1
|
Filippov I, Philip CS, Schauser L, Peterson P. Comparative transcriptomic analyses of thymocytes using 10x Genomics and Parse scRNA-seq technologies. BMC Genomics 2024; 25:1069. [PMID: 39528918 PMCID: PMC11552371 DOI: 10.1186/s12864-024-10976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing experiments commonly use 10x Genomics (10x) kits due to their high-throughput capacity and standardized protocols. Recently, Parse Biosciences (Parse) introduced an alternative technology that uses multiple in-situ barcoding rounds within standard 96-well plates. Parse enables the analysis of more cells from multiple samples in a single run without the need for additional reagents or specialized microfluidics equipment. To evaluate the performance of both platforms, we conducted a benchmark study using biological and technical replicates of mouse thymus as a complex immune tissue. RESULTS We found that Parse detected nearly twice the number of genes compared to 10x, with each platform detecting a distinct set of genes. The comparison of multiplexed samples generated from 10x and Parse techniques showed 10x data to have lower technical variability and more precise annotation of biological states in the thymus compared to Parse. CONCLUSION Our results provide a comprehensive comparison of the suitability of both single-cell platforms for immunological studies.
Collapse
Affiliation(s)
- Igor Filippov
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
- QIAGEN Aarhus A/S, Aarhus, Denmark.
| | - Chinna Susan Philip
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.
| | | | - Pärt Peterson
- Molecular Pathology Research Group, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Shin B, Chang SJ, MacNabb BW, Rothenberg EV. Transcriptional network dynamics in early T cell development. J Exp Med 2024; 221:e20230893. [PMID: 39167073 PMCID: PMC11338287 DOI: 10.1084/jem.20230893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
The rate at which cells enter the T cell pathway depends not only on the immigration of hematopoietic precursors into the strong Notch signaling environment of the thymus but also on the kinetics with which each individual precursor cell reaches T-lineage commitment once it arrives. Notch triggers a complex, multistep gene regulatory network in the cells in which the steps are stereotyped but the transition speeds between steps are variable. Progenitor-associated transcription factors delay T-lineage differentiation even while Notch-induced transcription factors within the same cells push differentiation forward. Progress depends on regulator cross-repression, on breaching chromatin barriers, and on shifting, competitive collaborations between stage-specific and stably expressed transcription factors, as reviewed here.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Samantha J Chang
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Brendan W MacNabb
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| | - Ellen V Rothenberg
- Division of Biology and Biological Engineering California Institute of Technology , Pasadena, CA, USA
| |
Collapse
|
3
|
Pala F, Notarangelo LD, Bosticardo M. Rediscovering the human thymus through cutting-edge technologies. J Exp Med 2024; 221:e20230892. [PMID: 39167072 PMCID: PMC11338284 DOI: 10.1084/jem.20230892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Recent technological advances have transformed our understanding of the human thymus. Innovations such as high-resolution imaging, single-cell omics, and organoid cultures, including thymic epithelial cell (TEC) differentiation and culture, and improvements in biomaterials, have further elucidated the thymus architecture, cellular dynamics, and molecular mechanisms underlying T cell development, and have unraveled previously unrecognized levels of stromal cell heterogeneity. These advancements offer unprecedented insights into thymic biology and hold promise for the development of novel therapeutic strategies for immune-related disorders.
Collapse
Affiliation(s)
- Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Luigi D Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
4
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Zhao M, Li Y, Zhang Y, Li G. Genomic analysis and functional properties of Lactobacillus johnsonii GJ231 isolated from healthy beagles. Front Microbiol 2024; 15:1437036. [PMID: 39355429 PMCID: PMC11442259 DOI: 10.3389/fmicb.2024.1437036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Probiotics are one of the management tools to improve the host's healthy microbiota. The positive effects of probiotics on host health are species-specific, so probiotics isolated from host's own gut may be most beneficial. Many of the metabolites (e.g., short-chain fatty acids, bacteriocins, and hydrogen peroxide) produced by Lactobacillus johnsonii have specific inhibitory profiles against invading pathogens. In this study, we isolated L. johnsonii GJ231 from the intestinal tract of healthy female beagles. The genome size of 1.763 M encoded a total of 1,691 predicted genes. Many carbohydrate-active enzymes responsible for carbohydrate degradation and the production of short-chain fatty acids were also predicted. The metabolic profile of short-chain fatty acids in L. johnsonii GJ231 was determined using LC-MS/MS. The bacteriocin-producing gene bacteriocin (lactacin F) in L. johnsonii GJ231 was also predicted. In vitro, experiments demonstrated that GJ231 can thrive in weak acids, 0.3% bile salts, and artificial gastrointestinal fluid models. It was tolerant of to high temperatures up to 70°C, was non- hemolytic, inhibited pathogenic bacteria, and had a high antioxidant capacity. In vivo safety experiments conducted in mice revealed that oral administration of GJ231 not only had no toxic side effect but also increased their antioxidant capacity. In conclusion, combining the above test results, which collectively demonstrate that canine-derived L. johnsonii GJ231 was a non-pathogenic, acid-tolerant and bile-salt-tolerant probiotic strain that inhibits pathogenic bacteria and improves host antioxidant function. This may make it a promising candidate for the development of innovative functional foods for pets.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Li Y, Li H, Peng C, Meng G, Lu Y, Liu H, Cui L, Zhou H, Xu Z, Sun L, Liu L, Xiong Q, Sun B, Jiao S. Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling. Nat Commun 2024; 15:7784. [PMID: 39237503 PMCID: PMC11377774 DOI: 10.1038/s41467-024-51767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The structural components of the thymus are essential for guiding T cell development, but a thorough spatial view is still absent. Here we develop the TSO-his tool, designed to integrate multimodal data from single-cell and spatial transcriptomics to decipher the intricate structure of human thymus. Specifically, we characterize dynamic changes in cell types and critical markers, identifying ELOVL4 as a mediator of CD4+ T cell positive selection in the cortex. Utilizing the mapping function of TSO-his, we reconstruct thymic spatial architecture at single-cell resolution and recapitulates classical cell types and their essential co-localization for T cell development; additionally, previously unknown co-localization relationships such as that of CD8αα with memory B cells and monocytes are identified. Incorporating VDJ sequencing data, we also delineate distinct intermediate thymocyte states during αβ T cell development. Overall, these insights enhance our understanding of thymic biology and may inform therapeutic interventions targeting T cell-mediated immune responses.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Huamei Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Peng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ge Meng
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
- TCRX (KeShiHua) Therapeutics Co, Ltd. Beijing & Yunnan Pilot Free Trade Zone (Dehong Area), Beijing, China
- Department of Oncology, Department of Rheumatology and Immunology, Ruili JingCheng Hospital, Ruili, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Honglin Liu
- Department of Pharmacy, Organoid and Regenerative Medicine Center, China-Japan Friendship Hospital, Beijing, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Huan Zhou
- National Institute of Drug Clinical Trial, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhu Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lihong Liu
- Department of Pharmacy, Organoid and Regenerative Medicine Center, China-Japan Friendship Hospital, Beijing, China.
| | - Qing Xiong
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Shiping Jiao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- TCRX (KeShiHua) Therapeutics Co, Ltd. Beijing & Yunnan Pilot Free Trade Zone (Dehong Area), Beijing, China.
- Department of Oncology, Department of Rheumatology and Immunology, Ruili JingCheng Hospital, Ruili, China.
| |
Collapse
|
7
|
Hübscher T, Lorenzo-Martín LF, Barthlott T, Tillard L, Langer JJ, Rouse P, Blackburn CC, Holländer G, Lutolf MP. Thymic epithelial organoids mediate T-cell development. Development 2024; 151:dev202853. [PMID: 39036995 PMCID: PMC11441983 DOI: 10.1242/dev.202853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Although the advent of organoids has opened unprecedented perspectives for basic and translational research, immune system-related organoids remain largely underdeveloped. Here, we established organoids from the thymus, the lymphoid organ responsible for T-cell development. We identified conditions enabling mouse thymic epithelial progenitor cell proliferation and development into organoids with diverse cell populations and transcriptional profiles resembling in vivo thymic epithelial cells (TECs) more closely than traditional TEC cultures. In contrast to these two-dimensional cultures, thymic epithelial organoids maintained thymus functionality in vitro and mediated physiological T-cell development upon reaggregation with T-cell progenitors. The reaggregates showed in vivo-like epithelial diversity and the ability to attract T-cell progenitors. Thymic epithelial organoids are the first organoids originating from the stromal compartment of a lymphoid organ. They provide new opportunities to study TEC biology and T-cell development in vitro, paving the way for future thymic regeneration strategies in ageing or acute injuries.
