1
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PNP, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJC, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. Cell 2024; 187:5554-5571.e19. [PMID: 39197450 PMCID: PMC11460329 DOI: 10.1016/j.cell.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/15/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024]
Abstract
Immunization with mosaic-8b (nanoparticles presenting 8 SARS-like betacoronavirus [sarbecovirus] receptor-binding domains [RBDs]) elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated the effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding the greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate mapping, in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19-vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Sandra E Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Ellis Robb
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Ian G Fotheringham
- Ingenza Ltd., Roslin Innovation Centre, Charnock Bradley Building, Roslin EH25 9RG, UK
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Hills RA, Tan TK, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PNP, Storm KN, Rorick AV, West AP, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, Admans G, James WS, Bjorkman PJ, Townsend AR, Howarth MR. Proactive vaccination using multiviral Quartet Nanocages to elicit broad anti-coronavirus responses. NATURE NANOTECHNOLOGY 2024; 19:1216-1223. [PMID: 38710880 PMCID: PMC11329374 DOI: 10.1038/s41565-024-01655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabrielle Admans
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Bloom N, Ramirez SI, Cohn H, Parikh UM, Heaps A, Sieg SF, Greninger A, Ritz J, Moser C, Eron JJ, Bajic G, Currier JS, Klekotka P, Wohl DA, Daar ES, Li J, Hughes MD, Chew KW, Smith DM, Crotty S, Coelho CH. SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback. J Infect Dis 2024:jiae371. [PMID: 39036987 DOI: 10.1093/infdis/jiae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have been studied in humans, but the impact on immune memory of mAb treatment during an ongoing infection has remained unclear. We evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific reduction in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating memory B cell responses to infection, and single mAb administration can continue to impact memory B cell responses to additional antigen exposures months later.
Collapse
Affiliation(s)
- Nathaniel Bloom
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Hallie Cohn
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy Heaps
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott F Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Alex Greninger
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Judith S Currier
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | | | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jonathan Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kara W Chew
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Shane Crotty
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Camila H Coelho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
5
|
Zhang J, Xu Y, Chen M, Wang S, Lin G, Huang Y, Yang C, Yang Y, Song Y. Spatial Engineering of Heterotypic Antigens on a DNA Framework for the Preparation of Mosaic Nanoparticle Vaccines with Enhanced Immune Activation against SARS-CoV-2 Variants. Angew Chem Int Ed Engl 2024:e202412294. [PMID: 39030890 DOI: 10.1002/anie.202412294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Mosaic nanoparticle vaccines with heterotypic antigens exhibit broad-spectrum antiviral capabilities, but the impact of antigen proportions and distribution patterns on vaccine-induced immunity remains largely unexplored. Here, we present a DNA nanotechnology-based strategy for spatially assembling heterotypic antigens to guide the rational design of mosaic nanoparticle vaccines. By utilizing two aptamers with orthogonal selectivity for the original SARS-CoV-2 spike trimer and Omicron receptor-binding domain (RBD), along with a DNA soccer-ball framework, we precisely manipulate the spacing, stoichiometry, and overall distribution of heterotypic antigens to create mosaic nanoparticles with average, bipolar, and unipolar antigen distributions. Systematic in vitro and in vivo immunological investigations demonstrate that 30 heterotypic antigens in equivalent proportions, with an average distribution, lead to higher production of broad-spectrum neutralizing antibodies compared to the bipolar and unipolar distributions. Furthermore, the precise assembly utilizing our developed methodology reveals that a mere increment of five Omicron RBD antigens on a nanoparticle (from 15 to 20) not only diminishes neutralization against the Omicron variant but also triggers excessive inflammation. This work provides a unique perspective on the rational design of mosaic vaccines by highlighting the significance of the spatial placement and proportion of heterotypic antigens in their structure-activity mechanisms.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yunyun Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingying Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shengwen Wang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Guihong Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
