1
|
Vogel A, Tentschert J, Pieters R, Bennet F, Dirven H, van den Berg A, Lenssen E, Rietdijk M, Broßell D, Haase A. Towards a risk assessment framework for micro- and nanoplastic particles for human health. Part Fibre Toxicol 2024; 21:48. [PMID: 39614364 PMCID: PMC11606215 DOI: 10.1186/s12989-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Human exposure to micro- and nanoplastic particles (MNPs) is inevitable but human health risk assessment remains challenging for several reasons. MNPs are complex mixtures of particles derived from different polymer types, which may contain plenty of additives and/or contaminants. MNPs cover broad size distributions and often have irregular shapes and morphologies. Moreover, several of their properties change over time due to aging/ weathering. Case-by-case assessment of each MNP type does not seem feasible, more straightforward methodologies are needed. However, conceptual approaches for human health risk assessment are rare, reliable methods for exposure and hazard assessment are largely missing, and meaningful data is scarce. METHODS Here we reviewed the state-of-the-art concerning risk assessment of chemicals with a specific focus on polymers as well as on (nano-)particles and fibres. For this purpose, we broadly screened relevant knowledge including guidance documents, standards, scientific publications, publicly available reports. We identified several suitable concepts such as: (i) polymers of low concern (PLC), (ii) poorly soluble low toxicity particles (PSLT) and (iii) fibre pathogenicity paradigm (FPP). We also aimed to identify promising methods, which may serve as a reasonable starting point for a test strategy. RESULTS AND CONCLUSION Here, we propose a state-of-the-art modular risk assessment framework for MNPs, focusing primarily on inhalation as a key exposure route for humans that combines several integrated approaches to testing and assessment (IATAs). The framework starts with basic physicochemical characterisation (step 1), followed by assessing the potential for inhalative exposure (step 2) and includes several modules for toxicological assessment (step 3). We provide guidance on how to apply the framework and suggest suitable methods for characterization of physicochemical properties, exposure and hazard assessment. We put special emphasis on new approach methodologies (NAMs) and included grouping, where adequate. The framework has been improved in several iterative cycles by taking into account expert feedback and is currently being tested in several case studies. Overall, it can be regarded as an important step forward to tackle human health risk assessment.
Collapse
Affiliation(s)
- Amelie Vogel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Raymond Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Francesca Bennet
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health (NPIH), Oslo, Norway
| | | | - Esther Lenssen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Dirk Broßell
- Federal Institute for Occupational Safety and Health (BAuA), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Chen G, Rottschäfer V, Vijver MG, Peijnenburg WJGM. Modeling the Toxicokinetics of Suspensions of Soluble Metallic Nanomaterials. Chem Res Toxicol 2024; 37:1651-1659. [PMID: 39250695 PMCID: PMC11497356 DOI: 10.1021/acs.chemrestox.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Proper risk assessment of the many new nanoforms (NFs) that are currently being developed and marketed is hindered by constraints in time and resources for testing their fate and (eco) toxicity profile. This problem has also been encountered in conventional chemical risk assessments, where the definition of related chemical groups can facilitate risk assessment for all class members. Whereas grouping and read-across methods are well established, such approaches are in the early stages of development for NFs. In this study, a modeling framework was developed for grouping NFs into distinct classes regarding the contribution of released ions to suspension-induced toxicity. The framework is based on combining dissolution rate constants of NFs with information about the toxicokinetics of the NFs and the dissolution products formed. The framework is exemplified for the specific case of suspension toxicity of metallic NFs (silver and copper). To this end, principles of mixture toxicity and dose-response modeling are integrated to derive threshold values for the key NF properties determining suspension toxicity: size, shape, and chemical composition. The threshold values thus derived offer a possible solution for the high-throughput screening of NFs according to their morphological and compositional properties in a regulatory context.
Collapse
Affiliation(s)
- Guangchao Chen
- Centre
for Prevention, Lifestyle, and Health, National
Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, The Netherlands
| | - Vivi Rottschäfer
- Mathematical
Institute, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- Korteweg-de
Vries Institute for Mathematics, University
of Amsterdam, P.O. Box
94248, Amsterdam 1090 GE, The Netherlands
| | - Martina G. Vijver
- Institute
of Environmental Sciences (CML), Leiden
University, Einsteinweg
2, 2333 CC, Leiden, The Netherlands
| | - Willie J. G. M. Peijnenburg
- Institute
of Environmental Sciences (CML), Leiden
University, Einsteinweg
2, 2333 CC, Leiden, The Netherlands
- National
Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven 3720 BA, The Netherlands
| |
Collapse
|
3
|
Danielsen PH, Poulsen SS, Knudsen KB, Clausen PA, Jensen KA, Wallin H, Vogel U. Physicochemical properties of 26 carbon nanotubes as predictors for pulmonary inflammation and acute phase response in mice following intratracheal lung exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104413. [PMID: 38485102 DOI: 10.1016/j.etap.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.
