1
|
Sammons M, Popescu MC, Chi J, Liberles SD, Gogolla N, Rolls A. Brain-body physiology: Local, reflex, and central communication. Cell 2024; 187:5877-5890. [PMID: 39423806 DOI: 10.1016/j.cell.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 10/21/2024]
Abstract
Behavior is tightly synchronized with bodily physiology. Internal needs from the body drive behavior selection, while optimal behavior performance requires a coordinated physiological response. Internal state is dynamically represented by the nervous system to influence mood and emotion, and body-brain signals also direct responses to external sensory cues, enabling the organism to adapt and pursue its goals within an ever-changing environment. In this review, we examine the anatomy and function of the brain-body connection, manifested across local, reflex, and central regulation levels. We explore these hierarchical loops in the context of the immune system, specifically through the lens of immunoception, and discuss the impact of its dysregulation on human health.
Collapse
Affiliation(s)
- Megan Sammons
- Rappaport School of Medicine, Technion, Haifa, Israel
| | - Miranda C Popescu
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jingyi Chi
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nadine Gogolla
- Emotion Research Department, Max Planck Institute of Psychiatry, Munich, Germany
| | - Asya Rolls
- Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
2
|
Tyus D, Leslie JL, Naz F, Uddin MJ, Thompson B, Petri WA. The sympathetic nervous system drives hyperinflammatory responses to Clostridioides difficile infection. Cell Rep Med 2024; 5:101771. [PMID: 39368481 PMCID: PMC11513855 DOI: 10.1016/j.xcrm.2024.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired infections in the United States, known for triggering severe disease by hyperactivation of the host response. In this study, we determine the impact of the sympathetic nervous system (SNS) on CDI disease severity. Mouse models of CDI are administered inhibitors of SNS activity prior to CDI. Chemical sympathectomy or pharmacological inhibition of norepinephrine synthesis greatly reduces mortality and disease severity in the CDI model. Pharmacological blockade or genetic ablation of the alpha 2 adrenergic receptor ameliorates intestinal inflammation, disease severity, and mortality rate. These results underscore the role of the SNS and the alpha 2 adrenergic receptor in CDI pathogenesis and suggest that targeting neural systems could be a promising approach to therapy in severe disease.
Collapse
Affiliation(s)
- David Tyus
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jhansi L Leslie
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Farha Naz
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Md Jashim Uddin
- Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Brandon Thompson
- Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - William A Petri
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA 22908, USA; Departments of Medicine, Pathology, Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA; Division of Infectious Disease and International Health, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Trachtenberg E, Ruzal K, Sandbank E, Bigelman E, Ricon-Becker I, Cole SW, Ben-Eliyahu S, Ben-Ami Bartal I. Deleterious effects of social isolation on neuroendocrine-immune status, and cancer progression in rats. Brain Behav Immun 2024; 123:524-539. [PMID: 39378972 DOI: 10.1016/j.bbi.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Accumulating evidence indicates that social isolation (SI) in humans and rodents is associated with increased cancer incidence and mortality, yet mediating mechanisms remain elusive. Here, we examine the neuroendocrine and immunological consequences of SI and its short- and long-term physiological impacts in naïve and cancer-bearing rats. Findings indicate that isolated animals experienced a significant decrease in weight compared to controls. Specifically, females showed a marked weight decrease during the first week of isolation. Isolated rats had significantly higher numbers of MADB106 experimental pulmonary metastases. Although mortality rates were higher in isolated tumor-bearing rats, unexpectedly, they exhibited a reduced growth rate of orthotopically implanted MADB106 tumors. Transcriptomic analyses of these excised tumors indicated a major downregulation in the expression of various genes, including those associated with pro-metastatic processes (e.g., EMT). In naïve rats (no cancer), levels of IL-6 increased, and total IgG levels decreased under SI conditions. A mixed effect was found for TNFα, which increased in females and decreased in males. In the central nervous system, isolated rats showed altered gene expression in key brain regions associated with stress responses and social behavior. The paraventricular nucleus of the thalamus emerged as a significantly affected region, along with the bed nucleus of the stria terminalis. Changes were observed in the expression of oxytocin, serotonin, and dopamine receptors. Isolated rats also exhibited greater alterations in hypothalamic-pituitary-adrenal (HPA) axis-related regulation and an increase in plasma CORT levels. Our study highlights the profound impact of SI on metastatic processes. Additionally, the potential detrimental effects of SI on thermoregulation were discussed, emphasizing the importance of social thermoregulation in maintaining physiological stability and highlighting the need to avoid single-caging practices in research. We report neuro-immune interactions and changes in brain gene expression, highlighting the need for further research into these underlying processes to improve outcomes in animal models and potential interventions for cancer patients through increased social support.
