI: 10.20411/pai.v8i2.665.].
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Harper J, Betts MR, Lichterfeld M, Müller-Trutwin M, Margolis D, Bar KJ, Li JZ, McCune JM, Lewin SR, Kulpa D, Ávila-Ríos S, Diallo DD, Lederman MM, Paiardini M. Progress Note 2024: Curing HIV; Not in My Lifetime or Just Around the Corner? Pathog Immun 2024; 8:115-157. [PMID: 38455668 PMCID: PMC10919397 DOI: 10.20411/pai.v8i2.665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
Once a death sentence, HIV is now considered a manageable chronic disease due to the development of antiretroviral therapy (ART) regimens with minimal toxicity and a high barrier for genetic resistance. While highly effective in arresting AIDS progression and rendering the virus untransmissible in people living with HIV (PLWH) with undetectable viremia (U=U) [1, 2]), ART alone is incapable of eradicating the "reservoir" of resting, latently infected CD4+ T cells from which virus recrudesces upon treatment cessation. As of 2022 estimates, there are 39 million PLWH, of whom 86% are aware of their status and 76% are receiving ART [3]. As of 2017, ART-treated PLWH exhibit near normalized life expectancies without adjustment for socioeconomic differences [4]. Furthermore, there is a global deceleration in the rate of new infections [3] driven by expanded access to pre-exposure prophylaxis (PrEP), HIV testing in vulnerable populations, and by ART treatment [5]. Therefore, despite outstanding issues pertaining to cost and access in developing countries, there is strong enthusiasm that aggressive testing, treatment, and effective viral suppression may be able to halt the ongoing HIV epidemic (ie, UNAIDS' 95-95-95 targets) [6-8]; especially as evidenced by recent encouraging observations in Sydney [9]. Despite these promising efforts to limit further viral transmission, for PLWH, a "cure" remains elusive; whether it be to completely eradicate the viral reservoir (ie, cure) or to induce long-term viral remission in the absence of ART (ie, control; Figure 1). In a previous salon hosted by Pathogens and Immunity in 2016 [10], some researchers were optimistic that a cure was a feasible, scalable goal, albeit with no clear consensus on the best route. So, how are these cure strategies panning out? In this commentary, 8 years later, we will provide a brief overview on recent advances and failures towards identifying determinants of viral persistence and developing a scalable cure for HIV. Based on these observations, and as in the earlier salon, we have asked several prominent HIV cure researchers for their perspectives.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - David Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| | - Katharine J. Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Z. Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joseph M. McCune
- HIV Frontiers, Global Health Accelerator, Bill & Melinda Gates Foundation
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Deanna Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Michael M. Lederman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
12
|
Sperber HS, Raymond KA, Bouzidi MS, Ma T, Valdebenito S, Eugenin EA, Roan NR, Deeks SG, Winning S, Fandrey J, Schwarzer R, Pillai SK. The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency. Cell Rep 2023; 42:113285. [PMID: 37910505 PMCID: PMC10838153 DOI: 10.1016/j.celrep.2023.113285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.
Collapse
Affiliation(s)
- Hannah S Sperber
- Vitalant Research Institute, San Francisco, CA, USA; Free University of Berlin, Institute of Biochemistry, Berlin, Germany; University of California, San Francisco, San Francisco, CA, USA; University Hospital Essen, Institute for Translational HIV Research, Essen, Germany
| | - Kyle A Raymond
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | - Steven G Deeks
- University of California, San Francisco, San Francisco, CA, USA
| | - Sandra Winning
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Joachim Fandrey
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Roland Schwarzer
- University Hospital Essen, Institute for Translational HIV Research, Essen, Germany.
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Brandt L, Angelino P, Martinez R, Cristinelli S, Ciuffi A. Sex and Age Impact CD4+ T Cell Susceptibility to HIV In Vitro through Cell Activation Dynamics. Cells 2023; 12:2689. [PMID: 38067117 PMCID: PMC10706042 DOI: 10.3390/cells12232689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Cellular composition and the responsiveness of the immune system evolve upon aging and are influenced by biological sex. CD4+ T cells from women living with HIV exhibit a decreased viral replication ex vivo compared to men's. We, thus, hypothesized that these findings could be recapitulated in vitro and infected primary CD4+ T cells with HIV-based vectors pseudotyped with VSV-G or HIV envelopes. We used cells isolated from twenty donors to interrogate the effect of sex and age on permissiveness over a six-day activation kinetics. Our data identified an increased permissiveness to HIV between 24 and 72 h post-stimulation. Sex- and age-based analyses at these time points showed an increased susceptibility to HIV of the cells isolated from males and from donors over 50 years of age, respectively. A parallel assessment of surface markers' expression revealed higher frequencies of activation marker CD69 and of immune checkpoint inhibitors (PD-1 and CTLA-4) in the cells from highly permissive donors. Furthermore, positive correlations were identified between the expression kinetics of CD69, PD-1 and CTLA-4 and HIV expression kinetics. The cell population heterogeneity was assessed using a single-cell RNA-Seq analysis and no cell subtype enrichment was identified according to sex. Finally, transcriptomic analyses further highlighted the role of activation in those differences with enriched activation and cell cycle gene sets in male and older female cells. Altogether, this study brought further evidence about the individual features affecting HIV replication at the cellular level and should be considered in latency reactivation studies for an HIV cure.
Collapse
Affiliation(s)
- Ludivine Brandt
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland; (L.B.)
| | - Paolo Angelino
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland; (L.B.)
- Translational Data Science (TDS)-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Raquel Martinez
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland; (L.B.)
| | - Sara Cristinelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland; (L.B.)
| | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1010 Lausanne, Switzerland; (L.B.)
| |
Collapse
|
14
|
Dashti A, Sukkestad S, Horner AM, Neja M, Siddiqi Z, Waller C, Goldy J, Monroe D, Lin A, Schoof N, Singh V, Mavigner M, Lifson JD, Deleage C, Tuyishime M, Falcinelli SD, King HAD, Ke R, Mason RD, Archin NM, Dunham RM, Safrit JT, Jean S, Perelson AS, Margolis DM, Ferrari G, Roederer M, Silvestri G, Chahroudi A. AZD5582 plus SIV-specific antibodies reduce lymph node viral reservoirs in antiretroviral therapy-suppressed macaques. Nat Med 2023; 29:2535-2546. [PMID: 37783968 PMCID: PMC10579098 DOI: 10.1038/s41591-023-02570-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/25/2023] [Indexed: 10/04/2023]
Abstract
The main barrier to HIV cure is a persistent reservoir of latently infected CD4+ T cells harboring replication-competent provirus that fuels rebound viremia upon antiretroviral therapy (ART) interruption. A leading approach to target this reservoir involves agents that reactivate latent HIV proviruses followed by direct clearance of cells expressing induced viral antigens by immune effector cells and immunotherapeutics. We previously showed that AZD5582, an antagonist of inhibitor of apoptosis proteins and mimetic of the second mitochondrial-derived activator of caspases (IAPi/SMACm), induces systemic reversal of HIV/SIV latency but with no reduction in size of the viral reservoir. In this study, we investigated the effects of AZD5582 in combination with four SIV Env-specific Rhesus monoclonal antibodies (RhmAbs) ± N-803 (an IL-15 superagonist) in SIV-infected, ART-suppressed rhesus macaques. Here we confirm the efficacy of AZD5582 in inducing SIV reactivation, demonstrate enhancement of latency reversal when AZD5582 is used in combination with N-803 and show a reduction in total and replication-competent SIV-DNA in lymph-node-derived CD4+ T cells in macaques treated with AZD5582 + RhmAbs. Further exploration of this therapeutic approach may contribute to the goal of achieving an HIV cure.