Collapse
Affiliation(s)
- Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - L. Francisco Lorenzo-Martín
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Barthlott
- Pediatric Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Lucie Tillard
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jakob J. Langer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Paul Rouse
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - C. Clare Blackburn
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Georg Holländer
- Pediatric Immunology, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, OX3 7TY, UK
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), 4056 Basel, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Human Biology (IHB), Pharma Research and Early Development, Roche Innovation Center Basel, 4058 Basel, Switzerland
| |
Collapse
|
8
|
Kousa AI, Jahn L, Zhao K, Flores AE, Acenas D, Lederer E, Argyropoulos KV, Lemarquis AL, Granadier D, Cooper K, D'Andrea M, Sheridan JM, Tsai J, Sikkema L, Lazrak A, Nichols K, Lee N, Ghale R, Malard F, Andrlova H, Velardi E, Youssef S, Burgos da Silva M, Docampo M, Sharma R, Mazutis L, Wimmer VC, Rogers KL, DeWolf S, Gipson B, Gomes ALC, Setty M, Pe'er D, Hale L, Manley NR, Gray DHD, van den Brink MRM, Dudakov JA. Age-related epithelial defects limit thymic function and regeneration. Nat Immunol 2024; 25:1593-1606. [PMID: 39112630 PMCID: PMC11362016 DOI: 10.1038/s41590-024-01915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.
Collapse
Grants
- T32-GM007270 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- 1187367 Department of Health | National Health and Medical Research Council (NHMRC)
- R01 CA228308 NCI NIH HHS
- 1158024 Department of Health | National Health and Medical Research Council (NHMRC)
- R01-HL145276 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL147584 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL165673 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL123340 NHLBI NIH HHS
- R01 HL145276 NHLBI NIH HHS
- R01-CA228308 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- T32 GM007103 NIGMS NIH HHS
- P30 CA015704 NCI NIH HHS
- P01 CA023766 NCI NIH HHS
- R01 HL165673 NHLBI NIH HHS
- R01 HL147584 NHLBI NIH HHS
- P01-AG052359 U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- P30-CA015704 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- 1090236 Department of Health | National Health and Medical Research Council (NHMRC)
- P30 CA008748 NCI NIH HHS
- P01 AG052359 NIA NIH HHS
- T32 GM007270 NIGMS NIH HHS
- 1102104 Cancer Council Victoria
- 1078763 Department of Health | National Health and Medical Research Council (NHMRC)
- 1146518 Cancer Council Victoria
- U01-AI70035 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- R35 HL171556 NHLBI NIH HHS
- ALTF-431-2017 European Molecular Biology Organization (EMBO)
- R01 CA228358 NCI NIH HHS
- F30-HL165761 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01-HL123340 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35-HL-171556 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 1121325 Department of Health | National Health and Medical Research Council (NHMRC)
- F30 HL165761 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
Collapse
Affiliation(s)
- Anastasia I Kousa
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - Lorenz Jahn
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelin Zhao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Angel E Flores
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Dante Acenas
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Emma Lederer
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kimon V Argyropoulos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andri L Lemarquis
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA
| | - David Granadier
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kirsten Cooper
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael D'Andrea
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie M Sheridan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jennifer Tsai
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lisa Sikkema
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Amina Lazrak
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nichole Lee
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romina Ghale
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florent Malard
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Hana Andrlova
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Division of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Salma Youssef
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Melissa Docampo
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan DeWolf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Antonio L C Gomes
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Manu Setty
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Basic Sciences Division & Translational Data Science Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Hale
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Nancy R Manley
- Department of Genetics, University of Georgia, Athens, GA, USA
- School of Life Sciences, Arizona State University, Phoenix, AZ, USA
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Marcel R M van den Brink
- Program in Immunology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- City of Hope Los Angeles and National Medical Center, Duarte, CA, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jarrod A Dudakov
- Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
You Y, Dunst J, Ye K, Sandoz PA, Reinhardt A, Sandrock I, Comet NR, Sarkar RD, Yang E, Duprez E, Agudo J, Brown BD, Utz PJ, Kastenmüller W, Gerlach C, Prinz I, Önfelt B, Kreslavsky T. Direct presentation of inflammation-associated self-antigens by thymic innate-like T cells induces elimination of autoreactive CD8 + thymocytes. Nat Immunol 2024; 25:1367-1382. [PMID: 38992254 PMCID: PMC11291280 DOI: 10.1038/s41590-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Upregulation of diverse self-antigens that constitute components of the inflammatory response overlaps spatially and temporally with the emergence of pathogen-derived foreign antigens. Therefore, discrimination between these inflammation-associated self-antigens and pathogen-derived molecules represents a unique challenge for the adaptive immune system. Here, we demonstrate that CD8+ T cell tolerance to T cell-derived inflammation-associated self-antigens is efficiently induced in the thymus and supported by redundancy in cell types expressing these molecules. In addition to thymic epithelial cells, this included thymic eosinophils and innate-like T cells, a population that expressed molecules characteristic for all major activated T cell subsets. We show that direct T cell-to-T cell antigen presentation by minute numbers of innate-like T cells was sufficient to eliminate autoreactive CD8+ thymocytes. Tolerance to such effector molecules was of critical importance, as its breach caused by decreased thymic abundance of a single model inflammation-associated self-antigen resulted in autoimmune elimination of an entire class of effector T cells.
Collapse
Affiliation(s)
- Yuanyuan You
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Dunst
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kewei Ye
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrick A Sandoz
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Annika Reinhardt
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Natalia R Comet
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Emily Yang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Lab, CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, Marseille, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Boston, MA, USA
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Carmen Gerlach
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Taras Kreslavsky
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Grobecker P, Sakoparnig T, van Nimwegen E. Identifying cell states in single-cell RNA-seq data at statistically maximal resolution. PLoS Comput Biol 2024; 20:e1012224. [PMID: 38995959 PMCID: PMC11364423 DOI: 10.1371/journal.pcbi.1012224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/30/2024] [Accepted: 06/04/2024] [Indexed: 07/14/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has become a popular experimental method to study variation of gene expression within a population of cells. However, obtaining an accurate picture of the diversity of distinct gene expression states that are present in a given dataset is highly challenging because of the sparsity of the scRNA-seq data and its inhomogeneous measurement noise properties. Although a vast number of different methods is applied in the literature for clustering cells into subsets with 'similar' expression profiles, these methods generally lack rigorously specified objectives, involve multiple complex layers of normalization, filtering, feature selection, dimensionality-reduction, employ ad hoc measures of distance or similarity between cells, often ignore the known measurement noise properties of scRNA-seq measurements, and include a large number of tunable parameters. Consequently, it is virtually impossible to assign concrete biophysical meaning to the clusterings that result from these methods. Here we address the following problem: Given raw unique molecule identifier (UMI) counts of an scRNA-seq dataset, partition the cells into subsets such that the gene expression states of the cells in each subset are statistically indistinguishable, and each subset corresponds to a distinct gene expression state. That is, we aim to partition cells so as to maximally reduce the complexity of the dataset without removing any of its meaningful structure. We show that, given the known measurement noise structure of scRNA-seq data, this problem is mathematically well-defined and derive its unique solution from first principles. We have implemented this solution in a tool called Cellstates which operates directly on the raw data and automatically determines the optimal partition and cluster number, with zero tunable parameters. We show that, on synthetic datasets, Cellstates almost perfectly recovers optimal partitions. On real data, Cellstates robustly identifies subtle substructure within groups of cells that are traditionally annotated as a common cell type. Moreover, we show that the diversity of gene expression states that Cellstates identifies systematically depends on the tissue of origin and not on technical features of the experiments such as the total number of cells and total UMI count per cell. In addition to the Cellstates tool we also provide a small toolbox of software to place the identified cellstates into a hierarchical tree of higher-order clusters, to identify the most important differentially expressed genes at each branch of this hierarchy, and to visualize these results.