Collapse
Affiliation(s)
- Estherina Trachtenberg
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Keren Ruzal
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Elad Sandbank
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Einat Bigelman
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Itay Ricon-Becker
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Lu DH, Xu XX, Zhou R, Wang C, Lan LT, Yang XY, Feng X. Ultrasound-guided stellate ganglion block benefits the postoperative recovery of patients undergoing laparoscopic colorectal surgery: a single-center, double-blinded, randomized controlled clinical trial. BMC Anesthesiol 2024; 24:137. [PMID: 38600490 PMCID: PMC11005129 DOI: 10.1186/s12871-024-02518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND With the increasing prevalence of colorectal cancer (CRC), optimizing perioperative management is of paramount importance. This study investigates the potential of stellate ganglion block (SGB), known for its stress response-mediating effects, in improving postoperative recovery. We postulate that preoperative SGB may enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. METHODS We conducted a randomized controlled trial of 57 patients undergoing laparoscopic colorectal cancer surgery at a single center. Patients, aged 18-70 years, were randomly assigned to receive either preoperative SGB or standard care. SGB group patients received 10 mL of 0.2% ropivacaine under ultrasound guidance prior to surgery. Primary outcome was time to flatus, with secondary outcomes encompassing time to defecation, lying in bed time, visual analog scale (VAS) pain score, hospital stays, patient costs, intraoperative and postoperative complications, and 3-year mortality. A per-protocol analysis was used. RESULTS Twenty-nine patients in the SGB group and 28 patients in the control group were analyzed. The SGB group exhibited a significantly shorter time to flatus (mean [SD] hour, 20.52 [9.18] vs. 27.93 [11.69]; p = 0.012), accompanied by decreased plasma cortisol levels (mean [SD], postoperatively, 4.01 [3.42] vs 7.75 [3.13], p = 0.02). Notably, postoperative pain was effectively managed, evident by lower VAS scores at 6 h post-surgery in SGB-treated patients (mean [SD], 4.70 [0.91] vs 5.35 [1.32]; p = 0.040). Furthermore, patients in the SGB group experienced reduced hospital stay length (mean [SD], day, 6.61 [1.57] vs 8.72 [5.13], p = 0.042). CONCLUSIONS Preoperative SGB emerges as a promising approach to enhance the postoperative recovery of patients undergoing laparoscopic CRC surgery. CLINICAL TRIAL REGISTRATION ChiCTR1900028404, Principal investigator: Xia Feng, Date of registration: 12/20/2019.
Collapse
Affiliation(s)
- Di-Han Lu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Xuan-Xian Xu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang West Road, Guangzhou, Guangdong, 510120, P.R. China
| | - Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Liang-Tian Lan
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, P.R. China
| | - Xiao-Yu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, P.R. China.
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-Sen University, No.58 2nd Zhongshan Road, Guangzhou, Guangdong, 510080, P.R. China.
| |
Collapse
|
5
|
Ren W, Chen J, Wang W, Li Q, Yin X, Zhuang G, Zhou H, Zeng W. Sympathetic nerve-enteroendocrine L cell communication modulates GLP-1 release, brain glucose utilization, and cognitive function. Neuron 2024; 112:972-990.e8. [PMID: 38242116 DOI: 10.1016/j.neuron.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Glucose homeostasis is controlled by brain-gut communications. Yet our understanding of the neuron-gut interface in the glucoregulatory system remains incomplete. Here, we find that sympathetic nerves elevate postprandial blood glucose but restrict brain glucose utilization by repressing the release of glucagon-like peptide-1 (GLP-1) from enteroendocrine L cells. Sympathetic nerves are in close apposition with the L cells. Importantly, sympathetic denervation or intestinal deletion of the adrenergic receptor α2 (Adra2a) augments postprandial GLP-1 secretion, leading to reduced blood glucose levels and increased brain glucose uptake. Conversely, sympathetic activation shows the opposite effects. At the cellular level, adrenergic signaling suppresses calcium flux to limit GLP-1 secretion upon sugar ingestion. Consequently, abrogation of adrenergic signal results in a significant improvement in learning and memory ability. Together, our results reveal a sympathetic nerve-enteroendocrine unit in constraining GLP-1 secretion, thus providing a therapeutic nexus of mobilizing endogenous GLP-1 for glucose management and cognitive improvement.
Collapse
Affiliation(s)
- Wenran Ren
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jianhui Chen
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Wenjing Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qingqing Li
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Xia Yin
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hong Zhou
- Department of Gastrointestinal Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, and Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
6
|
Cox MA. Adrenergic signaling dampens T cell activity during chronic infection and cancer. Trends Neurosci 2024; 47:165-166. [PMID: 38129194 DOI: 10.1016/j.tins.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Stress contributes to infection and cancer susceptibility, but the mediating mechanisms are still being elucidated. CD8 T cells are critical players in antiviral and antitumor immune responses. A recent study by Globig et al., together with a growing body of literature, link norepinephrine produced during the stress response to CD8 T cell dysfunction.