Collapse
Affiliation(s)
- Pernille Høgh Danielsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Per Axel Clausen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark
| | - Håkan Wallin
- National Institute of Occupational Health, Pb 5330 Majorstuen, Oslo 0304, Norway; Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Technical University of Denmark (DTU), Anker Engelunds Vej 1, Lyngby DK-2800 Kgs, Denmark.
| |
Collapse
|
4
|
Steska T, Wagner S, Reemtsma T, Kühnel D. Influence of Silver Fiber Morphology on the Dose-Response Relationship and Enrichment in Daphnia magna Studied by Elemental Imaging with LA-ICP-TOF-MS. Chem Res Toxicol 2024; 37:292-301. [PMID: 38189788 PMCID: PMC10880099 DOI: 10.1021/acs.chemrestox.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
This study aims to enhance the understanding of the environmental risks associated with nanomaterials, particularly nanofibers. Previous research suggested that silver fibers exhibit higher toxicity (EC50/48h 1.6-8.5 μg/L) compared to spherical silver particles (EC50/48h 43 μg/L). To investigate the hypothesis that toxicity is influenced by the morphology and size of nanomaterials, various silver nanofibers with different dimensions (length and diameter) were selected. The study assessed their toxicity toward Daphnia magna using the 48 h immobilization assay. The EC50 values for the different fibers ranged from 122 to 614 μg/L. Subsequently, the study quantified the uptake and distribution of two representative nanofibers in D. magna neonates by employing digestion and imaging mass spectrometry in the form of laser-ablation-ICP-MS. A novel sample preparation method was utilized, allowing the analysis of whole, intact daphnids, which facilitated the localization of silver material and prevented artifacts. The results revealed that, despite the similar ecotoxicity of the silver fibers, the amount of silver associated with the neonates differed by a factor of 2-3. However, both types of nanofibers were primarily found in the gut of the organisms. In conclusion, the findings of this study do not support the expectation that the morphology or size of silver materials affect their toxicity to D. magna.
Collapse
Affiliation(s)
- Tim Steska
- Helmholtz
Centre for Environmental Research GmbH - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephan Wagner
- Helmholtz
Centre for Environmental Research GmbH - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research GmbH - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Institute
for Analytical Chemistry, University of
Leipzig, Linnéstr.
3, 04103 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz
Centre for Environmental Research GmbH - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
5
|
Di Cristo L, Keller JG, Leoncino L, Marassi V, Loosli F, Seleci DA, Tsiliki G, Oomen AG, Stone V, Wohlleben W, Sabella S. Critical aspects in dissolution testing of nanomaterials in the oro-gastrointestinal tract: the relevance of juice composition for hazard identification and grouping. NANOSCALE ADVANCES 2024; 6:798-815. [PMID: 38298600 PMCID: PMC10825926 DOI: 10.1039/d3na00588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| | - Johannes G Keller
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia Genova Italy
| | | | - Frederic Loosli
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
- University of Vienna Vienna Austria
| | - Didem Ag Seleci
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Georgia Tsiliki
- Institute for the Management of Information Systems, Athena Research Center Marousi Greece
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
- University of Amsterdam Amsterdam The Netherlands
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh UK
| | - Wendel Wohlleben
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| |
Collapse
|
6
|
Visani de Luna LA, Loret T, He Y, Legnani M, Lin H, Galibert AM, Fordham A, Holme S, Del Rio Castillo AE, Bonaccorso F, Bianco A, Flahaut E, Kostarelos K, Bussy C. Pulmonary Toxicity of Boron Nitride Nanomaterials Is Aspect Ratio Dependent. ACS NANO 2023; 17:24919-24935. [PMID: 38051272 PMCID: PMC10753895 DOI: 10.1021/acsnano.3c06599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (h-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice. Animals were exposed by single oropharyngeal aspiration to h-BN or BNNTs. On days 1, 7, and 28, bronchoalveolar lavage (BAL) fluids and lungs were collected. On one hand, adverse effects on lungs were evaluated using various approaches (e.g., immune response, histopathology, tissue remodeling, and genotoxicity). On the other hand, material deposition and clearance from the lungs were assessed. Two-dimensional h-BN did not cause any significant immune response or lung damage, although the presence of materials was confirmed by Raman spectroscopy. In addition, the low aspect ratio h-BN nanosheets were internalized rapidly by phagocytic cells present in alveoli, resulting in efficient clearance from the lungs. In contrast, high aspect ratio BNNTs caused a strong and long-lasting inflammatory response, characterized by sustained inflammation up to 28 days after exposure and the activation of both innate and adaptive immunity. Moreover, the presence of granulomatous structures and an indication of ongoing fibrosis as well as DNA damage in the lung parenchyma were evidenced with these materials. Concurrently, BNNTs were identified in lung sections for up to 28 days, suggesting long-term biopersistence, as previously demonstrated for other high aspect ratio nanomaterials with poor lung clearance such as multiwalled carbon nanotubes (MWCNTs). Overall, we reveal the safer toxicological profile of BN-based two-dimensional nanosheets in comparison to their nanotube counterparts. We also report strong similarities between BNNTs and MWCNTs in lung response, emphasizing their high aspect ratio as a major driver of their toxicity.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | - Thomas Loret
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | - Yilin He
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Morgan Legnani
- CIRIMAT,
Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université
de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Hazel Lin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Anne Marie Galibert
- CIRIMAT,
Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université
de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Alexander Fordham
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | - Sonja Holme
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| | | | - Francesco Bonaccorso
- BeDimensional
S.p.A., Lungo Torrente
Secca 30r, 16163 Genoa, Italy
- Istituto
Italiano di Tecnologia, Graphene Laboratories, Via Morego 30, 16163 Genoa, Italy
| | - Alberto Bianco
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Emmanuel Flahaut
- CIRIMAT,
Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université
de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science
Centre, Manchester M13 9PT, U.K.
- National
Graphene Institute, The University of Manchester, Manchester, M13 9PL, U.K.