6
|
Heo CK, Lim WH, Moon KB, Yang J, Kim SJ, Kim HS, Kim DJ, Cho EW. S2 Peptide-Conjugated SARS-CoV-2 Virus-like Particles Provide Broad Protection against SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2024; 12:676. [PMID: 38932406 PMCID: PMC11209314 DOI: 10.3390/vaccines12060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Doo-Jin Kim
- Chungbuk National University College of Medicine, 194-15 Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Republic of Korea;
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Liu C, Xu S, Zheng Y, Xie Y, Xu K, Chai Y, Luo T, Dai L, Gao GF. Mosaic RBD nanoparticle elicits immunodominant antibody responses across sarbecoviruses. Cell Rep 2024; 43:114235. [PMID: 38748880 DOI: 10.1016/j.celrep.2024.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Nanoparticle vaccines displaying mosaic receptor-binding domains (RBDs) or spike (S) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or other sarbecoviruses are used in preparedness against potential zoonotic outbreaks. Here, we describe a self-assembling nanoparticle using lumazine synthase (LuS) as the scaffold to display RBDs from different sarbecoviruses. Mosaic nanoparticles induce sarbecovirus cross-neutralizing antibodies comparable to a nanoparticle cocktail. We find mosaic nanoparticles elicit a B cell receptor repertoire using an immunodominant germline gene pair of IGHV14-3:IGKV14-111. Most of the tested IGHV14-3:IGKV14-111 monoclonal antibodies (mAbs) are broadly cross-reactive to clade 1a, 1b, and 3 sarbecoviruses. Using mAb competition and cryo-electron microscopy, we determine that a representative IGHV14-3:IGKV14-111 mAb, M2-7, binds to a conserved epitope on the RBD, largely overlapping with the pan-sarbecovirus mAb S2H97. This suggests mosaic nanoparticles expand B cell recognition of the common epitopes shared by different clades of sarbecoviruses. These results provide immunological insights into the cross-reactive responses elicited by mosaic nanoparticles against sarbecoviruses.
Collapse
Affiliation(s)
- Chuanyu Liu
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Senyu Xu
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuxuan Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingrong Luo
- College of Animal Science and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Cohen AA, Keeffe JR, Schiepers A, Dross SE, Greaney AJ, Rorick AV, Gao H, Gnanapragasam PN, Fan C, West AP, Ramsingh AI, Erasmus JH, Pata JD, Muramatsu H, Pardi N, Lin PJ, Baxter S, Cruz R, Quintanar-Audelo M, Robb E, Serrano-Amatriain C, Magneschi L, Fotheringham IG, Fuller DH, Victora GD, Bjorkman PJ. Mosaic sarbecovirus nanoparticles elicit cross-reactive responses in pre-vaccinated animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.576722. [PMID: 38370696 PMCID: PMC10871317 DOI: 10.1101/2024.02.08.576722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on anti-sarbecovirus responses elicited by mosaic-8b, admix-8b (8 homotypics), or homotypic SARS-CoV-2 immunizations, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced by mosaic-8b, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.
Collapse
Affiliation(s)
- Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- These authors contributed equally
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Sandra E. Dross
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Allison J. Greaney
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Annie V. Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony P. West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | - Janice D. Pata
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany, Albany, NY, 12201, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Scott Baxter
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Rita Cruz
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Martina Quintanar-Audelo
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
- Present address: Centre for Inflammation Research and Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ellis Robb
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | | | - Leonardo Magneschi
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Ian G. Fotheringham
- Ingenza Ltd, Roslin Innovation Centre, Charnock Bradley Building, Roslin, EH25 9RG, UK
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- National Primate Research Center, Seattle, WA 98121, USA
| | - Gabriel D. Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
9
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584735. [PMID: 38558973 PMCID: PMC10979991 DOI: 10.1101/2024.03.13.584735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
Zhang Y, Sun J, Zheng J, Li S, Rao H, Dai J, Zhang Z, Wang Y, Liu D, Chen Z, Ran W, Zhu A, Li F, Yan Q, Wang Y, Yu K, Zhang S, Wang D, Tang Y, Liu B, Cheng L, Huo J, Perlman S, Zhao J, Zhao J. Mosaic RBD Nanoparticles Elicit Protective Immunity Against Multiple Human Coronaviruses in Animal Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303366. [PMID: 38105421 PMCID: PMC10916629 DOI: 10.1002/advs.202303366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/27/2023] [Indexed: 12/19/2023]