Collapse
Affiliation(s)
- Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Ozawa N, Yokobori T, Osone K, Bilguun EO, Okami H, Shimoda Y, Shiraishi T, Okada T, Sano A, Sakai M, Sohda M, Miyazaki T, Ide M, Ogawa H, Yao T, Oyama T, Shirabe K, Saeki H. MAdCAM-1 targeting strategy can prevent colitic cancer carcinogenesis and progression via suppression of immune cell infiltration and inflammatory signals. Int J Cancer 2024; 154:359-371. [PMID: 37676657 DOI: 10.1002/ijc.34722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 09/08/2023]
Abstract
Chronic inflammation caused by infiltrating immune cells can promote colitis-associated dysplasia/colitic cancer in ulcerative colitis (UC) by activating inflammatory cytokine signalling through the IL-6/p-STAT3 and TNFα/NF-κB pathways. Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) expressed on high endothelial venules promotes the migration of immune cells from the bloodstream to the gut via interaction with α4β7 integrin expressed on the immune cells. MAdCAM-1, has therefore drawn interest as a novel therapeutic target for treating active UC. However, the role of MAdCAM-1-positive endothelial cells in immune cell infiltration in dysplasia/colitic cancers remains unclear. We evaluated the expression of MAdCAM-1, CD31 and immune cell markers (CD8, CD68, CD163 and FOXP3) in samples surgically resected from 11 UC patients with dysplasia/colitic cancer and 17 patients with sporadic colorectal cancer (SCRC), using immunohistochemical staining. We used an azoxymethane/dextran sodium sulphate mouse model (AOM/DSS mouse) to evaluate whether dysplasia/colitic cancer could be suppressed with an anti-MAdCAM-1 blocking antibody by preventing immune cell infiltration. The number of MAdCAM-1-positive vessels and infiltrating CD8+ , CD68+ and CD163+ immune cells was significantly higher in dysplasia/colitic cancer than in normal, SCRC and UC mucosa. In AOM/DSS mice, the anti-MAdCAM-1 antibody reduced the number, mean diameter, depth of tumours, Ki67 positivity, number of CD8+ , CD68+ and CD163+ immune cells and the IL-6/p-STAT3 and TNF-α/NF-κB signalling. Our results indicate that targeting MAdCAM-1 is a promising strategy for controlling not only UC severity but also carcinogenesis and tumour progression by regulating inflammation/immune cell infiltration in patients with UC.
Collapse
Affiliation(s)
- Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Erkhem-Ochir Bilguun
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Yuki Shimoda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Tatsuya Miyazaki
- Department of Gastroenterological Surgery, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Munenori Ide
- Department of Pathology Diagnosis, Maebashi Red Cross Hospital, Maebashi, Gunma, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyouku, Tokyo, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
8
|
Leven P, Schneider R, Schneider L, Mallesh S, Vanden Berghe P, Sasse P, Kalff JC, Wehner S. β-adrenergic signaling triggers enteric glial reactivity and acute enteric gliosis during surgery. J Neuroinflammation 2023; 20:255. [PMID: 37941007 PMCID: PMC10631040 DOI: 10.1186/s12974-023-02937-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Enteric glia contribute to the pathophysiology of various intestinal immune-driven diseases, such as postoperative ileus (POI), a motility disorder and common complication after abdominal surgery. Enteric gliosis of the intestinal muscularis externa (ME) has been identified as part of POI development. However, the glia-restricted responses and activation mechanisms are poorly understood. The sympathetic nervous system becomes rapidly activated by abdominal surgery. It modulates intestinal immunity, innervates all intestinal layers, and directly interfaces with enteric glia. We hypothesized that sympathetic innervation controls enteric glia reactivity in response to surgical trauma. METHODS Sox10iCreERT2/Rpl22HA/+ mice were subjected to a mouse model of laparotomy or intestinal manipulation to induce POI. Histological, protein, and transcriptomic analyses were performed to analyze glia-specific responses. Interactions between the sympathetic nervous system and enteric glia were studied in mice chemically depleted of TH+ sympathetic neurons and glial-restricted Sox10iCreERT2/JellyOPfl/+/Rpl22HA/+ mice, allowing optogenetic stimulation of β-adrenergic downstream signaling and glial-specific transcriptome analyses. A laparotomy model was used to study the effect of sympathetic signaling on enteric glia in the absence of intestinal manipulation. Mechanistic studies included adrenergic receptor expression profiling in vivo and in vitro and adrenergic agonism treatments of primary enteric glial cell cultures to elucidate the role of sympathetic signaling in acute enteric gliosis and POI. RESULTS With ~ 4000 differentially expressed genes, the most substantial enteric glia response occurs early after intestinal manipulation. During POI, enteric glia switch into a reactive state and continuously shape their microenvironment by releasing inflammatory and migratory factors. Sympathetic denervation reduced the inflammatory response of enteric glia in the early postoperative phase. Optogenetic and pharmacological stimulation of β-adrenergic downstream signaling triggered enteric glial reactivity. Finally, distinct adrenergic agonists revealed β-1/2 adrenoceptors as the molecular targets of sympathetic-driven enteric glial reactivity. CONCLUSIONS Enteric glia act as early responders during post-traumatic intestinal injury and inflammation. Intact sympathetic innervation and active β-adrenergic receptor signaling in enteric glia is a trigger of the immediate glial postoperative inflammatory response. With immune-activating cues originating from the sympathetic nervous system as early as the initial surgical incision, adrenergic signaling in enteric glia presents a promising target for preventing POI development.
Collapse
Affiliation(s)
- Patrick Leven
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Reiner Schneider
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Linda Schneider
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Shilpashree Mallesh
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Louvain, Belgium
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jörg C Kalff
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
9
|
Yang D, Almanzar N, Chiu IM. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell Mol Immunol 2023; 20:1259-1269. [PMID: 37336989 PMCID: PMC10616093 DOI: 10.1038/s41423-023-01054-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The gastrointestinal tract is densely innervated by the peripheral nervous system and populated by the immune system. These two systems critically coordinate the sensations of and adaptations to dietary, microbial, and damaging stimuli from the external and internal microenvironment during tissue homeostasis and inflammation. The brain receives and integrates ascending sensory signals from the gut and transduces descending signals back to the gut via autonomic neurons. Neurons regulate intestinal immune responses through the action of local axon reflexes or through neuronal circuits via the gut-brain axis. This neuroimmune crosstalk is critical for gut homeostatic maintenance and disease resolution. In this review, we discuss the roles of distinct types of gut-innervating neurons in the modulation of intestinal mucosal immunity. We will focus on the molecular mechanisms governing how different immune cells respond to neural signals in host defense and inflammation. We also discuss the therapeutic potential of strategies targeting neuroimmune crosstalk for intestinal diseases.