Collapse
Affiliation(s)
- Amir Dashti
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sophia Sukkestad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna M Horner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Zain Siddiqi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Chevaughn Waller
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Goldy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dominique Monroe
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Lin
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nils Schoof
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Vidisha Singh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maud Mavigner
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Shane D Falcinelli
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Nancie M Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard M Dunham
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- HIV Drug Discovery, ViiV Healthcare, Research Traingle Park, NC, USA
| | | | - Sherrie Jean
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - David M Margolis
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Viox EG, Hoang TN, Upadhyay AA, Nchioua R, Hirschenberger M, Strongin Z, Tharp GK, Pino M, Nguyen K, Harper JL, Gagne M, Marciano S, Boddapati AK, Pellegrini KL, Pradhan A, Tisoncik-Go J, Whitmore LS, Karunakaran KA, Roy M, Kirejczyk S, Curran EH, Wallace C, Wood JS, Connor-Stroud F, Voigt EA, Monaco CM, Gordon DE, Kasturi SP, Levit RD, Gale M, Vanderford TH, Silvestri G, Busman-Sahay K, Estes JD, Vaccari M, Douek DC, Sparrer KM, Johnson RP, Kirchhoff F, Schreiber G, Bosinger SE, Paiardini M. Modulation of type I interferon responses potently inhibits SARS-CoV-2 replication and inflammation in rhesus macaques. Sci Immunol 2023; 8:eadg0033. [PMID: 37506197 PMCID: PMC10936760 DOI: 10.1126/sciimmunol.adg0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-β pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- These authors contributed equally
| | - Timothy N. Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- These authors contributed equally
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- These authors contributed equally
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Gregory K. Tharp
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Justin L. Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shir Marciano
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arun K. Boddapati
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn L. Pellegrini
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Arpan Pradhan
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington School of Medicine, and the Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Leanne S. Whitmore
- Department of Immunology, University of Washington School of Medicine, and the Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Kirti A. Karunakaran
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chelsea Wallace
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Fawn Connor-Stroud
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Emily A. Voigt
- RNA Vaccines Group, Access to Advanced Health Institute, Seattle, WA 98102, USA
| | - Christopher M. Monaco
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - David E. Gordon
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sudhir P. Kasturi
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rebecca D. Levit
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, and the Washington National Primate Research Center, Seattle, WA 98109, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
- Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
- School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Australia
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - R. Paul Johnson
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Infectious Disease Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Samer S, Chowdhury A, Wiche Salinas TR, Estrada PMDR, Reuter M, Tharp G, Bosinger S, Cervasi B, Auger J, Gill K, Ablanedo-Terrazas Y, Reyes-Teran G, Estes JD, Betts MR, Silvestri G, Paiardini M. Lymph-Node-Based CD3 + CD20 + Cells Emerge from Membrane Exchange between T Follicular Helper Cells and B Cells and Increase Their Frequency following Simian Immunodeficiency Virus Infection. J Virol 2023; 97:e0176022. [PMID: 37223960 PMCID: PMC10308947 DOI: 10.1128/jvi.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- HHSN261200800001C NCI NIH HHS
- U24 OD011023 NIH HHS
- U42 OD011023 NIH HHS
- P01 AI131338 NIAID NIH HHS
- HHSN261200800001E NCI NIH HHS
- UM1 AI164562 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID)
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart Lung and Blood Institute, National Institute of Neurological Disorders and Stroke (DIR, NIAID, NIDA, NIDDK, NHLBI, NINDS)
- HHS | NIH | National Cancer Institute (NCI)
- HHS | NIH | Office of Research Infrastructure Programs, National Institutes of Health (ORIP)
Collapse
Affiliation(s)
- Sadia Samer
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ankita Chowdhury
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | - Morgan Reuter
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Tharp
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
| | - Steven Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kiran Gill
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Yuria Ablanedo-Terrazas
- Práctica Médica Grupal en Otorrinolaringología, Centro Médico ABC Santa Fe, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael R. Betts
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Sanders-Beer BE, Archin NM, Brumme ZL, Busch MP, Deleage C, O'Doherty U, Hughes SH, Jerome KR, Jones RB, Karn J, Kearney MF, Keele BF, Kulpa DA, Laird GM, Li JZ, Lichterfeld MD, Nussenzweig MC, Persaud D, Yukl SA, Siliciano RF, Mellors JW. Current HIV/SIV Reservoir Assays for Preclinical and Clinical Applications: Recommendations from the Experts 2022 NIAID Workshop Summary. AIDS Res Hum Retroviruses 2023; 40:7-21. [PMID: 37126090 DOI: 10.1089/aid.2022.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.
Collapse
Affiliation(s)
- Brigitte E Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancie M Archin
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, University of California, San Francisco, California, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary F Kearney
- HIV Dynamics and Replication Program, CCR, National Cancer Institute, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, Maryland, USA
| | - Deanna A Kulpa
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jonathan Z Li
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mathias D Lichterfeld
- Brigham and Women's Hospital and Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Deborah Persaud
- Department of Pediatric Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven A Yukl
- Department of Medicine, University of California San Francisco (UCSF) and San Francisco VA Medical Center, San Francisco, California, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Mallarino-Haeger C, Pino M, Viox EG, Pagliuzza A, King CT, Nguyen K, Harper JL, Aldrete SDM, Cervasi B, Delman KA, Lowe MC, Chomont N, Marconi VC, Paiardini M. HIV-1 DNA and Immune Activation Levels Differ for Long-Lived T-Cells in Lymph Nodes, Compared with Peripheral Blood, during Antiretroviral Therapy. J Virol 2023; 97:e0167022. [PMID: 36971588 PMCID: PMC10134873 DOI: 10.1128/jvi.01670-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023] Open
Abstract
Elucidating the mechanisms underlying the persistence and location of the HIV reservoir is critical for developing cure interventions. While it has been shown that levels of T-cell activation and the size of the HIV reservoir are greater in rectal tissue and lymph nodes (LN) than in blood, the relative contributions of T-cell subsets to this anatomic difference are unknown. We measured and compared HIV-1 DNA content, expression of the T-cell activation markers CD38 and HLA-DR, and expression of the exhaustion markers programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) in naive, central memory (CM), transitional memory (TM), and effector memory (EM) CD4+ and CD8+ T-cells in paired blood and LN samples among 14 people with HIV who were receiving antiretroviral therapy. HIV-1 DNA levels, T-cell immune activation, and TIGIT expression were higher in LN than in blood, especially in CM and TM CD4+ T-cell subsets. Immune activation was significantly higher in all CD8+ T-cell subsets, and memory CD8+ T-cell subsets from LN had higher levels of PD-1 expression, compared with blood, while TIGIT expression levels were significantly lower in TM CD8+ T-cells. The differences seen in CM and TM CD4+ T-cell subsets were more pronounced among participants with CD4+ T-cell counts of <500 cells/μL within 2 years after antiretroviral therapy initiation, thus highlighting increased residual dysregulation in LN as a distinguishing feature of and a potential mechanism for individuals with suboptimal CD4+ T-cell recovery during antiretroviral therapy. IMPORTANCE This study provides new insights into the contributions of different CD4+ and CD8+ T-cell subsets to the anatomic differences between LN and blood in individuals with HIV who have optimal versus suboptimal CD4+ T-cell recovery. To our knowledge, this is the first study comparing paired LN and blood CD4+ and CD8+ T-cell differentiation subsets, as well as those subsets in immunological responders versus immunological suboptimal responders.
Collapse
Affiliation(s)
| | - Maria Pino
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Elise G. Viox
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Colin T. King
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kevin Nguyen
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Justin L. Harper
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | - Barbara Cervasi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | | | - Vincent C. Marconi
- Emory University School of Medicine, Atlanta, Georgia, USA
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Rollins School of Public Health, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Emory University School of Medicine, Atlanta, Georgia, USA
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Upadhyay AA, Viox EG, Hoang TN, Boddapati AK, Pino M, Lee MYH, Corry J, Strongin Z, Cowan DA, Beagle EN, Horton TR, Hamilton S, Aoued H, Harper JL, Edwards CT, Nguyen K, Pellegrini KL, Tharp GK, Piantadosi A, Levit RD, Amara RR, Barratt-Boyes SM, Ribeiro SP, Sekaly RP, Vanderford TH, Schinazi RF, Paiardini M, Bosinger SE. TREM2 + and interstitial-like macrophages orchestrate airway inflammation in SARS-CoV-2 infection in rhesus macaques. Nat Commun 2023; 14:1914. [PMID: 37024448 PMCID: PMC10078029 DOI: 10.1038/s41467-023-37425-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Amit A Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elise G Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Arun K Boddapati
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Michelle Y-H Lee
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jacqueline Corry
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - David A Cowan
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth N Beagle
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Tristan R Horton
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Sydney Hamilton
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Hadj Aoued
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Justin L Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Christopher T Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Kathryn L Pellegrini
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Emory NPRC Genomics Core Laboratory, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Anne Piantadosi
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rebecca D Levit
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rama R Amara
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan P Ribeiro
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rafick P Sekaly
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Chiu CY, Schou MD, McMahon JH, Deeks SG, Fromentin R, Chomont N, Wykes MN, Rasmussen TA, Lewin SR. Soluble immune checkpoints as correlates for HIV persistence and T cell function in people with HIV on antiretroviral therapy. Front Immunol 2023; 14:1123342. [PMID: 37056754 PMCID: PMC10086427 DOI: 10.3389/fimmu.2023.1123342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction In people with HIV (PWH) both off and on antiretroviral therapy (ART), the expression of immune checkpoint (IC) proteins is elevated on the surface of total and HIV-specific T-cells, indicating T-cell exhaustion. Soluble IC proteins and their ligands can also be detected in plasma, but have not been systematically examined in PWH. Since T-cell exhaustion is associated with HIV persistence on ART, we aimed to determine if soluble IC proteins and their ligands also correlated with the size of the HIV reservoir and HIV-specific T-cell function. Methods We used multiplex bead-based immunoassay to quantify soluble programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin domain and mucin domain 3 (TIM-3), PD-1 Ligand 1 (PD-L1) and PD-1 Ligand 2 (PD-L2) in plasma from PWH off ART (n=20), on suppressive ART (n=75) and uninfected controls (n=20). We also quantified expression of membrane-bound IC and frequencies of functional T-cells to Gag and Nef peptide stimulation on CD4+ and CD8+ T-cells using flow cytometry. The HIV reservoir was quantified in circulating CD4+ T-cells using qPCR for total and integrated HIV DNA, cell-associated unspliced HIV RNA and 2LTR circles. Results Soluble (s) PD-L2 level was higher in PWH off and on ART compared to uninfected controls. Higher levels of sPD-L2 correlated with lower levels of HIV total DNA and higher frequencies of gag-specific CD8+ T-cells expressing CD107a, IFNγ or TNFα. In contrast, the concentration of sLAG-3 was similar in uninfected individuals and PWH on ART, but was significantly elevated in PWH off ART. Higher levels of sLAG-3 correlated with higher levels of HIV total and integrated DNA, and lower frequency of gag-specific CD4+ T cells expressing CD107a. Similar to sLAG-3, levels of sPD-1 were elevated in PWH off ART and normalized in PWH on ART. sPD-1 was positively correlated with the frequency of gag-specific CD4+ T cells expressing TNF-a and the expression of membrane-bound PD-1 on total CD8+ T-cells in PWH on ART. Discussion Plasma soluble IC proteins and their ligands correlate with markers of the HIV reservoir and HIV-specific T-cell function and should be investigated further in in large population-based studies of the HIV reservoir or cure interventions in PWH on ART.