Collapse
Affiliation(s)
- Pascal Grobecker
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Thomas Sakoparnig
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Erik van Nimwegen
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
11
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
12
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
13
|
Nabel CS, Ackman JB, Hung YP, Louissaint A, Riely GJ. Single-Cell Sequencing Illuminates Thymic Development: An Updated Framework for Understanding Thymic Epithelial Tumors. Oncologist 2024; 29:473-483. [PMID: 38520743 PMCID: PMC11145005 DOI: 10.1093/oncolo/oyae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare tumors for which treatment options are limited. The ongoing need for improved systemic therapies reflects a limited understanding of tumor biology as well as the normal thymus. The essential role of the thymus in adaptive immunity is largely effected by its epithelial compartment, which directs thymocyte (T-cell) differentiation and immunologic self-tolerance. With aging, the thymus undergoes involution whereby epithelial tissue is replaced by adipose and other connective tissue, decreasing immature T-cell production. Against this natural drive toward involution, a fraction of thymuses will instead undergo oncologic transformation, leading to the formation of TETs, including thymoma and thymic carcinoma. The rarity of these tumors restricts investigation of the mechanisms of tumorigenesis and development of rational treatment options. To this end, the development of technologies which allow deep molecular profiling of individual tumor cells permits a new window through which to view normal thymic development and contrast the malignant changes that result in oncogenic transformation. In this review, we describe the findings of recent illuminating studies on the diversity of cell types within the epithelial compartment through thymic differentiation and aging. We contextualize these findings around important unanswered questions regarding the spectrum of known somatic tumor alterations, cell of origin, and tumor heterogeneity. The perspectives informed by single-cell molecular profiling offer new approaches to clinical and basic investigation of thymic epithelial tumors, with the potential to accelerate development of improved therapeutic strategies to address ongoing unmet needs in these rare tumors.
Collapse
Affiliation(s)
- Christopher S Nabel
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeanne B Ackman
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Yin P Hung
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Abner Louissaint
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
14
|
Liu T, Xia S. The Proteostasis of Thymic Stromal Cells in Health and Diseases. Protein J 2024; 43:447-463. [PMID: 38622349 DOI: 10.1007/s10930-024-10197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
The thymus is the key immune organ for the development of T cells. Different populations of thymic stromal cells interact with T cells, thereby controlling the dynamic development of T cells through their differentiation and function. Proteostasis represents a balance between protein expression, folding, and modification and protein clearance, and its fluctuation usually depends at least partially on related protein regulatory systems for further survival and effects. However, in terms of the substantial requirement for self-antigens and their processing burden, increasing evidence highlights that protein regulation contributes to the physiological effects of thymic stromal cells. Impaired proteostasis may expedite the progression of thymic involution and dysfunction, accompanied by the development of autoimmune diseases or thymoma. Hence, in this review, we summarize the regulation of proteostasis within different types of thymic stromal cells under physiological and pathological conditions to identify potential targets for thymic regeneration and immunotherapy.
Collapse
Affiliation(s)
- Ting Liu
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
15
|
Lim S, J F van Son G, Wisma Eka Yanti NL, Andersson-Rolf A, Willemsen S, Korving J, Lee HG, Begthel H, Clevers H. Derivation of functional thymic epithelial organoid lines from adult murine thymus. Cell Rep 2024; 43:114019. [PMID: 38551965 DOI: 10.1016/j.celrep.2024.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Thymic epithelial cells (TECs) orchestrate T cell development by imposing positive and negative selection on thymocytes. Current studies on TEC biology are hampered by the absence of long-term ex vivo culture platforms, while the cells driving TEC self-renewal remain to be identified. Here, we generate long-term (>2 years) expandable 3D TEC organoids from the adult mouse thymus. For further analysis, we generated single and double FoxN1-P2A-Clover, Aire-P2A-tdTomato, and Cldn4-P2A-tdTomato reporter lines by CRISPR knockin. Single-cell analyses of expanding clonal organoids reveal cells with bipotent stem/progenitor phenotypes. These clonal organoids can be induced to express Foxn1 and to generate functional cortical- and Aire-expressing medullary-like TECs upon RANK ligand + retinoic acid treatment. TEC organoids support T cell development from immature thymocytes in vitro as well as in vivo upon transplantation into athymic nude mice. This organoid-based platform allows in vitro study of TEC biology and offers a potential strategy for ex vivo T cell development.
Collapse
Affiliation(s)
- Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Gijs J F van Son
- Oncode Institute, Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands
| | - Ni Luh Wisma Eka Yanti
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht 3584 CT, the Netherlands; Oncode Institute, Utrecht, the Netherlands; The Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, the Netherlands.
| |
Collapse
|
16
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
17
|
Lammers S, Barrera V, Brennecke P, Miller C, Yoon J, Balolong J, Anderson MS, Ho Sui S, Steinmetz LM, von Andrian UH, Rattay K. Ehf and Fezf2 regulate late medullary thymic epithelial cell and thymic tuft cell development. Front Immunol 2024; 14:1277365. [PMID: 38420512 PMCID: PMC10901246 DOI: 10.3389/fimmu.2023.1277365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.
Collapse
Affiliation(s)
- Sören Lammers
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Victor Barrera
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Philip Brennecke
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, United States
- Stanford Genome Technology Center, Stanford University, Stanford, CA, United States
| | - Corey Miller
- Diabetes Center, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Joon Yoon
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jared Balolong
- Diabetes Center, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lars M. Steinmetz
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, United States
- Stanford Genome Technology Center, Stanford University, Stanford, CA, United States
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ulrich H. von Andrian
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Kristin Rattay
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Pharmacological Institute, Biochemical Pharmacological Center, University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Vukic M, Chouaref J, Della Chiara V, Dogan S, Ratner F, Hogenboom JZM, Epp TA, Chawengsaksophak K, Vonk KKD, Breukel C, Ariyurek Y, San Leon Granado D, Kloet SL, Daxinger L. CDCA7-associated global aberrant DNA hypomethylation translates to localized, tissue-specific transcriptional responses. SCIENCE ADVANCES 2024; 10:eadk3384. [PMID: 38335290 PMCID: PMC10857554 DOI: 10.1126/sciadv.adk3384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
Disruption of cell division cycle associated 7 (CDCA7) has been linked to aberrant DNA hypomethylation, but the impact of DNA methylation loss on transcription has not been investigated. Here, we show that CDCA7 is critical for maintaining global DNA methylation levels across multiple tissues in vivo. A pathogenic Cdca7 missense variant leads to the formation of large, aberrantly hypomethylated domains overlapping with the B genomic compartment but without affecting the deposition of H3K9 trimethylation (H3K9me3). CDCA7-associated aberrant DNA hypomethylation translated to localized, tissue-specific transcriptional dysregulation that affected large gene clusters. In the brain, we identify CDCA7 as a transcriptional repressor and epigenetic regulator of clustered protocadherin isoform choice. Increased protocadherin isoform expression frequency is accompanied by DNA methylation loss, gain of H3K4 trimethylation (H3K4me3), and increased binding of the transcriptional regulator CCCTC-binding factor (CTCF). Overall, our in vivo work identifies a key role for CDCA7 in safeguarding tissue-specific expression of gene clusters via the DNA methylation pathway.