Collapse
Affiliation(s)
- Daping Yang
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Nicole Almanzar
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Rolls A. Immunoception: the insular cortex perspective. Cell Mol Immunol 2023; 20:1270-1276. [PMID: 37386172 PMCID: PMC10616063 DOI: 10.1038/s41423-023-01051-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
To define the systemic neuroimmune interactions in health and disease, we recently suggested immunoception as a term that refers to the existence of bidirectional functional loops between the brain and the immune system. This concept suggests that the brain constantly monitors changes in immune activity and, in turn, can regulate the immune system to generate a physiologically synchronized response. Therefore, the brain has to represent information regarding the state of the immune system, which can occure in multiple ways. One such representation is an immunengram, a trace that is partially stored by neurons and partially by the local tissue. This review will discuss our current understanding of immunoception and immunengrams, focusing on their manifestation in a specific brain region, the insular cortex (IC).
Collapse
Affiliation(s)
- Asya Rolls
- Department of Immunology, Department of Neuroscience, Technion, Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
11
|
Wang P, Kljavin N, Nguyen TTT, Storm EE, Marsh B, Jiang J, Lin W, Menon H, Piskol R, de Sauvage FJ. Adrenergic nerves regulate intestinal regeneration through IL-22 signaling from type 3 innate lymphoid cells. Cell Stem Cell 2023; 30:1166-1178.e8. [PMID: 37597516 DOI: 10.1016/j.stem.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The intestinal epithelium has high intrinsic turnover rate, and the precise renewal of the epithelium is dependent on the microenvironment. The intestine is innervated by a dense network of peripheral nerves that controls various aspects of intestinal physiology. However, the role of neurons in regulating epithelial cell regeneration remains largely unknown. Here, we investigated the effects of gut-innervating adrenergic nerves on epithelial cell repair following irradiation (IR)-induced injury. We observed that adrenergic nerve density in the small intestine increased post IR, while chemical adrenergic denervation impaired epithelial regeneration. Single-cell RNA sequencing experiments revealed a decrease in IL-22 signaling post IR in denervated animals. Combining pharmacologic and genetic tools, we demonstrate that β-adrenergic receptor signaling drives IL-22 production from type 3 innate lymphoid cells (ILC3s) post IR, which in turn promotes epithelial regeneration. These results define an adrenergic-ILC3 axis important for intestinal regeneration.
Collapse
Affiliation(s)
- Putianqi Wang
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Noelyn Kljavin
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thi Thu Thao Nguyen
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elaine E Storm
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bryan Marsh
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jian Jiang
- Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William Lin
- Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hari Menon
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
12
|
Schneider KM, Blank N, Alvarez Y, Thum K, Lundgren P, Litichevskiy L, Sleeman M, Bahnsen K, Kim J, Kardo S, Patel S, Dohnalová L, Uhr GT, Descamps HC, Kircher S, McSween AM, Ardabili AR, Nemec KM, Jimenez MT, Glotfelty LG, Eisenberg JD, Furth EE, Henao-Mejia J, Bennett FC, Pierik MJ, Romberg-Camps M, Mujagic Z, Prinz M, Schneider CV, Wherry EJ, Bewtra M, Heuckeroth RO, Levy M, Thaiss CA. The enteric nervous system relays psychological stress to intestinal inflammation. Cell 2023; 186:2823-2838.e20. [PMID: 37236193 PMCID: PMC10330875 DOI: 10.1016/j.cell.2023.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-β2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.
Collapse
Affiliation(s)
- Kai Markus Schneider
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Niklas Blank
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Yelina Alvarez
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharina Thum
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Lundgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madeleine Sleeman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaas Bahnsen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jihee Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Kardo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaan Patel
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giulia T Uhr
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susanna Kircher
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alana M McSween
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashkan Rezazadeh Ardabili
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Kelsey M Nemec
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lila G Glotfelty
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D Eisenberg
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marie J Pierik
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Mariëlle Romberg-Camps
- Department of Gastroenterology, Geriatrics, Internal and Intensive Care Medicine (Co-MIK), Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - Zlatan Mujagic
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre, Maastricht, the Netherlands; School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Marco Prinz
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carolin V Schneider
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Meenakshi Bewtra
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Hajjo H, Shouval DS, Gefen T, Geva-Zatorsky N. A sound mind in a sound body: Stress-induced glucocorticoids exacerbate gut inflammation. Cell 2023; 186:2728-2730. [PMID: 37352833 DOI: 10.1016/j.cell.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
The notion that psychological stress can deteriorate our health is widely accepted. However, the mechanisms at play are poorly understood. In this issue of Cell, Schneider et al. identify the impact of glucocorticoids on enteric glia and neurons and elucidate the underlying mechanisms that link psychological stress to the exacerbation of gut inflammation.