Collapse
Affiliation(s)
- Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Maya D. Schou
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital and Monash University and the Alfred Hospital, Melbourne, VIC, Australia
| | - Steven G. Deeks
- Department of Medicine, University California San Francisco, San Francisco, CA, United States
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University and the Alfred Hospital, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Azevedo-Pereira JM, Pires D, Calado M, Mandal M, Santos-Costa Q, Anes E. HIV/Mtb Co-Infection: From the Amplification of Disease Pathogenesis to an “Emerging Syndemic”. Microorganisms 2023; 11:microorganisms11040853. [PMID: 37110276 PMCID: PMC10142195 DOI: 10.3390/microorganisms11040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression. In this review, we discuss this reciprocal amplification of HIV/Mtb coinfection and how they influence each other’s pathogenesis. Elucidating the infectious cofactors that impact on pathogenesis may open doors for the design of new potential therapeutic strategies to control disease progression, especially in contexts where vaccines or the sterile clearance of pathogens are not effectively available.
Collapse
Affiliation(s)
- José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (J.M.A.-P.); (E.A.)
| |
Collapse
|
22
|
Byrnes SJ, Busman-Sahay K, Angelovich TA, Younger S, Taylor-Brill S, Nekorchuk M, Bondoc S, Dannay R, Terry M, Cochrane CR, Jenkins TA, Roche M, Deleage C, Bosinger SE, Paiardini M, Brew BJ, Estes JD, Churchill MJ. Chronic immune activation and gut barrier dysfunction is associated with neuroinflammation in ART-suppressed SIV+ rhesus macaques. PLoS Pathog 2023; 19:e1011290. [PMID: 36989320 PMCID: PMC10085024 DOI: 10.1371/journal.ppat.1011290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
HIV-associated neurocognitive disorders (HAND) affect ~40% of virally suppressed people with HIV (PWH), however, the precise viral dependent and independent changes to the brain are unclear. Here we characterized the CNS reservoir and immune environment of SIV-infected (SIV+) rhesus macaques during acute (n = 4), chronic (n = 12) or ART-suppressed SIV infection (n = 11). Multiplex immunofluorescence for markers of SIV infection (vRNA/vDNA) and immune activation was performed on frontal cortex and matched colon tissue. SIV+ animals contained detectable viral DNA+ cells that were not reduced in the frontal cortex or the gut by ART, supporting the presence of a stable viral reservoir in these compartments. SIV+ animals had impaired blood brain barrier (BBB) integrity and heightened levels of astrocytes or myeloid cells expressing antiviral, anti-inflammatory or oxidative stress markers which were not abrogated by ART. Neuroinflammation and BBB dysfunction correlated with measures of viremia and immune activation in the gut. Furthermore, SIV-uninfected animals with experimentally induced gut damage and colitis showed a similar immune activation profile in the frontal cortex to those of SIV-infected animals, supporting the role of chronic gut damage as an independent source of neuroinflammation. Together, these findings implicate gut-associated immune activation/damage as a significant contributor to neuroinflammation in ART-suppressed HIV/SIV infection which may drive HAND pathogenesis.
Collapse
Affiliation(s)
- Sarah J. Byrnes
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Thomas A. Angelovich
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Life Science, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Skyler Younger
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Sol Taylor-Brill
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Stephen Bondoc
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rachel Dannay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Margaret Terry
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | | | - Trisha A. Jenkins
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bruce J. Brew
- Peter Duncan Neurosciences Unit, Departments of Neurology and Immunology St Vincent’s Hospital, University of New South Wales and University of Notre Dame, Sydney, New South Wales, Australia
| | - Jacob D. Estes
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melissa J. Churchill
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
- Life Science, Burnet Institute, Melbourne, Australia
- Departments of Microbiology and Medicine, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Dufour C, Richard C, Pardons M, Massanella M, Ackaoui A, Murrell B, Routy B, Thomas R, Routy JP, Fromentin R, Chomont N. Phenotypic characterization of single CD4+ T cells harboring genetically intact and inducible HIV genomes. Nat Commun 2023; 14:1115. [PMID: 36849523 PMCID: PMC9971253 DOI: 10.1038/s41467-023-36772-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
The phenotype of the rare HIV-infected cells persisting during antiretroviral therapies (ART) remains elusive. We developed a single-cell approach that combines the phenotypic analysis of HIV-infected cells with near full-length sequencing of their associated proviruses to characterize the viral reservoir in 6 male individuals on suppressive ART. We show that individual cells carrying clonally expanded identical proviruses display very diverse phenotypes, indicating that cellular proliferation contributes to the phenotypic diversification of the HIV reservoir. Unlike most viral genomes persisting on ART, inducible and translation-competent proviruses rarely present large deletions but are enriched in defects in the Ψ locus. Interestingly, the few cells harboring genetically intact and inducible viral genomes express higher levels of the integrin VLA-4 compared to uninfected cells or cells with defective proviruses. Viral outgrowth assay confirmed that memory CD4+ T cells expressing high levels of VLA-4 are highly enriched in replication-competent HIV (27-fold enrichment). We conclude that although clonal expansions diversify the phenotype of HIV reservoir cells, CD4+ T cells harboring replication-competent HIV retain VLA-4 expression.
Collapse
Affiliation(s)
- Caroline Dufour
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Corentin Richard
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marion Pardons
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Marta Massanella
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Antoine Ackaoui
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Bertrand Routy
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Réjean Thomas
- Clinique médicale l'Actuel, Montreal, H2L 4P9, Quebec, Canada
| | - Jean-Pierre Routy
- Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, H2X 0A9, Quebec, Canada.
| |
Collapse
|
24
|
Statzu M, Jin W, Fray EJ, Wong AKH, Kumar MR, Ferrer E, Docken SS, Pinkevych M, McBrien JB, Fennessey CM, Keele BF, Liang S, Harper JL, Mutascio S, Franchitti L, Wang H, Cicetti D, Bosinger SE, Carnathan DG, Vanderford TH, Margolis DM, Garcia-Martinez JV, Chahroudi A, Paiardini M, Siliciano J, Davenport MP, Kulpa DA, Siliciano RS, Silvestri G. CD8 + lymphocytes do not impact SIV reservoir establishment under ART. Nat Microbiol 2023; 8:299-308. [PMID: 36690860 PMCID: PMC9894752 DOI: 10.1038/s41564-022-01311-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/15/2022] [Indexed: 01/24/2023]
Abstract
Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- R01 AI143414 NIAID NIH HHS
- UM1 AI164562 NIAID NIH HHS
- UM1 AI164567 NIAID NIH HHS
- R01 AI125064 NIAID NIH HHS
- CU | National Cancer Institute, Cairo University (NCI)
- National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024/HHSN261201500003I.
