1
|
Wang X, Xu Y, Yu C, Deng R, Chen Y, Jiang K, Liang J, Hu C, Yang X, Zhang B, Yuan X, Pan C, Wang D, Sun Y, Xiang Y. Periodontitis-related myocardial fibrosis by expansion of collagen-producing SiglecF+ neutrophils. Eur Heart J 2025:ehaf049. [PMID: 39969161 DOI: 10.1093/eurheartj/ehaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/19/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUNDS AND AIMS Patients with periodontitis (PD) are prone to developing myocardial infarction (MI), yet the prognosis and mechanisms remain unclear. Given the presumed close association of neutrophils with both conditions, this study aims to elucidate the roles of neutrophils in mediating the interaction between PD and MI. METHODS Three prospective cohorts and PD + MI mouse model were investigated to assess the effects of PD on MI prognosis. Single-cell-RNA sequencing and genome-wide association study were employed to identify the neutrophil subtype involved. To characterize the function of SiglecF+ neutrophils, bone marrow transplantation, Edu-pulse chasing, lineage tracing, and collagen contraction assay were utilized. Adoptive neutrophil transfer, conditional Siglecf knockout and lipid nanoparticles facilitating local SiglecF+ neutrophils depletion was harnessed to explore the roles of SiglecF+ neutrophils in MI repair. RESULTS Persisting but not short-term PD upset MI prognosis (cardiac fibrosis and function) in human and mice. Bone marrow neutrophils of PD were intrinsically skewed toward longer-lived SiglecF+ neutrophil differentiation, a subtype that was converted by GMCSF or TGFβ in PPARγ-dependent manner. SiglecF+ neutrophils were expanded in infarcted PD heart where they deposit collagen and activate fibroblasts to instigate excessive fibrosis. SiglecF+ neutrophil depletion was efficacious for mitigating fibrosis. CONCLUSIONS This study demonstrated that long-lasting PD-aggravated MI prognosis by expanding scar-associated SiglecF+ neutrophils into the heart and highlighted the clinical relevance of oral health examination for treating MI in a holistic fashion.
Collapse
Affiliation(s)
- Xuekui Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Yue Xu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| | - Ruhua Deng
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yang Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, School of Life Sciences and Technology, Shanghai Fourth People's Hospital, Tongji University, Shanghai 200092, China
| | - Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayi Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Congjiao Hu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Xingbo Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Baowei Zhang
- Center of Cardiology, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Xun Yuan
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cancan Pan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Dandan Wang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yao Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, School of Life Sciences and Technology, Shanghai Fourth People's Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Albiero M, Baragetti A. Exploring neutrophils as therapeutic targets in cardiometabolic diseases. Trends Pharmacol Sci 2025; 46:102-116. [PMID: 39855946 DOI: 10.1016/j.tips.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Current therapies for diabetes and atherosclerotic cardiovascular diseases (ACVDs) mainly target metabolic risk factors, but often fall short in addressing systemic inflammation, a key driver of disease onset and progression. Advances in our understanding of the biology of neutrophils, the cells that are principally involved in inflammatory situations, have highlighted their pivotal role in cardiometabolic diseases. Yet, neutrophils can reprogram their immune-metabolic functions based on the energetic substrates available, thus influencing both tissue homeostasis and the resolution of inflammation. In this review, we examine the effects of canonical therapies for cardiometabolic diseases on the key molecular pathways through which neutrophils respond to inflammatory stimuli. In addition, we explore potential synergies between these established therapeutic approaches and the anti-inflammatory therapies being evaluated for repurposing in the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mattia Albiero
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padua, Italy; Regional Center for the Cellular Therapy of Diabetes, University Hospital of Padova, Padua, Italy; Veneto Institute of Molecular Medicine, Laboratory of Experimental Diabetology, Padua, Italy.
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Fang X, Mo C, Zheng L, Gao F, Xue FS, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413364. [PMID: 39836498 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China
| |
Collapse
|
5
|
Shao F, Wang Z, Ye L, Wu R, Wang J, Yu QX, Wusiman D, Tuo Z, Yoo KH, Shu Z, Wei W, Li D, Cho WC, Liu Z, Feng D. Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases. BURNS & TRAUMA 2025; 13:tkae075. [PMID: 39830193 PMCID: PMC11741524 DOI: 10.1093/burnst/tkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (BMAL1), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL1), is a key component of the circadian clock. The deletion of BMAL1 alone can abolish the circadian rhythms of the human body. BMAL1 plays a critical role in immune cell function. Dysregulation of BMAL1 is linked to immune-related diseases such as autoimmune diseases, infectious diseases, and cancer, and vice versa. This review highlights the significant role of BMAL1 in governing immune cells, including their development, differentiation, migration, homing, metabolism, and effector functions. This study also explores how dysregulation of BMAL1 can have far-reaching implications and potentially contribute to the onset of immune-related diseases such as autoimmune diseases, infectious diseases, cancer, sepsis, and trauma. Furthermore, this review discusses treatments for immune-related diseases that target BMAL1 disorders. Understanding the impact of BMAL1 on immune function can provide insights into the pathogenesis of immune-related diseases and help in the development of more effective treatment strategies. Targeting BMAL1 has been demonstrated to achieve good efficacy in immune-related diseases, indicating its promising potential as a targetable therapeutic target in these diseases.
Collapse
Affiliation(s)
- Fanglin Shao
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, First Ring Road, Qingyang District, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, West Gate Street, Linhai City 317000, Zhejiang Province, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Huancheng North Road, Jiangbei District, Ningbo, Zhejiang Province, 315211, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, 615 W. State Street, West Lafayette, IN 47907, USA
| | - Zhouting Tuo
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Jinzhai South Road, Shushan District, Hefei, Anhui 230032, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, South Korea
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Shapingba Street, Shapingba District, Chongqing 400044, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Gascoigne Road, Yau Ma Tei, Kowloon, Hong Kong SAR, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, Gower Street, London W1T 6JF, London W1W 7TS, UK
| |
Collapse
|
6
|
Wang Z, Saxena A, Yan W, Uriarte SM, Siqueira R, Li X. The impact of aging on neutrophil functions and the contribution to periodontitis. Int J Oral Sci 2025; 17:10. [PMID: 39819982 PMCID: PMC11739572 DOI: 10.1038/s41368-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/21/2024] [Accepted: 10/21/2024] [Indexed: 01/19/2025] Open
Abstract
The increasing aging population and aging-associated diseases have become a global issue for decades. People over 65 show an increased prevalence and greater severity of periodontitis, which poses threats to overall health. Studies have demonstrated a significant association between aging and the dysfunction of neutrophils, critical cells in the early stages of periodontitis, and their crosstalk with macrophages and T and B lymphocytes to establish the periodontal lesion. Neutrophils differentiate and mature in the bone marrow before entering the circulation; during an infection, they are recruited to infected tissues guided by the signal from chemokines and cytokines to eliminate invading pathogens. Neutrophils are crucial in maintaining a balanced response between host and microbes to prevent periodontal diseases in periodontal tissues. The impacts of aging on neutrophils' chemotaxis, anti-microbial function, cell activation, and lifespan result in impaired neutrophil functions and excessive neutrophil activation, which could influence periodontitis course. We summarize the roles of neutrophils in periodontal diseases and the aging-related impacts on neutrophil functional responses. We also explore the underlying mechanisms that can contribute to periodontitis manifestation in aging. This review could help us better understand the pathogenesis of periodontitis, which could offer novel therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Zi Wang
- Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Anish Saxena
- Molecular Pathobiology Department, New York University College of Dentistry, New York, NY, USA
| | - Wenbo Yan
- Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Silvia M Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Rafael Siqueira
- Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, VA, USA
| | - Xin Li
- Department of Plastic Surgery, Maxillofacial & Oral Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Molecular Pathobiology Department, New York University College of Dentistry, New York, NY, USA.