- Lydia
Becker Institute of Immunology and Inflammation, Faculty of Biology,
Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester M13 9PT, U.K.
| |
Collapse
|
7
|
Nel A. Carbon nanotube pathogenicity conforms to a unified theory for mesothelioma causation by elongate materials and fibers. ENVIRONMENTAL RESEARCH 2023; 230:114580. [PMID: 36965801 DOI: 10.1016/j.envres.2022.114580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 05/30/2023]
Abstract
The purpose of this review is to elucidate how dimensional and durability characteristics of high aspect ratio nanomaterials (HARN), including carbon nanotubes (CNT) and metal nanowires (MeNW), contribute to understanding the fiber pathogenicity paradigm (FPP), including by explaining the structure-activity relationships (SAR) of a diverse range of natural and synthetic elongate materials that may or may not contribute to mesothelioma development in the lung. While the FPP was originally developed to explain the critical importance of asbestos and synthetic vitreous fiber length, width, aspect ratio and biopersistence in mesothelioma development, there are a vast number of additional inhalable materials that need to be considered in terms of pathogenic features that may contribute to mesothelioma or lack thereof. Not only does the ability to exert more exact control over the length and biopersistence of HARNs confirm the tenets of the FPP, but could be studied by implementating more appropriate toxicological tools for SAR analysis. This includes experimentation with carefully assembled libraries of CNTs and MeNWs, helping to establish more precise dimensional features for interfering in lymphatic drainage from the parietal pleura, triggering of lysosomal damage, frustrated phagocytosis and generation of chronic inflammation. The evidence includes data that long and rigid, but not short and flexible multi-wall CNTs are capable of generating mesotheliomas in rodents based on an adverse outcome pathway requiring access to pleural cavity, obstruction of pleural stomata, chronic inflammation and transformation of mesothelial cells. In addition to durability and dimensional characteristics, bending stiffness of CNTs is a critical factor in determining the shape and rigidity of pathogenic MWCNTs. While no evidence has been obtained in humans that CNT exposure leads to a mesothelioma outcome, it is important to monitor exposure levels and health effect impacts in workers to prevent adverse health outcomes in humans.
Collapse
Affiliation(s)
- André Nel
- Distinguished Professor of Medicine and Research Director of the California Nano Systems Institute at UCLA, USA; Division of NanoMedicine, And Department of Medicine, David Geffen School of Medicine at UCLA, 52-175 Center for the Health Sciences, 10833 LeConte Ave, Los Angeles, CA, 90095, USA; California Nano Systems Institute at UCLA, 570 Westwood Plaza, Building 114, Los Angeles, CA, 90095, USA.
| |
Collapse
|
8
|
Wohlleben W, Mehling A, Landsiedel R. Lessons Learned from the Grouping of Chemicals to Assess Risks to Human Health. Angew Chem Int Ed Engl 2023; 62:e202210651. [PMID: 36254879 DOI: 10.1002/anie.202210651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.
Collapse
Affiliation(s)
- Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Annette Mehling
- Dept. of Advanced Formulation and Performance Technology, BASF Personal Care and Nutrition GmbH, 40589, Duesseldorf, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Free University of Berlin, Biology, Chemistry and Pharmacy-Pharmacology and Toxicology, 14195, Berlin, Germany
| |
Collapse
|
9
|
Regulatory safety assessment of nanoparticles for the food chain in Europe. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
11
|
Ceppi M, Smolkova B, Staruchova M, Kazimirova A, Barancokova M, Volkovova K, Collins A, Kocan A, Dzupinkova Z, Horska A, Buocikova V, Tulinska J, Liskova A, Mikusova ML, Krivosikova Z, Wsolova L, Kuba D, Rundén-Pran E, El Yamani N, Longhin EM, Halašová E, Kyrtopoulos S, Bonassi S, Dusinska M. Genotoxic effects of occupational exposure to glass fibres - A human biomonitoring study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503572. [PMID: 36669817 DOI: 10.1016/j.mrgentox.2022.503572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/07/2022]
Abstract
As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated. The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay). Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively. Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.
Collapse
Affiliation(s)
- Marcello Ceppi
- Biostatistics Unit, San Martino Policlinic Hospital, Genoa, Italy.
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Slovakia.
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Andrew Collins
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Anton Kocan
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Zuzana Dzupinkova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia; Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| | - Alexandra Horska
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Verona Buocikova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Slovakia.
| | - Jana Tulinska
- Laboratory of Immunotoxicology, Slovak Medical University in Bratislava, Slovakia.
| | - Aurelia Liskova
- Laboratory of Immunotoxicology, Slovak Medical University in Bratislava, Slovakia.
| | | | - Zora Krivosikova
- Department of Clinical and Experimental Pharmacotherapy, Slovak Medical University, Bratislava, Slovakia.
| | - Ladislava Wsolova
- Institute of Biophysics, Informatics and BioStatistics, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia.
| | - Daniel Kuba
- National Transplant Organization, Bratislava, Slovakia.
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Naouale El Yamani
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Eleonora Martha Longhin
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| | - Erika Halašová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Soterios Kyrtopoulos
- Institute of Biology, Medicinal Chemistry, and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | - Stefano Bonassi
- IRCCS San Raffaele Pisana, Unit of Clinical and Molecular Epidemiology, Rome, Italy.
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU - Norwegian Institute for Air Research, Kjeller, Norway.
| |
Collapse
|
12
|
Di Cristo L, Ude VC, Tsiliki G, Tatulli G, Romaldini A, Murphy F, Wohlleben W, Oomen AG, Pompa PP, Arts J, Stone V, Sabella S. Grouping of orally ingested silica nanomaterials via use of an integrated approach to testing and assessment to streamline risk assessment. Part Fibre Toxicol 2022; 19:68. [PMID: 36461106 PMCID: PMC9719179 DOI: 10.1186/s12989-022-00508-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.