- This work was supported by UM1AI164562, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases (to G.S., D.A.K., M.P.1), and NIH NIAID R01-AI143414 (to G.S. and D.A.K), and R01-AI125064 (to G.S., A.C., D.A.K.).
Collapse
Affiliation(s)
- Maura Statzu
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Wang Jin
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Kam Ho Wong
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Ferrer
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steffen S Docken
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mykola Pinkevych
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Julia B McBrien
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shan Liang
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Justin L Harper
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Simona Mutascio
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Lavinia Franchitti
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Hong Wang
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Davide Cicetti
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Diane G Carnathan
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David M Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - J Victor Garcia-Martinez
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Ann Chahroudi
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Janet Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Deanna A Kulpa
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Robert S Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
25
|
Silence, escape and survival drive the persistence of HIV. Nature 2023; 614:236-237. [PMID: 36599993 DOI: 10.1038/d41586-022-04492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Wu VH, Nordin JML, Nguyen S, Joy J, Mampe F, Del Rio Estrada PM, Torres-Ruiz F, González-Navarro M, Luna-Villalobos YA, Ávila-Ríos S, Reyes-Terán G, Tebas P, Montaner LJ, Bar KJ, Vella LA, Betts MR. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4 + T cell reservoir. Nat Immunol 2023; 24:359-370. [PMID: 36536105 PMCID: PMC9892009 DOI: 10.1038/s41590-022-01371-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a considerable impediment in research towards a cure for HIV. To address this, we developed a single-cell strategy to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by new and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered new epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.
Collapse
Grants
- K08 AI136660 NIAID NIH HHS
- T32 AI007632 NIAID NIH HHS
- R21 AI172629 NIAID NIH HHS
- UM1 AI164570 NIAID NIH HHS
- P30 AI045008 NIAID NIH HHS
- R01 AI031338 NIAID NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- Support for this study was provided by the following NIH grants: U19-A1-149680-02 (MRB), P01-AI31338 (MRB, KJB), K08-AI136660 (LAV), T32-AI007632 (VW), P30-AI045008 (Penn Center for AIDS Research) (MRB, LAV, KJB, PT, LJM), UM-1AI164570 (BEAT-HIV Collaboratory) which is co-supported by the National Institute of Allergies and Infectious Diseases (NIAID), the National Institute of Mental Health (NIMH), the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute on Drug Abuse (NIDA), and the Robert I. Jacobs Fund of The Philadelphia Foundation (MRB, KJB, PT, LJM). LJM is also supported by the Herbert Kean, M.D., Family Professorship. CIENI-INER is supported by the Mexican Government (Programa Presupuestal P016; Anexo 13 del Decreto del Presupuesto de Egresos de la Federación).
- CIENI-INER is supported by the Mexican Government (Programa Presupuestal P016; Anexo 13 del Decreto del Presupuesto de Egresos de la Federación).
- LJM is also supported by the Herbert Kean, M.D., Family Professorship.
Collapse
Affiliation(s)
- Vincent H Wu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayme M L Nordin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaimy Joy
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felicity Mampe
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio González-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Pablo Tebas
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luis J Montaner
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- The Wistar Institute, Philadelphia, PA, USA
| | - Katharine J Bar
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura A Vella
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Fisher K, Schlub TE, Boyer Z, Rasmussen TA, Rhodes A, Hoh R, Hecht FM, Deeks SG, Lewin SR, Palmer S. Unequal distribution of genetically-intact HIV-1 proviruses in cells expressing the immune checkpoint markers PD-1 and/or CTLA-4. Front Immunol 2023; 14:1064346. [PMID: 36776833 PMCID: PMC9909745 DOI: 10.3389/fimmu.2023.1064346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction HIV-1 persists in resting CD4+ T-cells despite antiretroviral therapy (ART). Determining the cell surface markers that enrich for genetically-intact HIV-1 genomes is vital in developing targeted curative strategies. Previous studies have found that HIV-1 proviral DNA is enriched in CD4+ T-cells expressing the immune checkpoint markers programmed cell death protein-1 (PD-1) or cytotoxic T-lymphocyte associated protein-4 (CTLA-4). There has also been some success in blocking these markers in an effort to reverse HIV-1 latency. However, it remains unclear whether cells expressing PD-1 and/or CTLA-4 are enriched for genetically-intact, and potentially replication-competent, HIV-1 genomes. Methods We obtained peripheral blood from 16 HIV-1-infected participants, and paired lymph node from four of these participants, during effective ART. Memory CD4+ T-cells from either site were sorted into four populations: PD-1-CTLA-4- (double negative, DN), PD-1+CTLA-4- (PD-1+), PD-1-CTLA-4+ (CTLA-4+) and PD-1+CTLA-4+ (double positive, DP). We performed an exploratory study using the full-length individual proviral sequencing (FLIPS) assay to identify genetically-intact and defective genomes from each subset, as well as HIV-1 genomes with specific intact open reading frames (ORFs). Results and Discussion In peripheral blood, we observed that proviruses found within PD-1+ cells are more likely to have intact ORFs for genes such as tat, rev and nef compared to DN, CTLA-4+ and DP cells, all of which may contribute to HIV-1 persistence. Conversely, we observed that CTLA-4 expression is a marker for cells harbouring HIV-1 provirus that is more likely to be defective, containing low levels of these intact ORFs. In the lymph node, we found evidence that CTLA-4+ cells contain lower levels of HIV-1 provirus compared to the other cell subsets. Importantly, however, we observed significant participant variation in the enrichment of HIV-1 proviruses with intact genomes or specific intact ORFs across these memory CD4+ T-cell subsets, and therefore consideration of additional cellular markers will likely be needed to consistently identify cells harbouring latent, and potentially replication-competent, HIV-1.
Collapse
Affiliation(s)
- Katie Fisher
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Timothy E Schlub
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Zoe Boyer
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rebecca Hoh
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Frederick M Hecht
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Steven G Deeks
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California San Francisco, San Francisco, CA, United States
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.,Sydney Medical School, Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
29
|
Solis-Leal A, May AM, Mohan M, Dufour JP, Ling B. Duration of antiretroviral therapy impacts the degree of residual SIV infection in the gut in long-term non-progressing Chinese rhesus macaques. J Med Virol 2023; 95:e28185. [PMID: 36181356 PMCID: PMC9839467 DOI: 10.1002/jmv.28185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/17/2023]
Abstract
The gut is a major reservoir in HIV-infected individuals on antiretroviral therapy (ART) and in long-term non-progressors (LTNPs). Whether ART reduces gut infection and reservoirs in LTNPs is unknown. Herein, SIV-infected LTNP Rhesus macaques were treated with short- or long-term ART, and SIV envelope gp120 sequences obtained from single genome amplification were analyzed before and after ART in peripheral blood and the intestine. Although ART does not eliminate SIV in these LTNPs, a longer ART period dramatically reduces SIV infection in the gut. This study highlights the importance of long-term ART in LTNPs to minimize gut infection and prolong remission.
Collapse
Affiliation(s)
- Antonio Solis-Leal
- Host-Pathogen Interaction Program & Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Ann-Marie May
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Mahesh Mohan
- Host-Pathogen Interaction Program & Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jason P Dufour
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Binhua Ling
- Host-Pathogen Interaction Program & Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
30
|
Gao L, Zhou J, Ye L. Role of CXCR5 + CD8 + T cells in human immunodeficiency virus-1 infection. Front Microbiol 2022; 13:998058. [PMID: 36452930 PMCID: PMC9701836 DOI: 10.3389/fmicb.2022.998058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection can be effectively suppressed by life-long administration of combination antiretroviral therapy (cART). However, the viral rebound can occur upon cART cessation due to the long-term presence of HIV reservoirs, posing a considerable barrier to drug-free viral remission. Memory CD4+ T cell subsets, especially T follicular helper (T FH ) cells that reside in B-cell follicles within lymphoid tissues, are regarded as the predominant cellular compartment of the HIV reservoir. Substantial evidence indicates that HIV-specific CD8+ T cell-mediated cellular immunity can sustain long-term disease-free and transmission-free HIV control in elite controllers. However, most HIV cure strategies that rely on expanded HIV-specific CD8+ T cells for virus control are likely to fail due to cellular exhaustion and T FH reservoir-specialized anatomical structures that isolate HIV-specific CD8+ T cell entry into B-cell follicles. Loss of stem-like memory properties is a key feature of exhaustion. Recent studies have found that CXC chemokine receptor type 5 (CXCR5)-expressing HIV-specific CD8+ T cells are memory-like CD8+ T cells that can migrate into B-cell follicles to execute inhibition of viral replication. Furthermore, these unique CD8+ T cells can respond to immune checkpoint blockade (ICB) therapy. In this review, we discuss the functions of these CD8+ T cells as well as the translation of findings into viable HIV treatment and cure strategies.