- Comprehensive Cancer Center, University of Virginia, Charlottesville, USA.
| |
Collapse
|
7
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01108-9. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
9
|
Cambier S, Beretta F, Nooyens A, Metzemaekers M, Pörtner N, Kaes J, de Carvalho AC, Cortesi EE, Beeckmans H, Hooft C, Gouwy M, Struyf S, Marques RE, Ceulemans LJ, Wauters J, Vanaudenaerde BM, Vos R, Proost P. Heterogeneous neutrophils in lung transplantation and proteolytic CXCL8 activation in COVID-19, influenza and lung transplant patient lungs. Cell Mol Life Sci 2024; 81:475. [PMID: 39625496 PMCID: PMC11615237 DOI: 10.1007/s00018-024-05500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024]
Abstract
Elevated neutrophil counts in broncho-alveolar lavage (BAL) fluids of lung transplant (LTx) patients with chronic lung allograft dysfunction (CLAD) are associated with disease pathology. However, phenotypical characteristics of these cells remained largely unknown. Moreover, despite enhanced levels of the most potent human neutrophil-attracting chemokine CXCL8 in BAL fluid, no discrimination had been made between natural NH2-terminally truncated CXCL8 proteoforms, which exhibit up to 30-fold differences in biological activity. Therefore, we aimed to characterize the neutrophil maturation and activation state, as well as proteolytic activation of CXCL8, in BAL fluids and peripheral blood of LTx patients with CLAD or infection and stable LTx recipients. Flow cytometry and microscopy revealed a high diversity in neutrophil maturity in blood and BAL fluid, ranging from immature band to hypersegmented aged cells. In contrast, the activation phenotype of neutrophils in BAL fluid was remarkably homogeneous. The highly potentiated NH2-terminally truncated proteoforms CXCL8(6-77), CXCL8(8-77) and CXCL8(9-77), but also the partially inactivated CXCL8(10-77), were detected in BAL fluids of CLAD and infected LTx patients, as well as in COVID-19 and influenza patient cohorts by tandem mass spectrometry. Moreover, the most potent proteoform CXCL8(9-77) specifically correlated with the neutrophil counts in the LTx BAL fluids. Finally, rapid proteolysis of CXCL8 in BAL fluids could be inhibited by a combination of serine and metalloprotease inhibitors. In conclusion, proteolytic activation of CXCL8 promotes neutrophilic inflammation in LTx patients. Therefore, application of protease inhibitors may hold pharmacological promise for reducing excessive neutrophil-mediated inflammation and collateral tissue damage in the lungs.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Fabio Beretta
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Amber Nooyens
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ana Carolina de Carvalho
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Emanuela E Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Rafael E Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium.
| |
Collapse
|
10
|
Lei T, Cai X, Zhang H, Wu X, Cao Z, Li W, Xie X, Zhang B. Bmal1 upregulates ATG5 expression to promote autophagy in skin cutaneous melanoma. Cell Signal 2024; 124:111439. [PMID: 39343115 DOI: 10.1016/j.cellsig.2024.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly aggressive and malignant tumor that arises from the malignant transformation of melanocytes. In light of the limitations of existing treatment modalities, there is a pressing need to identify new drug targets for SKCM. Aryl-hydrocarbon receptor nuclear translocator-like (ARNTL), also known as Bmal1, is a gene that has been linked to the onset and progression of cancer. However, its role in SKCM remains understudied. METHODS The expression of Bmal1 mRNA and protein was detected using TCGA, GTEx, CCLE, and ULCAN databases. Moreover, survival analysis was performed to investigate the association between Bmal1 and immune invasion and gene expression in immune infiltrating cells via CIBERSORT, R programming, TIMER, Sangerbox, Kaplan-Meier. The study also explored the role of proteins associated with Bmal1 by using R programming and databases (STRING and GSEA). Both in vitro and in vivo studies were conducted to examine the potential role of Bmal1 in SKCM. RESULTS Compared to normal tissues, the expression level of Bmal1 was significantly reduced in SKCM. Which has been associated with its poor prognosis. Similarly, its expression in SKCM was substantially correlated with immune infiltration, while biogenic analysis indicated that it could potentially influence the tumor immune microenvironment (TME) by influencing tumor-associated neutrophils (TANs). Moreover, Bmal1 overexpression suppressed the proliferation and invasion of melanoma cells and enhanced apoptosis, migration, and cell colony formation. CONCLUSION This study concluded that Bmal1 is a novel biomarker that functions as both a diagnostic and prognostic indicator for the progression of SKCM.
Collapse
Affiliation(s)
- Tao Lei
- Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Cai
- Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hao Zhang
- The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China
| | - Xunping Wu
- Guizhou Provincial People's Hospital Central Laboratory, Guiyang 550002, China
| | - Zhimin Cao
- Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101149, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People`s Hospital, China; Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang 550002, China
| | - Xingming Xie
- Guizhou Institute of Precision Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, People's Republic of China.
| | - Bangyan Zhang
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People`s Hospital, China; Key Laboratory of Pulmonary Immune Diseases, National Health Commission, Guiyang 550002, China..
| |
Collapse
|
11
|
Zhu X, Heng Y, Ma J, Zhang D, Tang D, Ji Y, He C, Lin H, Ding X, Zhou J, Tao L, Lu L. Prolonged Survival of Neutrophils Induced by Tumor-Derived G-CSF/GM-CSF Promotes Immunosuppression and Progression in Laryngeal Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400836. [PMID: 39447112 PMCID: PMC11633501 DOI: 10.1002/advs.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Indexed: 10/26/2024]
Abstract
Tumor-associated neutrophils (TANs) play a crucial role in tumor progression and exhibit prolonged survival. However, the mechanism underlying their extended lifespan and significance in laryngeal squamous cell carcinoma (LSCC) remains unclear. Herein, it is observed that apoptosis of TANs is significantly delayed owing to induction by tumor-derived G-CSF and GM-CSF through the activation of the PI3K-AKT signaling pathway, upregulation of anti-apoptotic Mcl-1 expression, and downregulation of activated Caspase-3 levels. It is found that prolonged survival of TANs leads to the accumulation of aged CXCR4+ neutrophils that exhibit potent immunosuppressive properties and are associated with poor patient prognosis. Furthermore, extended survival promotes the enhanced immunosuppressive function of CD8+ T cells by TANs, thereby facilitating the in vitro and in vivo progression and growth of human LSCC tumors. Importantly, this effect could be reversed by blocking G-CSF and GM-CSF stimulation of neutrophils. These findings elucidate the pivotal role of pathologically prolonged neutrophil survival in impairing CD8+ T cell immunity and suggest targeting it as a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Xiaoke Zhu
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Yu Heng
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Jingyu Ma
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Duo Zhang
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Di Tang
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Yangyang Ji
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Changding He
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Hanqing Lin
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Xuping Ding
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Jian Zhou
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Lei Tao
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Liming Lu
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
12
|
Namin SS, Zhu YP, Croker BA, Tan Z. Turning Neutrophil Cell Death Deadly in the Context of Hypertensive Vascular Disease. Can J Cardiol 2024; 40:2356-2367. [PMID: 39326672 DOI: 10.1016/j.cjca.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD. Neutrophils are abundant in the circulation and can respond rapidly upon stimulation to deploy an armament of antimicrobial effector functions. One of the outcomes of neutrophil activation is the generation of neutrophil extracellular traps (NETs), a regulated extrusion of chromatin and proteases. Although neutrophils and NETs are well described as components of the innate immune response to infection, recent evidence implicates them in HVD. Endothelial cell activation can trigger neutrophil adhesion, activation, and production of NETs promoting vascular dysfunction, vessel remodelling, and loss of resistance. The regulated release of NETs can be controlled by the pore-forming activities of distinct cell death pathways. The best characterized pathways in this context are apoptosis, pyroptosis, and necroptosis. In this review, we discuss how inflammatory cell death signalling and NET formation contribute to hypertensive disease. We also examine novel therapeutic approaches to limit NET production and their future potential as therapeutic drugs for cardiovascular disorders.
Collapse
Affiliation(s)
- Sahand Salari Namin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Yanfang Peipei Zhu
- Department of Biochemistry and Molecular Biology, Immunology Center of Georgia, Augusta University, Augusta, Georgia, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Zhehao Tan
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
13
|
Nakabo S, Sandoval-Heglund D, Hanata N, Brooks S, Hoffmann V, Zhang M, Ambler W, Manna Z, Poncio E, Hasni S, Islam S, Dell’Orso S, Kaplan MJ. The circadian clock gene BMAL1 modulates autoimmunity features in lupus. Front Immunol 2024; 15:1465185. [PMID: 39664388 PMCID: PMC11631884 DOI: 10.3389/fimmu.2024.1465185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Objectives An important pathogenic role for neutrophils in systemic lupus erythematosus (SLE) has been proposed. Neutrophils that lack brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1), one of the clock genes, are defective in aging and proinflammatory responses. We assessed the role of Bmal1 in clinical and immunologic manifestations of murine lupus and in human SLE neutrophils. Methods Myeloid-conditional Bmal1 knockout mice (Bmal1Mye-/- ) and wild type (WT) were treated with epicutaneous TLR7/8 agonist (imiquimod; IMQ) for 6 weeks to induce a lupus phenotype. Upon euthanasia, immune responses, autoantibodies and renal manifestations were evaluated. NET formation and gene expression of bone marrow (BM)-derived murine neutrophils were evaluated. BMAL1 expression was quantified in SLE neutrophils and compared with clinical disease. Results IMQ-treated Bmal1Mye-/- and WT displayed comparable systemic inflammation. While renal function did not differ, serum anti-dsDNA levels and renal immune complex deposition were significantly increased in Bmal1Mye-/- . While no differences were observed in NET formation, expression levels of April in BM neutrophils were significantly higher in Bmal1Mye-/- . Bulk RNA-sequence data showed that BM neutrophils in IMQ-treated Bmal1Mye-/- were relatively immature when compared with IMQ-treated WT. BM showed an enhanced April protein expression in Bmal1Mye-/- mice. BMAL1 levels in human SLE peripheral blood neutrophils correlated positively with serum C3 and negatively with serum anti-dsDNA levels. Conclusion Bmal1 is associated with lower disease activity in SLE. These results indicate that perturbation in the circadian rhythm of neutrophils can have pathogenic consequences in SLE.
