1
|
He S, Niu H, Zhang L, Tao Z, Qu Q. Synergy Effects of HPV E6-E7 Encoding mRNA and Nucleic Acid Immunostimulators Improve Therapeutic Potential in TC-1 Graft Tumor. J Med Virol 2024; 96:e70075. [PMID: 39588712 DOI: 10.1002/jmv.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Cervical cancer is the second most common cancer among women globally and the most prevalent cancer in developing countries, which was caused by human papillomavirus (HPV) infection. Messenger RNA (mRNA) vaccines have opened up new avenues for vaccine development and pandemic preparedness with potent scalability, which may possess the potential antitumor effects of an mRNA-HPV therapeutic vaccine containing nononcogenic E6 and E7 proteins. Here, we reported a lipid nanoparticle (LNP) plus nucleic acid immunostimulators (CPG 1018 and Poly I:C) mRNA vaccine platform. The LNP-CPG 1018 capsulated HPV E6-E7 mRNA significantly promoted the maturation of bone marrow-derived dendritic cells (BMDC) in vitro and were capable of efficiently migrating to lymph nodes (LN) in vivo. In TC-1 tumor-bearing mice, the subcutaneous immunization of LNP-CPG 1018 capsulated HPV E6-E7 mRNA elicited robust tumor-specific T-cell immunity, reshaped the tumor microenvironment, and inhibited tumor growth. In conclusion, the LNP-CPG 1018 system is a promising delivery platform for facilitating the development of HPV E6-E7 mRNA cancer vaccines.
Collapse
Affiliation(s)
- Shuang He
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Haiying Niu
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Lizhi Zhang
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Zhonge Tao
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| | - Quanxin Qu
- Department of Gynecology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Soni D, Borriello F, Scott DA, Feru F, DeLeon M, Brightman SE, Cheng WK, Melhem G, Smith JA, Ramirez JC, Barman S, Cameron M, Kelly A, Walker K, Nanishi E, van Haren SD, Phan T, Qi Y, Kinsey R, Raczy MM, Ozonoff A, Pettengill MA, Hubbell JA, Fox CB, Dowling DJ, Levy O. From hit to vial: Precision discovery and development of an imidazopyrimidine TLR7/8 agonist adjuvant formulation. SCIENCE ADVANCES 2024; 10:eadg3747. [PMID: 38959314 PMCID: PMC11221515 DOI: 10.1126/sciadv.adg3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Vaccination can help prevent infection and can also be used to treat cancer, allergy, and potentially even drug overdose. Adjuvants enhance vaccine responses, but currently, the path to their advancement and development is incremental. We used a phenotypic small-molecule screen using THP-1 cells to identify nuclear factor-κB (NF-κB)-activating molecules followed by counterscreening lead target libraries with a quantitative tumor necrosis factor immunoassay using primary human peripheral blood mononuclear cells. Screening on primary cells identified an imidazopyrimidine, dubbed PVP-037. Moreover, while PVP-037 did not overtly activate THP-1 cells, it demonstrated broad innate immune activation, including NF-κB and cytokine induction from primary human leukocytes in vitro as well as enhancement of influenza and SARS-CoV-2 antigen-specific humoral responses in mice. Several de novo synthesis structural enhancements iteratively improved PVP-037's in vitro efficacy, potency, species-specific activity, and in vivo adjuvanticity. Overall, we identified imidazopyrimidine Toll-like receptor-7/8 adjuvants that act in synergy with oil-in-water emulsion to enhance immune responses.
Collapse
Affiliation(s)
- Dheeraj Soni
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David A. Scott
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frederic Feru
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria DeLeon
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E. Brightman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Wing Ki Cheng
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Juan C. Ramirez
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Aisling Kelly
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Kristina Walker
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Simon Daniel van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tony Phan
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Yizhi Qi
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Robert Kinsey
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
| | - Michal M. Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Matthew A. Pettengill
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jeffery A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Christopher B. Fox
- Access to Advanced Health Institute (AAHI), Seattle, WA, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - David J. Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| |
Collapse
|
3
|
Abdolmohammadi-Vahid S, Baradaran B, Sadeghi A, Bezemer GFG, Kiaee F, Adcock IM, Folkerts G, Garssen J, Mortaz E. Effects of toll-like receptor agonists and SARS-CoV-2 antigens on interferon (IFN) expression by peripheral blood CD3 + T cells from COVID-19 patients. Exp Mol Pathol 2024; 137:104897. [PMID: 38691979 DOI: 10.1016/j.yexmp.2024.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/09/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-β+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-β gene expression was assessed by qRT-PCR. RESULTS The frequency of CD3+IFN-β+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-β+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-β+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-β gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-β mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-β-producing T cells and IFN-β gene expression.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gillina F G Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Impact Station, Hilversum, the Netherlands
| | - Fatemeh Kiaee
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, NSW, Australia
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Bin Park W, Kim S, Kyung SM, Lee ES, Lee YJ, Yoo HS. Gene expression of Toll-like receptors, cytokines and a nuclear factor and cytokine secretion in DH82 canine macrophage cells infected with Brucella canis. Vet Immunol Immunopathol 2023; 260:110607. [PMID: 37148644 DOI: 10.1016/j.vetimm.2023.110607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Canine brucellosis caused by Brucella canis infection occurs mainly in dogs, and is a zoonotic disease that also has the possibility of infection in humans. Many studies have been conducted to understand the immunopathological mechanism of B. canis infection. However, the precise immune mechanism remains to be elucidated because compared to other Brucella spp., B. canis has different immune evasion mechanisms. In this study, gene expression levels of Toll-like receptors (TLRs) and TLR-associated molecules and cytokine production were analyzed to figure out the roles of immune-related host factors in B. canis infection. Time-dependent gene expression of TLRs (1-10) and TLR-related molecules (TNF-α, IL-5, IL-23, CCL4, CD40 and NFκ-B) and release of Th1, Th2 and Th17-related cytokines (IFN-γ, IL-1β, IL-4, IL-6, IL-10 and IL-17A) were investigated in DH82 canine macrophages infected with B. canis. Time-dependent induction of TLRs 3, 7 and 8 was observed, and TLR 7 had the highest expression level (p <0.05). The expression levels of all TLR-related genes were significantly increased after infection. In particular, the expression of the CCL4 and IL-23 genes was highly induced. The amounts of IL-1β, IL-6 and IL-10 were significantly increased by B. canis infection, but the amounts of IL-4 and IL-17A were not. The production of IL-1β and IL-6 was the highest at 24 hr after B. canis infection (p <0.05). This study demonstrates that TLRs 3, 7 and 8 are prominent sites of to immune response induction with the production of related cytokines and a nuclear factor in DH82 cells infected with B. canis. These results suggest a sequential immune mechanism of B. canis infection, involving TLRs, cytokines and their associated factors.
Collapse
Affiliation(s)
- Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Suji Kim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; BK21 FOUR and Research Institution for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Su Min Kyung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; BK21 FOUR and Research Institution for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; BK21 FOUR and Research Institution for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Ju Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; BK21 FOUR and Research Institution for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| |
Collapse
|
6
|
Milillo MA, Velásquez LN, Barrionuevo P. Microbial RNA, the New PAMP of Many Faces. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.924719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Traditionally, pathogen-associated molecular patterns (PAMPs) were described as structural molecular motifs shared by different classes of microorganisms. However, it was later discovered that the innate immune system is also capable of distinguishing metabolically active microbes through the detection of a special class of viability-associated PAMPs (vita-PAMPs). Indeed, recognition of vita-PAMPs triggers an extra warning sign not provoked by dead bacteria. Bacterial RNA is classified as a vita-PAMP since it stops being synthesized once the microbes are eliminated. Most of the studies in the literature have focused on the pro-inflammatory capacity of bacterial RNA on macrophages, neutrophils, endothelial cells, among others. However, we, and other authors, have shown that microbial RNA also has down-modulatory properties. More specifically, bacterial RNA can reduce the surface expression of MHC class I and MHC class II on monocytes/macrophages and help evade CD8+ and CD4+ T cell-mediated immune surveillance. This phenomenon has been described for several different bacteria and parasites, suggesting that microbial RNA plays a significant immunoregulatory role in the context of many infectious processes. Thus, beyond the pro-inflammatory capacity of microbial RNA, it seems to be a crucial component in the intricate collection of immune evasion strategies. This review focuses on the different facets of the immune modulating capacity of microbial RNA.