Abstract
To combat SARS-CoV-2 variants and MERS-CoV, as well as the potential re-emergence of SARS-CoV and spillovers of sarbecoviruses, which pose a significant threat to global public health, vaccines that can confer broad-spectrum protection against betacoronaviruses (β-CoVs) are urgently needed. A mosaic ferritin nanoparticle vaccine is developed that co-displays the spike receptor-binding domains of SARS-CoV, MERS-CoV, and SARS-CoV-2 Wild-type (WT) strain and evaluated its immunogenicity and protective efficacy in mice and nonhuman primates. A low dose of 10 µg administered at a 21-day interval induced a Th1-biased immune response in mice and elicited robust cross-reactive neutralizing antibody responses against a variety of β-CoVs, including a series of SARS-CoV-2 variants. It is also able to effectively protect against challenges of SARS-CoV, MERS-CoV, and SARS-CoV-2 variants in not only young mice but also the more vulnerable mice through induction of long-lived immunity. Together, these results suggest that this mosaic 3-RBD nanoparticle has the potential to be developed as a pan-β-CoV vaccine.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jian Zheng
- Department of Microbiology and ImmunologyUniversity of IowaIowa CityIA52242USA
| | - Suxiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Haiyue Rao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jun Dai
- Guangzhou Customs District Technology CenterGuangzhou510700P. R. China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Yanhong Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Banghui Liu
- State Key Laboratory of Respiratory DiseaseGuangdong Laboratory of Computational BiomedicineGuangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510530P. R. China
| | - Linling Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
| | - Jiandong Huo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
| | - Stanley Perlman
- Department of Microbiology and ImmunologyUniversity of IowaIowa CityIA52242USA
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510300P. R. China
- Guangzhou laboratoryBio‐islandGuangzhou510320P. R. China
- Institute of Infectious diseaseGuangzhou Eighth People's Hospital of Guangzhou Medical UniversityGuangzhou510060P. R. China
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's Hospitalthe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112P. R. China
- Shanghai Institute for Advanced Immunochemical StudiesSchool of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
11
|
Hauser B, Sangesland M, Lam EC, St Denis KJ, Sheehan ML, Vu ML, Cheng AH, Sordilla S, Lamson DT, Almawi AW, Balazs AB, Lingwood D, Schmidt AG. Heterologous Sarbecovirus Receptor Binding Domains as Scaffolds for SARS-CoV-2 Receptor Binding Motif Presentation. ACS Infect Dis 2024; 10:553-561. [PMID: 38281136 PMCID: PMC10862550 DOI: 10.1021/acsinfecdis.3c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Structure-guided rational immunogen design can generate optimized immunogens that elicit a desired humoral response. Design strategies often center on targeting conserved sites on viral glycoproteins that will ultimately confer potent neutralization. For SARS-CoV-2 (SARS-2), the surface-exposed spike glycoprotein includes a broadly conserved portion, the receptor binding motif (RBM), that is required to engage the host cellular receptor, ACE2. Expanding humoral responses to this site may result in a more potent neutralizing antibody response against diverse sarbecoviruses. Here, we used a "resurfacing" approach and iterative design cycles to graft the SARS-2 RBM onto heterologous sarbecovirus scaffolds. The scaffolds were selected to vary the antigenic distance relative to SARS-2 to potentially focus responses to RBM. Multimerized versions of these immunogens elicited broad neutralization against sarbecoviruses in the context of preexisting SARS-2 immunity. These validated engineering approaches can help inform future immunogen design efforts for sarbecoviruses and are generally applicable to other viruses.
Collapse
Affiliation(s)
- Blake
M. Hauser
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maya Sangesland
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Evan C. Lam
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kerri J. St Denis
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Maegan L. Sheehan
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Mya L. Vu
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Agnes H. Cheng
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Sophia Sordilla
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Dana Thornlow Lamson
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ahmad W. Almawi
- Center
for Molecular Interactions, Department of Biological Chemistry and
Molecular Pharmacology, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Alejandro B. Balazs
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Daniel Lingwood
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
| | - Aaron G. Schmidt
- Ragon
Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
13
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576742. [PMID: 38545622 PMCID: PMC10970720 DOI: 10.1101/2024.01.22.576742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.