Collapse
Affiliation(s)
- Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Donavon Sandoval-Heglund
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Norio Hanata
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stephen Brooks
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, United States
| | | | - Mingzeng Zhang
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - William Ambler
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zerai Manna
- Lupus Clinical Trials Unit, NIAMS, NIH, Bethesda, MD, United States
| | - Elaine Poncio
- Lupus Clinical Trials Unit, NIAMS, NIH, Bethesda, MD, United States
| | - Sarfaraz Hasni
- Lupus Clinical Trials Unit, NIAMS, NIH, Bethesda, MD, United States
| | - Shamima Islam
- Genomic Technology Section, Office of Science and Technology, NIAMS, NIH, Bethesda, MD, United States
| | - Stefania Dell’Orso
- Genomic Technology Section, Office of Science and Technology, NIAMS, NIH, Bethesda, MD, United States
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
- Lupus Clinical Trials Unit, NIAMS, NIH, Bethesda, MD, United States
| |
Collapse
|
14
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic tumor microenvironment. EMBO Rep 2024; 25:5080-5112. [PMID: 39415049 PMCID: PMC11549407 DOI: 10.1038/s44319-024-00288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are prime therapeutic targets due to their pro-tumorigenic functions, but varying efficacy of macrophage-targeting therapies highlights our incomplete understanding of how macrophages are regulated within the tumor microenvironment (TME). The circadian clock is a key regulator of macrophage function, but how circadian rhythms of macrophages are influenced by the TME remains unknown. Here, we show that conditions associated with the TME such as polarizing stimuli, acidic pH, and lactate can alter circadian rhythms in macrophages. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate pH-driven changes in circadian rhythms are not mediated solely by cAMP signaling. Remarkably, circadian disorder of TAMs was revealed by clock correlation distance analysis. Our data suggest that heterogeneity in circadian rhythms within the TAM population level may underlie this circadian disorder. Finally, we report that circadian regulation of macrophages suppresses tumor growth in a murine model of pancreatic cancer. Our work demonstrates a novel mechanism by which the TME influences macrophage biology through modulation of circadian rhythms.
Collapse
Affiliation(s)
- Amelia M Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel Mwangi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Juliana Cazarin
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Kristina Morris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
Calì B, Troiani M, Bressan S, Attanasio G, Merler S, Moscarda V, Mosole S, Ricci E, Guo C, Yuan W, Gallagher L, Lundberg A, Bernett I, Figueiredo I, Arzola RA, Abreut EB, D'Ambrosio M, Bancaro N, Brina D, Zumerle S, Pasquini E, Maddalena M, Lai P, Colucci M, Pernigoni N, Rinaldi A, Minardi D, Morlacco A, Moro FD, Sabbadin M, Galuppini F, Fassan M, Rüschoff JH, Moch H, Rescigno P, Francini E, Saieva C, Modesti M, Theurillat JP, Gillessen S, Wilgenbus P, Graf C, Ruf W, de Bono J, Alimonti A. Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer. Cancer Cell 2024; 42:1676-1692.e11. [PMID: 39303726 DOI: 10.1016/j.ccell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies.
Collapse
Affiliation(s)
- Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silvia Bressan
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Merler
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Viola Moscarda
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Elena Ricci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Christina Guo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Wei Yuan
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Lewis Gallagher
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Arian Lundberg
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ilona Bernett
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ines Figueiredo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Ernesto Bermudez Abreut
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Manuel Colucci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Davide Minardi
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Alessandro Morlacco
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Fabrizio Dal Moro
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | | | - Edoardo Francini
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit - ISPRO, 50139 Florence, Italy
| | - Mikol Modesti
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silke Gillessen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
16
|
Dickerson B, Gonzalez DE, Sowinski R, Xing D, Leonard M, Kendra J, Jenkins V, Gopalakrishnan S, Yoo C, Ko J, Pillai SS, Bhamore JR, Patil BS, Wright GA, Rasmussen CJ, Kreider RB. Comparative Effectiveness of Ascorbic Acid vs. Calcium Ascorbate Ingestion on Pharmacokinetic Profiles and Immune Biomarkers in Healthy Adults: A Preliminary Study. Nutrients 2024; 16:3358. [PMID: 39408325 PMCID: PMC11479081 DOI: 10.3390/nu16193358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Previous trials have displayed augmented intracellular vitamin C concentrations in the leukocytes at 24 h after acute supplementation with 1000 mg calcium ascorbate (CA), compared to ascorbic acid (AA). OBJECTIVE The primary objective was to evaluate comparative leukocyte vitamin C accumulation kinetics over 32 h following acute 250 mg or 500 mg doses from the two sources. Secondary objectives were to evaluate neutrophil phagocytic function and lymphocyte differentiation between the two sources of vitamin C. METHODS Ninety-three healthy females (250 mg, n = 27; 500 mg, n = 24) and males (250 mg, n = 19; 500 mg, n = 23) were assigned to ingest a single dose of CA or AA providing 250 mg or 500 mg of vitamin C in two separate double-blind, randomized crossover trials. RESULTS There were no significant differences in the primary or secondary outcomes between the two treatments in the 250 mg low-dose study. Conversely, there was evidence that ingestion of 500 mg of CA increased DHA in plasma, increased neutrophil functionality during the first 8 h of the PK study, promoted increased natural killer cells, and altered weight-adjusted PK profiles, suggesting greater volume distribution and clearance from the blood. CONCLUSIONS These findings indicate that 500 mg of CA may promote some immune benefits compared to 500 mg of AA ingestion.
Collapse
Affiliation(s)
- Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Jacob Kendra
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Siddharth Gopalakrishnan
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Syamkumar Sivasankara Pillai
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| | - Jigna R. Bhamore
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| | - Bhimanagouda S. Patil
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| | - Gus A. Wright
- Flow Cytometry Facility, Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA;
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.D.); (D.E.G.); (R.S.); (D.X.); (M.L.); (J.K.); (V.J.); (S.G.); (C.Y.); (J.K.); (C.J.R.)
- Vegetable and Fruit Improvement Center, Department of Horticulture, Texas A&M University, College Station, TX 77843, USA; (S.S.P.); (J.R.B.); (B.S.P.)
| |
Collapse
|
17
|
Rys RN, Calcinotto A. Senescent neutrophils: a hidden role in cancer progression. Trends Cell Biol 2024:S0962-8924(24)00187-9. [PMID: 39362804 DOI: 10.1016/j.tcb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Neutrophils have recently received increased attention in cancer because they contribute to all stages of cancer. Neutrophils are so far considered to have a short half-life. However, a growing body of literature has shown that tumor-associated neutrophils (TANs) acquire a prolonged lifespan. This review discusses recent work surrounding the mechanisms by which neutrophils can persist in the tumor microenvironment (TME). It also highlights different scenarios for therapeutic targeting of protumorigenic neutrophils, supporting the idea that, in tumors, inhibition of neutrophil recruitment is not sufficient because these cells can persist and remain hidden from current interventions. Hence, the elimination of long-lived neutrophils should be pursued to increase the efficacy of standard therapy.