Collapse
|
7
|
Sharma BK, Ramakrishan S, Kaliappan A, Singh M, Kumar A, Dandapat S, Dey S, Chellappa MM. Evaluation of a Lipopolysaccharide and Resiquimod Combination as an Adjuvant with Inactivated Newcastle Disease Virus Vaccine in Chickens. Vaccines (Basel) 2022; 10:vaccines10060894. [PMID: 35746503 PMCID: PMC9229813 DOI: 10.3390/vaccines10060894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Various toll-like receptor (TLR) agonists have shown potential as adjuvants with different vaccines in both human and livestock species, including chickens. Our previous studies on combination of lipopolysaccharide (LPS; TLR4 agonist) and resiquimod (R-848; TLR7 agonist) showed the synergistic up-regulation of pro-inflammatory Th1 and Th2 cytokines in chicken peripheral blood mononuclear cells (PMBCs). Hence, the present study aimed to explore the combined adjuvant effect of LPS and R-848 with inactivated Newcastle disease virus (NDV) vaccine in chickens. Two weeks-old SPF chickens were immunized with inactivated NDV vaccine along with a combination of LPS and R-848 as an adjuvant with suitable control groups. A booster dose was given two weeks later. Antibody responses were assessed by enzyme linked immunosorbent assay (ELISA) and hemagglutination inhibition (HI) test, while cell-mediated immune responses were analyzed by a lymphocyte transformation test (LTT) and flow cytometry following vaccination. Two weeks post-booster, the birds were challenged with a velogenic strain of NDV, and protection against clinical signs, mortality and virus shedding was analyzed. The results indicated that inactivated NDV vaccine with R-848 induced significantly higher humoral and cellular immune responses with 100% protection against mortality and viral shedding following a virulent NDV challenge. However, the combination of LPS and R-848 along with inactivated NDV vaccine produced poor humoral and cellular immune responses and could not afford protection against challenge infection and virus shedding when compared to the vaccine-alone group, indicating the deleterious effects of the combination on antigen-specific immune responses. In conclusion, the combination of LPS and R-848 showed the inhibitory effects on antigen-specific humoral, cellular and protective immune responses when used as an adjuvant with inactivated NDV vaccines in chickens. This inhibitory effect might have occurred due to systemic cytokine storm. A nanoparticle-based delivery of the combination of LPS and R-848 for slow and sustained release could be tried as an alternative method to explore the synergistic effect of the combination as an adjuvant in chickens.
Collapse
Affiliation(s)
- Bal Krishnan Sharma
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Saravanan Ramakrishan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
- Correspondence: ; Tel.: +91-941-246-3498
| | - Abinaya Kaliappan
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Mithilesh Singh
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Ajay Kumar
- Division of Animal Biochemistry, Indian Veterinary Research Institute, Bareilly 243122, India;
| | - Satyabrata Dandapat
- Immunology Section, Indian Veterinary Research Institute, Bareilly 243122, India; (B.K.S.); (A.K.); (M.S.); (S.D.)
| | - Sohini Dey
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Bareilly 243122, India; (S.D.); (M.M.C.)
| |
Collapse
|
8
|
Pradhan P, Toy R, Jhita N, Atalis A, Pandey B, Beach A, Blanchard EL, Moore SG, Gaul DA, Santangelo PJ, Shayakhmetov DM, Roy K. TRAF6-IRF5 kinetics, TRIF, and biophysical factors drive synergistic innate responses to particle-mediated MPLA-CpG co-presentation. SCIENCE ADVANCES 2021; 7:eabd4235. [PMID: 33523878 PMCID: PMC7806213 DOI: 10.1126/sciadv.abd4235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Innate immune responses to pathogens are driven by co-presentation of multiple pathogen-associated molecular patterns (PAMPs). Combinations of PAMPs can trigger synergistic immune responses, but the underlying molecular mechanisms of synergy are poorly understood. Here, we used synthetic particulate carriers co-loaded with monophosphoryl lipid A (MPLA) and CpG as pathogen-like particles (PLPs) to dissect the signaling pathways responsible for dual adjuvant immune responses. PLP-based co-delivery of MPLA and CpG to GM-CSF-driven mouse bone marrow-derived antigen-presenting cells (BM-APCs) elicited synergistic interferon-β (IFN-β) and interleukin-12p70 (IL-12p70) responses, which were strongly influenced by the biophysical properties of PLPs. Mechanistically, we found that MyD88 and interferon regulatory factor 5 (IRF5) were necessary for IFN-β and IL-12p70 production, while TRIF signaling was required for the synergistic response. Both the kinetics and magnitude of downstream TRAF6 and IRF5 signaling drove the synergy. These results identify the key mechanisms of synergistic Toll-like receptor 4 (TLR4)-TLR9 co-signaling in mouse BM-APCs and underscore the critical role of signaling kinetics and biophysical properties on the integrated response to combination adjuvants.
Collapse
Affiliation(s)
- P Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - R Toy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - N Jhita
- Lowance Center of Human Immunology, Department of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - A Atalis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - B Pandey
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - A Beach
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - E L Blanchard
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - S G Moore
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - D A Gaul
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - P J Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - D M Shayakhmetov
- Lowance Center of Human Immunology, Department of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - K Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Root-Bernstein R. Synergistic Activation of Toll-Like and NOD Receptors by Complementary Antigens as Facilitators of Autoimmune Disease: Review, Model and Novel Predictions. Int J Mol Sci 2020; 21:ijms21134645. [PMID: 32629865 PMCID: PMC7369971 DOI: 10.3390/ijms21134645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/29/2022] Open
Abstract
Persistent activation of toll-like receptors (TLR) and nucleotide-binding oligomerization domain-containing proteins (NOD) in the innate immune system is one necessary driver of autoimmune disease (AD), but its mechanism remains obscure. This study compares and contrasts TLR and NOD activation profiles for four AD (autoimmune myocarditis, myasthenia gravis, multiple sclerosis and rheumatoid arthritis) and their animal models. The failure of current AD theories to explain the disparate TLR/NOD profiles in AD is reviewed and a novel model is presented that explains innate immune support of persistent chronic inflammation in terms of unique combinations of complementary AD-specific antigens stimulating synergistic TLRs and/or NODs. The potential explanatory power of the model is explored through testable, novel predictions concerning TLR- and NOD-related AD animal models and therapies.
Collapse
|
10
|
TLR2 on blood monocytes senses dengue virus infection and its expression correlates with disease pathogenesis. Nat Commun 2020; 11:3177. [PMID: 32576819 PMCID: PMC7311456 DOI: 10.1038/s41467-020-16849-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Vascular permeability and plasma leakage are immune-pathologies of severe dengue virus (DENV) infection, but the mechanisms underlying the exacerbated inflammation during DENV pathogenesis are unclear. Here, we demonstrate that TLR2, together with its co-receptors CD14 and TLR6, is an innate sensor of DENV particles inducing inflammatory cytokine expression and impairing vascular integrity in vitro. Blocking TLR2 prior to DENV infection in vitro abrogates NF-κB activation while CD14 and TLR6 block has a moderate effect. Moreover, TLR2 block prior to DENV infection of peripheral blood mononuclear cells prevents activation of human vascular endothelium, suggesting a potential role of the TLR2-responses in vascular integrity. TLR2 expression on CD14 + + classical monocytes isolated in an acute phase from DENV-infected pediatric patients correlates with severe disease development. Altogether, these data identify a role for TLR2 in DENV infection and provide insights into the complex interaction between the virus and innate receptors that may underlie disease pathogenesis.