Collapse
Affiliation(s)
- Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel; Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dror S Shouval
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel; Humans & the Microbiome, CIFAR, Toronto, ON, Canada.
| |
Collapse
|
14
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
16
|
Chen W, Zhang XN, Su YS, Wang XY, Li HC, Liu YH, Wan HY, Qu ZY, Jing XH, He W. Electroacupuncture activated local sympathetic noradrenergic signaling to relieve synovitis and referred pain behaviors in knee osteoarthritis rats. Front Mol Neurosci 2023; 16:1069965. [PMID: 36959872 PMCID: PMC10028095 DOI: 10.3389/fnmol.2023.1069965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Recent research has focused on the local control of articular inflammation through neuronal stimulation to avoid the systemic side effects of conventional pharmacological therapies. Electroacupuncture (EA) has been proven to be useful for inflammation suppressing and pain reduction in knee osteoarthritis (KOA) patients, yet its mechanism remains unclear. Methods In the present study, the KOA model was established using the intra-articular injection of sodium monoiodoacetate (MIA) (1 mg/50 μL) into the knee cavity. EA was delivered at the ipsilateral ST36-GB34 acupoints. Hind paw weight-bearing and withdrawl thresholds were measured. On day 9, the histology, dep enrichment proteins, cytokines contents, immune cell population of the synovial membrane of the affected limbs were measured using HE staining, Masson staining, DIA quantitative proteomic analysis, flow cytometry, immunofluorescence staining, ELISA, and Western Blot. The ultrastructure of the saphenous nerve of the affected limb was observed using transmission electron microscopy on the 14th day after modeling. Results The result demonstrated that EA intervention during the midterm phase of the articular inflammation alleviated inflammatory pain behaviors and cartilage damage, but not during the early phase. Mid-term EA suppressed the levels of proinflammatory cytokines TNF-α, IL-1β, and IL-6 in the synovium on day 9 after MIA by elevating the level of sympathetic neurotransmitters Norepinephrine (NE) in the synovium but not systemic NE or systemic adrenaline. Selective blocking of the sympathetic function (6-OHDA) and β2-adrenergic receptor (ICI 118,551) prevented the anti-inflammatory effects of EA. EA-induced increment of the NE in the synovium inhibited the CXCL1-CXCR2 dependent overexpression of IL-6 in the synovial macrophages in a β2-adrenergic receptor (AR)-mediated manner. Discussion These results revealed that EA activated sympathetic noradrenergic signaling to control local inflammation in KOA rats and contributed to the development of novel therapeutic neurostimulation strategies for inflammatory diseases.
Collapse
|
17
|
Gaskill PJ, Khoshbouei H. Dopamine and norepinephrine are embracing their immune side and so should we. Curr Opin Neurobiol 2022; 77:102626. [PMID: 36058009 PMCID: PMC10481402 DOI: 10.1016/j.conb.2022.102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023]
Abstract
While the history of neuroimmunology is long, the explicit study of neuroimmune communication, and particularly the role of catecholamines in neuroimmunity, is still emerging. Recent studies have shown that catecholamines, norepinephrine, epinephrine, and dopamine, are central to multiple complex mechanisms regulating immune function. These studies show that catecholamines can be released from both the nervous system and directly from immune cells, mediating both autocrine and paracrine signaling. This commentary highlights the importance of catecholaminergic immunomodulation and discusses new considerations needed to study the role of catecholamines in immune homeostasis to best leverage their contribution to disease processes for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA. https://twitter.com/Khoshbouei_lab
| |
Collapse
|
18
|
Sharma A, Kumar A, Pandey S, Kumar D. Importance of photophosphatidylserine and Tim-3 in photoimmunotherapy. RSC Med Chem 2022; 13:1274-1275. [PMID: 36439978 PMCID: PMC9667782 DOI: 10.1039/d2md00189f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/03/2022] [Indexed: 10/06/2023] Open
Abstract
Natural killer (NK) cells help regulate autoimmune reactions, but overactivation causes harm. A Tim-3 receptor is an immune checkpoint that prevents overactivation. Its malfunction is related to autoimmune diseases and is mediated by phosphorylation of Tim-3 and other ligands. Photophosphatidylserine (phoPS) is a photoswitchable instrument that regulates NK cells through Tim-3. PS is bound to multiple receptors; therefore it can be utilised against cancer, infectious disorders, and autoimmune diseases, though more in vitro and in vivo research studies are needed.
Collapse
Affiliation(s)
- Akshansh Sharma
- Department of Pharmaceutical Chemistry, Shoolini University Solan Himachal Pradesh-173229 India
| | - Arun Kumar
- Department of Pharmaceutical Chemistry, Shoolini University Solan Himachal Pradesh-173229 India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University Gyeongsan Gyeongbuk 38541 Republic of Korea
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, Shoolini University Solan Himachal Pradesh-173229 India
| |
Collapse
|
19
|
Liu SQ, Li B, Li JJ, Sun S, Sun SR, Wu Q. Neuroendocrine regulations in tissue-specific immunity: From mechanism to applications in tumor. Front Cell Dev Biol 2022; 10:896147. [PMID: 36072337 PMCID: PMC9442449 DOI: 10.3389/fcell.2022.896147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Immune responses in nonlymphoid tissues play a vital role in the maintenance of homeostasis. Lots of evidence supports that tissue-specific immune cells provide defense against tumor through the localization in different tissue throughout the body, and can be regulated by diverse factors. Accordingly, the distribution of nervous tissue is also tissue-specific which is essential in the growth of corresponding organs, and the occurrence and development of tumor. Although there have been many mature perspectives on the neuroendocrine regulation in tumor microenvironment, the neuroendocrine regulation of tissue-specific immune cells has not yet been summarized. In this review, we focus on how tissue immune responses are influenced by autonomic nervous system, sensory nerves, and various neuroendocrine factors and reversely how tissue-specific immune cells communicate with neuroendocrine system through releasing different factors. Furthermore, we pay attention to the potential mechanisms of neuroendocrine-tissue specific immunity axis involved in tumors. This may provide new insights for the immunotherapy of tumors in the future.