Collapse
Affiliation(s)
- Ryan N Rys
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, 6900 Lugano, Switzerland.
| |
Collapse
|
18
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Qiu J, Fu Y, Liu T, Wang J, Liu Y, Zhang Z, Ye Z, Cao Z, Su D, Luo W, Tao J, Weng G, Ye L, Zhang F, Liang Z, Zhang T. Single-cell RNA-seq reveals heterogeneity in metastatic renal cell carcinoma and effect of anti-angiogenesis therapy in the pancreas metastatic lesion. Cancer Lett 2024; 601:217193. [PMID: 39159881 DOI: 10.1016/j.canlet.2024.217193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Metastatic clear cell renal cell carcinoma has heterogenous tumor microenvironment (TME). Among the metastatic lesions, pancreas metastasis is rare and controversy in treatment approaches. Here, extensive primary and metastatic lesion samples were included by single-cell RNA-seq to decipher the distinct metastasis TME. The hypoxic and inflammatory TME of pancreas metastasis was decoded in this study, and the activation of PAX8-myc signaling, and metabolic reprogramming were observed. The active components including endothelial cells, fibroblasts and T cells were profiled. Meanwhile, we also evaluated the effect of anti-angiogenesis treatment in the pancreas metastasis patient. The potential mechanisms of pancreatic tropism, instability of genome, and the response of immunotherapy were also discussed in this work. Taken together, our findings suggest a clue to the heterogeneity in metastasis TME and provide evidence for the treatment of pancreas metastasis in renal cell carcinoma patients.
Collapse
Affiliation(s)
- Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jun Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zeyu Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ziwen Ye
- Department of Urology, The Fist Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Liyuan Ye
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feifan Zhang
- Department of Computer Science, University College London, UK.
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
20
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
21
|
Lai K, Dilger K, Cunningham R, Lam KT, Boquiren R, Truong K, Louie MC, Rava R, Abdueva D. Extracting regulatory active chromatin footprint from cell-free DNA. Commun Biol 2024; 7:1086. [PMID: 39232115 PMCID: PMC11375110 DOI: 10.1038/s42003-024-06769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Cell-free DNA (cfDNA) has emerged as a pivotal player in precision medicine, revolutionizing the diagnostic and therapeutic landscape. While its clinical applications have significantly increased in recent years, current cfDNA assays have limited ability to identify the active transcriptional programs that govern complex disease phenotypes and capture the heterogeneity of the disease. To address these limitations, we have developed a non-invasive platform to enrich and examine the active chromatin fragments (cfDNAac) in peripheral blood. The deconvolution of the cfDNAac signal from traditional nucleosomal chromatin fragments (cfDNAnuc) yields a catalog of features linking these circulating chromatin signals in blood to specific regulatory elements across the genome, including enhancers, promoters, and highly transcribed genes, mirroring the epigenetic data from the ENCODE project. Notably, these cfDNAac counts correlate strongly with RNA polymerase II activity and exhibit distinct expression patterns for known circadian genes. Additionally, cfDNAac signals across gene bodies and promoters show strong correlations with whole blood gene expression levels defined by GTEx. This study illustrates the utility of cfDNAac analysis for investigating epigenomics and gene expression, underscoring its potential for a wide range of clinical applications in precision medicine.
Collapse
Affiliation(s)
- Kevin Lai
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | | | | | - Kathy T Lam
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Rhea Boquiren
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Khiet Truong
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Maggie C Louie
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Richard Rava
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA
| | - Diana Abdueva
- AQTUAL Inc., 31145 San Antonio Street, Hayward, CA, 94544, USA.
| |
Collapse
|
22
|
Held J, Sivaraman K, Wrenger S, Si W, Welte T, Immenschuh S, Janciauskiene S. Ex vivo study on the human blood neutrophil circadian features and effects of alpha1-antitrypsin and lipopolysaccharide. Vascul Pharmacol 2024; 156:107396. [PMID: 38897556 DOI: 10.1016/j.vph.2024.107396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
AIMS Neutrophils perform various functions in a circadian-dependent manner; therefore, we investigated here whether the effect of alpha1-antitrypsin (AAT), used as augmentation therapy, is dependent on the neutrophil circadian clock. AAT is a vital regulator of neutrophil functions, and its qualitative and/or quantitative defects have significant implications for the development of respiratory diseases. METHODS Whole blood from 12 healthy women age years, mean (SD) 29.92 (5.48) was collected twice daily, 8 h apart, and incubated for 30 min at 37 °C alone or with additions of 2 mg/ml AAT (Respreeza) and/or 5 μg/ml lipopolysaccharide (LPS) from Escherichia coli. Neutrophils were then isolated to examine gene expression, migration and phagocytosis. RESULTS The expression of CD14, CD16, CXCR2 and SELL (encoding CD62L) genes was significantly higher while CDKN1A lower in the afternoon than in the morning neutrophils from untreated blood. Neutrophils isolated in the afternoon had higher migratory and phagocytic activity. Morning neutrophils isolated from AAT-pretreated blood showed higher expression of CXCR2 and SELL than those from untreated morning blood. Pretreatment of blood with AAT enhanced migratory properties of morning but not afternoon neutrophils. Of all genes analysed, only CXCL8 expression was strongly upregulated in morning and afternoon neutrophils isolated from LPS-pretreated blood, whereas CXCR2 expression was downregulated in afternoon neutrophils. The addition of AAT did not reverse the effects of LPS. SIGNIFICANCE The circadian clock of myeloid cells may affect the effectiveness of various therapies, including AAT therapy used to treat patients with AAT deficiency, and needs further investigation.
Collapse
Affiliation(s)
- Julia Held
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Kokilavani Sivaraman
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Wenzhang Si
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
23
|
Parolini A, Da Dalt L, Norata GD, Baragetti A. Dietary fats as regulators of neutrophil plasticity: an update on molecular mechanisms. Curr Opin Clin Nutr Metab Care 2024; 27:434-442. [PMID: 39083430 PMCID: PMC11309349 DOI: 10.1097/mco.0000000000001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Contemporary guidelines for the prevention of cardio-metabolic diseases focus on the control of dietary fat intake, because of their adverse metabolic effects. Moreover, fats alter innate immune defenses, by eliciting pro-inflammatory epigenetic mechanisms on the long-living hematopoietic cell progenitors which, in the bone marrow, mainly give rise to short-living neutrophils. Nevertheless, the heterogenicity of fats and the complexity of the biology of neutrophils pose challenges in the understanding on how this class of nutrients could contribute to the development of cardio-metabolic diseases via specific molecular mechanisms activating the inflammatory response. RECENT FINDINGS The knowledge on the biology of neutrophils is expanding and there are now different cellular networks orchestrating site-specific reprogramming of these cells to optimize the responses against pathogens. The innate immune competence of neutrophil is altered in response to high fat diet and contributes to the development of metabolic alterations, although the precise mechanisms are still poorly understood. SUMMARY Defining the different molecular mechanisms involved in the fat-neutrophil crosstalk will help to reconcile the sparse data about the interaction of dietary fats with neutrophils and to tailor strategies to target neutrophils in the context of cardio-metabolic diseases.
Collapse
Affiliation(s)
- Anna Parolini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
24
|
Ding C, Xu X, Zhang X, Zhang E, Li S, Fan X, Ma J, Yang X, Zang L. Investigating the role of senescence biomarkers in colorectal cancer heterogeneity by bulk and single-cell RNA sequencing. Sci Rep 2024; 14:20083. [PMID: 39209895 PMCID: PMC11362543 DOI: 10.1038/s41598-024-70300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of most common tumors worldwide, causing a prominent global health burden. Cell senescence is a complex physiological state, characterized by proliferation arrest. Here, we investigated the role of cellular senescence in the heterogeneity of CRC. Based on senescence-associated genes, CRC samples were classified into different senescence patterns with different survival, cancer-related biological processes and immune cell infiltrations. A senescence-related model was then developed to calculate the senescence-related score to comprehensively explore the heterogeneity of each CRC sample such as stromal activities, immunoreactivities and drug sensitivity. Single-cell analysis revealed there were different immune cell infiltrations between low and high senescence-related model genes enrichment groups, which was confirmed by multiplex immunofluorescence staining. Pseudotime analysis indicated model genes play a pivotal role in the evolution of B cells. Besides, intercellular communication modeled by NicheNet showed tumor cells with higher enrichment of senescence-related model genes highly expressed CXCL2/3 and CCL3/4, which attracted immunosuppressive cell infiltration and promoted tumor metastasis. Finally, top 6 hub genes were identified from senescence-related model genes by PPI analysis. And RT-qPCR revealed the expression differences of hub genes between normal and CRC cell lines, indicating to some extent the clinical practicability of senescence-related model. To sum up, our study explores the impact of cellular senescence on the prognosis, TME and treatment of CRC based on senescence patterns. This provides a new perspective for CRC treatment.