Collapse
|
11
|
Grabowski M, Bermudez M, Rudolf T, Šribar D, Varga P, Murgueitio MS, Wolber G, Rademann J, Weindl G. Identification and validation of a novel dual small-molecule TLR2/8 antagonist. Biochem Pharmacol 2020; 177:113957. [PMID: 32268138 DOI: 10.1016/j.bcp.2020.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Toll-like receptor 2 (TLR2) and TLR8 are involved in the recognition of bacterial and viral components and are linked not only to protective antimicrobial immunity but also to inflammatory diseases. Recently, increasing attention has been paid to the receptor crosstalk between TLR2 and TLR8 to fine-tune innate immune responses. In this study, we report a novel dual TLR2/TLR8 antagonist, compound 24 that was developed by a modeling-guided synthesis approach. The modulator was optimized from the previously reported 1,3-benzothiazole derivative, compound 8. Compound 24 was pharmacologically characterized for the ability to inhibit TLR2- and TLR8-mediated responses in TLR-overexpressing reporter cells and THP-1 macrophages. The modulator showed high efficacy with IC50 values in the low micromolar range for both TLRs, selectivity towards other TLRs and low cytotoxicity. At TLR2, a slight predominance for the TLR2/1 heterodimer was found in reporter cells selectively expressing TLR2/1 or TLR2/6 heterodimers. Concentration ratio analysis in the presence of Pam3CSK4 or Pam2CSK4 indicated non-competitive antagonist behavior at hTLR2. In computational docking studies, a plausible alternative binding mode of compound 24 was predicted for both TLR2 and TLR8. Our results provide evidence that it is feasible to simultaneously and selectively target endosomal- and surface-located TLRs. We identified a small-molecule dual TLR2/8 antagonist that may serve as a valuable pharmacological tool to decipher the role of TLR2/8 co-signaling in inflammation.
Collapse
Affiliation(s)
- Maria Grabowski
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Marcel Bermudez
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Thomas Rudolf
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Dora Šribar
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Péter Varga
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Manuela S Murgueitio
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Jörg Rademann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Günther Weindl
- Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany; Section Pharmacology and Toxicology, Pharmaceutical Institute, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
| |
Collapse
|
12
|
Miller SM, Cybulski V, Whitacre M, Bess LS, Livesay MT, Walsh L, Burkhart D, Bazin HG, Evans JT. Novel Lipidated Imidazoquinoline TLR7/8 Adjuvants Elicit Influenza-Specific Th1 Immune Responses and Protect Against Heterologous H3N2 Influenza Challenge in Mice. Front Immunol 2020; 11:406. [PMID: 32210973 PMCID: PMC7075946 DOI: 10.3389/fimmu.2020.00406] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
Most licensed seasonal influenza vaccines are non-adjuvanted and rely primarily on vaccine-induced antibody titers for protection. As such, seasonal antigenic drift and suboptimal vaccine strain selection often results in reduced vaccine efficacy. Further, seasonal H3N2 influenza vaccines demonstrate poor efficacy compared to H1N1 and influenza type B vaccines. New vaccines, adjuvants, or delivery technologies that can induce broader or cross-seasonal protection against drifted influenza virus strains, likely through induction of protective T cell responses, are urgently needed. Here, we report novel lipidated TLR7/8 ligands that act as strong adjuvants to promote influenza-virus specific Th1-and Th17-polarized T cell responses and humoral responses in mice with no observable toxicity. Further, the adjuvanted influenza vaccine provided protection against a heterologous H3N2 influenza challenge in mice. These responses were further enhanced when combined with a synthetic TLR4 ligand adjuvant. Despite differences between human and mouse TLR7/8, these novel lipidated imidazoquinolines induced the production of cytokines required to polarize a Th1 and Th17 immune response in human PBMCs providing additional support for further development of these compounds as novel adjuvants for the induction of broad supra-seasonal protection from influenza virus.
Collapse
Affiliation(s)
- Shannon M. Miller
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Van Cybulski
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Margaret Whitacre
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura S. Bess
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Mark T. Livesay
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Lois Walsh
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - David Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Hélène G. Bazin
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
13
|
Ali S, Majid S, Niamat Ali M, Taing S. Evaluation of T cell cytokines and their role in recurrent miscarriage. Int Immunopharmacol 2020; 82:106347. [PMID: 32143004 DOI: 10.1016/j.intimp.2020.106347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 02/08/2020] [Accepted: 02/23/2020] [Indexed: 01/03/2023]
Abstract
Recurrent miscarriage (RM) is defined as two or more consecutive pregnancy losses that affect approximately 5% of conceived women worldwide. RM is a multi-factorial reproductive problem and has been associated with parental chromosomal abnormalities, embryonic chromosomal rearrangements, uterine anomalies, autoimmune disorders, endocrine dysfunction, thrombophilia, life style factors, and maternal infections. However, the exact cause is still undecided in remaining 50% of cases. Immunological rejection of the embryo due to exacerbated maternal immune reaction against paternal embryonic antigens has been set forth as one of the significant reason for RM. The accurate means that shield the embryo during normal pregnancy from the attack of maternal immune network and dismissal are inadequately implicit. However, it is suggested that the genetically irreconcilable embryo escapes maternal immune rejection due to communication among many vital cytokines exuded at maternal-embryonic interface both by maternal and embryonic cells. Previous investigations suggested the Th1/Th2 dominance in altered immunity of RM patients, according to which the allogenic embryo flees maternal T cell reaction by inclining the Th0 differentiation toward Th2 pathway resulting into diminished pro-inflammatory Th1 immunity. However, recently pro-inflammatory Th17 cells and immunoregulatory Treg cells have been discovered as essential immune players in RM besides Th1/Th2 components. Cytokines are believed to develop a complicated regulatory network so as to establish a state of homeostasis between the semi-allogenic embryo and the maternal immune system. However, an adverse imbalance among cytokines at maternal-embryonic interface perhaps due to their gene polymorphisms may render immunoregulatory means not enough to re-establish homeostasis and thus may collapse pregnancy.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, 190006 Srinagar, J&K, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, 190006 Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Government Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The gradual replacement of inactivated whole cell and live attenuated vaccines with subunit vaccines has generally reduced reactogenicity but in many cases also immunogenicity. Although only used when necessary, adjuvants can be key to vaccine dose/antigen-sparing, broadening immune responses to variable antigens, and enhancing immunogenicity in vulnerable populations with distinct immunity. Licensed vaccines contain an increasing variety of adjuvants, with a growing pipeline of adjuvanted vaccines under development. RECENT FINDINGS Most adjuvants, including Alum, Toll-like receptor agonists and oil-in-water emulsions, activate innate immunity thereby altering the quantity and quality of an adaptive immune response. Adjuvants activate leukocytes, and induce mediators (e.g., cytokines, chemokines, and prostaglandin-E2) some of which are biomarkers for reactogenicity, that is, induction of local/systemic side effects. Although there have been safety concerns regarding a hypothetical risk of adjuvants inducing auto-immunity, such associations have not been established. As immune responses vary by population (e.g., age and sex), adjuvant research now incorporates principles of precision medicine. Innovations in adjuvant research include use of human in vitro models, immuno-engineering, novel delivery systems, and systems biology to identify biomarkers of safety and adjuvanticity. SUMMARY Adjuvants enhance vaccine immunogenicity and can be associated with reactogenicity. Novel multidisciplinary approaches hold promise to accelerate and de-risk targeted adjuvant discovery and development. VIDEO ABSTRACT: http://links.lww.com/MOP/A53.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - David J. Dowling