Collapse
Affiliation(s)
- Leiqiong Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, Wong WF, Kamarulzaman A. Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines 2022; 10:0. [PMID: 36359329 PMCID: PMC9687279 DOI: 10.3390/biomedicines10112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2023] Open
Abstract
The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
32
|
Hoang TN, Viox EG, Upadhyay AA, Strongin Z, Tharp GK, Pino M, Nchioua R, Hirschenberger M, Gagne M, Nguyen K, Harper JL, Marciano S, Boddapati AK, Pellegrini KL, Tisoncik-Go J, Whitmore LS, Karunakaran KA, Roy M, Kirejczyk S, Curran EH, Wallace C, Wood JS, Connor-Stroud F, Kasturi SP, Levit RD, Gale M, Vanderford TH, Silvestri G, Busman-Sahay K, Estes JD, Vaccari M, Douek DC, Sparrer KM, Kirchhoff F, Johnson RP, Schreiber G, Bosinger SE, Paiardini M. Modulation of type I interferon responses potently inhibits SARS-CoV-2 replication and inflammation in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.21.512606. [PMID: 36324810 PMCID: PMC9628196 DOI: 10.1101/2022.10.21.512606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-β pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.
Collapse
Affiliation(s)
- Timothy N. Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- These authors contributed equally
| | - Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- These authors contributed equally
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- These authors contributed equally
| | - Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Gregory K. Tharp
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Justin L. Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Shir Marciano
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Arun K. Boddapati
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn L. Pellegrini
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington School of Medicine, and the Washington National Primate Research Center, Seattle, WA, 98109, USA
| | - Leanne S. Whitmore
- Department of Immunology, University of Washington School of Medicine, and the Washington National Primate Research Center, Seattle, WA, 98109, USA
| | - Kirti A. Karunakaran
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Shannon Kirejczyk
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Chelsea Wallace
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Fawn Connor-Stroud
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sudhir P. Kasturi
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rebecca D. Levit
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, and the Washington National Primate Research Center, Seattle, WA, 98109, USA
| | - Thomas H. Vanderford
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - R. Paul Johnson
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Infectious Disease Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
33
|
Chandrasekar AP, Badley AD. Prime, shock and kill: BCL-2 inhibition for HIV cure. Front Immunol 2022; 13:1033609. [PMID: 36341439 PMCID: PMC9631312 DOI: 10.3389/fimmu.2022.1033609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/07/2022] [Indexed: 05/30/2024] Open
Abstract
While modern HIV therapy can effectively suppress viral replication, the persistence of the latent reservoir posits the greatest hurdle to complete cure. The "shock and kill" strategy is under investigation for HIV therapy, aiming to reactivate latent HIV, and subsequently eliminate it through anti-retroviral therapy and host immune function. However, thus far, studies have yielded suboptimal results, stemming from a combination of ineffective latency reversal and poor immune clearance. Concomitantly, studies have now revealed the importance of the BCL-2 anti-apoptotic protein as a critical mediator of infected cell survival, reservoir maintenance and immune evasion in HIV. Furthermore, BCL-2 inhibitors are now recognized for their anti-HIV effects in pre-clinical studies. This minireview aims to examine the intersection of BCL-2 inhibition and current shock and kill efforts, hoping to inform future studies which may ultimately yield a cure for HIV.
Collapse
Affiliation(s)
- Aswath P. Chandrasekar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
34
|
Rasmussen TA, Zerbato JM, Rhodes A, Tumpach C, Dantanarayana A, McMahon JH, Lau JS, Chang JJ, Gubser C, Brown W, Hoh R, Krone M, Pascoe R, Chiu CY, Bramhall M, Lee HJ, Haque A, Fromentin R, Chomont N, Milush J, Van der Sluis RM, Palmer S, Deeks SG, Cameron PU, Evans V, Lewin SR. Memory CD4 + T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Rep Med 2022; 3:100766. [PMID: 36198308 PMCID: PMC9589005 DOI: 10.1016/j.xcrm.2022.100766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1−CTLA4−) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency. CD4+ T cells co-expressing PD1 and CTLA4 (double positive [DP]) are enriched for HIV DNA DP cells contain virus that is more resistant to stimulation DP cells display differential expression of genes regulating T cell activation These features favor persistence of HIV latency in cells co-expressing PD1 and CTLA4
Collapse
Affiliation(s)
- Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Health, Melbourne, VIC, Australia
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Michael Bramhall
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rèmi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee M. Van der Sluis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Aarhus Institute of Advanced Studies and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Vanessa Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,School of Medicine and Dentistry, Griffith University, Sunshine Coast, QLD, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Corresponding author
| |
Collapse
|
35
|
Khanal S, Cao D, Zhang J, Zhang Y, Schank M, Dang X, Nguyen LNT, Wu XY, Jiang Y, Ning S, Zhao J, Wang L, Gazzar ME, Moorman JP, Yao ZQ. Synthetic gRNA/Cas9 Ribonucleoprotein Inhibits HIV Reactivation and Replication. Viruses 2022; 14:1902. [PMID: 36146709 PMCID: PMC9500661 DOI: 10.3390/v14091902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
The current antiretroviral therapy (ART) for human immunodeficiency virus (HIV) can halt viral replication but cannot eradicate HIV infection because proviral DNA integrated into the host genome remains genetically silent in reservoir cells and is replication-competent upon interruption or cessation of ART. CRISPR/Cas9-based technology is widely used to edit target genes via mutagenesis (i.e., nucleotide insertion/deletion and/or substitution) and thus can inactivate integrated proviral DNA. However, CRISPR/Cas9 delivery systems often require viral vectors, which pose safety concerns for therapeutic applications in humans. In this study, we used synthetic guide RNA (gRNA)/Cas9-ribonucleoprotein (RNP) as a non-viral formulation to develop a novel HIV gene therapy. We designed a series of gRNAs targeting different HIV genes crucial for HIV replication and tested their antiviral efficacy and cellular cytotoxicity in lymphoid and monocytic latent HIV cell lines. Compared with the scramble gRNA control, HIV-gRNA/Cas9 RNP-treated cells exhibited efficient viral suppression with no apparent cytotoxicity, as evidenced by the significant inhibition of latent HIV DNA reactivation and RNA replication. Moreover, HIV-gRNA/Cas9 RNP inhibited p24 antigen expression, suppressed infectious viral particle production, and generated specific DNA cleavages in the targeted HIV genes that are confirmed by DNA sequencing. Because of its rapid DNA cleavage, low off-target effects, low risk of insertional mutagenesis, easy production, and readiness for use in clinical application, this study provides a proof-of-concept that synthetic gRNA/Cas9 RNP drugs can be utilized as a novel therapeutic approach for HIV eradication.
Collapse
Affiliation(s)
- Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- HCV/HBV/HIV Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- HCV/HBV/HIV Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
36
|
Limited impact of fingolimod treatment during the initial weeks of ART in SIV-infected rhesus macaques. Nat Commun 2022; 13:5055. [PMID: 36030289 PMCID: PMC9420154 DOI: 10.1038/s41467-022-32698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Antiretroviral therapy (ART) is not curative due to the persistence of a reservoir of HIV-infected cells, particularly in tissues such as lymph nodes, with the potential to cause viral rebound after treatment cessation. In this study, fingolimod (FTY720), a lysophospholipid sphingosine-1-phosphate receptor modulator is administered to SIV-infected rhesus macaques at initiation of ART to block the egress from lymphoid tissues of natural killer and T-cells, thereby promoting proximity between cytolytic cells and infected CD4+ T-cells. When compared with the ART-only controls, FTY720 treatment during the initial weeks of ART induces a profound lymphopenia and increases frequencies of CD8+ T-cells expressing perforin in lymph nodes, but not their killing capacity; FTY720 also increases frequencies of cytolytic NK cells in lymph nodes. This increase of cytolytic cells, however, does not limit measures of viral persistence during ART, including intact proviral genomes. After ART interruption, a subset of animals that initially receives FTY720 displays a modest delay in viral rebound, with reduced plasma viremia and frequencies of infected T follicular helper cells. Further research is needed to optimize the potential utility of FTY720 when coupled with strategies that boost the antiviral function of T-cells in lymphoid tissues.