Collapse
Affiliation(s)
- Chengsheng Ding
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ximo Xu
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xian Zhang
- Department of General Practice, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Shuchun Li
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Xiao Yang
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Department of General Surgery and Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| | - Lu Zang
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
25
|
Thind MK, Miraglia E, Ling C, Khan MA, Glembocki A, Bourdon C, ChenMi Y, Palaniyar N, Glogauer M, Bandsma RHJ, Farooqui A. Mitochondrial perturbations in low-protein-diet-fed mice are associated with altered neutrophil development and effector functions. Cell Rep 2024; 43:114493. [PMID: 39028622 PMCID: PMC11372442 DOI: 10.1016/j.celrep.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
Severe malnutrition is associated with infections, namely lower respiratory tract infections (LRTIs), diarrhea, and sepsis, and underlies the high risk of morbidity and mortality in children under 5 years of age. Dysregulations in neutrophil responses in the acute phase of infection are speculated to underlie these severe adverse outcomes; however, very little is known about their biology in this context. Here, in a lipopolysaccharide-challenged low-protein diet (LPD) mouse model, as a model of malnutrition, we show that protein deficiency disrupts neutrophil mitochondrial dynamics and ATP generation to obstruct the neutrophil differentiation cascade. This promotes the accumulation of atypical immature neutrophils that are incapable of optimal antimicrobial response and, in turn, exacerbate systemic pathogen spread and the permeability of the alveolocapillary membrane with the resultant lung damage. Thus, this perturbed response may contribute to higher mortality risk in malnutrition. We also offer a nutritional therapeutic strategy, nicotinamide, to boost neutrophil-mediated immunity in LPD-fed mice.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Emiliano Miraglia
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Catriona Ling
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Meraj A Khan
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aida Glembocki
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - YueYing ChenMi
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada; The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya.
| |
Collapse
|
26
|
Wu P, Zhang Q, Xu X, He S, Liu Z, Li Y, Guo R. Primary infection enhances neutrophil-mediated host defense by educating HSPCs. Int Immunopharmacol 2024; 137:112382. [PMID: 38875995 DOI: 10.1016/j.intimp.2024.112382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can give rise to all kinds of immune cells including neutrophils. Neutrophils are the first line of defense in the innate immune system with a short lifespan, due to which it is well-accepted that neutrophils have no immune memory. However, recent reports showed that the changes in HSPCs induced by primary stimulation could last a long time, which contributes to enhancing response to subsequent infection by generating more monocytes or macrophages equipped with stronger anti-bacterial function. Here, we used the reinfection mice model to reveal that primary infection could improve neutrophil-mediated host defense by training neutrophil progenitors in mammals, providing a new idea to enhance neutrophil number and improve neutrophil functions, which is pretty pivotal for patients with compromised or disordered immunity.
Collapse
Affiliation(s)
- Peng Wu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Qingyu Zhang
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450053, Henan, China
| | - Xianqun Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Songjiang He
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zheming Liu
- Cancer center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Rongxia Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Wuhan University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
27
|
Meier A, Sakoulas G, Nizet V, Ulloa ER. Neutrophil Extracellular Traps: An Emerging Therapeutic Target to Improve Infectious Disease Outcomes. J Infect Dis 2024; 230:514-521. [PMID: 38728418 PMCID: PMC11326844 DOI: 10.1093/infdis/jiae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024] Open
Abstract
Neutrophils possess a diverse repertoire of pathogen clearance mechanisms, one of which is the formation of neutrophil extracellular traps (NETs). NETs are complexes of histone proteins and DNA coated with proteolytic enzymes that are released extracellularly to entrap pathogens and aid in their clearance, in a process known as NETosis. Intravascular NETosis may drive a massive inflammatory response that has been shown to contribute to morbidity and mortality in many infectious diseases, including malaria, dengue fever, influenza, bacterial sepsis, and severe acute respiratory syndrome coronavirus 2 infection. In this review we seek to (1) summarize the current understanding of NETs, (2) discuss infectious diseases in which NET formation contributes to morbidity and mortality, and (3) explore potential adjunctive therapeutics that may be considered for future study in treating severe infections driven by NET pathophysiology. This includes drugs specifically targeting NET inhibition and US Food and Drug Administration-approved drugs that may be repurposed as NET inhibitors.
Collapse
Affiliation(s)
- Angela Meier
- Department of Anesthesiology, Division of Critical Care, University of California, San Diego School of Medicine, La Jolla
| | - George Sakoulas
- Division of Infectious Diseases, Sharp Rees-Stealy Medical Group, San Diego
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM)
| | - Victor Nizet
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM)
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla
| | - Erlinda R Ulloa
- Department of Pediatrics, University of California, Irvine School of Medicine
- Division of Infectious Disease, Children's Hospital of Orange County, Orange, California
| |
Collapse
|
28
|
Liu Q, Zhang Y. Biological Clock Perspective in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02120-4. [PMID: 39126449 DOI: 10.1007/s10753-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic polyarticular pain, and its main pathological features include inflammatory cell infiltration, synovial fibroblast proliferation, and cartilage erosion. Immune cells, synovial cells and neuroendocrine factors play pivotal roles in the pathophysiological mechanism underlying rheumatoid arthritis. Biological clock genes regulate immune cell functions, which is linked to rhythmic changes in arthritis pathology. Additionally, the interaction between biological clock genes and neuroendocrine factors is also involved in rhythmic changes in rheumatoid arthritis. This review provides an overview of the contributions of circadian rhythm genes to RA pathology, including their interaction with the immune system and their involvement in regulating the secretion and function of neuroendocrine factors. A molecular understanding of the role of the circadian rhythm in RA may offer insights for effective disease management.
Collapse
Affiliation(s)
- Qingxue Liu
- Gengjiu Clinical College of Anhui Medical University; Anhui Zhongke Gengjiu Hospital, Hefei, 230051, China
| | - Yihao Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
29
|
Zeng T, Liang L, Deng W, Xie M, Zhao M, Wang S, Liu J, Yang M. BMAL1 plays a crucial role in immune homeostasis during sepsis-induced acute lung injury. Biochem Pharmacol 2024; 226:116379. [PMID: 38908531 DOI: 10.1016/j.bcp.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
Sepsis is a widespread and life-threatening disease characterised by infection-triggered immune hyperactivation and cytokine storms, culminating in tissue damage and multiple organ dysfunction syndrome. BMAL1 is a pivotal transcription factor in the circadian clock that plays a crucial role in maintaining immune homeostasis. BMAL1 dysregulation has been implicated in inflammatory diseases and immunodeficiency. However, the mechanisms underlying BMAL1 disruption in sepsis-induced acute lung injury (ALI) remain poorly understood. In vitro, we used THP1 and mouse peritoneal macrophages to elucidate the potential mechanism of BMAL1 function in sepsis. In vivo, an endotoxemia model was used to investigate the effect of BMAL1 on sepsis and the therapeutic role of targeting CXCR2. We showed that BMAL1 significantly affected the regulation of innate immunity in sepsis-induced ALI. BMAL1 deficiency in the macrophages exacerbated systemic inflammation and sepsis-induced ALI. Mechanistically, BMAL1 acted as a transcriptional suppressor and regulated the expression of CXCL2. BMAL1 deficiency in macrophages upregulated CXCL2 expression, increasing the recruitment of polymorphonuclear neutrophils and the formation of neutrophil extracellular traps (NETs) by binding to the chemokine receptor CXCR2, thereby intensifying lung injury in a sepsis model. Furthermore, a selective inhibitor of CXCR2, SB225002, exerted promising therapeutic effects by markedly reducing neutrophil infiltration and NETs formation and alleviating lung injury. Importantly, CXCR2 blockade mitigated multiple organ dysfunction. Collectively, these findings suggest that BMAL1 controls the CXCL2/CXCR2 pathway, and the therapeutic efficacy of targeting CXCR2 in sepsis has been validated, presenting BMAL1 as a potential therapeutic target for lethal infections.