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
| | - Ofer Levy
- Precision Vaccines Program
- Division of Infectious Diseases, Boston Children's Hospital
- Harvard Medical School, Boston
- Broad Institute of MIT & Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Toll-like receptor ligands and their combinations as adjuvants - current research and its relevance in chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915000094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Milillo MA, Trotta A, Serafino A, Marin Franco JL, Marinho FV, Alcain J, Genoula M, Balboa L, Oliveira SC, Giambartolomei GH, Barrionuevo P. Bacterial RNA Contributes to the Down-Modulation of MHC-II Expression on Monocytes/Macrophages Diminishing CD4 + T Cell Responses. Front Immunol 2019; 10:2181. [PMID: 31572389 PMCID: PMC6753364 DOI: 10.3389/fimmu.2019.02181] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus, the causative agent of brucellosis, displays many resources to evade T cell responses conducive to persist inside the host. Our laboratory has previously showed that infection of human monocytes with B. abortus down-modulates the IFN-γ-induced MHC-II expression. Brucella outer membrane lipoproteins are structural components involved in this phenomenon. Moreover, IL-6 is the soluble factor that mediated MHC-II down-regulation. Yet, the MHC-II down-regulation exerted by lipoproteins was less marked than the one observed as consequence of infection. This led us to postulate that there should be other components associated with viable bacteria that may act together with lipoproteins in order to diminish MHC-II. Our group has recently demonstrated that B. abortus RNA (PAMP related to pathogens' viability or vita-PAMP) is involved in MHC-I down-regulation. Therefore, in this study we investigated if B. abortus RNA could be contributing to the down-regulation of MHC-II. This PAMP significantly down-modulated the IFN-γ-induced MHC-II surface expression on THP-1 cells as well as in primary human monocytes and murine bone marrow macrophages. The expression of other molecules up-regulated by IFN-γ (such as co-stimulatory molecules) was stimulated on monocytes treated with B. abortus RNA. This result shows that this PAMP does not alter all IFN-γ-induced molecules globally. We also showed that other bacterial and parasitic RNAs caused MHC-II surface expression down-modulation indicating that this phenomenon is not restricted to B. abortus. Moreover, completely degraded RNA was also able to reproduce the phenomenon. MHC-II down-regulation on monocytes treated with RNA and L-Omp19 (a prototypical lipoprotein of B. abortus) was more pronounced than in monocytes stimulated with both components separately. We also demonstrated that B. abortus RNA along with its lipoproteins decrease MHC-II surface expression predominantly by a mechanism of inhibition of MHC-II expression. Regarding the signaling pathway, we demonstrated that IL-6 is a soluble factor implicated in B. abortus RNA and lipoproteins-triggered MHC-II surface down-regulation. Finally, CD4+ T cells functionality was affected as macrophages treated with these components showed lower antigen presentation capacity. Therefore, B. abortus RNA and lipoproteins are two PAMPs that contribute to MHC-II down-regulation on monocytes/macrophages diminishing CD4+ T cell responses.
Collapse
Affiliation(s)
- M Ayelén Milillo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Aldana Trotta
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Agustina Serafino
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - José Luis Marin Franco
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Fábio V Marinho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julieta Alcain
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Melanie Genoula
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Luciana Balboa
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas "José de San Martín" (CONICET-UBA), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| |
Collapse
|
17
|
Dombkowski AA, Cukovic D, Bagla S, Jones M, Caruso JA, Chugani HT, Chugani DC. TLR7 activation in epilepsy of tuberous sclerosis complex. Inflamm Res 2019; 68:993-998. [PMID: 31511910 PMCID: PMC6823312 DOI: 10.1007/s00011-019-01283-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neuroinflammation and toll-like receptors (TLR) of the innate immune system have been implicated in epilepsy. We previously reported high levels of microRNAs miR-142-3p and miR-223-3p in epileptogenic brain tissue resected for the treatment of intractable epilepsy in children with tuberous sclerosis complex (TSC). As miR-142-3p has recently been reported to be a ligand and activator of TLR7, a detector of exogenous and endogenous single-stranded RNA, we evaluated TLR7 expression and downstream IL23A activation in surgically resected TSC brain tissue. METHODS Gene expression analysis was performed on cortical tissue obtained from surgery of TSC children with pharmacoresistent epilepsy. Expression of TLRs 2, 4 and 7 was measured using NanoString nCounter assays. Real-time quantitative PCR was used to confirm TLR7 expression and compare TLR7 activation, indicated by IL-23A levels, to levels of miR-142-3p. Protein markers characteristic for TLR7 activation were assessed using data from our existing quantitative proteomics dataset of TSC tissue. Capillary electrophoresis Western blots were used to confirm TLR7 protein expression in a subset of samples. RESULTS TLR7 transcript expression was present in all TSC specimens. The signaling competent form of TLR7 protein was detected in the membrane fraction of each sample tested. Downstream activation of TLR7 was found in epileptogenic lesions having elevated neuroinflammation indicated by clinical neuroimaging. TLR7 activity was significantly associated with tissue levels of miR-142-3p. CONCLUSION TLR7 activation by microRNAs may contribute to the neuroinflammatory cascade in epilepsy in TSC. Further characterization of this mechanism may enable the combined of use of neuroimaging and TLR7 inhibitors in a personalized approach towards the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Alan A Dombkowski
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Children's Hospital of Michigan, Clinical Pharmacology Room 3L22, 3901 Beaubien Blvd., Detroit, MI, 48201, USA.
| | - Daniela Cukovic
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shruti Bagla
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - McKenzie Jones
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joseph A Caruso
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Harry T Chugani
- Katzin Diagnostic and Research PET/MR Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Diane C Chugani
- Katzin Diagnostic and Research PET/MR Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Departments of Communication Sciences and Disorders, and Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
18
|
TLR2/4 signaling pathway mediates sperm-induced inflammation in bovine endometrial epithelial cells in vitro. PLoS One 2019; 14:e0214516. [PMID: 30995239 PMCID: PMC6469758 DOI: 10.1371/journal.pone.0214516] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
We have recently shown that sperm attachment to bovine endometrial epithelial cells (BEECs) triggers uterine local innate immunity with induction of a pro-inflammatory response in vitro, however details of the mechanism remain unknown. Here, we investigated the involvement of Toll-like receptor 2/4 (TLR2/4) pathway in mediating sperm-BEECs inflammatory process. Immunohistochemistry of the uterine tissue revealed that TLR2 and TLR4 proteins were present in the luminal and glandular epithelia of bovine endometrium. Moreover, BEECs monolayers were treated with TLR2 agonist (Pam; 0, 10, 100, and 1000 ng/ml) or TLR4 agonist (LPS; 0, 0.1, 1, and 10 ng/ml) for 0, 1, 3, or 6 h, followed by evaluating mRNA expression of the pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs using a real-time PCR. Both Pam and LPS treatments showed a dose-dependent stimulation of mRNA expression of the pro-inflammatory genes. To elucidate the functional role of TLR2/4 in sperm-BEECs interaction, BEECs monolayers were incubated with either TLR2 antagonist or TLR4 antibody for 2 h prior to the co-culture with sperm for 3 h. Importantly, pre-incubation of BEECs with TLR2 antagonist or TLR4 antibody prevented the stimulatory effect of sperm on the transcription of pro-inflammatory genes in BEECs. Furthermore, sperm increased the phosphorylation levels of TLR2/4 downstream targets (p38MAPK and JNK) in BEECs within 1 h of the co-culture. Treatment of BEECs with TLR2 antagonist prior to sperm addition inhibited JNK phosphorylation, while TLR4 antibody inhibited the phosphorylation of both p38MAPK and JNK. In conclusion, the present in vitro findings strongly suggest that bovine endometrial epithelial cells respond to sperm via TLR2/4 signal transduction.