Collapse
|
37
|
Hartana CA, Garcia-Broncano P, Rassadkina Y, Lian X, Jiang C, Einkauf KB, Maswabi K, Ajibola G, Moyo S, Mohammed T, Maphorisa C, Makhema J, Yuki Y, Martin M, Bennett K, Jean-Philippe P, Viard M, Hughes MD, Powis KM, Carrington M, Lockman S, Gao C, Yu XG, Kuritzkes DR, Shapiro R, Lichterfeld M. Immune correlates of HIV-1 reservoir cell decline in early-treated infants. Cell Rep 2022; 40:111126. [PMID: 35858580 PMCID: PMC9314543 DOI: 10.1016/j.celrep.2022.111126] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022] Open
Abstract
Initiation of antiretroviral therapy (ART) in infected neonates within hours after birth limits viral reservoir seeding but does not prevent long-term HIV-1 persistence. Here, we report parallel assessments of HIV-1 reservoir cells and innate antiviral immune responses in a unique cohort of 37 infected neonates from Botswana who started ART extremely early, frequently within hours after birth. Decline of genome-intact HIV-1 proviruses occurs rapidly after initiation of ART and is associated with an increase in natural killer (NK) cell populations expressing the cytotoxicity marker CD57 and with a decrease in NK cell subsets expressing the inhibitory marker NKG2A. Immune perturbations in innate lymphoid cells, myeloid dendritic cells, and monocytes detected at birth normalize after rapid institution of antiretroviral therapy but do not notably influence HIV-1 reservoir cell dynamics. These results suggest that HIV-1 reservoir cell seeding and evolution in early-treated neonates is markedly influenced by antiviral NK cell immune responses.
Collapse
Affiliation(s)
- Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pilar Garcia-Broncano
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin B Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kenneth Maswabi
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Gbolahan Ajibola
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Terence Mohammed
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Joseph Makhema
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kara Bennett
- Bennett Statistical Consulting, Inc., Ballston Lake, NY 12019, USA
| | | | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael D Hughes
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathleen M Powis
- Harvard Medical School, Boston, MA 02115, USA; Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shahin Lockman
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Roger Shapiro
- Harvard Medical School, Boston, MA 02115, USA; Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Strongin Z, Hoang TN, Tharp GK, Rahmberg AR, Harper JL, Nguyen K, Franchitti L, Cervasi B, Lee M, Zhang Z, Boritz EA, Silvestri G, Marconi VC, Bosinger SE, Brenchley JM, Kulpa DA, Paiardini M. The role of CD101-expressing CD4 T cells in HIV/SIV pathogenesis and persistence. PLoS Pathog 2022; 18:e1010723. [PMID: 35867722 PMCID: PMC9348691 DOI: 10.1371/journal.ppat.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/03/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4β7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Timothy N. Hoang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Andrew R. Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH; Bethesda, Maryland, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Lavinia Franchitti
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University; Atlanta, Georgia, United States of America
| | - Max Lee
- Vaccine Research Center, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Zhan Zhang
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
| | - Eli A. Boritz
- Vaccine Research Center, National Institutes of Health; Bethesda, Maryland, United States of America
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Infectious Diseases, Emory University School of Medicine; Atlanta, Georgia, United States of America
- Division of Infectious Diseases Research, Atlanta Veterans Affairs Medical Center; Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University; Atlanta, Georgia, United States of America
- Emory Vaccine Center, Atlanta, Georgia, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAID, NIH; Bethesda, Maryland, United States of America
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University; Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine; Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
39
|
Single-cell multiomics reveals persistence of HIV-1 in expanded cytotoxic T cell clones. Immunity 2022; 55:1013-1031.e7. [PMID: 35320704 PMCID: PMC9203927 DOI: 10.1016/j.immuni.2022.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Understanding the drivers and markers of clonally expanding HIV-1-infected CD4+ T cells is essential for HIV-1 eradication. We used single-cell ECCITE-seq, which captures surface protein expression, cellular transcriptome, HIV-1 RNA, and TCR sequences within the same single cell to track clonal expansion dynamics in longitudinally archived samples from six HIV-1-infected individuals (during viremia and after suppressive antiretroviral therapy) and two uninfected individuals, in unstimulated conditions and after CMV and HIV-1 antigen stimulation. Despite antiretroviral therapy, persistent antigen and TNF responses shaped T cell clonal expansion. HIV-1 resided in Th1-polarized, antigen-responding T cells expressing BCL2 and SERPINB9 that may resist cell death. HIV-1 RNA+ T cell clones were larger in clone size, established during viremia, persistent after viral suppression, and enriched in GZMB+ cytotoxic effector memory Th1 cells. Targeting HIV-1-infected cytotoxic CD4+ T cells and drivers of clonal expansion provides another direction for HIV-1 eradication.
Collapse
|
40
|
Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection. DISEASE MARKERS 2022; 2022:6952286. [PMID: 35664434 PMCID: PMC9157282 DOI: 10.1155/2022/6952286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Since the first discovery of human immunodeficiency virus 1 (HIV-1) in 1983, the targeted treatment, antiretroviral therapy (ART), has effectively limited the detected plasma viremia below a very low level and the technique has been improved rapidly. However, due to the persistence of the latent reservoir of replication-competent HIV-1 in patients treated with ART, a sudden withdrawal of the drug inevitably results in HIV viral rebound and HIV progression. Therefore, more understanding of the HIV-1 latent reservoir (LR) is the priority before developing a cure that thoroughly eliminates the reservoir. HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review, the definition, establishment, and maintenance of the HIV-1 LR, along with the state-of-the-art quantitative approaches that directly quantify HIV-1 intact proviruses, are elucidated. Strategies to cure HIV infection are highlighted. This review will renew hope for a better and more thorough cure of HIV infection for mankind and encourage more clinical trials to achieve ART-free HIV remission.
Collapse
|
41
|
Kreider EF, Bar KJ. HIV-1 Reservoir Persistence and Decay: Implications for Cure Strategies. Curr HIV/AIDS Rep 2022; 19:194-206. [PMID: 35404007 PMCID: PMC10443186 DOI: 10.1007/s11904-022-00604-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.
Collapse
Affiliation(s)
- Edward F Kreider
- Perelman School of Medicine, University of Pennsylvania, Stemmler Hall Room 130-150, 3450 Hamilton Walk, Philadelphia, PA, 19104-6073, USA
| | - Katharine J Bar
- Perelman School of Medicine, University of Pennsylvania, 502D Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104‑0673, USA.
| |
Collapse
|
42
|
Rahman SA, Billingsley JM, Sharma AA, Styles TM, Govindaraj S, Shanmugasundaram U, Babu H, Riberio SP, Ali SA, Tharp GK, Ibegbu C, Waggoner SN, Johnson RP, Sekaly RP, Villinger F, Bosinger SE, Amara RR, Velu V. Lymph node CXCR5+ NK cells associate with control of chronic SHIV infection. JCI Insight 2022; 7:155601. [PMID: 35271506 PMCID: PMC9089783 DOI: 10.1172/jci.insight.155601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/28/2022] Open
Abstract
The persistence of virally infected cells as reservoirs despite effective antiretroviral therapy is a major barrier to an HIV/SIV cure. These reservoirs are predominately contained within cells present in the B cell follicles (BCFs) of secondary lymphoid tissues, a site that is characteristically difficult for most cytolytic antiviral effector cells to penetrate. Here, we identified a population of NK cells in macaque lymph nodes that expressed BCF-homing receptor CXCR5 and accumulated within BCFs during chronic SHIV infection. These CXCR5+ follicular NK cells exhibited an activated phenotype coupled with heightened effector functions and a unique transcriptome characterized by elevated expression of cytolytic mediators (e.g., perforin and granzymes, LAMP-1). CXCR5+ NK cells exhibited high expression of FcγRIIa and FcγRIIIa, suggesting a potential for elevated antibody-dependent effector functionality. Consistently, accumulation of CXCR5+ NK cells showed a strong inverse association with plasma viral load and the frequency of germinal center follicular Th cells that comprise a significant fraction of the viral reservoir. Moreover, CXCR5+ NK cells showed increased expression of transcripts associated with IL-12 and IL-15 signaling compared with the CXCR5- subset. Indeed, in vitro treatment with IL-12 and IL-15 enhanced the proliferation of CXCR5+ granzyme B+ NK cells. Our findings suggest that follicular homing NK cells might be important in immune control of chronic SHIV infection, and this may have important implications for HIV cure strategies.