Collapse
Affiliation(s)
- Maja Vukic
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jihed Chouaref
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Serkan Dogan
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Fallon Ratner
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Trevor A. Epp
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kallayanee Chawengsaksophak
- Laboratory of Cell Differentiation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kelly K. D. Vonk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Yavuz Ariyurek
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Susan L. Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Laan M, Giraud M, Irla M. Editorial: Thymic function at single cell resolution. Front Immunol 2024; 14:1358957. [PMID: 38259446 PMCID: PMC10801162 DOI: 10.3389/fimmu.2023.1358957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Martti Laan
- Molecular Pathology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Matthieu Giraud
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Magali Irla
- Centre d’Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille Université, Marseille, France
| |
Collapse
|
20
|
Fu Y, Zhang X, Wu H, Zhang P, Liu S, Guo T, Shan H, Liang Y, Chen H, Xie J, Duan Y. HOXA3 functions as the on-off switch to regulate the development of hESC-derived third pharyngeal pouch endoderm through EPHB2-mediated Wnt pathway. Front Immunol 2024; 14:1258074. [PMID: 38259452 PMCID: PMC10800530 DOI: 10.3389/fimmu.2023.1258074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.
Collapse
Affiliation(s)
- Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Pingping Zhang
- Department of Laboratory Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Clinical Medicine, the Second Affiliation Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Malin J, Martinez-Ruiz GU, Zhao Y, Shissler SC, Cowan JE, Ding Y, Morales-Sanchez A, Ishikawa M, Lavaert M, Das A, Butcher D, Warner AC, Kallarakal M, Chen J, Kedei N, Kelly M, Brinster LR, Allman D, Bhandoola A. Expression of the transcription factor Klf6 by thymic epithelial cells is required for thymus development. SCIENCE ADVANCES 2023; 9:eadg8126. [PMID: 37967174 PMCID: PMC10651122 DOI: 10.1126/sciadv.adg8126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Thymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using Foxn1-Cre-driven ablation of Klf6 gene in TEC, we identified Klf6 as a critical factor in TEC development. Klf6 deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed. Among cortical TEC (cTEC), a previously unreported cTEC population expressing the transcription factor Sox10 was relatively expanded. Within medullary TEC (mTEC), mTEC I and Tuft-like mTEC IV were disproportionately decreased. Klf6 deficiency altered chromatin accessibility and affected TEC chromatin configuration. Consistent with these defects, naïve conventional T cells and invariant natural killer T cells were reduced in the spleen. Late stages of T cell receptor-dependent selection of thymocytes were affected, and mice exhibited autoimmunity. Thus, Klf6 has a prosurvival role and affects the development of specific TEC subsets contributing to thymic function.
Collapse
Affiliation(s)
- Justin Malin
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo Ulises Martinez-Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Research Division, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Children’s Hospital Federico Gomez, Mexico City, Mexico
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susannah C. Shissler
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E. Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Children’s Hospital Federico Gomez, Mexico City, Mexico
| | - Masaki Ishikawa
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donna Butcher
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Melissa Kallarakal
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqiu Chen
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- ACROBiosystems, Newark, DE, USA
| | - Noemi Kedei
- Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Kelly
- Single Cell Analysis Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauren R. Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Tangherloni A, Riva SG, Myers B, Buffa FM, Cazzaniga P. MAGNETO: Cell type marker panel generator from single-cell transcriptomic data. J Biomed Inform 2023; 147:104510. [PMID: 37797704 DOI: 10.1016/j.jbi.2023.104510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Single-cell RNA sequencing experiments produce data useful to identify different cell types, including uncharacterized and rare ones. This enables us to study the specific functional roles of these cells in different microenvironments and contexts. After identifying a (novel) cell type of interest, it is essential to build succinct marker panels, composed of a few genes referring to cell surface proteins and clusters of differentiation molecules, able to discriminate the desired cells from the other cell populations. In this work, we propose a fully-automatic framework called MAGNETO, which can help construct optimal marker panels starting from a single-cell gene expression matrix and a cell type identity for each cell. MAGNETO builds effective marker panels solving a tailored bi-objective optimization problem, where the first objective regards the identification of the genes able to isolate a specific cell type, while the second conflicting objective concerns the minimization of the total number of genes included in the panel. Our results on three public datasets show that MAGNETO can identify marker panels that identify the cell populations of interest better than state-of-the-art approaches. Finally, by fine-tuning MAGNETO, our results demonstrate that it is possible to obtain marker panels with different specificity levels.
Collapse
Affiliation(s)
- Andrea Tangherloni
- Department of Computing Sciences, Bocconi University, Via Guglielmo Röntgen 1, Milan, 20136, Italy; Bocconi Institute for Data Science and Analytics, Bocconi University, Via Guglielmo Röntgen 1, Milan, 20136, Italy; Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2, Bergamo, 24129, Italy.
| | - Simone G Riva
- Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS, United Kingdom
| | - Brynelle Myers
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | - Francesca M Buffa
- Department of Computing Sciences, Bocconi University, Via Guglielmo Röntgen 1, Milan, 20136, Italy; Bocconi Institute for Data Science and Analytics, Bocconi University, Via Guglielmo Röntgen 1, Milan, 20136, Italy; Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom
| | - Paolo Cazzaniga
- Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2, Bergamo, 24129, Italy; Bicocca Bioinformatics, Biostatistics, and Bioimaging Centre - B4, Via Follereau 3, Vedano al Lambro, 20854, Italy
| |
Collapse
|
23
|
Yao P, Xiao P, Huang Z, Tang M, Tang X, Yang G, Zhang Q, Li X, Yang Z, Xie C, Gong H, Wang G, Liu Y, Wang X, Li H, Jia D, Dai L, Chen L, Chen C, Liu Y, Xiao H, Zhang Y, Wang Y. Protein-level mutant p53 reporters identify druggable rare precancerous clones in noncancerous tissues. NATURE CANCER 2023; 4:1176-1192. [PMID: 37537298 DOI: 10.1038/s43018-023-00608-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Detecting and targeting precancerous cells in noncancerous tissues is a major challenge for cancer prevention. Massive stabilization of mutant p53 (mutp53) proteins is a cancer-specific event that could potentially mark precancerous cells, yet in vivo protein-level mutp53 reporters are lacking. Here we developed two transgenic protein-level mutp53 reporters, p53R172H-Akaluc and p53-mCherry, that faithfully mimic the dynamics and function of mutp53 proteins in vivo. Using these reporters, we identified and traced rare precancerous clones in deep noncancerous tissues in various cancer models. In classic mutp53-driven thymic lymphoma models, we found that precancerous clones exhibit broad chromosome number variations, upregulate precancerous stage-specific genes such as Ybx3 and enhance amino acid transport and metabolism. Inhibiting amino acid transporters downstream of Ybx3 at the early but not late stage effectively suppresses tumorigenesis and prolongs survival. Together, these protein-level mutp53 reporters reveal undercharacterized features and vulnerabilities of precancerous cells during early tumorigenesis, paving the way for precision cancer prevention.
Collapse
Affiliation(s)
- Pengle Yao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Xiao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zongyao Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gaoxia Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinpei Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengnan Yang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanxing Xie
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Gong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guihua Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yutong Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuxuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chong Chen
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
25
|
Chiu H, Linsley PS, Ziegler SF. Investigating Thymic Epithelial Cell Diversity Using Systems Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:888-894. [PMID: 36947816 PMCID: PMC10037528 DOI: 10.4049/jimmunol.2200610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 03/24/2023]
Abstract
The thymus is an intricate organ consisting of a diverse population of thymic epithelial cells (TECs). Cortical and medullary TECs and their subpopulations have distinct roles in coordinating the development and selection of functionally competent and self-tolerant T cells. Recent advances made in technologies such as single-cell RNA sequencing have made it possible to investigate and resolve the heterogeneity in TECs. These findings have provided further understanding of the molecular mechanisms regulating TEC function and expression of tissue-restricted Ags. In this brief review, we focus on the newly characterized subsets of TECs and their diversity in relation to their functions in supporting T cell development. We also discuss recent discoveries in expression of self-antigens in the context of TEC development as well as the cellular and molecular changes occurring during embryonic development to thymic involution.