Collapse
|
19
|
Wang M, Kong X, Xie Y, He C, Wang T, Zhou H. Role of TLR‑4 in anti‑β2‑glycoprotein I‑induced activation of peritoneal macrophages and vascular endothelial cells in mice. Mol Med Rep 2019; 19:4353-4363. [PMID: 30942412 PMCID: PMC6472140 DOI: 10.3892/mmr.2019.10084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/21/2019] [Indexed: 11/06/2022] Open
Abstract
Anti‑phospholipid syndrome (APS) is a systematic autoimmune disease that is associated with presence of antiphospholipid antibodies (aPL), recurrent thrombosis, and fetal morbidity in pregnancy. Toll‑like receptor‑4 (TLR‑4), a member of TLR family, is known to have a fundamental role in pathogen recognition and activation of innate immunity. The β2‑glycoprotein I (β2GPI), a protein circulating in the blood at a high concentration, is able of scavenging lipopolysaccharide (LPS) and clear unwanted anionic cellular remnants, such as microparticles, from the circulation. Our previous study demonstrated that TLR‑4 and its signaling pathways contribute to the upregulation of pro‑coagulant factors and pro‑inflammatory cytokines in monocytes induced by anti‑β2GPI in vitro. The present study aimed to define the roles of TLR‑4 in vivo. C3H/HeN mice (TLR‑4 intact) and C3H/HeJ mice (TLR‑4 defective) were stimulated with an intraperitoneal injection with anti‑β2GPI‑immunoglobulin G(IgG), then peritoneal macrophages and vascular endothelial cells (VECs) were extracted from treated mice, and analyses were conducted on the expression profiles of pro‑inflammatory cytokines and adhesion molecules. The results demonstrated that the expression of pro‑inflammatory cytokines, including tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6, in the peritoneal macrophages, and adhesion molecules, including intercellular cell adhesion molecule‑1 (ICAM‑1), vascular cell adhesion molecule‑1 (VCAM‑1) and E‑selectin, in VECs of C3H/HeN mice (TLR‑4 intact) were significantly higher than those of C3H/HeJ mice (TLR‑4 defective). The phosphorylation levels of p38 mitogen‑activated protein kinase (MAPK) and nuclear factor‑κB (NF‑κB) p65 in peritoneal macrophages and VECs from C3H/HeN mice stimulated with anti‑β2GPI‑IgG were significantly increased compared with those from C3H/HeJ mice (TLR‑4 defective). The isotype control antibody (NR‑IgG) had no such effects on peritoneal macrophages and VECs. Furthermore, the inhibitors of TLR‑4, p38 MAPK and NF‑κB may significantly reduce the anti‑β2GPI‑IgG‑induced TNF‑α, IL‑1β and IL‑6 mRNAs expression in the peritoneal macrophages from TLR‑4 intact mice. The results indicated that a TLR‑4 signal transduction pathway is involved in anti‑β2GPI‑IgG‑induced activation of peritoneal macrophages and VECs. This study has provided a basis for subsequent investigations to elucidate the pathological mechanisms underlying anti‑phospholipid syndrome.
Collapse
Affiliation(s)
- Meiyun Wang
- Department of Internal Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiangmin Kong
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yachao Xie
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chao He
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Wang
- Department of Clinical Laboratory and Hematology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hong Zhou
- Department of Internal Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
20
|
Dumpa N, Goel K, Guo Y, McFall H, Pillai AR, Shukla A, Repka MA, Murthy SN. Stability of Vaccines. AAPS PharmSciTech 2019; 20:42. [PMID: 30610415 DOI: 10.1208/s12249-018-1254-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Vaccines are considered the most economical and effective preventive measure against most deadly infectious diseases. Vaccines help protect around three million lives every year, but hundreds of thousands of lives are lost due to the instability of vaccines. This review discusses the various types of instability observed, while manufacturing, storing, and distributing vaccines. It describes the specific stability problems associated with each type of vaccine. This review also discusses the various measures adopted to overcome these instability problems. Vaccines are classified based on their components, and this review discusses how these preventive measures relate to each type of vaccine. This review also includes certain case studies that illustrate various approaches to improve vaccine stability. Last, this review provides insight on prospective methods for developing more stable vaccines.
Collapse
|
21
|
Nouri-Shirazi M, Tamjidi S, Nourishirazi E, Guinet E. Combination of TLR8 and TLR4 agonists reduces the degrading effects of nicotine on DC-NK mediated effector T cell generation. Int Immunopharmacol 2018; 61:54-63. [PMID: 29803914 DOI: 10.1016/j.intimp.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
The magnitude of immune responses to vaccination is a critical factor in determining protection from disease. It is known that cigarette smoke dampens the immune system and increases the risk of vaccine-preventable diseases. We reported that nicotine, the immunosuppressive component of cigarette smoke, disrupts the differentiation and functional properties of DC, which are pivotal in the initiation of immune response to vaccines. We also reported that TLR agonists act in synergy and boost DC maturation, DC-NK crosstalk and ultimately naïve T cell polarization into effector Th1 and Tc1 cells. Here, we investigated whether the combination of TLR agonists could diminish the degrading effects of nicotine on DC-NK mediated effector T cell generation. We found that none of TLR agonists, single or combined, were able to diminish completely the adverse effects of nicotine on DC. However, TLR3, TLR4, and TLR8 agonists acted as the most effective adjuvants to increase the expression levels of antigen-presenting, costimulatory molecules and production of cytokines by nicotine-exposed DC (nicDC). When combined, TLR3 + 8 and TLR4 + 8 synergistically optimized nicDC maturation and IFN-γ secretion from nicotine-exposed NK (nicNK) during co-cultures. Interestingly, in contrast to DC-NK-T, co-cultures of nicDC-nicNK-T treated with TLR3 + 8 or TLR4 + 8 agonists produced a similar frequency of effector memory Th1 and Tc1 cells. However, the effector cells from TLR4 + 8 followed by TLR3 + 8 treated nicDC-nicNK-T co-cultures produced significantly more IFN-γ when compared with aluminum salt treated co-culture. Our data suggest that addition of appropriate TLR agonists to vaccine formulation could potentially augment the immune response to vaccination in smokers.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA.
| | - Saba Tamjidi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Erika Nourishirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| | - Elisabeth Guinet
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, 777 Glades Road, PO Box 3091, Boca Raton, FL, 33431, USA
| |
Collapse
|
22
|
Gao D, Cai Y, Chen Y, Li W, Wei CC, Luo X, Wang Y. Novel TLR7 agonist stimulates activity of CIK/NK immunological effector cells to enhance antitumor cytotoxicity. Oncol Lett 2018; 15:5105-5110. [PMID: 29552145 DOI: 10.3892/ol.2018.7954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 03/21/2017] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor (TLR) 7/8 agonists have been applied in combination with chemo-, radio- or immunotherapy for lymphoma, and used as topical drugs for the treatment of viral skin lesions and skin tumors. In the present study, the role of an adenine analog, 9-(4-carboxyphenyl)-8-hydroxy-2-(2-methoxyethoxy)-adenine [termed Gao Dong (GD)], a novel TLR7 agonist, in the activation of cytokine-induced killer/natural killer (CIK/NK) cells was determined. The results of the present study indicated that GD was able to activate CIK/NK cells. The proportion of GD-induced CD3+CD56+ CIK and CD3-CD56+ NK cells was ~4% higher respectively compared with the control. Notably, combination therapy with CIK/NK cells stimulated by GD, markedly suppressed the proliferation of the chronic myelogenous leukemia K562 cell line. Following GD treatment, the cytotoxicity improved by ~25 and 21% when the effector/target ratio was 20:1 and 10:1, respectively. The results of the present study suggested a novel protocol for CIK/NK cell proliferation and revealed that GD may serve as a potent innate and adaptive immunomodulator in immunocyte culture.