Collapse
Affiliation(s)
- Luisana Di Cristo
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Victor C. Ude
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Georgia Tsiliki
- grid.19843.370000 0004 0393 5688Institute for the Management of Information Systems, Athena Research Center, Marousi, Greece
| | - Giuseppina Tatulli
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | - Alessio Romaldini
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Fiona Murphy
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Wendel Wohlleben
- grid.3319.80000 0001 1551 0781Department Material Physics and Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen, Germany
| | - Agnes G. Oomen
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands ,grid.7177.60000000084992262Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pier P. Pompa
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | | | - Vicki Stone
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Stefania Sabella
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|
13
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
14
|
Kodali V, Roberts JR, Glassford E, Gill R, Friend S, Dunn KL, Erdely A. Understanding toxicity associated with boron nitride nanotubes: Review of toxicity studies, exposure assessment at manufacturing facilities, and read-across. JOURNAL OF MATERIALS RESEARCH 2022; 37:4620-4638. [PMID: 37193295 PMCID: PMC10174278 DOI: 10.1557/s43578-022-00796-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/12/2022] [Indexed: 05/18/2023]
Abstract
Boron nitride nanotubes (BNNT) are produced by many different methods leading to variances in physicochemical characteristics and impurities in the final product. These differences can alter the toxicity profile. The importance of understanding the potential pathological implications of this high aspect ratio nanomaterial is increasing as new approaches to synthesize and purify in large scale are being developed. In this review, we discuss the various factors of BNNT production that can influence its toxicity followed by summarizing the toxicity findings from in vitro and in vivo studies conducted to date, including a review of particle clearance observed with various exposure routes. To understand the risk to workers and interpret relevance of toxicological findings, exposure assessment at manufacturing facilities was discussed. Workplace exposure assessment of BNNT from two manufacturing facilities measured boron concentrations in personal breathing zones from non-detectable to 0.95 μg/m3 and TEM structure counts of 0.0123 ± 0.0094 structures/cm3, concentrations well below what was found with other engineered high aspect ratio nanomaterials like carbon nanotubes and nanofibers. Finally, using a purified BNNT, a "read-across" toxicity assessment was performed to demonstrate how known hazard data and physicochemical characteristics can be utilized to evaluate potential inhalation toxicity concerns.
Collapse
Affiliation(s)
- Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane (MS-2015), Morgantown, WV 26508, USA
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane (MS-2015), Morgantown, WV 26508, USA
| | - Eric Glassford
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
| | - Ryan Gill
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane (MS-2015), Morgantown, WV 26508, USA
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane (MS-2015), Morgantown, WV 26508, USA
| | - Kevin L. Dunn
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinnati, OH 45226, USA
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1000 Frederick Lane (MS-2015), Morgantown, WV 26508, USA
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Auclair J, Gagné F. Shape-Dependent Toxicity of Silver Nanoparticles on Freshwater Cnidarians. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183107. [PMID: 36144895 PMCID: PMC9503847 DOI: 10.3390/nano12183107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly used in various consumer products, leading to their inadvertent release in aquatic ecosystems. The toxicity of AgNPs could be associated with the leaching of ionic Ag but also with the size, shape and surface properties. The purpose of this study was to test the null hypothesis that toxicity of AgNPs was independent of shape in the invertebrate Hydra vulgaris. The hydranths were exposed to increasing concentrations of ionic Ag and AgNPs of three different shapes (spherical, cubic and prismatic) with the same size and coating (polyvinylpyrrolidone). The data revealed that between 68% and 75% of total Ag remained in solution after the 96 h exposure period, while 85−90% of ionic Ag remained in solution. The 96 h lethal concentration (LC50) was lower with ionic (4 µg/L) and spherical AgNPs (56 µg/L), based on irreversible morphological changes such as loss of tentacles and body disintegration. Cubic and prismatic AgNPs were not toxic at a concentration of <100 µg/L. The sublethal toxicity was also determined at 96 h based on characteristic morphological changes (clubbed and/or shortened tentacles) and showed the following toxicity: ionic (2.6 µg/L), spherical (22 µg/L) and prismatic (32.5 µg/L) AgNPs. The nanocube was not toxic at this level. The data indicated that toxicity was shape-dependent where nanoparticles with a low aspect ratio in addition to high circularity and elongation properties were more toxic at both the lethal and sublethal levels. In conclusion, the shape of AgNPs could influence toxicity and warrants further research to better understand the mechanisms of action at play.
Collapse
|
16
|
Powell LG, Gillies S, Fernandes TF, Murphy F, Giubilato E, Cazzagon V, Hristozov D, Pizzol L, Blosi M, Costa AL, Prina-Mello A, Bouwmeester H, Sarimveis H, Janer G, Stone V. Developing Integrated Approaches for Testing and Assessment (IATAs) in order to support nanomaterial safety. Nanotoxicology 2022; 16:484-499. [PMID: 35913849 DOI: 10.1080/17435390.2022.2103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Due to the unique characteristics of nanomaterials (NM) there has been an increase in their use in nanomedicines and innovative medical devices (MD). Although large numbers of NMs have now been developed, comprehensive safety investigations are still lacking. Current gaps in understanding the potential mechanisms of NM-induced toxicity can make it challenging to determine the safety testing necessary to support inclusion of NMs in MD applications. This article provides guidance for implementation of pre-clinical tailored safety assessment strategies with the aim to increase the translation of NMs from bench development to clinical use. Integrated Approaches to Testing and Assessment (IATAs) are a key tool in developing these strategies. IATAs follow an iterative approach to answer a defined question in a specific regulatory context to guide the gathering of relevant information for safety assessment, including existing experimental data, integrated with in silico model predictions where available and appropriate, and/or experimental procedures and protocols for generating new data to fill gaps. This allows NM developers to work toward current guidelines and regulations, while taking NM specific considerations into account. Here, an example IATA for NMs with potential for direct blood contact was developed for the assessment of haemocompatibility. This example IATA brings together the current guidelines for NM safety assessment within a framework that can be used to guide information and data gathering for the safety assessment of intravenously injected NMs. Additionally, the decision framework underpinning this IATA has the potential to be adapted to other testing needs and regulatory contexts.