Collapse
|
26
|
Watson SA, Javanmardi Y, Zanieri L, Shahreza S, Ragazzini R, Bonfanti P, Moeendarbary E. Integrated role of human thymic stromal cells in hematopoietic stem cell extravasation. Bioeng Transl Med 2023; 8:e10454. [PMID: 36925684 PMCID: PMC10013751 DOI: 10.1002/btm2.10454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
The human thymus is the site of T-cell maturation and induction of central tolerance. Hematopoietic stem cell (HSC)-derived progenitors are recruited to the thymus from the fetal liver during early prenatal development and from bone marrow at later stages and postnatal life. The mechanism by which HSCs are recruited to the thymus is poorly understood in humans, though mouse models have indicated the critical role of thymic stromal cells (TSC). Here, we developed a 3D microfluidic assay based on human cells to model HSC extravasation across the endothelium into the extracellular matrix. We found that the presence of human TSC consisting of cultured thymic epithelial cells (TEC) and interstitial cells (TIC) increases the HSC extravasation rates by 3-fold. Strikingly, incorporating TEC or TIC alone is insufficient to perturb HSC extravasation rates. Furthermore, we identified complex gene expressions from interactions between endothelial cells, TEC and TIC modulates the HSCs extravasation. Our results suggest that comprehensive signaling from the complex thymic microenvironment is crucial for thymus seeding and that our system will allow manipulation of these signals with the potential to increase thymocyte migration in a therapeutic setting.
Collapse
Affiliation(s)
- Sara A. Watson
- Department of Mechanical EngineeringUCLLondonUK
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
| | | | - Luca Zanieri
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
- Institute of Immunity and TransplantationDivision of Infection & Immunity, UCLLondonUK
| | | | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
- Institute of Immunity and TransplantationDivision of Infection & Immunity, UCLLondonUK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine LabThe Francis Crick InstituteLondonUK
- Institute of Immunity and TransplantationDivision of Infection & Immunity, UCLLondonUK
| | | |
Collapse
|
27
|
Matsumoto M, Yoshida H, Tsuneyama K, Oya T, Matsumoto M. Revisiting Aire and tissue-restricted antigens at single-cell resolution. Front Immunol 2023; 14:1176450. [PMID: 37207224 PMCID: PMC10191227 DOI: 10.3389/fimmu.2023.1176450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The thymus is a highly specialized organ that plays an indispensable role in the establishment of self-tolerance, a process characterized by the "education" of developing T-cells. To provide competent T-cells tolerant to self-antigens, medullary thymic epithelial cells (mTECs) orchestrate negative selection by ectopically expressing a wide range of genes, including various tissue-restricted antigens (TRAs). Notably, recent advancements in the high-throughput single-cell analysis have revealed remarkable heterogeneity in mTECs, giving us important clues for dissecting the mechanisms underlying TRA expression. We overview how recent single-cell studies have furthered our understanding of mTECs, with a focus on the role of Aire in inducing mTEC heterogeneity to encompass TRAs.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- *Correspondence: Minoru Matsumoto,
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
28
|
Morales-Sanchez A, Shissler SC, Cowan JE, Bhandoola A. Revelations in Thymic Epithelial Cell Biology and Heterogeneity from Single-Cell RNA Sequencing and Lineage Tracing Methodologies. Methods Mol Biol 2023; 2580:25-49. [PMID: 36374449 PMCID: PMC10802793 DOI: 10.1007/978-1-0716-2740-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thymic epithelial cells (TECs) make up the thymic microenvironments that support the generation of a functionally competent and self-tolerant T-cell repertoire. Cortical (c)TECs, present in the cortex, are essential for early thymocyte development including selection of thymocytes expressing functional TCRs (positive selection). Medullary (m)TECs, located in the medulla, play a key role in late thymocyte development, including depletion of self-reactive T cells (negative selection) and selection of regulatory T cells. In recent years, transcriptomic analysis by single-cell (sc)RNA sequencing (Seq) has revealed TEC heterogeneity previously masked by population-level RNA-Seq or phenotypic studies. We summarize the discoveries made possible by scRNA-Seq, including the identification of novel mTEC subsets, advances in understanding mTEC promiscuous gene expression, and TEC alterations from embryonic to adult stages. Whereas pseudotime analyses of scRNA-Seq data can suggest relationships between TEC subsets, experimental methods such as lineage tracing and reaggregate thymic organ culture (RTOC) are required to test these hypotheses. Lineage tracing - namely, of β5t or Aire expressing cells - has exposed progenitor and parent-daughter cellular relationships within TEC.
Collapse
Affiliation(s)
- Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico.
| | - Susannah C Shissler
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer E Cowan
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Bosselut R. Genetic Strategies to Study T Cell Development. Methods Mol Biol 2023; 2580:117-130. [PMID: 36374453 PMCID: PMC10803070 DOI: 10.1007/978-1-0716-2740-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetics approaches have been instrumental to deciphering T cell development in the thymus, including gene disruption by homologous recombination and more recently Crispr-based gene editing and transgenic gene expression, especially of specific T cell antigen receptors (TCR). This brief chapter describes commonly used tools and strategies to modify the genome of thymocytes, including mouse strains with lineage- and stage-specific expression of the Cre recombinase used for conditional allele inactivation or expressing unique antigen receptor specificities.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Shetty A, Lim S, Strell P, Steer CJ, Rivera-Mulia JC, Low WC. In Silico Stage-Matching of Human, Marmoset, Mouse, and Pig Embryos to Enhance Organ Development Through Interspecies Chimerism. Cell Transplant 2023; 32:9636897231158728. [PMID: 36929807 PMCID: PMC10026093 DOI: 10.1177/09636897231158728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, there is a significant shortage of transplantable organs for patients in need. Interspecies chimerism and blastocyst complementation are alternatives for generating transplantable human organs in host animals such as pigs to meet this shortage. While successful interspecies chimerism and organ generation have been observed between evolutionarily close species such as rat and mouse, barriers still exist for more distant species pairs such as human-mouse, marmoset-mouse, human-pig, and others. One of the proposed barriers to chimerism is the difference in developmental stages between the donor cells and the host embryo at the time the cells are introduced into the host embryo. Hence, there is a logical effort to stage-match the donor cells with the host embryos for enhancing interspecies chimerism. In this study, we used an in silico approach to simultaneously stage-match the early developing embryos of four species, including human, marmoset, mouse, and pig based on transcriptome similarities. We used an unsupervised clustering algorithm to simultaneously stage-match all four species as well as Spearman's correlation analyses to stage-match pairs of donor-host species. From our stage-matching analyses, we found that the four stages that best matched with each other are the human blastocyst (E6/E7), the gastrulating mouse embryo (E6-E6.75), the marmoset late inner cell mass, and the pig late blastocyst. We further demonstrated that human pluripotent stem cells best matched with the mouse post-implantation stages. We also performed ontology analysis of the genes upregulated and commonly expressed between donor-host species pairs at their best matched stages. The stage-matching results predicted by this study will inform in vivo and in vitro interspecies chimerism and blastocyst complementation studies and can be used to match donor cells with host embryos between multiple species pairs to enhance chimerism for organogenesis.
Collapse
Affiliation(s)
- Anala Shetty
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
| | - Seunghyun Lim
- Bioinformatics and Computational
Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Comparative and Molecular Biosciences
Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Clifford J. Steer
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
- Department of Medicine, University of
Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of
Minnesota, Minneapolis, MN, USA
| | - Juan Carlos Rivera-Mulia
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
- Stem Cell Institute, University of
Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular
Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Molecular, Cellular, Developmental
Biology, and Genetics Graduate Program, University of Minnesota, Minneapolis, MN,
USA
- Bioinformatics and Computational
Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, University of
Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, University
of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience,
University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Hernández-Torres DC, Stehle C. Embryonic ILC-poiesis across tissues. Front Immunol 2022; 13:1040624. [PMID: 36605193 PMCID: PMC9807749 DOI: 10.3389/fimmu.2022.1040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The family of innate lymphoid cells (ILCs), consisting of Group 1 ILCs (natural killer cells and ILC1), ILC2, and ILC3, are critical effectors of innate immunity, inflammation, and homeostasis post-natally, but also exert essential functions before birth. Recent studies during critical developmental periods in the embryo have hinted at complex waves of tissue colonization, and highlighted the breadth of multipotent and committed ILC progenitors from both classic fetal hematopoietic organs such as the liver, as well as tissue sites such as the lung, thymus, and intestine. Assessment of the mechanisms driving cell fate and function of the ILC family in the embryo will be vital to the understanding ILC biology throughout fetal life and beyond.