Collapse
|
14
|
Musunuri S, Weidenbacher PAB, Kim PS. Bringing immunofocusing into focus. NPJ Vaccines 2024; 9:11. [PMID: 38195562 PMCID: PMC10776678 DOI: 10.1038/s41541-023-00792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Immunofocusing is a strategy to create immunogens that redirect humoral immune responses towards a targeted epitope and away from non-desirable epitopes. Immunofocusing methods often aim to develop "universal" vaccines that provide broad protection against highly variant viruses such as influenza virus, human immunodeficiency virus (HIV-1), and most recently, severe acute respiratory syndrome coronavirus (SARS-CoV-2). We use existing examples to illustrate five main immunofocusing strategies-cross-strain boosting, mosaic display, protein dissection, epitope scaffolding, and epitope masking. We also discuss obstacles for immunofocusing like immune imprinting. A thorough understanding, advancement, and application of the methods we outline here will enable the design of high-resolution vaccines that protect against future viral outbreaks.
Collapse
Affiliation(s)
- Sriharshita Musunuri
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
| | - Payton A B Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Peter S Kim
- Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
15
|
Wang Z, Zhang B, Ou L, Qiu Q, Wang L, Bylund T, Kong WP, Shi W, Tsybovsky Y, Wu L, Zhou Q, Chaudhary R, Choe M, Dickey TH, El Anbari M, Olia AS, Rawi R, Teng IT, Wang D, Wang S, Tolia NH, Zhou T, Kwong PD. Extraordinary Titer and Broad Anti-SARS-CoV-2 Neutralization Induced by Stabilized RBD Nanoparticles from Strain BA.5. Vaccines (Basel) 2023; 12:37. [PMID: 38250850 PMCID: PMC10821209 DOI: 10.3390/vaccines12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a primary target of neutralizing antibodies and a key component of licensed vaccines. Substantial mutations in RBD, however, enable current variants to escape immunogenicity generated by vaccination with the ancestral (WA1) strain. Here, we produce and assess self-assembling nanoparticles displaying RBDs from WA1 and BA.5 strains by using the SpyTag:SpyCatcher system for coupling. We observed both WA1- and BA.5-RBD nanoparticles to degrade substantially after a few days at 37 °C. Incorporation of nine RBD-stabilizing mutations, however, increased yield ~five-fold and stability such that more than 50% of either the WA1- or BA.5-RBD nanoparticle was retained after one week at 37 °C. Murine immunizations revealed that the stabilized RBD-nanoparticles induced ~100-fold higher autologous neutralization titers than the prefusion-stabilized (S2P) spike at a 2 μg dose. Even at a 25-fold lower dose where S2P-induced neutralization titers were below the detection limit, the stabilized BA.5-RBD nanoparticle induced homologous titers of 12,795 ID50 and heterologous titers against WA1 of 1767 ID50. Assessment against a panel of β-coronavirus variants revealed both the stabilized BA.5-RBD nanoparticle and the stabilized WA1-BA.5-(mosaic)-RBD nanoparticle to elicit much higher neutralization breadth than the stabilized WA1-RBD nanoparticle. The extraordinary titer and high neutralization breadth elicited by stabilized RBD nanoparticles from strain BA.5 make them strong candidates for next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Zhantong Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingyuan Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Thayne H. Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Mohammed El Anbari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (T.H.D.)
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Z.W.); (Q.Q.); (T.B.); (L.W.); (M.C.); (D.W.); (S.W.)
| |
Collapse
|
16
|
Zang T, Osei Kuffour E, Baharani VA, Canis M, Schmidt F, Da Silva J, Lercher A, Chaudhary P, Hoffmann HH, Gazumyan A, Miranda IC, MacDonald MR, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Heteromultimeric sarbecovirus receptor binding domain immunogens primarily generate variant-specific neutralizing antibodies. Proc Natl Acad Sci U S A 2023; 120:e2317367120. [PMID: 38096415 PMCID: PMC10740387 DOI: 10.1073/pnas.2317367120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.