Collapse
Affiliation(s)
- Ting Zeng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Long Liang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410013, China
| | - Wenjun Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| | - Shengfeng Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410013, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China.
| |
Collapse
|
30
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
de Sena-Tomás C, Rebola Lameira L, Rebocho da Costa M, Naique Taborda P, Laborde A, Orger M, de Oliveira S, Saúde L. Neutrophil immune profile guides spinal cord regeneration in zebrafish. Brain Behav Immun 2024; 120:514-531. [PMID: 38925414 DOI: 10.1016/j.bbi.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury triggers a strong innate inflammatory response in both non-regenerative mammals and regenerative zebrafish. Neutrophils are the first immune population to be recruited to the injury site. Yet, their role in the repair process, particularly in a regenerative context, remains largely unknown. Here, we show that, following rapid recruitment to the injured spinal cord, neutrophils mostly reverse migrate throughout the zebrafish body. In addition, promoting neutrophil inflammation resolution by inhibiting Cxcr4 boosts cellular and functional regeneration. Neutrophil-specific RNA-seq analysis reveals an enhanced activation state that correlates with a transient increase in tnf-α expression in macrophage/microglia populations. Conversely, blocking neutrophil recruitment through Cxcr1/2 inhibition diminishes the presence of macrophage/microglia at the injury site and impairs spinal cord regeneration. Altogether, these findings provide new insights into the role of neutrophils in spinal cord regeneration, emphasizing the significant impact of their immune profile on the outcome of the repair process.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Leonor Rebola Lameira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mariana Rebocho da Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Patrícia Naique Taborda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Michael Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; Harold and Muriel Block Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leonor Saúde
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Histologia e Biologia de Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
32
|
Knudsen-Clark AM, Mwangi D, Cazarin J, Morris K, Baker C, Hablitz LM, McCall MN, Kim M, Altman BJ. Circadian rhythms of macrophages are altered by the acidic pH of the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580339. [PMID: 38405770 PMCID: PMC10888792 DOI: 10.1101/2024.02.14.580339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Macrophages are prime therapeutic targets due to their pro-tumorigenic and immunosuppressive functions in tumors, but the varying efficacy of therapeutic approaches targeting macrophages highlights our incomplete understanding of how the tumor microenvironment (TME) can influence regulation of macrophages. The circadian clock is a key internal regulator of macrophage function, but how circadian rhythms of macrophages may be influenced by the tumor microenvironment remains unknown. We found that conditions associated with the TME such as polarizing stimuli, acidic pH, and elevated lactate concentrations can each alter circadian rhythms in macrophages. Circadian rhythms were enhanced in pro-resolution macrophages but suppressed in pro-inflammatory macrophages, and acidic pH had divergent effects on circadian rhythms depending on macrophage phenotype. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate that pH-driven changes in circadian rhythms are not mediated solely by the cAMP signaling pathway. Remarkably, clock correlation distance analysis of tumor-associated macrophages (TAMs) revealed evidence of circadian disorder in TAMs. This is the first report providing evidence that circadian rhythms of macrophages are altered within the TME. Our data further suggest that heterogeneity in circadian rhythms at the population level may underlie this circadian disorder. Finally, we sought to determine how circadian regulation of macrophages impacts tumorigenesis, and found that tumor growth was suppressed when macrophages had a functional circadian clock. Our work demonstrates a novel mechanism by which the tumor microenvironment can influence macrophage biology through altering circadian rhythms, and the contribution of circadian rhythms in macrophages to suppressing tumor growth.
Collapse
|
33
|
Wang H, Xiao F, Gao Z, Guo L, Yang L, Li G, Kong Q. Methylation entropy landscape of Chinese long-lived individuals reveals lower epigenetic noise related to human healthy aging. Aging Cell 2024; 23:e14163. [PMID: 38566438 PMCID: PMC11258444 DOI: 10.1111/acel.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The transition from ordered to noisy is a significant epigenetic signature of aging and age-related disease. As a paradigm of healthy human aging and longevity, long-lived individuals (LLI, >90 years old) may possess characteristic strategies in coping with the disordered epigenetic regulation. In this study, we constructed high-resolution blood epigenetic noise landscapes for this cohort by a methylation entropy (ME) method using whole genome bisulfite sequencing (WGBS). Although a universal increase in global ME occurred with chronological age in general control samples, this trend was suppressed in LLIs. Importantly, we identified 38,923 genomic regions with LLI-specific lower ME (LLI-specific lower entropy regions, for short, LLI-specific LERs). These regions were overrepresented in promoters, which likely function in transcriptional noise suppression. Genes associated with LLI-specific LERs have a considerable impact on SNP-based heritability of some aging-related disorders (e.g., asthma and stroke). Furthermore, neutrophil was identified as the primary cell type sustaining LLI-specific LERs. Our results highlight the stability of epigenetic order in promoters of genes involved with aging and age-related disorders within LLI epigenomes. This unique epigenetic feature reveals a previously unknown role of epigenetic order maintenance in specific genomic regions of LLIs, which helps open a new avenue on the epigenetic regulation mechanism in human healthy aging and longevity.
Collapse
Affiliation(s)
- Hao‐Tian Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Fu‐Hui Xiao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Zong‐Liang Gao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Li‐Yun Guo
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Li‐Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Gong‐Hua Li
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Qing‐Peng Kong
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging StudyKIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- CAS Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
34
|
Ghodsi A, Hidalgo A, Libreros S. Lipid mediators in neutrophil biology: inflammation, resolution and beyond. Curr Opin Hematol 2024; 31:175-192. [PMID: 38727155 PMCID: PMC11301784 DOI: 10.1097/moh.0000000000000822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Acute inflammation is the body's first defense in response to pathogens or injury. Failure to efficiently resolve the inflammatory insult can severely affect tissue homeostasis, leading to chronic inflammation. Neutrophils play a pivotal role in eradicating infectious pathogens, orchestrating the initiation and resolution of acute inflammation, and maintaining physiological functions. The resolution of inflammation is a highly orchestrated biochemical process, partially modulated by a novel class of endogenous lipid mediators known as specialized pro-resolving mediators (SPMs). SPMs mediate their potent bioactions via activating specific cell-surface G protein-coupled receptors (GPCR). RECENT FINDINGS This review focuses on recent advances in understanding the multifaceted functions of SPMs, detailing their roles in expediting neutrophil apoptosis, promoting clearance by macrophages, regulating their excessive infiltration at inflammation sites, orchestrating bone marrow deployment, also enhances neutrophil phagocytosis and tissue repair mechanisms under both physiological and pathological conditions. We also focus on the novel role of SPMs in regulating bone marrow neutrophil functions, differentiation, and highlight open questions about SPMs' functions in neutrophil heterogeneity. SUMMARY SPMs play a pivotal role in mitigating excessive neutrophil infiltration and hyperactivity within pathological milieus, notably in conditions such as sepsis, cardiovascular disease, ischemic events, and cancer. This significant function highlights SPMs as promising therapeutic agents in the management of both acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Anita Ghodsi
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Stephania Libreros
- Vascular Biology and Therapeutics Program and Department of Pathology, Yale University, New Haven, USA
| |
Collapse
|
35
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
36
|
Ramoni D, Tirandi A, Montecucco F, Liberale L. Sepsis in elderly patients: the role of neutrophils in pathophysiology and therapy. Intern Emerg Med 2024; 19:901-917. [PMID: 38294676 PMCID: PMC11186952 DOI: 10.1007/s11739-023-03515-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Sepsis is among the most important causes of mortality, particularly within the elderly population. Sepsis prevalence is on the rise due to different factors, including increasing average population age and the concomitant rise in the prevalence of frailty and chronic morbidities. Recent investigations have unveiled a "trimodal" trajectory for sepsis-related mortality, with the ultimate zenith occurring from 60 to 90 days until several years after the original insult. This prolonged temporal course ostensibly emanates from the sustained perturbation of immune responses, persevering beyond the phase of clinical convalescence. This phenomenon is particularly associated with the aging immune system, characterized by a broad dysregulation commonly known as "inflammaging." Inflammaging associates with a chronic low-grade activation of the innate immune system preventing an appropriate response to infective agents. Notably, during the initial phases of sepsis, neutrophils-essential in combating pathogens-may exhibit compromised activity. Paradoxically, an overly zealous neutrophilic reaction has been observed to underlie multi-organ dysfunction during the later stages of sepsis. Given this scenario, discovering treatments that can enhance neutrophil activity during the early phases of sepsis while curbing their overactivity in the later phases could prove beneficial in fighting pathogens and reducing the detrimental effects caused by an overactive immune system. This narrative review delves into the potential key role of neutrophils in the pathological process of sepsis, focusing on how the aging process impacts their functions, and highlighting possible targets for developing immune-modulatory therapies. Additionally, the review includes tables that outline the principal potential targets for immunomodulating agents.