Collapse
Affiliation(s)
- Daniela Carolina Hernández-Torres
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| |
Collapse
|
32
|
Abstract
Single-cell studies are enabling our understanding of the molecular processes of normal cell development and the onset of several pathologies. For instance, single-cell RNA sequencing (scRNA-Seq) measures the transcriptome-wide gene expression at a single-cell resolution, allowing for studying the heterogeneity among the cells of the same population and revealing complex and rare cell populations. On the other hand, single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-Seq) can be used to define transcriptional and epigenetic changes by analyzing the chromatin accessibility at the single-cell level. However, the integration of multi-omics data still remains one of the most difficult tasks in bioinformatics. In this chapter, we focus on the combination of scRNA-Seq and scATACSeq data to perform an integrative analysis of the single-cell transcriptome and chromatin accessibility of human fetal progenitors.
Collapse
|
33
|
Cordes M, Canté-Barrett K, van den Akker EB, Moretti FA, Kiełbasa SM, Vloemans SA, Garcia-Perez L, Teodosio C, van Dongen JJM, Pike-Overzet K, Reinders MJT, Staal FJT. Single-cell immune profiling reveals thymus-seeding populations, T cell commitment, and multilineage development in the human thymus. Sci Immunol 2022; 7:eade0182. [DOI: 10.1126/sciimmunol.ade0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow. In addition, we found that the human thymus physiologically supports the development of monocytes, dendritic cells, and NK cells, as well as limited development of B cells. These results are an important step toward monitoring and guiding regenerative therapies in patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Martijn Cordes
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Kirsten Canté-Barrett
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Netherlands
| | - Erik B. van den Akker
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Federico A. Moretti
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M. Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Sandra A. Vloemans
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Laura Garcia-Perez
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jacques J. M. van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Marcel J. T. Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Bhalla P, Du Q, Kumar A, Xing C, Moses A, Dozmorov I, Wysocki CA, Cleaver OB, Pirolli TJ, Markert ML, de la Morena MT, Baldini A, van Oers NS. Mesenchymal cell replacement corrects thymic hypoplasia in murine models of 22q11.2 deletion syndrome. J Clin Invest 2022; 132:e160101. [PMID: 36136514 PMCID: PMC9663160 DOI: 10.1172/jci160101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.
Collapse
Affiliation(s)
| | | | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Departments of Bioinformatics and
- Population and Data Sciences, Departments of
| | | | | | | | | | - Timothy J. Pirolli
- Division of Pediatric Cardiothoracic Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Louise Markert
- Departments of Pediatrics and Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington, and Seattle Children’s Hospital, Seattle, Washington, USA
| | - Antonio Baldini
- Department Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nicolai S.C. van Oers
- Department of Immunology
- Pediatrics
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Abstract
The microenvironment of the thymus is composed of a group of stromal cells that include endoderm-derived thymic epithelial cells (TECs) and mesenchymal stromal cells such as fibroblasts and serves as a site for the development of T cells. TECs are known to play an essential role in T cell differentiation and selection. Mesenchymal stromal cells have been less studied in terms of their immunological significance compared to TECs. Recently, new technologies have made it possible to identify and characterize mesenchymal stromal cells in the thymus, revealing their unique functions in thymic organogenesis and T cell development. This review outlines the current views on mesenchymal stromal cells in the thymus, particularly highlighting the newly discovered function of thymic fibroblasts in T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- grid.26999.3d0000 0001 2151 536XDepartment of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
He Q, Lu Y, Tian W, Jiang R, Yu W, Liu Y, Sun M, Wang F, Zhang H, Wu N, Dong Z, Sun B. TOX deficiency facilitates the differentiation of IL-17A-producing γδ T cells to drive autoimmune hepatitis. Cell Mol Immunol 2022; 19:1102-1116. [PMID: 35986136 PMCID: PMC9508111 DOI: 10.1038/s41423-022-00912-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
The specification of the αβ/γδ lineage and the maturation of medullary thymic epithelial cells (mTECs) coordinate central tolerance to self-antigens. However, the mechanisms underlying this biological process remain poorly clarified. Here, we report that dual-stage loss of TOX in thymocytes hierarchically impaired mTEC maturation, promoted thymic IL-17A-producing γδ T-cell (Tγδ17) lineage commitment, and led to the development of fatal autoimmune hepatitis (AIH) via different mechanisms. Transfer of γδ T cells from TOX-deficient mice reproduced AIH. TOX interacted with and stabilized the TCF1 protein to maintain the balance of γδ T-cell development in thymic progenitors, and overexpression of TCF1 normalized αβ/γδ lineage specification and activation. In addition, TOX expression was downregulated in γδ T cells from AIH patients and was inversely correlated with the AIH diagnostic score. Our findings suggest multifaceted roles of TOX in autoimmune control involving mTEC and Tγδ17 development and provide a potential diagnostic marker for AIH.
Collapse
Affiliation(s)
- Qifeng He
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yijun Lu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yong Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meiling Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongjun Dong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Sandholm N, Rubio García A, Pekalski ML, Inshaw JRJ, Cutler AJ, Todd JA. Thymocyte regulatory variant alters transcription factor binding and protects from type 1 diabetes in infants. Sci Rep 2022; 12:14137. [PMID: 35986039 PMCID: PMC9391468 DOI: 10.1038/s41598-022-18296-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.
Collapse
|
38
|
Pankow A, Sun XH. The divergence between T cell and innate lymphoid cell fates controlled by E and Id proteins. Front Immunol 2022; 13:960444. [PMID: 36032069 PMCID: PMC9399370 DOI: 10.3389/fimmu.2022.960444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
T cells develop in the thymus from lymphoid primed multipotent progenitors or common lymphoid progenitors into αβ and γδ subsets. The basic helix-loop-helix transcription factors, E proteins, play pivotal roles at multiple stages from T cell commitment to maturation. Inhibitors of E proteins, Id2 and Id3, also regulate T cell development while promoting ILC differentiation. Recent findings suggest that the thymus can also produce innate lymphoid cells (ILCs). In this review, we present current findings that suggest the balance between E and Id proteins is likely to be critical for controlling the bifurcation of T cell and ILC fates at early stages of T cell development.
Collapse
Affiliation(s)
- Aneta Pankow
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiao-Hong Sun
- Program in Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
39
|
Breed ER, Vobořil M, Ashby KM, Martinez RJ, Qian L, Wang H, Salgado OC, O'Connor CH, Hogquist KA. Type 2 cytokines in the thymus activate Sirpα + dendritic cells to promote clonal deletion. Nat Immunol 2022; 23:1042-1051. [PMID: 35637352 PMCID: PMC10037932 DOI: 10.1038/s41590-022-01218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
The thymus contains a diversity of dendritic cells (DCs) that exist in defined locations and have different antigen-processing and -presenting features. This suggests that they play nonredundant roles in mediating thymocyte selection. In an effort to eliminate SIRPα+ classic DC2 subsets, we discovered that a substantial proportion expresses the surface lectin, CD301b, in the thymus. These cells resemble the CD301b+ type 2 immune response promoting DCs that are present in the skin-draining lymph nodes. Transcriptional and phenotypic comparison to other DC subsets in the thymus revealed that thymic CD301b+ cDCs represent an activated state that exhibits enhanced antigen processing and presentation. Furthermore, a CD301b+ cDC2 subset demonstrated a type 2 cytokine signature and required steady-state interleukin-4 receptor signaling. Selective ablation of CD301b+ cDC2 subsets impaired clonal deletion without affecting regulatory T cells (Treg cells). The T cell receptor α repertoire sequencing confirmed that a cDC2 subset promotes deletion of conventional T cells with minimal effect on Treg cell selection. Together, these findings suggest that cytokine-induced activation of DCs in the thymus substantially enforces central tolerance.