Collapse
Affiliation(s)
- Sheikh Abdul Rahman
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Microbiology and Immunology and
| | - James M Billingsley
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tiffany M Styles
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sakthivel Govindaraj
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Uma Shanmugasundaram
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Hemalatha Babu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan Pereira Riberio
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Syed A Ali
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chris Ibegbu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Stephen N Waggoner
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - R Paul Johnson
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Microbiology and Immunology and.,Infectious Disease Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Steve E Bosinger
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Microbiology and Immunology and
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
43
|
Harper J, Ribeiro SP, Chan CN, Aid M, Deleage C, Micci L, Pino M, Cervasi B, Raghunathan G, Rimmer E, Ayanoglu G, Wu G, Shenvi N, Barnard RJ, Del Prete GQ, Busman-Sahay K, Silvestri G, Kulpa DA, Bosinger SE, Easley KA, Howell BJ, Gorman D, Hazuda DJ, Estes JD, Sekaly RP, Paiardini M. Interleukin-10 contributes to reservoir establishment and persistence in SIV-infected macaques treated with antiretroviral therapy. J Clin Invest 2022; 132:e155251. [PMID: 35230978 PMCID: PMC9012284 DOI: 10.1172/jci155251] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine that signals through STAT3 to regulate T follicular helper (Tfh) cell differentiation and germinal center formation. In SIV-infected macaques, levels of IL-10 in plasma and lymph nodes (LNs) were induced by infection and not normalized with antiretroviral therapy (ART). During chronic infection, plasma IL-10 and transcriptomic signatures of IL-10 signaling were correlated with the cell-associated SIV-DNA content within LN CD4+ memory subsets, including Tfh cells, and predicted the frequency of CD4+ Tfh cells and their cell-associated SIV-DNA content during ART, respectively. In ART-treated rhesus macaques, cells harboring SIV-DNA by DNAscope were preferentially found in the LN B cell follicle in proximity to IL-10. Finally, we demonstrated that the in vivo neutralization of soluble IL-10 in ART-treated, SIV-infected macaques reduced B cell follicle maintenance and, by extension, LN memory CD4+ T cells, including Tfh cells and those expressing PD-1 and CTLA-4. Thus, these data support a role for IL-10 in maintaining a pool of target cells in lymphoid tissue that serve as a niche for viral persistence. Targeting IL-10 signaling to impair CD4+ T cell survival and improve antiviral immune responses may represent a novel approach to limit viral persistence in ART-suppressed people living with HIV.
Collapse
Affiliation(s)
- Justin Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Susan P. Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chi Ngai Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Discovery Oncology, Merck & Co., Inc., Boston, Massachusetts, USA
| | - Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Eric Rimmer
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Gulesi Ayanoglu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., South San Francisco, California, USA
| | - Guoxin Wu
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Neeta Shenvi
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Richard J.O. Barnard
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Deanna A. Kulpa
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kirk A. Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Bonnie J. Howell
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | | | - Daria J. Hazuda
- Department of Infectious Disease, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Baron M, Soulié C, Lavolé A, Assoumou L, Abbar B, Fouquet B, Rousseau A, Veyri M, Samri A, Makinson A, Choquet S, Mazières J, Brosseau S, Autran B, Costagliola D, Katlama C, Cadranel J, Marcelin AG, Lambotte O, Spano JP, Guihot A. Impact of Anti PD-1 Immunotherapy on HIV Reservoir and Anti-Viral Immune Responses in People Living with HIV and Cancer. Cells 2022; 11:cells11061015. [PMID: 35326466 PMCID: PMC8946896 DOI: 10.3390/cells11061015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
The role of immune checkpoints (ICPs) in both anti-HIV T cell exhaustion and HIV reservoir persistence, has suggested that an HIV cure therapeutic strategy could involve ICP blockade. We studied the impact of anti-PD-1 therapy on HIV reservoirs and anti-viral immune responses in people living with HIV and treated for cancer. At several timepoints, we monitored CD4 cell counts, plasma HIV-RNA, cell associated (CA) HIV-DNA, EBV, CMV, HBV, HCV, and HHV-8 viral loads, activation markers, ICP expression and virus-specific T cells. Thirty-two patients were included, with median follow-up of 5 months. The CA HIV-DNA tended to decrease before cycle 2 (p = 0.049). Six patients exhibited a ≥0.5 log10 HIV-DNA decrease at least once. Among those, HIV-DNA became undetectable for 10 months in one patient. Overall, no significant increase in HIV-specific immunity was observed. In contrast, we detected an early increase in CTLA-4 + CD4+ T cells in all patients (p = 0.004) and a greater increase in CTLA-4+ and TIM-3 + CD8+ T cells in patients without HIV-DNA reduction compared to the others (p ≤ 0.03). Our results suggest that ICP replacement compensatory mechanisms might limit the impact of anti-PD-1 monotherapy on HIV reservoirs, and pave the way for combination ICP blockade in HIV cure strategies.
Collapse
Affiliation(s)
- Marine Baron
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
- Correspondence:
| | - Cathia Soulié
- INSERM UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Département de Virologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (C.S.); (A.-G.M.)
| | - Armelle Lavolé
- GRC #04 Theranoscan, Département de Pneumologie et Oncologie Thoracique, AP-HP, Hôpital Tenon, Sorbonne Université, F-75020 Paris, France; (A.L.); (J.C.)
| | - Lambert Assoumou
- INSERM UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, F-75013 Paris, France; (L.A.); (D.C.)
| | - Baptiste Abbar
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
| | - Baptiste Fouquet
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
| | - Alice Rousseau
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
| | - Marianne Veyri
- Département d’Oncologie Médicale, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (M.V.); (J.-P.S.)
| | - Assia Samri
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
| | - Alain Makinson
- INSERM U1175, Département de Maladies Infectieuses, Centre Hospitalier Universitaire de Montpellier, Université de Montpellier, F-34090 Montpellier, France;
| | - Sylvain Choquet
- Département d’Hématologie Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France;
| | - Julien Mazières
- Département de Pneumologie, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France;
| | - Solenn Brosseau
- Département de Pneumologie, AP-HP, Hôpital Bichat-Claude Bernard, F-75018 Paris, France;
| | - Brigitte Autran
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
| | - Dominique Costagliola
- INSERM UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, F-75013 Paris, France; (L.A.); (D.C.)
| | - Christine Katlama
- Département de Maladies Infectieuses, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France;
| | - Jacques Cadranel
- GRC #04 Theranoscan, Département de Pneumologie et Oncologie Thoracique, AP-HP, Hôpital Tenon, Sorbonne Université, F-75020 Paris, France; (A.L.); (J.C.)
| | - Anne-Geneviève Marcelin
- INSERM UMR_S 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique, Département de Virologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (C.S.); (A.-G.M.)
| | - Olivier Lambotte
- Département d’Immunologie Clinique, AP-HP, Hôpital Bicêtre, Université Paris-Saclay, F-94270 Le Kremlin Bicêtre, France;
- INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IDMIT/IMVA-HB), UMR1184, Université Paris-Saclay, F-94270 Le Kremlin Bicêtre, France
| | - Jean-Philippe Spano
- Département d’Oncologie Médicale, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (M.V.); (J.-P.S.)
| | - Amélie Guihot
- INSERM U1135, CIMI, Département d’Immunologie, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, F-75013 Paris, France; (B.A.); (B.F.); (A.R.); (A.S.); (B.A.); (A.G.)
| | | | | |
Collapse
|
45
|
Expression Profile and Biological Role of Immune Checkpoints in Disease Progression of HIV/SIV Infection. Viruses 2022; 14:v14030581. [PMID: 35336991 PMCID: PMC8955100 DOI: 10.3390/v14030581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
During HIV/SIV infection, the upregulation of immune checkpoint (IC) markers, programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte-activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain-3 (Tim-3), CD160, 2B4 (CD244), and V-domain Ig suppressor of T cell activation (VISTA), can lead to chronic T cell exhaustion. These ICs play predominant roles in regulating the progression of HIV/SIV infection by mediating T cell responses as well as enriching latent viral reservoirs. It has been demonstrated that enhanced expression of ICs on CD4+ and CD8+ T cells could inhibit cell proliferation and cytokine production. Overexpression of ICs on CD4+ T cells could also format and prolong HIV/SIV persistence. IC blockers have shown promising clinical results in HIV therapy, implying that targeting ICs may optimize antiretroviral therapy in the context of HIV suppression. Here, we systematically review the expression profile, biological regulation, and therapeutic efficacy of targeted immune checkpoints in HIV/SIV infection.