Collapse
Affiliation(s)
| | - S Gillies
- Heriot-Watt University, Edinburgh, UK
| | | | - F Murphy
- Heriot-Watt University, Edinburgh, UK
| | - E Giubilato
- University Ca' Foscari of Venice, Venice, Italy.,GreenDecision Srl, Venice, Italy
| | - V Cazzagon
- University Ca' Foscari of Venice, Venice, Italy
| | - D Hristozov
- University Ca' Foscari of Venice, Venice, Italy
| | - L Pizzol
- GreenDecision Srl, Venice, Italy
| | - M Blosi
- Institute of Science and Technology for Ceramics, CNR, Italy
| | - A L Costa
- Institute of Science and Technology for Ceramics, CNR, Italy
| | - A Prina-Mello
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - H Bouwmeester
- Division of Toxicology, Wageningen University, Wageningen, The Netherlands
| | - H Sarimveis
- National Technical University of Athens, Athens, Greece
| | - G Janer
- Leitat Technological Centre, Barcelona, Spain
| | - V Stone
- Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
17
|
Murphy F, Jacobsen NR, Di Ianni E, Johnston H, Braakhuis H, Peijnenburg W, Oomen A, Fernandes T, Stone V. Grouping MWCNTs based on their similar potential to cause pulmonary hazard after inhalation: a case-study. Part Fibre Toxicol 2022; 19:50. [PMID: 35854357 PMCID: PMC9297605 DOI: 10.1186/s12989-022-00487-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The EU-project GRACIOUS developed an Integrated Approach to Testing and Assessment (IATA) to support grouping high aspect ratio nanomaterials (HARNs) presenting a similar inhalation hazard. Application of grouping reduces the need to assess toxicity on a case-by-case basis and supports read-across of hazard data from substances that have the data required for risk assessment (source) to those that lack such data (target). The HARN IATA, based on the fibre paradigm for pathogenic fibres, facilitates structured data gathering to propose groups of similar HARN and to support read-across by prompting users to address relevant questions regarding HARN morphology, biopersistence and inflammatory potential. The IATA is structured in tiers, allowing grouping decisions to be made using simple in vitro or in silico methods in Tier1 progressing to in vivo approaches at the highest Tier3. Here we present a case-study testing the applicability of GRACIOUS IATA to form an evidence-based group of multiwalled carbon nanotubes (MWCNT) posing a similar predicted fibre-hazard, to support read-across and reduce the burden of toxicity testing. RESULTS The case-study uses data on 15 different MWCNT, obtained from the published literature. By following the IATA, a group of 2 MWCNT was identified (NRCWE006 and NM-401) based on a high degree of similarity. A pairwise similarity assessment was subsequently conducted between the grouped MWCNT to evaluate the potential to conduct read-across and fill data gaps required for regulatory hazard assessment. The similarity assessment, based on expert judgement of Tier 1 assay results, predicts both MWCNT are likely to cause a similar acute in vivo hazard. This result supports the possibility for read-across of sub-chronic and chronic hazard endpoint data for lung fibrosis and carcinogenicity between the 2 grouped MWCNT. The implications of accepting the similarity assessment based on expert judgement of the MWCNT group are considered to stimulate future discussion on the level of similarity between group members considered sufficient to allow regulatory acceptance of a read-across argument. CONCLUSION This proof-of-concept case-study demonstrates how a grouping hypothesis and IATA may be used to support a nuanced and evidence-based grouping of 'similar' MWCNT and the subsequent interpolation of data between group members to streamline the hazard assessment process.
Collapse
Affiliation(s)
- Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK.
| | | | - Emilio Di Ianni
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | | | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Agnes Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
18
|
Di Cristo L, Janer G, Dekkers S, Boyles M, Giusti A, Keller JG, Wohlleben W, Braakhuis H, Ma-Hock L, Oomen AG, Haase A, Stone V, Murphy F, Johnston HJ, Sabella S. Integrated approaches to testing and assessment for grouping nanomaterials following dermal exposure. Nanotoxicology 2022; 16:310-332. [PMID: 35704509 DOI: 10.1080/17435390.2022.2085207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exposure to different nanoforms (NFs) via the dermal route is expected in occupational and consumer settings and thus it is important to assess their dermal toxicity and the contribution of dermal exposure to systemic bioavailability. We have formulated four grouping hypotheses for dermal toxicity endpoints which allow NFs to be grouped to streamline and facilitate risk assessment. The grouping hypotheses are developed based on insight into how physicochemical properties of NFs (i.e. composition, dissolution kinetics, size, and flexibility) influence their fate and hazard following dermal exposure. Each hypothesis is accompanied by a tailored Integrated Approach to Testing and Assessment (IATA) that is structured as a decision tree and tiered testing strategies (TTS) for each relevant question (at decision nodes) that indicate what information is needed to guide the user to accept or reject the grouping hypothesis. To develop these hypotheses and IATAs, we gathered and analyzed existing information on skin irritation, skin sensitization, and dermal penetration of NFs from the published literature and performed experimental work to generate data on NF dissolution in sweat simulant fluids. We investigated the dissolution of zinc oxide and silicon dioxide NFs in different artificial sweat fluids, demonstrating the importance of using physiologically relevant conditions for dermal exposure. All existing and generated data informed the formulation of the grouping hypotheses, the IATAs, and the design of the TTS. It is expected that the presented IATAs will accelerate the NF risk assessment for dermal toxicity via the application of read-across.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genova, Italy
| | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Anna Giusti
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Johannes G Keller
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lan Ma-Hock
- BASF SE, Dept. Material Physics and Dept of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Helinor J Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genova, Italy
| |
Collapse
|
19
|
Gupta SS, Singh KP, Gupta S, Dusinska M, Rahman Q. Do Carbon Nanotubes and Asbestos Fibers Exhibit Common Toxicity Mechanisms? NANOMATERIALS 2022; 12:nano12101708. [PMID: 35630938 PMCID: PMC9145953 DOI: 10.3390/nano12101708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
During the last two decades several nanoscale materials were engineered for industrial and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanomaterials with global production of around 1000 tons/year. Besides several commercial benefits of CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about the possible adverse human health effects resembling those of asbestos fibers. In this review, we present a comparative analysis between CNTs and asbestos fibers using the following four parameters: (1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and (4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream pathways associated with altered gene expression data from both asbestos and CNT exposure. Our results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated toxicity is concerned.