Collapse
Affiliation(s)
- Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matouš Vobořil
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Katherine M Ashby
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ryan J Martinez
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lily Qian
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haiguang Wang
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Oscar C Salgado
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christine H O'Connor
- Research Informatics Solutions, Laboratory Medicine and Pathology Group, Minnesota Supercomputing Institute, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Wang W, Chandra A, Goldman N, Yoon S, Ferrari EK, Nguyen SC, Joyce EF, Vahedi G. TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors. Nat Immunol 2022; 23:1052-1062. [PMID: 35726060 PMCID: PMC9728953 DOI: 10.1038/s41590-022-01232-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.
Collapse
Affiliation(s)
- Wenliang Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Goldman
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily K Ferrari
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Tan L, Inácio D, Prinz I, Silva-Santos B. New insights on murine γδ T cells from single-cell multi-omics. Sci Bull (Beijing) 2022; 67:1102-1104. [PMID: 36545971 DOI: 10.1016/j.scib.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Likai Tan
- Institute of Systems Immunology, University Medical Center Hamburg Eppendorf, Hamburg 20251, Germany
| | - Daniel Inácio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg Eppendorf, Hamburg 20251, Germany.
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
| |
Collapse
|
42
|
Chen S, Luo Y, Gao H, Li F, Chen Y, Li J, You R, Hao M, Bian H, Xi X, Li W, Li W, Ye M, Meng Q, Zou Z, Li C, Li H, Zhang Y, Cui Y, Wei L, Chen F, Wang X, Lv H, Hua K, Jiang R, Zhang X. hECA: The cell-centric assembly of a cell atlas. iScience 2022; 25:104318. [PMID: 35602947 PMCID: PMC9114628 DOI: 10.1016/j.isci.2022.104318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
The accumulation of massive single-cell omics data provides growing resources for building biomolecular atlases of all cells of human organs or the whole body. The true assembly of a cell atlas should be cell-centric rather than file-centric. We developed a unified informatics framework for seamless cell-centric data assembly and built the human Ensemble Cell Atlas (hECA) from scattered data. hECA v1.0 assembled 1,093,299 labeled human cells from 116 published datasets, covering 38 organs and 11 systems. We invented three new methods of atlas applications based on the cell-centric assembly: “in data” cell sorting for targeted data retrieval with customizable logic expressions, “quantitative portraiture” for multi-view representations of biological entities, and customizable reference creation for generating references for automatic annotations. Case studies on agile construction of user-defined sub-atlases and “in data” investigation of CAR-T off-targets in multiple organs showed the great potential enabled by the cell-centric ensemble atlas. A unified informatics framework for seamless cell-centric assembly of massive single-cell data Built the general-purpose human Ensemble Cell Atlas (hECA) V1.0 from scattered data Three new methods of applications enabling “in data” cell experiments and portraiture Case studies of agile atlas reconstruction and target therapies side-effect discovery
Collapse
Affiliation(s)
- Sijie Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanting Luo
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haoxiang Gao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fanhong Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jiaqi Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Renke You
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Minsheng Hao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haiyang Bian
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xi Xi
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Weiyu Li
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Mingli Ye
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Qiuchen Meng
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ziheng Zou
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Chen Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangyuan Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Yanfei Cui
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Fufeng Chen
- Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Xiaowo Wang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Hairong Lv
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,Fuzhou Institute of Data Technology, Changle, Fuzhou 350200, China
| | - Kui Hua
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Rui Jiang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
MIyao T, Miyauchi M, Kelly ST, Terooatea TW, Ishikawa T, Oh E, Hirai S, Horie K, Takakura Y, Ohki H, Hayama M, Maruyama Y, Seki T, Ishii H, Yabukami H, Yoshida M, Inoue A, Sakaue-Sawano A, Miyawaki A, Muratani M, Minoda A, Akiyama N, Akiyama T. Integrative analysis of scRNA-seq and scATAC-seq revealed transit-amplifying thymic epithelial cells expressing autoimmune regulator. eLife 2022; 11:73998. [PMID: 35578835 PMCID: PMC9113748 DOI: 10.7554/elife.73998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) are critical for self-tolerance induction in T cells via promiscuous expression of tissue-specific antigens (TSAs), which are controlled by the transcriptional regulator, AIRE. Whereas AIRE-expressing (Aire+) mTECs undergo constant turnover in the adult thymus, mechanisms underlying differentiation of postnatal mTECs remain to be discovered. Integrative analysis of single-cell assays for transposase-accessible chromatin (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) suggested the presence of proliferating mTECs with a specific chromatin structure, which express high levels of Aire and co-stimulatory molecules, CD80 (Aire+CD80hi). Proliferating Aire+CD80hi mTECs detected using Fucci technology express a minimal number of Aire-dependent TSAs and are converted into quiescent Aire+CD80hi mTECs expressing high levels of TSAs after a transit amplification. These data provide evidence for the existence of transit-amplifying Aire+mTEC precursors during the Aire+mTEC differentiation process of the postnatal thymus.
Collapse
Affiliation(s)
- Takahisa MIyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - S Thomas Kelly
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tommy W Terooatea
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Eugene Oh
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sotaro Hirai
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Takakura
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Houko Ohki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Azusa Inoue
- YCI Laboratory for Metabolic Epigenetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Masafumi Muratani
- Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Aki Minoda
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
44
|
Guo R, Li W, Li Y, Li Y, Jiang Z, Song Y. Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Exp Hematol Oncol 2022; 11:27. [PMID: 35568954 PMCID: PMC9107657 DOI: 10.1186/s40164-022-00285-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Engineered T cells have been shown to be highly effective in cancer immunotherapy, although T cell exhaustion presents a challenge for their long-term function. Additional T-cell sources must be exploited to broaden the application of engineered T cells for immune defense and reconstitution. Unlimited sources of pluripotent stem cells (PSCs) have provided a potential opportunity to generate precise-engineered therapeutic induced T (iT) cells. Single-cell transcriptome analysis of PSC-derived induced hematopoietic stem and progenitor cells (iHSPC)/iT identified the developmental pathways and possibilities of generating functional T cell from PSCs. To date, the PSC-to-iT platforms encounter several problems, including low efficiency of conventional T subset specification, limited functional potential, and restrictions on large-scale application, because of the absence of a thymus-like organized microenvironment. The updated PSC-to-iT platforms, such as the three-dimensional (3D) artificial thymic organoid (ATO) co-culture system and Runx1/Hoxa9-enforced iT lymphopoiesis, provide fresh perspectives for coordinating culture conditions and transcription factors, which may greatly improve the efficiency of T-cell generation greatly. In addition, the improved PSC-to-iT platform coordinating gene editing technologies will provide various functional engineered unconventional or conventional T cells. Furthermore, the clinical applications of PSC-derived immune cells are accelerating from bench to bedside.