Collapse
Affiliation(s)
- Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | | | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Justin Da Silva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Alexander Lercher
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Pooja Chaudhary
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Ileana C. Miranda
- Laboratory of Comparative Pathology, The Rockefeller University, New York, NY10065
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Michel C. Nussenzweig
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
17
|
Coelho CH, Bloom N, Ramirez SI, Parikh UM, Heaps A, Sieg SF, Greninger A, Ritz J, Moser C, Eron JJ, Currier JS, Klekotka P, Wohl DA, Daar ES, Li J, Hughes MD, Chew KW, Smith DM, Crotty S. SARS-CoV-2 monoclonal antibody treatment followed by vaccination shifts human memory B cell epitope recognition suggesting antibody feedback. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567575. [PMID: 38045374 PMCID: PMC10690233 DOI: 10.1101/2023.11.21.567575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Therapeutic anti-SARS-CoV-2 monoclonal antibodies (mAbs) have been extensively studied in humans, but the impact on immune memory of mAb treatment during an ongoing immune response has remained unclear. Here, we evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific defect in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating human memory B cell responses, both to infection and vaccination. These data indicate that mAb administration can promote alterations in the epitopes recognized by the B cell repertoire, and the single administration of mAb can continue to determine the fate of B cells in response to additional antigen exposures months later.
Collapse
Affiliation(s)
- Camila H Coelho
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
| | - Nathaniel Bloom
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
| | - Sydney I Ramirez
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy Heaps
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott F Sieg
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Alex Greninger
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carlee Moser
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Judith S Currier
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | | | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jonathan Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Hughes
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kara W Chew
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Davey M Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Shane Crotty
- Center for Vaccine Innovation - La Jolla Institute for Immunology (LJI) - 9420 Athena Circle - La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| |
Collapse
|
18
|
Mabrouk MT, Zidan AA, Aly N, Mohammed MT, Ghantous F, Seaman MS, Lovell JF, Nasr ML. Circularized Nanodiscs for Multivalent Mosaic Display of SARS-CoV-2 Spike Protein Antigens. Vaccines (Basel) 2023; 11:1655. [PMID: 38005987 PMCID: PMC10675430 DOI: 10.3390/vaccines11111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of vaccine-evading SARS-CoV-2 variants urges the need for vaccines that elicit broadly neutralizing antibodies (bnAbs). Here, we assess covalently circularized nanodiscs decorated with recombinant SARS-CoV-2 spike glycoproteins from several variants for eliciting bnAbs with vaccination. Cobalt porphyrin-phospholipid (CoPoP) was incorporated into the nanodisc to allow for anchoring and functional orientation of spike trimers on the nanodisc surface through their His-tag. Monophosphoryl-lipid (MPLA) and QS-21 were incorporated as immunostimulatory adjuvants to enhance vaccine responses. Following optimization of nanodisc assembly, spike proteins were effectively displayed on the surface of the nanodiscs and maintained their conformational capacity for binding with human angiotensin-converting enzyme 2 (hACE2) as verified using electron microscopy and slot blot assay, respectively. Six different formulations were prepared where they contained mono antigens; four from the year 2020 (WT, Beta, Lambda, and Delta) and two from the year 2021 (Omicron BA.1 and BA.2). Additionally, we prepared a mosaic nanodisc displaying the four spike proteins from year 2020. Intramuscular vaccination of CD-1 female mice with the mosaic nanodisc induced antibody responses that not only neutralized matched pseudo-typed viruses, but also neutralized mismatched pseudo-typed viruses corresponding to later variants from year 2021 (Omicron BA.1 and BA.2). Interestingly, sera from mosaic-immunized mice did not effectively inhibit Omicron spike binding to human ACE-2, suggesting that some of the elicited antibodies were directed towards conserved neutralizing epitopes outside the receptor binding domain. Our results show that mosaic nanodisc vaccine displaying spike proteins from 2020 can elicit broadly neutralizing antibodies that can neutralize mismatched viruses from a following year, thus decreasing immune evasion of new emerging variants and enhancing healthcare preparedness.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Asmaa A. Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nihal Aly
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Clinical Pathology Department, Minia University, Minia 61519, Egypt
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Mahmoud L. Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
19
|
Tarke A, Zhang Y, Methot N, Narowski TM, Phillips E, Mallal S, Frazier A, Filaci G, Weiskopf D, Dan JM, Premkumar L, Scheuermann RH, Sette A, Grifoni A. Targets and cross-reactivity of human T cell recognition of common cold coronaviruses. Cell Rep Med 2023; 4:101088. [PMID: 37295422 PMCID: PMC10242702 DOI: 10.1016/j.xcrm.2023.101088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genoa, Italy
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
21
|