Collapse
Affiliation(s)
- Suchi Smita Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Krishna P. Singh
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; (S.S.G.); (K.P.S.); (S.G.)
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway;
| | - Qamar Rahman
- Amity Institute of Biotechnology, Amity University, Lucknow 226028, India
- Correspondence:
| |
Collapse
|
20
|
Ag Seleci D, Tsiliki G, Werle K, Elam DA, Okpowe O, Seidel K, Bi X, Westerhoff P, Innes E, Boyles M, Miller M, Giusti A, Murphy F, Haase A, Stone V, Wohlleben W. Determining nanoform similarity via assessment of surface reactivity by abiotic and in vitro assays. NANOIMPACT 2022; 26:100390. [PMID: 35560290 DOI: 10.1016/j.impact.2022.100390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
Grouping of substances is a method used to streamline hazard and risk assessment. Assessment of similarity provides the scientific evidence needed for formation of groups. This work reports on justification of grouping of nanoforms (NFs) via similarity of their surface reactivity. Four reactivity assays were used for concentration dependent detection of reactive oxygen species (ROS) generated by NFs: abiotic assays FRAS, EPR and DCFH2-DA, as well as the in vitro assay of NRF2/ARE responsive luciferase reporter activation in the HEK293 cell line. Representative materials (CuO, Mn2O3, BaSO4, CeO2 and ZnO) and three case studies of each several NFs of iron oxides, Diketopyrrolopyrroles (DPP)-based organic pigments and silicas were assessed. A novel similarity assessment algorithm was applied to quantify similarities between pairs of NFs, in a four-step workflow on concentration-response curves, individual concentration and response ranges, and finally the representative materials. We found this algorithm to be applicable to all abiotic and in vitro assays that were tested. Justification of grouping must include the increased potency of smaller particles via the scaling of effects with specific surface, and hence quantitative similarity analysis was performed on concentration-response in mass-metrics. CuO and BaSO4 were the most and least reactive representative materials respectively, and all assays found BaSO4/CuO not similar, as confirmed by their different NOAECs of in vivo studies. However, similarity outcomes from different reactivity assays were not always in agreement, highlighting the need to generate data by one assay for the representative materials and the candidate group of NFs. Despite low similarity scores in vitro some pairs of case study NFs can be accepted as sufficiently similar because the in vivo NOAECs are similar, highlighting the conservative assessment by the abiotic assays.
Collapse
Affiliation(s)
- Didem Ag Seleci
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | | | - Kai Werle
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Derek A Elam
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Omena Okpowe
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Karsten Seidel
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
| | - Xiangyu Bi
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - Emma Innes
- Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Matthew Boyles
- Institute of Occupational Medicine, Edinburgh, United Kingdom
| | - Mark Miller
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Giusti
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, United Kingdom
| | - Andrea Haase
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Berlin, Germany
| | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, United Kingdom
| | - Wendel Wohlleben
- Advanced Materials Research, Dept. of Material Physics and Analytics and Dept. of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany.
| |
Collapse
|
21
|
Jeliazkova N, Ma-Hock L, Janer G, Stratmann H, Wohlleben W. Possibilities to group nanomaterials across different substances - A case study on organic pigments. NANOIMPACT 2022; 26:100391. [PMID: 35560297 DOI: 10.1016/j.impact.2022.100391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
Grouping concepts to reduce the testing of NFs have been developed for regulatory purposes for different forms of the same substance. Here we explore possibilities to group nanomaterials across different substances for non-regulatory applications, using the example of 16 organic pigments from six chemical classes. Organic pigments are particles consisting of low-molar-mass organic molecules, and rank by tonnage among the most important substances manufactured in nanoform (NF). Tiered testing strategies relevant to the inhalation route included Tier 1 (deposition, dissolution, reactivity, inflammation) and if available Tier 3 data (in vivo). A similarity assessment of the pigment NF data was conducted in a quantitative (Tier 1 and Tier 3 in vivo potency) or qualitative (Tier 3 in vivo effects) manner. We observed that chemical similarity of organic pigments was predictive for their similarity of reactivity and dissolution, but that additional NF descriptors such as surface area or size, modulate the similarity in inflammation or cytotoxicity. We applied the concept of biologically relevant ranges to crop the values of the Tier 1 data matrix before applying similarity algorithms. The Tier 3 assessment by in vivo inhalation confirmed the IATA methodical choices and IATA assessment criteria as consistent and conservative. We suggested limits of acceptable similarity for Tier 1 data and demonstrated their application to support the grouping of some candidate NFs (subsequently confirmed by Tier 3 data). Four candidate NFs exceeded the limits of acceptability for Tier 1 and were escalated from Tier 1 to Tier 3, but were then included in the group, demonstrating the conservative Tier 1 criteria. The resulting group of low-solubility, low-reactivity materials included both NFs and non-NFs of various substances, and could find use for risk management purposes in the occupational handling of pigment powders.