Collapse
Affiliation(s)
- Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
45
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
46
|
Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022; 13:805451. [PMID: 35273595 PMCID: PMC8901506 DOI: 10.3389/fimmu.2022.805451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Although much progress has been made recently in revealing the heterogeneity of the thymic stromal components, the molecular programs of cell lineage divergency and temporal dynamics of thymic epithelial cell (TEC) development are largely elusive. Here, we constructed a single-cell transcriptional landscape of non-hematopoietic cells from mouse thymus spanning embryonic to adult stages, producing transcriptomes of 30,959 TECs. We resolved the transcriptional heterogeneity of developing TECs and highlighted the molecular nature of early TEC lineage determination and cortico-medullary thymic epithelial cell lineage divergency. We further characterized the differentiation dynamics of TECs by clarification of molecularly distinct cell states in the thymus developing trajectory. We also identified a population of Bpifa1+ Plet1+ mTECs that was preserved during thymus organogenesis and highly expressed tissue-resident adult stem cell markers. Finally, we highlighted the expression of Aire-dependent tissue-restricted antigens mainly in Aire+ Csn2+ mTECs and Spink5+ Dmkn+ mTECs in postnatal thymus. Overall, our data provided a comprehensive characterization of cell lineage differentiation, maturation, and temporal dynamics of thymic epithelial cells during thymus organogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kai Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yang Yang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinqi Song
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ming Ni
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chuntao Xie
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenna Fan
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunpei Ou
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dinggen Huang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lizhong Lin
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lixia Liu
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yangyang Li
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xinyu Cheng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Cuilan Xia
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
47
|
Sun S, Li JY, Nim HT, Piers A, Ramialison M, Porrello ER, Konstantinov IE, Elefanty AG, Stanley EG. CD90 Marks a Mesenchymal Program in Human Thymic Epithelial Cells In Vitro and In Vivo. Front Immunol 2022; 13:846281. [PMID: 35371075 PMCID: PMC8966383 DOI: 10.3389/fimmu.2022.846281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Thymic epithelium is critical for the structural integrity of the thymus and for T cell development. Within the fully formed thymus, large numbers of hematopoietic cells shape the thymic epithelium into a scaffold-like structure which bears little similarity to classical epithelial layers, such as those observed in the skin, intestine or pancreas. Here, we show that human thymic epithelial cells (TECs) possess an epithelial identity that also incorporates the expression of mesenchymal cell associated genes, whose expression levels vary between medullary and cortical TECs (m/cTECs). Using pluripotent stem cell (PSC) differentiation systems, we identified a unique population of cells that co-expressed the master TEC transcription factor FOXN1, as well as the epithelial associated marker EPCAM and the mesenchymal associated gene CD90. Using the same serum free culture conditions, we also observed co-expression of EPCAM and CD90 on cultured TECs derived from neonatal human thymus in vitro. Single cell RNA-sequencing revealed these cultured TECs possessed an immature mTEC phenotype and expressed epithelial and mesenchymal associated genes, such as EPCAM, CLDN4, CD90 and COL1A1. Importantly, flow cytometry and single cell RNA-sequencing analysis further confirmed the presence of an EPCAM+CD90+ population in the CD45- fraction of neonatal human thymic stromal cells in vivo. Using the human thymus cell atlas, we found that cTECs displayed more pronounced mesenchymal characteristics than mTECs during embryonic development. Collectively, these results suggest human TECs possess a hybrid gene expression program comprising both epithelial and mesenchymal elements, and provide a basis for the further exploration of thymus development from primary tissues and from the in vitro differentiation of PSCs.
Collapse
Affiliation(s)
- Shicheng Sun
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jacky Y Li
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Hieu T Nim
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Adam Piers
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Mirana Ramialison
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Igor E Konstantinov
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC, Australia.,Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.,The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
48
|
Nie J, Carpenter AC, Chopp LB, Chen T, Balmaceno-Criss M, Ciucci T, Xiao Q, Kelly MC, McGavern DB, Belkaid Y, Bosselut R. The transcription factor LRF promotes integrin β7 expression by and gut homing of CD8αα + intraepithelial lymphocyte precursors. Nat Immunol 2022; 23:594-604. [PMID: 35354951 PMCID: PMC9290758 DOI: 10.1038/s41590-022-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
While T cell receptor (TCR) αβ+CD8α+CD8β- intraepithelial lymphocytes (CD8αα+ IELs) differentiate from thymic IEL precursors (IELps) and contribute to gut homeostasis, the transcriptional control of their development remains poorly understood. In the present study we showed that mouse thymocytes deficient for the transcription factor leukemia/lymphoma-related factor (LRF) failed to generate TCRαβ+CD8αα+ IELs and their CD8β-expressing counterparts, despite giving rise to thymus and spleen CD8αβ+ T cells. LRF-deficient IELps failed to migrate to the intestine and to protect against T cell-induced colitis, and had impaired expression of the gut-homing integrin α4β7. Single-cell RNA-sequencing found that LRF was necessary for the expression of genes characteristic of the most mature IELps, including Itgb7, encoding the β7 subunit of α4β7. Chromatin immunoprecipitation and gene-regulatory network analyses both defined Itgb7 as an LRF target. Our study identifies LRF as an essential transcriptional regulator of IELp maturation in the thymus and subsequent migration to the intestinal epithelium.
Collapse
Affiliation(s)
- Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Ting Chen
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael C Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunology Section, Laboratory of Immune System Biology, Bethesda, MD, USA
- Microbiome core, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
49
|
In vitro and in vivo functions of T cells produced in complemented thymi of chimeric mice generated by blastocyst complementation. Sci Rep 2022; 12:3242. [PMID: 35217706 PMCID: PMC8881621 DOI: 10.1038/s41598-022-07159-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Blastocyst complementation is an intriguing way of generating humanized animals for organ preparation in regenerative medicine and establishing novel models for drug development. Confirming that complemented organs and cells work normally in chimeric animals is critical to demonstrating the feasibility of blastocyst complementation. Here, we generated thymus-complemented chimeric mice, assessed the efficacy of anti-PD-L1 antibody in tumor-bearing chimeric mice, and then investigated T-cell function. Thymus-complemented chimeric mice were generated by injecting C57BL/6 (B6) embryonic stem cells into Foxn1nu/nu morulae or blastocysts. Flow cytometry data showed that the chimeric mouse thymic epithelial cells (TECs) were derived from the B6 cells. T cells appeared outside the thymi. Single-cell RNA-sequencing analysis revealed that the TEC gene-expression profile was comparable to that in B6 mice. Splenic T cells of chimeric mice responded very well to anti-CD3 stimulation in vitro; CD4+ and CD8+ T cells proliferated and produced IFNγ, IL-2, and granzyme B, as in B6 mice. Anti-PD-L1 antibody treatment inhibited MC38 tumor growth in chimeric mice. Moreover, in the chimeras, anti-PD-L1 antibody restored T-cell activation by significantly decreasing PD-1 expression on T cells and increasing IFNγ-producing T cells in the draining lymph nodes and tumors. T cells produced by complemented thymi thus functioned normally in vitro and in vivo. To successfully generate humanized animals by blastocyst complementation, both verification of the function and gene expression profiling of complemented organs/cells in interspecific chimeras will be important in the near future.
Collapse
|
50
|
Mo C, Guo J, Qin J, Zhang X, Sun Y, Wei H, Cao D, Zhang Y, Zhao C, Xiong Y, Zhang Y, Sun Y, Shen L, Yue R. Single-cell transcriptomics of LepR-positive skeletal cells reveals heterogeneous stress-dependent stem and progenitor pools. EMBO J 2022; 41:e108415. [PMID: 34957577 PMCID: PMC8844986 DOI: 10.15252/embj.2021108415] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
Leptin receptor (LepR)-positive cells are key components of the bone marrow hematopoietic microenvironment, and highly enrich skeletal stem and progenitor cells that maintain homeostasis of the adult skeleton. However, the heterogeneity and lineage hierarchy within this population has been elusive. Using genetic lineage tracing and single-cell RNA sequencing, we found that Lepr-Cre labels most bone marrow stromal cells and osteogenic lineage cells in adult long bones. Integrated analysis of Lepr-Cre-traced cells under homeostatic and stress conditions revealed dynamic changes of the adipogenic, osteogenic, and periosteal lineages. Importantly, we discovered a Notch3+ bone marrow sub-population that is slow-cycling and closely associated with the vasculatures, as well as key transcriptional networks promoting osteo-chondrogenic differentiation. We also identified a Sca-1+ periosteal sub-population with high clonogenic activity but limited osteo-chondrogenic potential. Together, we mapped the transcriptomic landscape of adult LepR+ stem and progenitor cells and uncovered cellular and molecular mechanisms underlying their maintenance and lineage specification.
Collapse
Affiliation(s)
- Chunyang Mo
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jingxin Guo
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Orthopedics Surgery2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jiachen Qin
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaoying Zhang
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yuxi Sun
- Department of CardiologyShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Hanjing Wei
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Dandan Cao
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yiying Zhang
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chengchen Zhao
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yanhong Xiong
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yong Zhang
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yao Sun
- Department of ImplantologySchool & Hospital of StomatologyShanghai Engineering Research Center of Tooth Restoration and RegenerationTongji UniversityShanghaiChina
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences InstituteZhejiang UniversityHangzhouChina
- Department of Orthopedics Surgery2nd Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Hangzhou Innovation CenterZhejiang UniversityHangzhouChina
| | - Rui Yue
- Institute for Regenerative MedicineShanghai East HospitalFrontier Science Center for Stem Cell ResearchShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| |
Collapse
|