Collapse
Affiliation(s)
- Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan-Juan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Sheng-Rong Sun, ; Qi Wu,
| |
Collapse
|
20
|
Stavely R, Rahman AA, Sahakian L, Prakash MD, Robinson AM, Hassanzadeganroudsari M, Filippone RT, Fraser S, Eri R, Bornstein JC, Apostolopoulos V, Nurgali K. Divergent Adaptations in Autonomic Nerve Activity and Neuroimmune Signaling Associated With the Severity of Inflammation in Chronic Colitis. Inflamm Bowel Dis 2022; 28:1229-1243. [PMID: 35380670 DOI: 10.1093/ibd/izac060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The autonomic nervous system (ANS) is thought to play a critical role in the anti-inflammatory reflex pathway in acute colitis via its interaction with the spleen and colon. Inflammation in the intestine is associated with a blunting of vagal signaling and increased sympathetic activity. As a corollary, methods to restore sympatho-vagal balance are being investigated as therapeutic strategies for the treatment of intestinal inflammation. Nevertheless, it is indefinite whether these autonomic signaling adaptations in colitis are detrimental or beneficial to controlling intestinal inflammation. In this study, models of moderate and severe chronic colitis are utilized to resolve the correlations between sympatho-vagal signaling and the severity of intestinal inflammation. METHODS Spleens and colons were collected from Winnie (moderate colitis), Winnie-Prolapse (severe colitis), and control C57BL/6 mice. Changes to the size and histomorphology of spleens were evaluated. Flow cytometry was used to determine the expression of adrenergic and cholinergic signaling proteins in splenic B and T lymphocytes. The inflammatory profile of the spleen and colon was determined using a RT-PCR gene array. Blood pressure, heart rate, splanchnic sympathetic nerve and vagus nerve activity were recorded. RESULTS Spleens and colons from Winnie and Winnie-Prolapse mice exhibited gross abnormalities by histopathology. Genes associated with a pro-inflammatory response were upregulated in the colons from Winnie and further augmented in colons from Winnie-Prolapse mice. Conversely, many pro-inflammatory markers were downregulated in the spleens from Winnie-Prolapse mice. Heightened activity of the splanchnic nerve was observed in Winnie but not Winnie-Prolapse mice. Conversely, vagal nerve activity was greater in Winnie-Prolapse mice compared with Winnie mice. Splenic lymphocytes expressing α1 and β2 adrenoreceptors were reduced, but those expressing α7 nAChR and producing acetylcholine were increased in Winnie and Winnie-Prolapse mice. CONCLUSIONS Sympathetic activity may correlate with an adaptive mechanism to reduce the severity of chronic colitis. The Winnie and Winnie-Prolapse mouse models of moderate and severe chronic colitis are well suited to examine the pathophysiology of progressive chronic intestinal inflammation.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed A Rahman
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Sahakian
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Monica D Prakash
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ainsley M Robinson
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Majid Hassanzadeganroudsari
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Rhiannon T Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Rajaraman Eri
- School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Deng L, Wang S, Zhang R, Huang J, Lin Y, Liu X, Lu Z, Li M, Tan W. Protective effects of (R)-enantiomers but not (S)-enantiomers of β2-adrenergic receptor agonists against acute colitis: The role of β2AR. Int Immunopharmacol 2022; 110:108997. [PMID: 35767902 DOI: 10.1016/j.intimp.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
The outcomes of ulcerative colitis (UC) treatment remain unsatisfactory. Salbutamol is a β2-adrenergic receptor (β2AR) agonist that is frequently used to treat human airway diseases, and it is a chiral drug with (RS)-isomers. However, the effects of (RS)-enantiomers of this drug on acute ulcerative colitis remain unknown. The present work determined and compared the effects of different chiral β2AR agonists in acute colitis. Acute colitis was established in mice with 3% dextran sulfate sodium and the mice were orally administered different salbutamol isomers. Body weight loss, colon length, disease activity index (DAI), and colon histopathology were assessed. Inflammatory cytokine levels were detected by ELISA. Colonic biopsies were collected from colitis patients. 16S rDNA amplicon sequencing was carried out to assess the composition and relative abundance of the gut microbiome. The expression of M1 and M2 macrophage markers in the colon were assessed by immunofluorescence staining and Western blotting. The results revealed that (R)-salbutamol prevented body weight loss and colonic shortening, decreased the DAI and histopathological scores, and reduced splenomegaly and inflammatory cytokine levels significantly better than (RS)-salbutamol and (S)-salbutamol. (R)-salbutamol downregulated levels of inflammatory protein in LPS-induced human colon tissue specimens. Furthermore, (R)-salbutamol ameliorated gut dysbiosis and macrophage polarization in mice with colitis. The β2AR antagonist ICI-118551 reversed the effect of (R)-salbutamol in ameliorating acute colitis. Taken together, (R)-salbutamol ameliorated the mice with acute colitis, which can serve as a new candidate or lead compound for UC treatment.