Collapse
Affiliation(s)
- Dong Gao
- Shenzhen Hornetcorn Biotechnology Co., Ltd., Shenzhen, Guangdong 518045, P.R. China
| | - Yongguang Cai
- The Fifth District of Chemotherapy, Department of Medical Oncology, Central Hospital of Guangdong Provincial Agricultural Reclamation, Zhanjiang, Guangdong 524002, P.R. China
| | - Yanyuan Chen
- Shenzhen Hornetcorn Biotechnology Co., Ltd., Shenzhen, Guangdong 518045, P.R. China
| | - Wang Li
- Shenzhen Hornetcorn Biotechnology Co., Ltd., Shenzhen, Guangdong 518045, P.R. China
| | - Chih-Chang Wei
- Shenzhen Hornetcorn Biotechnology Co., Ltd., Shenzhen, Guangdong 518045, P.R. China
| | - Xiaoling Luo
- Shenzhen Hornetcorn Biotechnology Co., Ltd., Shenzhen, Guangdong 518045, P.R. China
| | - Yuhuan Wang
- Shenzhen Hornetcorn Biotechnology Co., Ltd., Shenzhen, Guangdong 518045, P.R. China
| |
Collapse
|
23
|
Nouri-Shirazi M, Tamjidi S, Nourishirazi E, Guinet E. TLR8 combined withTLR3 or TLR4 agonists enhances DC-NK driven effector Tc1 cells. Immunol Lett 2017; 193:58-66. [PMID: 29103998 DOI: 10.1016/j.imlet.2017.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Most current prophylactic vaccines confer protection primarily through humoral immunity. Indeed, aluminum salts which have been widely used as adjuvants in vaccines primarily enhance Th2-driven antibody responses. Therefore, new vaccines formulation is moving toward a careful selection of adjuvants that also elicit significant Th1 or Tc1 responses. Several TLR agonists have been tested as potential new adjuvants in clinical and preclinical studies with some efficacy. These studies suggest that combining more than one of TLR ligands enhances the magnitude of immune responses to cancer and infectious disease. OBJECTIVES In order to evaluate the synergistic effect of TLR agonists for effective induction of cellular immunity, we investigated the effects of single and/or combined TLR agonists on monocyte-derived DC maturation, DC-NK crosstalk and ultimately naïve T cells polarization into effector T cells. RESULTS Among the adjuvants tested, we found that TLR3, TLR4, TLR7/8 and TLR8 agonists were the most effective adjuvants to increase the expression levels of antigen-presenting, co-stimulatory molecules and production of cytokines by maturing DCs. When combined, TLR3+8 and TLR4+8 synergistically optimized DC maturation and IFN-γ secretion from NK cells co-cultured with DCs. Interestingly, co-culture of DC-NK-T treated with aluminum salt produced the highest percentage of effector memory CFSE-CCR7- Th1 cells whereas TLR3+8 and TLR4+8 treated co-cultures produced the highest percentage of effector memory CFSE-CCR7- Tc1 cells producing IFN-γ. Finally, while both TLR3+8 or TLR4+8 treated co-cultures generated similar frequency of Th1 and Tc1 effector cells, the effector cells from the latter co-culture produced quantitatively more IFN-γ in the supernatant. CONCLUSION Our data indicate that if in need of an enhanced DC-NK mediated cellular immunity one may select TLR agonists with defined synergistic effects.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA.
| | - Saba Tamjidi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Erika Nourishirazi
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| | - Elisabeth Guinet
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Integrated Medical Science Department, Florida Atlantic University, 777 Glades Road, PO Box 3091, Boca Raton, FL 33431, USA
| |
Collapse
|
24
|
Yamaguchi R, Sakamoto A, Yamamoto T, Narahara S, Sugiuchi H, Yamaguchi Y. Differential regulation of IL-23 production in M1 macrophages by TIR8/SIGIRR through TLR4- or TLR7/8-mediated signaling. Cytokine 2017; 99:310-315. [DOI: 10.1016/j.cyto.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/14/2017] [Accepted: 08/19/2017] [Indexed: 01/07/2023]
|
25
|
Chen N, Xia P, Li S, Zhang T, Wang TT, Zhu J. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 2017; 69:297-304. [PMID: 28374903 PMCID: PMC7165898 DOI: 10.1002/iub.1625] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
The innate immune system plays a critical role in pathogen recognition and initiation of protective immune response through the recognition of pathogen associated molecular patterns (PAMPs) by its pattern recognition receptors (PRRs). Nucleic acids including RNA and DNA have been recognized as very important PAMPs of pathogens especially for viruses. RNA are the major PAMPs of RNA viruses, to which most severe disease causing viruses belong thus posing a tougher challenge to human and animal health. Therefore, the understanding of the immune biology of RNA PRRs is critical for control of pathogen infections especially for RNA virus infections. RNA PRRs are comprised of TLR3, TLR7, TLR8, RIG-I, MDA5, NLRP3, NOD2, and some other minorities. This review introduces these RNA PRRs by describing the cellular localizations, ligand recognitions, activation mechanisms, cell signaling pathways, and recognition of pathogens; the cross-talks between various RNA PRRs are also reviewed. The deep insights of these RNA PRRs can be utilized to improve anti-viral immune response. © 2017 IUBMB Life, 69(5):297-304, 2017.
Collapse
Affiliation(s)
- Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Pengpeng Xia
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Shuangjie Li
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Tangjie Zhang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| | - Tony T Wang
- Center for Infectious Diseases, Biosciences Division, SRI International, Harrisonburg, VA, 22802
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, People's Republic of China.,College Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
26
|
Giraldo DM, Hernandez JC, Urcuqui-Inchima S. HIV-1-derived single-stranded RNA acts as activator of human neutrophils. Immunol Res 2016; 64:1185-1194. [PMID: 27718110 DOI: 10.1007/s12026-016-8876-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neutrophils are key effector cells of the innate immune system and are involved in the host defense against invading pathogens such as viruses. Recently, it was reported that HIV-1-neutrophil interaction triggers neutrophil activation and promotes expression of Toll-like receptors (TLRs). Here, we assessed the role of single-stranded RNA40 (ssRNA40) derived from HIV-1 in neutrophil activation. We observed functional activation of neutrophils in response to HIV-1-derived ssRNA40 based on the expression of TLR7/8, RIG-I, and MDA5, induction of cytokines (IL-6 and TNF-α), and the production of reactive oxygen species (ROS). Additionally, ssRNA40 promoted the expression of CD62L and TNF-α and the production of ROS in the presence of the TLR2 agonist Pam2CSK4. ssRNA40 together with R848 (a TLR7/8 agonist) increased CD11b expression but decreased CD62L expression. Furthermore, decreased IL-6 expression was observed in the presence of the TLR4 agonist LPS. Finally, we found that ssRNA40 promotes RIG-I and MDA5 expression in the presence of the TLR2, TLR4 and TLR7/8 agonists. This study demonstrates a functional response of TLRs in neutrophils challenged with ssRNA40, suggesting that TLRs could be involved in the innate immune response observed during HIV infection, which might be mediated by its genome.