Collapse
Affiliation(s)
| | - Lan Ma-Hock
- BASF SE, Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | | | - Wendel Wohlleben
- BASF SE, Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany; BASF SE, Dept. Material Physics, Ludwigshafen, Germany.
| |
Collapse
|
22
|
Nguyen AM, Pradas del Real AE, Durupthy O, Lanone S, Chanéac C, Carenco S. Risk Analysis and Technology Assessment of Emerging (Gd,Ce) 2O 2S Multifunctional Nanoparticles: An Attempt for Early Safer-by-Design Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:422. [PMID: 35159767 PMCID: PMC8840297 DOI: 10.3390/nano12030422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 02/05/2023]
Abstract
Acceptability and relevance of nanoparticles in the society is greatly improved using a safer-by-design strategy. However, this is difficult to implement when too late in the development process or when nanoparticles are already on the market (e.g., TiO2). We employ this strategy for emerging nanoparticles of lanthanide oxysulfide of formula (Gd,Ce)2O2S, relevant for photocatalysis as well as for multimodal imaging, as the bandgap of the nanoparticles, related to their Ce content, impacts their ability to absorb visible light. As a first step, we investigated the production of reactive oxygen species (ROS) as a function of cerium content, in abiotic conditions and in vitro using murine macrophage RAW 264.7 cell line. We demonstrate that, at sub-lethal doses, Ce-containing oxysulfide nanoparticles are responsible for a higher ROS intracellular formation than cerium-free Gd2O2S nanoparticles, although no significant inflammatory response or oxidative stress was measured. Moreover, there was no significant loss of cerium as free cation from the nanoparticles, as evidenced by X-ray fluorescence mapping. Based on these results, we propose a risk analysis for lanthanide oxysulfide nanoparticles, leading to a technology assessment that fulfills the safer-by-design strategy.
Collapse
Affiliation(s)
- Anh-Minh Nguyen
- Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France; (A.-M.N.); (O.D.)
- INSERM, IMRB, University Paris Est Creteil, 94010 Creteil, France
| | | | - Olivier Durupthy
- Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France; (A.-M.N.); (O.D.)
| | - Sophie Lanone
- INSERM, IMRB, University Paris Est Creteil, 94010 Creteil, France
| | - Corinne Chanéac
- Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France; (A.-M.N.); (O.D.)
| | - Sophie Carenco
- Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France; (A.-M.N.); (O.D.)
| |
Collapse
|
23
|
Loosli F, Rasmussen K, Rauscher H, Cross RK, Bossa N, Peijnenburg W, Arts J, Matzke M, Svendsen C, Spurgeon D, Clausen PA, Ruggiero E, Wohlleben W, von der Kammer F. Refinement of the selection of physicochemical properties for grouping and read-across of nanoforms. NANOIMPACT 2022; 25:100375. [PMID: 35559881 DOI: 10.1016/j.impact.2021.100375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 06/15/2023]
Abstract
Before placing a new nanoform (NF) on the market, its potential adverse effects must be evaluated. This may e.g. be done via hazard and risk assessment. Grouping and read-across of NFs is a possible strategy to reduce resource consumption, maximising the use of existing data for assessment of NFs. The GRACIOUS project provides a framework in which possible grouping and read-across for NFs is mainly based on an evaluation of their similarity. The impact of NFs on human health and the environment depends strongly on the concentration of the NF and its physicochemical properties, such as chemical composition, size distribution, shape, etc. Hence, knowledge of the most relevant physicochemical properties is essential information for comparing similarity. The presented work aims to refine existing proposals for sets of descriptors (descriptor array) that are needed to describe distinct NFs of a material to identify the most relevant ones for grouping and read-across. The selection criteria for refining this descriptor array are explained and demonstrated. Relevant protocols and methods are proposed for each physicochemical property. The required and achievable measurement accuracies of the refined descriptor array are reviewed, as this information is necessary for similarity assessment of NFs based on individual physicochemical properties.
Collapse
Affiliation(s)
- Frédéric Loosli
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria.
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Richard K Cross
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Nathan Bossa
- Leitat Technological Center, 08225 Terrassa, Barcelona, Spain
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands; Leiden University, Institute of Environmental Sciences (CML), P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Josje Arts
- Nouryon Chemicals BV, Velperweg 76, 6824 BM Arnhem, the Netherlands
| | - Marianne Matzke
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - David Spurgeon
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Per Axel Clausen
- The National Research Centre for the Working Environment (NFA), Lersø Parkallé 105, 2100 Copenhagen East, Denmark
| | - Emmanuel Ruggiero
- BASF SE, Dept. of Material Physics, Dept. of Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- BASF SE, Dept. of Material Physics, Dept. of Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | - Frank von der Kammer
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria
| |
Collapse
|
24
|
Jeliazkova N, Bleeker E, Cross R, Haase A, Janer G, Peijnenburg W, Pink M, Rauscher H, Svendsen C, Tsiliki G, Zabeo A, Hristozov D, Stone V, Wohlleben W. How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NANOIMPACT 2022; 25:100366. [PMID: 35559874 DOI: 10.1016/j.impact.2021.100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 06/15/2023]
Abstract
The risk of each nanoform (NF) of the same substance cannot be assumed to be the same, as they may vary in their physicochemical characteristics, exposure and hazard. However, neither can we justify a need for more animal testing and resources to test every NF individually. To reduce the need to test all NFs, (regulatory) information requirements may be fulfilled by grouping approaches. For such grouping to be acceptable, it is important to demonstrate similarities in physicochemical properties, toxicokinetic behaviour, and (eco)toxicological behaviour. The GRACIOUS Framework supports the grouping of NFs, by identifying suitable grouping hypotheses that describe the key similarities between different NFs. The Framework then supports the user to gather the evidence required to test these hypotheses and to subsequently assess the similarity of the NFs within the proposed group. The evidence needed to support a hypothesis is gathered by an Integrated Approach to Testing and Assessment (IATA), designed as decision trees constructed of decision nodes. Each decision node asks the questions and provides the methods needed to obtain the most relevant information. This White paper outlines existing and novel methods to assess similarity of the data generated for each decision node, either via a pairwise analysis conducted property-by-property, or by assessing multiple decision nodes simultaneously via a multidimensional analysis. For the pairwise comparison conducted property-by-property we included in this White paper: The x-fold, Bayesian and Arsinh-OWA distance algorithms performed comparably in the scoring of similarity between NF pairs. The Euclidean distance was also useful, but only with proper data transformation. The x-fold method does not standardize data, and thus produces skewed histograms, but has the advantage that it can be implemented without programming knowhow. A range of multidimensional evaluations, using for example dendrogram clustering approaches, were also investigated. Multidimensional distance metrics were demonstrated to be difficult to use in a regulatory context, but from a scientific perspective were found to offer unexpected insights into the overall similarity of very different materials. In conclusion, for regulatory purposes, a property-by-property evaluation of the data matrix is recommended to substantiate grouping, while the multidimensional approaches are considered to be tools of discovery rather than regulatory methods.