Ren Z, Shen C, Peng J. Status and Developing Strategies for Neutralizing Monoclonal Antibody Therapy in the Omicron Era of COVID-19. Viruses 2023; 15:1297. [PMID: 37376597 DOI: 10.3390/v15061297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The monoclonal antibody (mAb)-based treatment is a highly valued therapy against COVID-19, especially for individuals who may not have strong immune responses to the vaccine. However, with the arrival of the Omicron variant and its evolving subvariants, along with the occurrence of remarkable resistance of these SARS-CoV-2 variants to the neutralizing antibodies, mAbs are facing tough challenges. Future strategies for developing mAbs with improved resistance to viral evasion will involve optimizing the targeting epitopes on SARS-CoV-2, enhancing the affinity and potency of mAbs, exploring the use of non-neutralizing antibodies that bind to conserved epitopes on the S protein, as well as optimizing immunization regimens. These approaches can improve the viability of mAb therapy in the fight against the evolving threat of the coronavirus.
Collapse
Affiliation(s)
- Zuning Ren
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Sheng Z, Bimela JS, Wang M, Li Z, Guo Y, Ho DD. An optimized thermodynamics integration protocol for identifying beneficial mutations in antibody design. Front Immunol 2023; 14:1190416. [PMID: 37275896 PMCID: PMC10235760 DOI: 10.3389/fimmu.2023.1190416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Accurate identification of beneficial mutations is central to antibody design. Many knowledge-based (KB) computational approaches have been developed to predict beneficial mutations, but their accuracy leaves room for improvement. Thermodynamic integration (TI) is an alchemical free energy algorithm that offers an alternative technique for identifying beneficial mutations, but its performance has not been evaluated. In this study, we developed an efficient TI protocol with high accuracy for predicting binding free energy changes of antibody mutations. The improved TI method outperforms KB methods at identifying both beneficial and deleterious mutations. We observed that KB methods have higher accuracies in predicting deleterious mutations than beneficial mutations. A pipeline using KB methods to efficiently exclude deleterious mutations and TI to accurately identify beneficial mutations was developed for high-throughput mutation scanning. The pipeline was applied to optimize the binding affinity of a broadly sarbecovirus neutralizing antibody 10-40 against the circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant. Three identified beneficial mutations show strong synergy and improve both binding affinity and neutralization potency of antibody 10-40. Molecular dynamics simulation revealed that the three mutations improve the binding affinity of antibody 10-40 through the stabilization of an altered binding mode with increased polar and hydrophobic interactions. Above all, this study presents an accurate and efficient TI-based approach for optimizing antibodies and other biomolecules.
Collapse
Affiliation(s)
- Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Jude S. Bimela
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|
23
|
Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Cervantes Rincón T, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Sci Immunol 2023; 8:eade0958. [PMID: 36701425 PMCID: PMC9972897 DOI: 10.1126/sciimmunol.ade0958] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raoul De Gasparo
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Pavel Svoboda
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences; Brno, Czech Republic
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tommaso Fava
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Celoria
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Michal Stefanik
- Veterinary Research Institute; Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno; Brno, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia; Ceske Budejovice, Czech Republic
| | - Tereza Michalcikova
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences; Tehran, Iran
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Daniel Fernandez
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University; Stanford, USA
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia; Pavia, Italy
| | | | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- Chan Zuckerberg Biohub; San Francisco, USA
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|
24
|
Gelinas AD, Tan TK, Liu S, Jaramillo JG, Chadwick J, Harding AC, Zhang C, Ream BE, Chase CN, Otis MR, Lee T, Schneider DJ, James WS, Janjic N. Broadly neutralizing aptamers to SARS-CoV-2: A diverse panel of modified DNA antiviral agents. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:370-382. [PMID: 36714461 PMCID: PMC9859636 DOI: 10.1016/j.omtn.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Since its discovery, COVID-19 has rapidly spread across the globe and has had a massive toll on human health, with infection mortality rates as high as 10%, and a crippling impact on the world economy. Despite numerous advances, there remains an urgent need for accurate and rapid point-of-care diagnostic tests and better therapeutic treatment options. To contribute chemically distinct, non-protein-based affinity reagents, we report here the identification of modified DNA-based aptamers that selectively bind to the S1, S2, or receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Several aptamers inhibit the binding of the spike protein to its cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and neutralize authentic SARS-CoV-2 virus in vitro, including all variants of concern. With a high degree of nuclease resistance imparted by the base modifications, these reagents represent a new class of molecules with potential for further development as diagnostics or therapeutics.