Collapse
Affiliation(s)
- Davide Ramoni
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Amedeo Tirandi
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
37
|
Lin S, Zhu P, Jiang L, Hu Y, Huang L, He Y, Zhang H. Neutrophil extracellular traps induced by IL-1β promote endothelial dysfunction and aggravate limb ischemia. Hypertens Res 2024; 47:1654-1667. [PMID: 38605142 DOI: 10.1038/s41440-024-01661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Vascular inflammation and endothelial dysfunction contribute to vascular diseases. While neutrophil extracellular traps (NETs) participate in some vascular pathologies, their roles in lower limb ischemia remain poorly defined. This study investigated the functional significance of NETs in vascular inflammation and remodeling associated with limb ischemia. Single-cell RNA sequencing (scRNA-seq) and flow cytometry revealed neutrophil activation and upregulated NETs formation in human limb ischemia, with immunofluorescence confirming IL-1β-induced release of NETs for vascular inflammation. Endothelial cell activation was examined via scRNA-seq and western blotting, indicating enhanced proliferation, expression of adhesion molecules (VCAM-1, ICAM-1), inflammatory cytokines (IL-1β, IL-6) and decreased expression of VE-cadherin, that could be mediated by NETs to exacerbate endothelial inflammation. Mechanistically, NETs altered endothelial cell function via increased pSTAT1/STAT1 signaling. Vascular inflammation and subsequent ischemia were alleviated in vivo by NETosis or IL-1β inhibition in ischemic mice. IL-1β-NETs induce endothelial activation and inflammation in limb ischemia by stimulating STAT1 signaling. Targeting NETs may thus represent a novel therapeutic strategy for inflammatory vascular diseases associated with limb ischemia. Graphical abstract of NETs regulation of the development of vascular inflammation in lower limb ischemia via pSTAT1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujian Hu
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lirui Huang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hongkun Zhang
- Department of Vascular Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
38
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
39
|
Borrmann H, Rijo-Ferreira F. Crosstalk between circadian clocks and pathogen niche. PLoS Pathog 2024; 20:e1012157. [PMID: 38723104 PMCID: PMC11081299 DOI: 10.1371/journal.ppat.1012157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024] Open
Abstract
Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.
Collapse
Affiliation(s)
- Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
40
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
41
|
Wang X, Rao J, Zhang L, Liu X, Zhang Y. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning. Heliyon 2024; 10:e27049. [PMID: 38509983 PMCID: PMC10950509 DOI: 10.1016/j.heliyon.2024.e27049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/17/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Circadian rhythms play a key role in the failing heart, but the exact molecular mechanisms linking changes in the expression of circadian rhythm-related genes to heart failure (HF) remain unclear. Methods By intersecting differentially expressed genes (DEGs) between normal and HF samples in the Gene Expression Omnibus (GEO) database with circadian rhythm-related genes (CRGs), differentially expressed circadian rhythm-related genes (DE-CRGs) were obtained. Machine learning algorithms were used to screen for feature genes, and diagnostic models were constructed based on these feature genes. Subsequently, consensus clustering algorithms and non-negative matrix factorization (NMF) algorithms were used for clustering analysis of HF samples. On this basis, immune infiltration analysis was used to score the immune infiltration status between HF and normal samples as well as among different subclusters. Gene Set Variation Analysis (GSVA) evaluated the biological functional differences among subclusters. Results 13 CRGs showed differential expression between HF patients and normal samples. Nine feature genes were obtained through cross-referencing results from four distinct machine learning algorithms. Multivariate LASSO regression and external dataset validation were performed to select five key genes with diagnostic value, including NAMPT, SERPINA3, MAPK10, NPPA, and SLC2A1. Moreover, consensus clustering analysis could divide HF patients into two distinct clusters, which exhibited different biological functions and immune characteristics. Additionally, two subgroups were distinguished using the NMF algorithm based on circadian rhythm associated differentially expressed genes. Studies on immune infiltration showed marked variances in levels of immune infiltration between these subgroups. Subgroup A had higher immune scores and more widespread immune infiltration. Finally, the Weighted Gene Co-expression Network Analysis (WGCNA) method was utilized to discern the modules that had the closest association with the two observed subgroups, and hub genes were pinpointed via protein-protein interaction (PPI) networks. GRIN2A, DLG1, ERBB4, LRRC7, and NRG1 were circadian rhythm-related hub genes closely associated with HF. Conclusion This study provides valuable references for further elucidating the pathogenesis of HF and offers beneficial insights for targeting circadian rhythm mechanisms to regulate immune responses and energy metabolism in HF treatment. Five genes identified by us as diagnostic features could be potential targets for therapy for HF.
Collapse
Affiliation(s)
- Xuefu Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Rao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Li Zhang
- Guangxi University, Nanning, China
| | | | - Yufeng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
42
|
Jin Y, Minten C, Jenkins M, Jones L, Gorbet M. Investigation of the rhythmic recruitment of tear neutrophils to the ocular surface and their phenotypes. Sci Rep 2024; 14:7061. [PMID: 38528025 DOI: 10.1038/s41598-024-57311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
Hundreds of thousands of polymorphonuclear neutrophils (PMNs) are collected from the ocular surface upon waking, while few are harvested during daytime. This study aimed to investigate potential factors contributing to the circadian infiltration of tear PMNs, including changes in IL-8 and C5a in tears, and their phenotypes across different time points in a 24-h cycle. Tear PMNs were collected using a gentle eyewash after 2-h and 7-h of sleep (eye closure, EC) at night, after 2-h EC during the day, and towards the end of the afternoon. Significantly fewer cells were collected after 2-h EC during the day compared to 2-h EC at night. A positive correlation between IL-8 and PMN numbers existed, but not with C5a. Tear PMNs collected after 2-h EC at night were less degranulated and possessed a larger activation potential compared to 7-h EC. Tear PMNs from 7-h EC at night exhibited hyper-segmented nuclei and more NETosis compared to 2 h EC night, indicating an aged and activated phenotype. The diurnal-nocturnal recruitment pattern of tear PMNs may be driven by increased IL-8 in nighttime tears. Higher degranulation and NETs point to the significant activation of tear PMNs on the ocular surface during prolonged eye closure at night.
Collapse
Affiliation(s)
- Yutong Jin
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- Centre for Ocular Research and Education, University of Waterloo, Waterloo, Canada
| | - Ceili Minten
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - Mara Jenkins
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - Lyndon Jones
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada
- Centre for Ocular Research and Education, University of Waterloo, Waterloo, Canada
| | - Maud Gorbet
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Canada.
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada.
- Centre for Ocular Research and Education, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
43
|
Mergenthaler P, Balami JS, Neuhaus AA, Mottahedin A, Albers GW, Rothwell PM, Saver JL, Young ME, Buchan AM. Stroke in the Time of Circadian Medicine. Circ Res 2024; 134:770-790. [PMID: 38484031 DOI: 10.1161/circresaha.124.323508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Time-of-day significantly influences the severity and incidence of stroke. Evidence has emerged not only for circadian governance over stroke risk factors, but also for important determinants of clinical outcome. In this review, we provide a comprehensive overview of the interplay between chronobiology and cerebrovascular disease. We discuss circadian regulation of pathophysiological mechanisms underlying stroke onset or tolerance as well as in vascular dementia. This includes cell death mechanisms, metabolism, mitochondrial function, and inflammation/immunity. Furthermore, we present clinical evidence supporting the link between disrupted circadian rhythms and increased susceptibility to stroke and dementia. We propose that circadian regulation of biochemical and physiological pathways in the brain increase susceptibility to damage after stroke in sleep and attenuate treatment effectiveness during the active phase. This review underscores the importance of considering circadian biology for understanding the pathology and treatment choice for stroke and vascular dementia and speculates that considering a patient's chronotype may be an important factor in developing precision treatment following stroke.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Department of Neurology with Experimental Neurology (P.M.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Joyce S Balami
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Ain A Neuhaus
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, United Kingdom (A.A.N.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Amin Mottahedin
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Gregory W Albers
- Department of Neurology, Stanford Hospital, Palo Alto, CA (G.W.A.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Peter M Rothwell
- Nuffield Department of Clinical Neurosciences (A.M., P.M.R.), University of Oxford, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences (P.M.R.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, Geffen School of Medicine, University of Los Angeles, CA (J.L.S.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham (M.E.Y.)
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| | - Alastair M Buchan
- Center for Stroke Research Berlin (P.M., A.M.B.), Charité - Universitätsmedizin Berlin, Germany
- Stroke Research, Radcliffe Department of Medicine (P.M., J.S.B., A.A.N., A.M., A.M.B.), University of Oxford, United Kingdom
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA) (P.M., J.S.B., A.A.N., A.M., G.W.A., P.M.R., J.L.S., M.E.Y., A.M.B.)
| |
Collapse
|
44
|
Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, Rao D, Feng H, Gao K, Gu X, Jiang S, Song G, Pan J, Zhang M, Xu Y, Zhang S, Fan Y, Wang X, Zhou J, Yang L, Fan J, Zhang X, Gao Q. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell 2024; 187:1422-1439.e24. [PMID: 38447573 DOI: 10.1016/j.cell.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.