Collapse
Affiliation(s)
- Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Shanping Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Rui Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jiandong Huang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yue Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiaoming Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Lu
- Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai 519000, Guangdong, China
| | - Mingsong Li
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Wen Tan
- Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd, Hengqin New District, Zhuhai 519000, Guangdong, China; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
22
|
Wang L, Yuan PQ, Challis C, Ravindra Kumar S, Taché Y. Transduction of Systemically Administered Adeno-Associated Virus in the Colonic Enteric Nervous System and c-Kit Cells of Adult Mice. Front Neuroanat 2022; 16:884280. [PMID: 35734536 PMCID: PMC9207206 DOI: 10.3389/fnana.2022.884280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic delivery of adeno-associated virus (AAV) vectors transduces the enteric nervous system. However, less is known on the mapping and morphological and neurochemical characterization in the adult mouse colon. We used AAV9-CAG-GFP (AAV9) and AAV-PHP.S-hSyn1-tdTomato farnesylated (PHP.S-tdTf) to investigate the segmental distribution, morphologies and neurochemical coding of the transduction. The vectors were retro-orbitally injected in male and female adult mice, and 3 weeks later, the colon was prepared for microcopy with or without immunohistochemistry for neuronal and non-neuronal markers. In contrast to the distributions in neonatal and juvenile rodents, the AAV transduction in neurons and/or nerve fibers was the highest in the proximal colon, decreased gradually in the transverse, and was sparse in the distal colon without difference between sexes. In the proximal colon, the AAV9-transduced myenteric neurons were unevenly distributed. The majority of enteric neurons did not have AAV9 expression in their processes, except those with big soma with or without variously shaped dendrites, and a long axon. Immunolabeling demonstrated that about 31% neurons were transduced by AAV9, and the transduction was in 50, 28, and 31% of cholinergic, nitrergic, and calbindin-positive myenteric neurons, respectively. The nerve fiber markers, calcitonin gene-related peptide alpha, tyrosine hydroxylase or vasoactive intestinal polypeptide co-localized with AAV9 or PHP.S-tdTf in the mucosa, and rarely in the myenteric plexus. Unexpectedly, AAV9 expression appeared also in a few c-Kit immunoreactive cells among the heavily populated interstitial cells of Cajal (ICC). In the distal colon, the AAV transduction appeared in a few nerve fibers mostly the interganglionic strands. Other types of AAV9 and AAV-PHP vectors induced a similar colonic segmental difference which is not colon specific since neurons were transduced in the small intestine and gastric antrum, while little in the gastric corpus and none in the lower esophagus. Conclusion These findings demonstrate that in adult mice colon that there is a rostro-caudal decrease in the transduction of systemic delivery of AAV9 and its variants independent of sex. The characterization of AAV transduction in the proximal colon in cholinergic and nitrergic myenteric neurons along with a few ICC suggests implications in circuitries regulating motility.
Collapse
Affiliation(s)
- Lixin Wang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE/Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Pu-Qing Yuan
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE/Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE/Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
23
|
Gonzales J, Gulbransen BD. Purines help determine the gut's sweet tooth. Purinergic Signal 2022; 18:245-247. [PMID: 35639305 DOI: 10.1007/s11302-022-09871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jacques Gonzales
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| | - Brian D Gulbransen
- Department of Physiology and Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Mueller SN. Neural control of immune cell trafficking. J Exp Med 2022; 219:213032. [PMID: 35195682 PMCID: PMC8932541 DOI: 10.1084/jem.20211604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/27/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Leukocyte trafficking between blood and tissues is an essential function of the immune system that facilitates humoral and cellular immune responses. Within tissues, leukocytes perform surveillance and effector functions via cell motility and migration toward sites of tissue damage, infection, or inflammation. Neurotransmitters that are produced by the nervous system influence leukocyte trafficking around the body and the interstitial migration of immune cells in tissues. Neural regulation of leukocyte dynamics is influenced by circadian rhythms and altered by stress and disease. This review examines current knowledge of neuro–immune interactions that regulate leukocyte migration and consequences for protective immunity against infections and cancer.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Yang X, Li M, Qin X, Tan S, Du L, Ma C, Li M. Photophosphatidylserine Guides Natural Killer Cell Photoimmunotherapy via Tim-3. J Am Chem Soc 2022; 144:3863-3874. [PMID: 35226805 DOI: 10.1021/jacs.1c11498] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells, in addition to their cytotoxicity function, harbor prominent cytokine production capabilities and contribute to regulating autoimmune responses. T-cell immunoglobulin and mucin domain containing protein-3 (Tim-3) is one of the inhibitory receptors on NK cells and a promising immune checkpoint target. We recently found that phosphatidylserine (PS) binding to Tim-3 can suppress NK cell activation. Therefore, based on the therapeutic potential of Tim-3 in NK-cell-mediated diseases, we developed a photoswitchable ligand of Tim-3, termed photophosphatidylserine (phoPS), that mimics the effects of PS. Upon 365 or 455 nm light irradiation, the isomer of phoPS cyclically conversed the cis/trans configuration, resulting in an active/inactive Tim-3 ligand, thus modulating the function of NK cells in vitro and in vivo. We also demonstrated that reversible phoPS enabled optical control of acute hepatitis. Together, phoPS may be an appealing tool for autoimmune diseases and cytokine storms in the future.