Collapse
Affiliation(s)
- Diana M Giraldo
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, calle 70 No. 52-21, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
27
|
Kimishima A, Wenthur CJ, Eubanks LM, Sato S, Janda KD. Cocaine Vaccine Development: Evaluation of Carrier and Adjuvant Combinations That Activate Multiple Toll-Like Receptors. Mol Pharm 2016; 13:3884-3890. [PMID: 27717287 PMCID: PMC6381837 DOI: 10.1021/acs.molpharmaceut.6b00682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although cocaine abuse and addiction continue to cause serious health and societal problems, an FDA-approved medication to treat cocaine addiction has yet to be developed. Employing a pharmacokinetic strategy, an anticocaine vaccine provides an attractive avenue to address these issues; however, current vaccines have shown varying degrees of efficacy, indicating that further formulation is necessary. As a means to improve vaccine efficacy, we examined the effects of varying anticocaine vaccine formulations by combining a Toll-like receptor 9 (TLR9) agonist with a TLR5 agonist in the presence of alum. The TLR9 agonist used was cytosine-guanine oligodeoxynucleotide 1826 (CpG 1826), while the TLR5 agonist was flagellin (FliC). Formulations with the TLR9 agonist elicited superior anticocaine antibody titers and blockade of hyperlocomotor effects compared to vaccines without CpG 1826. This improvement was seen regardless of whether the TLR5 agonist, FliC, or the nonadjuvanting Tetanus Toxoid (TT) was used as the carrier protein. Additional insights into the value of FliC as a carrier versus adjuvant was also investigated by generating two unique formats of the protein, wild-type and mutated flagellin (mFliC). While the mFliC conjugate retained its ability to stimulate mTLR5, it yielded reduced cocaine sequestration and functional blockade relative to FliC and TT. Overall, this work indicates that activation of TLR9 can improve the function of cocaine vaccines in the presence of TLR5 activation by FliC, with any potential additive effects limited by the inefficiency of FliC as a carrier protein as compared to TT.
Collapse
Affiliation(s)
- Atsushi Kimishima
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine The Scripps Research Institute, La Jolla, CA, 92037
| | - Cody J Wenthur
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine The Scripps Research Institute, La Jolla, CA, 92037
| | - Lisa M Eubanks
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine The Scripps Research Institute, La Jolla, CA, 92037
| | - Shun Sato
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine The Scripps Research Institute, La Jolla, CA, 92037
| | - Kim D Janda
- Departments of Chemistry and Immunology, The Skaggs Institute for Chemical Biology, WIRM Institute for Research and Medicine The Scripps Research Institute, La Jolla, CA, 92037
| |
Collapse
|
28
|
Giraldo DM, Hernandez JC, Velilla P, Urcuqui-Inchima S. HIV-1-neutrophil interactions trigger neutrophil activation and Toll-like receptor expression. Immunol Res 2016; 64:93-103. [PMID: 26350266 DOI: 10.1007/s12026-015-8691-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although neutrophils are the first-line of host defense against infection and express a wide number of pattern recognition receptors (PRRs), the function of these PRRs, including Toll-like receptors (TLRs), in HIV-1 infection remains unclear. TLRs play an important role in innate immunity, and while their involvement in viral immune pathogenesis was recently proposed, little is known about their expression and function during the neutrophil response to HIV-1 exposure. Here, we have shown that freshly isolated human neutrophils from healthy donors exhibited altered TLR expression, which may affect their function, after being challenged with HIV-1, alone or in the presence of TLR agonists. TLRs may promote neutrophil activation, pro-inflammatory cytokine secretion, and the production of reactive oxygen species. To our knowledge, this study is the first demonstration of functional TLR expression on neutrophils in response to HIV-1 treatment, suggesting a possible neutrophil/HIV-1 interaction through TLRs. Although additional studies are required to confirm the function of TLRs in neutrophils, our data clearly suggest that they play a role in the regulation of innate immunity by neutrophils, which could be engaged in HIV-1 pathogenesis or host defense.
Collapse
Affiliation(s)
- Diana Marcela Giraldo
- Grupo Inmunovirología, Universidad de Antioquia, St 62 No. 52-59, Medellín, Colombia.
| | - Juan Carlos Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| | - Paula Velilla
- Grupo Inmunovirología, Universidad de Antioquia, St 62 No. 52-59, Medellín, Colombia.
| | | |
Collapse
|
29
|
Pone EJ. Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors. Methods Mol Biol 2016; 1390:229-48. [PMID: 26803633 DOI: 10.1007/978-1-4939-3335-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM(+) as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli.
Collapse
Affiliation(s)
- Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Yang J, Diaz N, Adelsberger J, Zhou X, Stevens R, Rupert A, Metcalf JA, Baseler M, Barbon C, Imamichi T, Lempicki R, Cosentino LM. The effects of storage temperature on PBMC gene expression. BMC Immunol 2016; 17:6. [PMID: 26979060 PMCID: PMC4791795 DOI: 10.1186/s12865-016-0144-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryopreservation of peripheral blood mononuclear cells (PBMCs) is a common and essential practice in conducting research. There are different reports in the literature as to whether cryopreserved PBMCs need to only be stored ≤ -150 °C or can be stored for a specified time at -80 °C. Therefore, we performed gene expression analysis on cryopreserved PBMCs stored at both temperatures for 14 months and PBMCs that underwent temperature cycling 104 times between these 2 storage temperatures. Real-time RT-PCR was performed to confirm the involvement of specific genes associated with identified cellular pathways. All cryopreserved/stored samples were compared to freshly isolated PBMCs and between storage conditions. RESULTS We identified a total of 1,367 genes whose expression after 14 months of storage was affected >3 fold in PBMCs following isolation, cryopreservation and thawing as compared to freshly isolated PBMC aliquots that did not undergo cryopreservation. Sixty-six of these genes were shared among two or more major stress-related cellular pathways (stress responses, immune activation and cell death). Thirteen genes involved in these pathways were tested by real-time RT-PCR and the results agreed with the corresponding microarray data. There was no significant change on the gene expression if the PBMCs experienced brief but repetitive temperature cycling as compared to those that were constantly kept ≤ -150 °C. However, there were 18 genes identified to be different when PBMCs were stored at -80 °C but did not change when stored < -150 °C. A correlation was also found between the expressions of 2'-5'- oligoadenylate synthetase (OAS2), a known interferon stimulated gene (IFSG), and poor PBMC recovery post-thaw. PBMC recovery and viability were better when the cells were stored ≤ -150 °C as compared to -80 °C. CONCLUSIONS Not only is the viability and recovery of PBMCs affected during cryopreservation but also their gene expression pattern, as compared to freshly isolated PBMCs. Different storage temperature of PBMCs can activate or suppress different genes, but the cycling between -80 °C and -150 °C did not produce significant alterations in gene expression when compared to PBMCs stored ≤ -150 °C. Further analysis by gene expression of various PBMC processing and cryopreservation procedures is currently underway, as is identifying possible molecular mechanisms.
Collapse
Affiliation(s)
- Jun Yang
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Norma Diaz
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | | | - Xueyuan Zhou
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Randy Stevens
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Adam Rupert
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Julia A. Metcalf
- />Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852 USA
| | - Mike Baseler
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | | | | | | | | |
Collapse
|
31
|
Tom J, Dotsey EY, Wong HY, Stutts L, Moore T, Davies DH, Felgner P, Esser-Kahn AP. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists. ACS CENTRAL SCIENCE 2015; 1:439-448. [PMID: 26640818 PMCID: PMC4665084 DOI: 10.1021/acscentsci.5b00274] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 05/17/2023]
Abstract
We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines.