Collapse
Affiliation(s)
- Amy D. Gelinas
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Javier G. Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - James Chadwick
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Adam C. Harding
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Chi Zhang
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Brian E. Ream
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | | | - Matthew R. Otis
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
| | - Thomas Lee
- Department of Biochemistry, University of Colorado, Boulder, JSCBB, C1B90, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | | | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Corresponding author William S. James, James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Nebojsa Janjic
- SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
- Corresponding author Nebojsa Janjic, SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA.
| |
Collapse
|
25
|
Hills RA, Kit Tan T, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PN, Storm KN, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, James WS, Bjorkman PJ, Townsend AR, Howarth M. Multiviral Quartet Nanocages Elicit Broad Anti-Coronavirus Responses for Proactive Vaccinology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529520. [PMID: 36865256 PMCID: PMC9980174 DOI: 10.1101/2023.02.24.529520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A. Hills
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony H. Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Kaya N. Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michelle L. Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
26
|
Pedenko B, Sulbaran G, Guilligay D, Effantin G, Weissenhorn W. SARS-CoV-2 S Glycoprotein Stabilization Strategies. Viruses 2023; 15:v15020558. [PMID: 36851772 PMCID: PMC9960574 DOI: 10.3390/v15020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
Collapse
|
27
|
Hao L, Hsiang TY, Dalmat RR, Ireton R, Morton JF, Stokes C, Netland J, Hale M, Thouvenel C, Wald A, Franko NM, Huden K, Chu HY, Sigal A, Greninger AL, Tilles S, Barrett LK, Van Voorhis WC, Munt J, Scobey T, Baric RS, Rawlings DJ, Pepper M, Drain PK, Gale M. Dynamics of SARS-CoV-2 VOC Neutralization and Novel mAb Reveal Protection against Omicron. Viruses 2023; 15:530. [PMID: 36851745 PMCID: PMC9965505 DOI: 10.3390/v15020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.
Collapse
Affiliation(s)
- Linhui Hao
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Ronit R. Dalmat
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Renee Ireton
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jennifer F. Morton
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason Netland
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Malika Hale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Chris Thouvenel
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Anna Wald
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Allergy and Infectious Diseases Division, Laboratory Medicine & Pathology, & Epidemiology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kristen Huden
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Mayville 4058, South Africa
- Centre for the AIDS Program of Research in South Africa, Congella 4013, South Africa
| | - Alex L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sasha Tilles
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lynn K. Barrett
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - David J. Rawlings
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Paul K. Drain
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Tarke A, Zhang Y, Methot N, Narowski TM, Phillips E, Mallal S, Frazier A, Filaci G, Weiskopf D, Dan JM, Premkumar L, Scheuermann RH, Sette A, Grifoni A. Targets and cross-reactivity of human T cell recognition of Common Cold Coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522794. [PMID: 36656777 PMCID: PMC9844015 DOI: 10.1101/2023.01.04.522794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Coronavirus (CoV) family includes a variety of viruses able to infect humans. Endemic CoVs that can cause common cold belong to the alphaCoV and betaCoV genera, with the betaCoV genus also containing subgenera with zoonotic and pandemic concern, including sarbecoCoV (SARS-CoV and SARS-CoV-2) and merbecoCoV (MERS-CoV). It is therefore warranted to explore pan-CoV vaccine concepts, to provide adaptive immune protection against new potential CoV outbreaks, particularly in the context of betaCoV sub lineages. To explore the feasibility of eliciting CD4 + T cell responses widely cross-recognizing different CoVs, we utilized samples collected pre-pandemic to systematically analyze T cell reactivity against representative alpha (NL63) and beta (OC43) common cold CoVs (CCC). Similar to previous findings on SARS-CoV-2, the S, N, M, and nsp3 antigens were immunodominant for both viruses while nsp2 and nsp12 were immunodominant for NL63 and OC43, respectively. We next performed a comprehensive T cell epitope screen, identifying 78 OC43 and 87 NL63-specific epitopes. For a selected subset of 18 epitopes, we experimentally assessed the T cell capability to cross-recognize sequences from representative viruses belonging to alphaCoV, sarbecoCoV, and beta-non-sarbecoCoV groups. We found general conservation within the alpha and beta groups, with cross-reactivity experimentally detected in 89% of the instances associated with sequence conservation of >67%. However, despite sequence conservation, limited cross-reactivity was observed in the case of sarbecoCoV (50% of instances), indicating that previous CoV exposure to viruses phylogenetically closer to this subgenera is a contributing factor in determining cross-reactivity. Overall, these results provided critical insights in the development of future pan-CoV vaccines.