Collapse
Affiliation(s)
| | - Eric Bleeker
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Richard Cross
- UKRI Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford OX10 8BB, UK
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Gemma Janer
- LEITAT Technological Center, Barcelona, Spain
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Mario Pink
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Claus Svendsen
- UKRI Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford OX10 8BB, UK
| | - Georgia Tsiliki
- Athena-Research and Innovation Center in Information, Communication and Knowledge Technologies, Marousi, Greece
| | | | | | - Vicki Stone
- NanoSafety Research Group, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics and Dept Experimental Toxicology & Ecology, Ludwigshafen, Germany.
| |
Collapse
|
25
|
Bossa C, Andreoli C, Bakker M, Barone F, De Angelis I, Jeliazkova N, Nymark P, Battistelli CL. FAIRification of nanosafety data to improve applicability of (Q)SAR approaches: A case study on in vitro Comet assay genotoxicity data. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100190. [PMID: 34820591 PMCID: PMC8591730 DOI: 10.1016/j.comtox.2021.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022]
Abstract
(Quantitative) structure-activity relationship ([Q]SAR) methodologies are widely applied to predict the (eco)toxicological effects of chemicals, and their use is envisaged in different regulatory frameworks for filling data gaps of untested substances. However, their application to the risk assessment of nanomaterials is still limited, also due to the scarcity of large and curated experimental datasets. Despite a great amount of nanosafety data having been produced over the last decade in international collaborative initiatives, their interpretation, integration and reuse has been hampered by several obstacles, such as poorly described (meta)data, non-standard terminology, lack of harmonized reporting formats and criteria. Recently, the FAIR (Findable, Accessible, Interoperable, and Reusable) principles have been established to guide the scientific community in good data management and stewardship. The EU H2020 Gov4Nano project, together with other international projects and initiatives, is addressing the challenge of improving nanosafety data FAIRness, for maximizing their availability, understanding, exchange and ultimately their reuse. These efforts are largely supported by the creation of a common Nanosafety Data Interface, which connects a row of project-specific databases applying the eNanoMapper data model. A wide variety of experimental data relating to characterization and effects of nanomaterials are stored in the database; however, the methods, protocols and parameters driving their generation are not fully mature. This article reports the progress of an ongoing case study in the Gov4nano project on the reuse of in vitro Comet genotoxicity data, focusing on the issues and challenges encountered in their FAIRification through the eNanoMapper data model. The case study is part of an iterative process in which the FAIRification of data supports the understanding of the phenomena underlying their generation and, ultimately, improves their reusability.
Collapse
Key Words
- (Q)SAR approaches
- (Q)SAR, (Quantitative) structure-activity relationship
- AOP, Adverse Outcome Pathway
- ECHA, European Chemicals Agency
- FAIR principles
- FAIR, Findable, Accessible, Interoperable, and Reusable
- Fpg, Formamido pyrimidine glycosilase
- Genotoxicity
- IATA, Integrated Approaches to Testing and Assessment
- ISA–Tab, Investigation/Study/Assay Tab-delimited
- JRC, Joint Research Centre
- MIRCA, Minimum Information for Reporting Comet Assay
- NMBP, Horizon 2020 Advisory Group for Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing
- NMBP-13-2018 projects, Gov4Nano, NANORIGO and RiskGONE
- NMs, nanomaterials
- Nano-EHS, Nano Environment, Health and Safety
- Nanomaterials
- Nanosafety data
- OECD, Organisation for Economic Co-operation and Development
- OTM, Olive tail moment
- REACH, Registration, Evaluation Authorisation and Restriction of Chemicals
- SCGE, Single Cell Gel Electrophoresis
- SOPs, Standard Operating Procedures
- in vitro Comet assay
Collapse
Affiliation(s)
- Cecilia Bossa
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Andreoli
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Martine Bakker
- Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Flavia Barone
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | | | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
26
|
Di Cristo L, Oomen AG, Dekkers S, Moore C, Rocchia W, Murphy F, Johnston HJ, Janer G, Haase A, Stone V, Sabella S. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2623. [PMID: 34685072 PMCID: PMC8541163 DOI: 10.3390/nano11102623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are confirmed by in vivo data (Tier 3 level). Interestingly, our analysis suggests that TiO2 and SiO2 NFs are able to induce both local and systemic toxicity along with microbiota dysbiosis and can be grouped according to the tested fate and hazard descriptors. This supports that the decision nodes of the oral IATAs are suitable for classification and assessment of the toxicity of NFs.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Colin Moore
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Walter Rocchia
- Computational Modelling of Nanoscale and Biophysical Systems—CONCEPT Lab, Istituto Italiano Di Tecnologia, 16163 Genova, Italy;
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Helinor J. Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Gemma Janer
- LEITAT Technological Center, 08005 Barcelona, Spain;
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Stefania Sabella
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| |
Collapse
|
27
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|