Collapse
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fang Nan
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Tiancheng Zhang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuyi Ji
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Feng
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xixi Gu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaomeng Pan
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mao Zhang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yanan Xu
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yihui Fan
- Department of Pathogenic Biology and Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
45
|
He XY, Gao Y, Ng D, Michalopoulou E, George S, Adrover JM, Sun L, Albrengues J, Daßler-Plenker J, Han X, Wan L, Wu XS, Shui LS, Huang YH, Liu B, Su C, Spector DL, Vakoc CR, Van Aelst L, Egeblad M. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 2024; 42:474-486.e12. [PMID: 38402610 PMCID: PMC11300849 DOI: 10.1016/j.ccell.2024.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Chronic stress is associated with increased risk of metastasis and poor survival in cancer patients, yet the reasons are unclear. We show that chronic stress increases lung metastasis from disseminated cancer cells 2- to 4-fold in mice. Chronic stress significantly alters the lung microenvironment, with fibronectin accumulation, reduced T cell infiltration, and increased neutrophil infiltration. Depleting neutrophils abolishes stress-induced metastasis. Chronic stress shifts normal circadian rhythm of neutrophils and causes increased neutrophil extracellular trap (NET) formation via glucocorticoid release. In mice with neutrophil-specific glucocorticoid receptor deletion, chronic stress fails to increase NETs and metastasis. Furthermore, digesting NETs with DNase I prevents chronic stress-induced metastasis. Together, our data show that glucocorticoids released during chronic stress cause NET formation and establish a metastasis-promoting microenvironment. Therefore, NETs could be targets for preventing metastatic recurrence in cancer patients, many of whom will experience chronic stress due to their disease.
Collapse
Affiliation(s)
- Xue-Yan He
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Yuan Gao
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - David Ng
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | | | - Shanu George
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jose M Adrover
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Lijuan Sun
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Jean Albrengues
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Université Côte d'Azur, CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | | | - Xiao Han
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ledong Wan
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Xiaoli Sky Wu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Longling S Shui
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yu-Han Huang
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Bodu Liu
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Institute of Artificial Intelligence for Digital Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Vakoc
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
46
|
Awasthi D, Sarode A. Neutrophils at the Crossroads: Unraveling the Multifaceted Role in the Tumor Microenvironment. Int J Mol Sci 2024; 25:2929. [PMID: 38474175 DOI: 10.3390/ijms25052929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past decade, research has prominently established neutrophils as key contributors to the intricate landscape of tumor immune biology. As polymorphonuclear granulocytes within the innate immune system, neutrophils play a pivotal and abundant role, constituting approximately ∼70% of all peripheral leukocytes in humans and ∼10-20% in mice. This substantial presence positions them as the frontline defense against potential threats. Equipped with a diverse array of mechanisms, including reactive oxygen species (ROS) generation, degranulation, phagocytosis, and the formation of neutrophil extracellular traps (NETs), neutrophils undeniably serve as indispensable components of the innate immune system. While these innate functions enable neutrophils to interact with adaptive immune cells such as T, B, and NK cells, influencing their functions, they also engage in dynamic interactions with rapidly dividing tumor cells. Consequently, neutrophils are emerging as crucial regulators in both pro- and anti-tumor immunity. This comprehensive review delves into recent research to illuminate the multifaceted roles of neutrophils. It explores their diverse functions within the tumor microenvironment, shedding light on their heterogeneity and their impact on tumor recruitment, progression, and modulation. Additionally, the review underscores their potential anti-tumoral capabilities. Finally, it provides valuable insights into clinical therapies targeting neutrophils, presenting a promising approach to leveraging innate immunity for enhanced cancer treatment.
Collapse
Affiliation(s)
- Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Aditya Sarode
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
47
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
48
|
García-Culebras A, Cuartero MI, Peña-Martínez C, Moraga A, Vázquez-Reyes S, de Castro-Millán FJ, Cortes-Canteli M, Lizasoain I, Moro MÁ. Myeloid cells in vascular dementia and Alzheimer's disease: Possible therapeutic targets? Br J Pharmacol 2024; 181:777-798. [PMID: 37282844 DOI: 10.1111/bph.16159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 06/08/2023] Open
Abstract
Growing evidence supports the suggestion that the peripheral immune system plays a role in different pathologies associated with cognitive impairment, such as vascular dementia (VD) or Alzheimer's disease (AD). The aim of this review is to summarize, within the peripheral immune system, the implications of different types of myeloid cells in AD and VD, with a special focus on post-stroke cognitive impairment and dementia (PSCID). We will review the contributions of the myeloid lineage, from peripheral cells (neutrophils, platelets, monocytes and monocyte-derived macrophages) to central nervous system (CNS)-associated cells (perivascular macrophages and microglia). Finally, we will evaluate different potential strategies for pharmacological modulation of pathological processes mediated by myeloid cell subsets, with an emphasis on neutrophils, their interaction with platelets and the process of immunothrombosis that triggers neutrophil-dependent capillary stall and hypoperfusion, as possible effector mechanisms that may pave the way to novel therapeutic avenues to stop dementia, the epidemic of our time. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Alicia García-Culebras
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - María Isabel Cuartero
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Carolina Peña-Martínez
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Ana Moraga
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, UCM, Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Sandra Vázquez-Reyes
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Francisco Javier de Castro-Millán
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María Ángeles Moro
- Cardiovascular Risk Factor and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, UCM, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
49
|
Gao Q, Yan Y, Zhang J, Li X, Wang J, Feng Y, Li P, Wang H, Zhang Y, He L, Shan Z, Li B. Autologous cryo-shocked neutrophils enable targeted therapy of sepsis via broad-spectrum neutralization of pro-inflammatory cytokines and endotoxins. Front Chem 2024; 12:1359946. [PMID: 38449477 PMCID: PMC10914999 DOI: 10.3389/fchem.2024.1359946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Background: Sepsis is a life-threatening disease characterized by multiple organ failure due to excessive activation of the inflammatory response and cytokine storm. Despite recent advances in the clinical use of anti-cytokine biologics, sepsis treatment efficacy and improvements in mortality remain unsatisfactory, largely due to the mechanistic complexity of immune regulation and cytokine interactions. Methods: In this study, a broad-spectrum anti-inflammatory and endotoxin neutralization strategy was developed based on autologous "cryo-shocked" neutrophils (CS-Neus) for the management of sepsis. Neutrophils were frozen to death using a novel liquid nitrogen "cryo-shock" strategy. The CS-Neus retained the source cell membrane structure and functions related to inflammatory site targeting, broad-spectrum inflammatory cytokines, and endotoxin (LPS) neutralizing properties. This strategy aimed to disable harmful pro-inflammatory functions of neutrophils, such as cytokine secretion. Autologous cell-based therapy strategies were employed to avoid immune rejection and enhance treatment safety. Results: In both LPS-induced sepsis mouse models and clinical patient-derived blood samples, CS-Neus treatment significantly ameliorated cytokine storms by removing inflammatory cytokines and endotoxin. The therapy showed notable anti-inflammatory therapeutic effects and improved the survival rate of mice. Discussion: The results of this study demonstrate the potential of autologous "cryo-shocked" neutrophils as a promising therapeutic approach for managing sepsis. By targeting inflammatory organs and exhibiting anti-inflammatory activity, CS-Neus offer a novel strategy to combat the complexities of sepsis treatment. Further research and clinical trials are needed to validate the efficacy and safety of this approach in broader populations and settings.
Collapse
Affiliation(s)
- Qiuxia Gao
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Translational Medicine, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Yan
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Zhang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Peiran Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Huanhuan Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yunlong Zhang
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingjie He
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bin Li
- School of Inspection, Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Translational Medicine, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| |
Collapse
|
50
|
Di Ceglie I, Carnevale S, Rigatelli A, Grieco G, Molisso P, Jaillon S. Immune cell networking in solid tumors: focus on macrophages and neutrophils. Front Immunol 2024; 15:1341390. [PMID: 38426089 PMCID: PMC10903099 DOI: 10.3389/fimmu.2024.1341390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is composed of tumor cells, stromal cells and leukocytes, including innate and adaptive immune cells, and represents an ecological niche that regulates tumor development and progression. In general, inflammatory cells are considered to contribute to tumor progression through various mechanisms, including the formation of an immunosuppressive microenvironment. Macrophages and neutrophils are important components of the tumor microenvironment and can act as a double-edged sword, promoting or inhibiting the development of the tumor. Targeting of the immune system is emerging as an important therapeutic strategy for cancer patients. However, the efficacy of the various immunotherapies available is still limited. Given the crucial importance of the crosstalk between macrophages and neutrophils and other immune cells in the formation of the anti-tumor immune response, targeting these interactions may represent a promising therapeutic approach against cancer. Here we will review the current knowledge of the role played by macrophages and neutrophils in cancer, focusing on their interaction with other immune cells.
Collapse
Affiliation(s)
| | | | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Piera Molisso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|