Collapse
Affiliation(s)
- Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Experimental Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, 16132, Italy
| | - Yun Zhang
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Nils Methot
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tara M Narowski
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Elizabeth Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Jennifer M Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- These authors contributed equally
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
- These authors contributed equally
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
- These authors contributed equally
- Lead Contact
| |
Collapse
|
29
|
Bianchini F, Crivelli V, Abernathy ME, Guerra C, Palus M, Muri J, Marcotte H, Piralla A, Pedotti M, De Gasparo R, Simonelli L, Matkovic M, Toscano C, Biggiogero M, Calvaruso V, Svoboda P, Rincón TC, Fava T, Podešvová L, Shanbhag AA, Celoria A, Sgrignani J, Stefanik M, Hönig V, Pranclova V, Michalcikova T, Prochazka J, Guerrini G, Mehn D, Ciabattini A, Abolhassani H, Jarrossay D, Uguccioni M, Medaglini D, Pan-Hammarström Q, Calzolai L, Fernandez D, Baldanti F, Franzetti-Pellanda A, Garzoni C, Sedlacek R, Ruzek D, Varani L, Cavalli A, Barnes CO, Robbiani DF. Human neutralizing antibodies to cold linear epitopes and to subdomain 1 of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.24.515932. [PMID: 36482967 PMCID: PMC9727766 DOI: 10.1101/2022.11.24.515932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera , including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae , including SARS-CoV-2 variants. One sentence summary Broadly cross-reactive antibodies that protect from SARS-CoV-2 variants are revealed by virus coldspot-driven discovery.
Collapse
Affiliation(s)
- Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Virginia Crivelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | | | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Jonathan Muri
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Harold Marcotte
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Raoul De Gasparo
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Milos Matkovic
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Chiara Toscano
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Maira Biggiogero
- Clinical Research Unit, Clinica Luganese Moncucco; Lugano, Switzerland
| | | | - Pavel Svoboda
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
- Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences; Brno, Czech Republic
| | - Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Tommaso Fava
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Lucie Podešvová
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Akanksha A. Shanbhag
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Celoria
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Michal Stefanik
- Veterinary Research Institute; Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno; Brno, Czech Republic
| | - Vaclav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
| | - Veronika Pranclova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia; Ceske Budejovice, Czech Republic
| | - Tereza Michalcikova
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Jan Prochazka
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet; Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences; Tehran, Iran
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies; University of Siena, Siena, Italy
| | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC); Ispra, Italy
| | - Daniel Fernandez
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University; Stanford, USA
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo; Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia; Pavia, Italy
| | | | - Christian Garzoni
- Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco; Lugano, Switzerland
| | - Radislav Sedlacek
- Czech Centre of Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences; Vestec, Czech Republic
| | - Daniel Ruzek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences; Ceske Budejovice, Czech Republic
- Veterinary Research Institute; Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University; Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
- Swiss Institute of Bioinformatics; Lausanne, Switzerland
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- Chan Zuckerberg Biohub; San Francisco, USA
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana; Bellinzona, Switzerland
| |
Collapse
|