Collapse
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.,Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
26
|
Lange T, Luebber F, Grasshoff H, Besedovsky L. The contribution of sleep to the neuroendocrine regulation of rhythms in human leukocyte traffic. Semin Immunopathol 2022; 44:239-254. [PMID: 35041075 PMCID: PMC8901522 DOI: 10.1007/s00281-021-00904-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Twenty-four-hour rhythms in immune parameters and functions are robustly observed phenomena in biomedicine. Here, we summarize the important role of sleep and associated parameters on the neuroendocrine regulation of rhythmic immune cell traffic to different compartments, with a focus on human leukocyte subsets. Blood counts of "stress leukocytes" such as neutrophils, natural killer cells, and highly differentiated cytotoxic T cells present a rhythm with a daytime peak. It is mediated by morning increases in epinephrine, leading to a mobilization of these cells out of the marginal pool into the circulation following a fast, beta2-adrenoceptor-dependent inhibition of adhesive integrin signaling. In contrast, other subsets such as eosinophils and less differentiated T cells are redirected out of the circulation during daytime. This is mediated by stimulation of the glucocorticoid receptor following morning increases in cortisol, which promotes CXCR4-driven leukocyte traffic, presumably to the bone marrow. Hence, these cells show highest numbers in blood at night when cortisol levels are lowest. Sleep adds to these rhythms by actively suppressing epinephrine and cortisol levels. In addition, sleep increases levels of immunosupportive mediators, such as aldosterone and growth hormone, which are assumed to promote T-cell homing to lymph nodes, thus facilitating the initiation of adaptive immune responses during sleep. Taken together, sleep-wake behavior with its unique neuroendocrine changes regulates human leukocyte traffic with overall immunosupportive effects during nocturnal sleep. In contrast, integrin de-activation and redistribution of certain leukocytes to the bone marrow during daytime activity presumably serves immune regulation and homeostasis.
Collapse
Affiliation(s)
- Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany. .,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Finn Luebber
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.,Social Neuroscience Lab, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | |
Collapse
|
27
|
Haykin H, Rolls A. The neuroimmune response during stress: A physiological perspective. Immunity 2021; 54:1933-1947. [PMID: 34525336 PMCID: PMC7615352 DOI: 10.1016/j.immuni.2021.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Stress is an essential adaptive response that enables the organism to cope with challenges and restore homeostasis. Different stressors require distinctive corrective responses in which immune cells play a critical role. Hence, effects of stress on immunity may vary accordingly. Indeed, epidemiologically, stress can induce either inflammation or immune suppression in an organism. However, in the absence of a conceptual framework, these effects appear chaotic, leading to confusion. Here, we examine how stressor diversity is imbedded in the neuroimmune axis. Stressors differ in the brain patterns they induce, diversifying the neuronal and endocrine mediators dispatched to the periphery and generating a wide range of potential immune effects. Uncovering this complexity and diversity of the immune response to different stressors will allow us to understand the involvement of stress in pathological conditions, identify ways to modulate it, and even harness the therapeutic potential embedded in an adaptive response to stress.
Collapse
Affiliation(s)
- Hedva Haykin
- Department of immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Asya Rolls
- Department of immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
28
|
Mikami Y, Tsunoda J, Kiyohara H, Taniki N, Teratani T, Kanai T. Vagus nerve-mediated intestinal immune regulation: therapeutic implications for inflammatory bowel diseases. Int Immunol 2021; 34:97-106. [PMID: 34240133 DOI: 10.1093/intimm/dxab039] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of inflammatory bowel disease (IBD) involves immunological, genetic and environmental factors. Through its ability to sense environmental stimuli, the autonomic nervous system plays a key role in the development and persistence of IBD. The vagus nerve (VN), which contains sensory and motor neurons, travels throughout the body to innervate the gut and other visceral organs in the thoracic and abdominopelvic cavities. Recent studies show that the VN has anti-inflammatory effects via the release of acetylcholine, in what is known as the cholinergic anti-inflammatory pathway (CAIP). In the gut immune system, the CAIP is proposed to be activated directly by signals from the gut and indirectly by signals from the liver, which receives gut-derived bioactive substances via the portal vein and senses the status of the gut. The gut-brain axis and liver-brain-gut reflex arc regulate a wide variety of peripheral immune cells to maintain homeostasis in the gut. Therefore, targeting the neural reflex by methods such as VN stimulation is now under investigation for suppressing intestinal inflammation associated with IBD. In this review, we describe the role of the VN in the regulation of intestinal immunity, and we discuss novel therapeutic approaches for IBD that target neuroimmune interactions.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
29
|
Stakenborg N, Boeckxstaens GE. Shining light on the neuro-immune axis in the gut. Immunity 2021; 54:850-852. [PMID: 33979582 DOI: 10.1016/j.immuni.2021.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this issue of Immunity, Schiller et al. report that local sympathetic nerve activation decreases endothelial expression of the adhesion molecule MAdCAM-1, reducing immune cell infiltration and colitis-induced inflammation. These findings suggest that local sympathetic stimulation provides a key gateway for regulating organ homeostasis.
Collapse
Affiliation(s)
- Nathalie Stakenborg
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven - University of Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Center of Intestinal Neuro-immune Interaction, Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|