Collapse
|
46
|
Gubser C, Chiu C, Lewin SR, Rasmussen TA. Immune checkpoint blockade in HIV. EBioMedicine 2022; 76:103840. [PMID: 35123267 PMCID: PMC8882999 DOI: 10.1016/j.ebiom.2022.103840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically improved life expectancy for people with HIV (PWH) and helps to restore immune function but is not curative and must be taken lifelong. Achieving long term control of HIV in the absence of ART will likely require potent T cell function, but chronic HIV infection is associated with immune exhaustion that persists even on ART. This is driven by elevated expression of immune checkpoints that provide negative signalling to T cells. In individuals with cancer, immune checkpoint blockade augments tumour-directed T-cell responses resulting in significant clinical cures. There is therefore high interest if ICB can contribute to HIV cure or remission by reversing HIV-latency and/or drive recovery of HIV-specific T-cells. We here review recent evidence on the role of immune checkpoints in persistent HIV infection and discuss the potential for employing immune checkpoint blockade as a therapeutic approach to target HIV persistence on ART.
Collapse
Affiliation(s)
- Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Chris Chiu
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
47
|
Richardson ZA, Deleage C, Tutuka CSA, Walkiewicz M, Del Río-Estrada PM, Pascoe RD, Evans VA, Reyesteran G, Gonzales M, Roberts-Thomson S, González-Navarro M, Torres-Ruiz F, Estes JD, Lewin SR, Cameron PU. Multiparameter immunohistochemistry analysis of HIV DNA, RNA and immune checkpoints in lymph node tissue. J Immunol Methods 2022; 501:113198. [PMID: 34863818 PMCID: PMC9036546 DOI: 10.1016/j.jim.2021.113198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022]
Abstract
The main barrier to a cure for HIV is the persistence of long-lived and proliferating latently infected CD4+ T-cells despite antiretroviral therapy (ART). Latency is well characterized in multiple CD4+ T-cell subsets, however, the contribution of regulatory T-cells (Tregs) expressing FoxP3 as well as immune checkpoints (ICs) PD-1 and CTLA-4 as targets for productive and latent HIV infection in people living with HIV on suppressive ART is less well defined. We used multiplex detection of HIV DNA and RNA with immunohistochemistry (mIHC) on formalin-fixed paraffin embedded (FFPE) cells to simultaneously detect HIV RNA and DNA and cellular markers. HIV DNA and RNA were detected by in situ hybridization (ISH) (RNA/DNAscope) and IHC was used to detect cellular markers (CD4, PD-1, FoxP3, and CTLA-4) by incorporating the tyramide system amplification (TSA) system. We evaluated latently infected cell lines, a primary cell model of HIV latency and excisional lymph node (LN) biopsies collected from people living with HIV (PLWH) on and off ART. We clearly detected infected cells that coexpressed HIV RNA and DNA (active replication) and DNA only (latently infected cells) in combination with IHC markers in the in vitro infection model as well as LN tissue from PLWH both on and off ART. Combining ISH targeting HIV RNA and DNA with IHC provides a platform to detect and quantify HIV persistence within cells identified by multiple markers in tissue samples from PLWH on ART or to study HIV latency.
Collapse
Affiliation(s)
- Zuwena A Richardson
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Claire Deleage
- Frederick National Laboratories for Cancer Research, MD, Frederick, United States of America
| | - Candani S A Tutuka
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Marzena Walkiewicz
- Olivia Newton John Cancer Centre Research Institute, Austin Hospital, Heidelberg, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Perla M Del Río-Estrada
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Rachel D Pascoe
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Vanessa A Evans
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Gustavo Reyesteran
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Michael Gonzales
- Pathology Department, The Royal Melbourne Hospital, Melbourne, Australia
| | | | - Mauricio González-Navarro
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermdades Infecciosas, Instituto Nacional de Enfermedades Respiratoriras, Mexico City, Mexico
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health Science University, Portland, Oregon, USA
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
| | - Paul U Cameron
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia; La Trobe School of Cancer Medicine, La Trobe University, Melbourne, Australia; Launceston General Hospital, Tasmania, Launceston, Australia.
| |
Collapse
|
48
|
Kleinman AJ, Pandrea I, Apetrei C. So Pathogenic or So What?-A Brief Overview of SIV Pathogenesis with an Emphasis on Cure Research. Viruses 2022; 14:135. [PMID: 35062339 PMCID: PMC8781889 DOI: 10.3390/v14010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
HIV infection requires lifelong antiretroviral therapy (ART) to control disease progression. Although ART has greatly extended the life expectancy of persons living with HIV (PWH), PWH nonetheless suffer from an increase in AIDS-related and non-AIDS related comorbidities resulting from HIV pathogenesis. Thus, an HIV cure is imperative to improve the quality of life of PWH. In this review, we discuss the origins of various SIV strains utilized in cure and comorbidity research as well as their respective animal species used. We briefly detail the life cycle of HIV and describe the pathogenesis of HIV/SIV and the integral role of chronic immune activation and inflammation on disease progression and comorbidities, with comparisons between pathogenic infections and nonpathogenic infections that occur in natural hosts of SIVs. We further discuss the various HIV cure strategies being explored with an emphasis on immunological therapies and "shock and kill".
Collapse
Affiliation(s)
- Adam J. Kleinman
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Infectious Diseases and Immunology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| |
Collapse
|
49
|
Salido J, Czernikier A, Trifone C, Polo ML, Figueroa MI, Urioste A, Cahn P, Sued O, Salomon H, Laufer N, Ghiglione Y, Turk G. Pre-cART Immune Parameters in People Living With HIV Might Help Predict CD8+ T-Cell Characteristics, Inflammation Levels, and Reservoir Composition After Effective cART. Pathog Immun 2022; 6:60-89. [PMID: 34988339 PMCID: PMC8714178 DOI: 10.20411/pai.v6i2.447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background Combined antiretroviral treatment (cART) for HIV infection is highly effective in controlling viral replication. However, it cannot achieve a sterilizing cure. Several strategies have been proposed to achieve a functional cure, some of them based on immune-mediated clearing of persistently infected cells. Here, we aimed at identifying factors related to CD8TC and CD4TC quality before cART initiation that associate with the persistence of CD8TC antiviral response after cART, inflammation levels, and the size of the viral reservoir. Methods Samples from 25 persons living with HIV were obtained before and after (15 months) cART initiation. Phenotype and functionality of bulk and HIV-specific T cells were assayed by flow cytometry ex vivo or after expansion in pre-cART or post-cART samples, respectively. Cell-Associated (CA) HIV DNA (total and integrated) and RNA (unspliced [US] and multiple spliced [MS]) were quantitated by real-time PCR on post-cART samples. Post-cART plasma levels of CXCL10 (IP-10), soluble CD14 (sCD14) and soluble CD163 (sCD163) were measured by ELISA. Results Pre-cART phenotype of CD8TCs and magnitude and phenotype of HIV-specific response correlated with the phenotype and functionality of CD8TCs post-cART. Moreover, the phenotype of the CD8TCs pre-cART correlated with markers of HIV persistence and inflammation post-cART. Finally, exhaustion and differentiation of CD4TCs pre-cART were associated with the composition of the HIV reservoir post-cART and the level of inflammation. Conclusions Overall, this work provides data to help understand and identify parameters that could be used as markers in the development of immune-based functional HIV cure strategies.
Collapse
Affiliation(s)
- Jimena Salido
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Alejandro Czernikier
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - César Trifone
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - María Laura Polo
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | | | - Alejandra Urioste
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| | - Omar Sued
- Fundación Huésped, Buenos Aires, Argentina
| | - Horacio Salomon
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Hospital General de Agudos "Dr. JA Fernández" Buenos Aires, Argentina
| | - Yanina Ghiglione
- CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Gabriela Turk
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
50
|
Busman-Sahay K, Nekorchuk MD, Starke CE, Chan CN, Estes JD. In Situ Multiplexing to Identify, Quantify, and Phenotype the HIV-1/SIV Reservoir Within Lymphoid Tissue. Methods Mol Biol 2022; 2407:277-290. [PMID: 34985671 DOI: 10.1007/978-1-0716-1871-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern combination antiretroviral therapy (ART) regimens provide abiding viral suppression for most individuals infected with human immunodeficiency virus (HIV). However, the persistence of viral reservoirs ensures that eradication of HIV-1 (i.e., cure) or sustained ART-free remission (i.e., functional cure) remains elusive, necessitating continual, strict ART adherence and contributing to HIV-1-related comorbidities. Eradication of these viral reservoirs, which persist primarily within lymphoid tissue, will require a deeper understanding of the cellular neighborhoods in which latent and active HIV-1-infected cells reside. By pairing highly sensitive in situ hybridization (ISH) with an exceptionally flexible immunofluorescence (IF) approach, we describe a simple, yet highly adaptable multiplex protocol for investigating the quantity, distribution, and characteristics of HIV-1 viral reservoirs.
Collapse
Affiliation(s)
- Kathleen Busman-Sahay
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Michael D Nekorchuk
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Carly Elizabeth Starke
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Chi Ngai Chan
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|