Collapse
Affiliation(s)
- Janine
K. Tom
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Emmanuel Y. Dotsey
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Hollie Y. Wong
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Lalisa Stutts
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Troy Moore
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - D. Huw Davies
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Philip
L. Felgner
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
- E-mail:
| |
Collapse
|
32
|
Peng Y, Zhang L. Extensive study of cytokine, chemokines expression in peripheral blood mononuclear cells upon CpG stimulation. J Immunoassay Immunochem 2015; 36:387-97. [PMID: 25317864 DOI: 10.1080/15321819.2014.969435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The innate and adaptive immune response could be initiated by toll-like receptors (TLRs) by recognizing the conserved components of microbes. Among human TLR family, TLR9 was critical in sensing DNA viruses and endogenous DNA. Previous researches confirmed that activation of TLR9 could initiate many important cytokines such as IL-6, IL-8, IL-10, and IFN-β. The aim of this article is to analyze expression of more molecules upon TLR9 agonist stimulation, including tumor-related factors, kinase signal molecules, adhesion molecules, and co-stimulators. Peripheral blood mononuclear cells (PBMCs) were isolated from health volunteer and stimulated by CpG. RNA extraction and supernatant collection were conducted four hours post CpG treatment. Reatl-time PCR and antibody chip were introduced to detect the expression of immune-related molecules in RNA and protein secretion in supernatant, respectively. The results indicated that activation of TLR9 pathway greatly influenced the expression and secretion of many interleukins, cytokine, chemokines, tumor-related genes, adhesion molecules, kinase signal molecules, and co-stimulators. This is the first systematical analysis of immune-related molecules in PBMSCs upon TLR9 activation. Future study should focus on the role of the candidate molecules in TLR9-mediating biological functions.
Collapse
Affiliation(s)
- Ying Peng
- a Department of Cardiology , West China Hospital of Sichuan University , Chengdu , P.R. China
| | | |
Collapse
|
33
|
Comparison of adjuvants for a spray freeze-dried whole inactivated virus influenza vaccine for pulmonary administration. Eur J Pharm Biopharm 2015; 93:231-41. [PMID: 25896446 DOI: 10.1016/j.ejpb.2015.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/25/2015] [Accepted: 04/09/2015] [Indexed: 02/02/2023]
Abstract
Stable vaccines administered to the lungs by inhalation could circumvent many of the problems associated with current immunizations against respiratory infections. We earlier provided proof of concept in mice that pulmonary delivered whole inactivated virus (WIV) influenza vaccine formulated as a stable dry powder effectively elicits influenza-specific antibodies in lung and serum. Yet, mucosal IgA, considered particularly important for protection at the site of virus entry, was poorly induced. Here we investigate the suitability of various Toll-like receptor (TLR) ligands and the saponin-derived compound GPI-0100 to serve as adjuvant for influenza vaccine administered to the lungs as dry powder. The TLR ligands palmitoyl-3-cysteine-serine-lysine-4 (Pam3CSK4), monophosphoryl lipid A (MPLA) and CpG oligodeoxynucleotides (CpG ODN) as well as GPI-0100 tolerated the process of spray freeze-drying well. While Pam3CSK4 had no effect on systemic antibody titers, all the other adjuvants significantly increased influenza-specific serum and lung IgG titers. Yet, only GPI-0100 also enhanced mucosal IgA titers. Moreover, only GPI-0100-adjuvanted WIV provided partial protection against heterologous virus challenge. Pulmonary immunization with GPI-0100-adjuvanted vaccine did not induce an overt inflammatory response since influx of neutrophils and production of inflammatory cytokines were moderate and transient and lung histology was normal. Our results indicate that a GPI-0100-adjuvanted dry powder influenza vaccine is a safe and effective alternative to current parenteral vaccines.
Collapse
|
34
|
Ramakrishnan S, Annamalai A, Sachan S, Kumar A, Sharma BK, Govindaraj E, Chellappa MM, Dey S, Krishnaswamy N. Synergy of lipopolysaccharide and resiquimod on type I interferon, pro-inflammatory cytokine, Th1 and Th2 response in chicken peripheral blood mononuclear cells. Mol Immunol 2015; 64:177-82. [DOI: 10.1016/j.molimm.2014.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022]
|
35
|
Zhang L, Liu D, Pu D, Wang Y, Li L, He Y, Li Y, Li L, Qiu Z, Zhao S, Li W. The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. Int J Mol Med 2015; 35:1003-10. [PMID: 25695694 DOI: 10.3892/ijmm.2015.2106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/04/2015] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been applied to cell-based therapy due to their multiple differentiation ability, the low expression of co-stimulatory molecules and immunosuppressive properties. Despite their immunomodulatory role, the issue of the survival and permanence of MSCs at the site of injury has not yet been fully resolved. Therefore, in order to improve the therapeutic potential of MSCs, it is important to study the mechanisms mediating the relative instability of MSCs in clinical trials. The Toll-like receptors (TLRs) are an important component of innate and adaptive immune responses. In this study, we demonstrate that the activation of two TLRs, namely TLR3 and TLR4, in human umbilical cord-derived MSCs (UCMSCs) induces the expression of inflammatory markers. In addition, as shown by our results, TLR3 upregulated the expression of stem cell markers, while TLR4 downregulated their expression. The upregulation in the expression of the inflammatory markers did not alter the immune status of the UCMSCs or mediate the immune attack of the MSCs by allogeneic immune cells. We found that the activation of TLR3 inhibited the differentiation of UCMSCs into osteocytes, while that of TLR4 increased this differentiation to a certain extent. Taken together, the results of this study provide a new role for TLR3 and TLR4 as regulators of the biological functions of UCMSCs.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Liu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dan Pu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanwen Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanqi He
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yalun Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhixin Qiu
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuang Zhao
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weimin Li
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
36
|
Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, Globisch D, Rosenfeld-Gunn RJ, Wilson IA, Janda KD. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm 2015; 12:653-62. [PMID: 25531528 PMCID: PMC4319694 DOI: 10.1021/mp500520r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cocaine abuse is problematic, directly and indirectly impacting the lives of millions, and yet existing therapies are inadequate and usually ineffective. A cocaine vaccine would be a promising alternative therapeutic option, but efficacy is hampered by variable production of anticocaine antibodies. Thus, new tactics and strategies for boosting cocaine vaccine immunogenicity must be explored. Flagellin is a bacterial protein that stimulates the innate immune response via binding to extracellular Toll-like receptor 5 (TLR5) and also via interaction with intracellular NOD-like receptor C4 (NLRC4), leading to production of pro-inflammatory cytokines. Reasoning that flagellin could serve as both carrier and adjuvant, we modified recombinant flagellin protein to display a cocaine hapten termed GNE. The resulting conjugates exhibited dose-dependent stimulation of anti-GNE antibody production. Moreover, when adjuvanted with alum, but not with liposomal MPLA, GNE-FliC was found to be better than our benchmark GNE-KLH. This work represents a new avenue for exploration in the use of hapten-flagellin conjugates to elicit antihapten immune responses.
Collapse
Affiliation(s)
- Jonathan W Lockner
- Departments of Chemistry, Integrative Structural and Computational Biology, and Immunology and Microbial Science, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pu D, Wang W. Toll-like receptor 4 agonist, lipopolysaccharide, increases the expression levels of cytokines and chemokines in human peripheral blood mononuclear cells. Exp Ther Med 2014; 8:1914-1918. [PMID: 25371755 PMCID: PMC4218705 DOI: 10.3892/etm.2014.2025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs) are members of the pattern recognition receptor family and are essential in the innate immune response. In total, 11 TLRs exist in humans, which are expressed in a variety of cells, including peripheral blood cells. TLR4 plays a significant role in the defense against gram-negative pathogens by recognizing the lipopolysaccharide (LPS) molecules in these bacteria. The aim of the present study was to detect the expression level variation of a number of major immune molecules in peripheral blood mononuclear cells (PBMCs) stimulated by LPS, in order to identify candidate genes involved in the biological functions mediated by TLR4. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and an antibody chip were performed in the current study. The RT-qPCR results revealed a marked enhancement in the expression levels of various molecules, including cytokines, chemokines, growth factors and protein kinases. In addition, the antibody chip identified the increased secretion of crucial proinflammatory molecules in the supernatants collected from LPS-treated PBMCs. In conclusion, a large number of molecules were found to be involved in TLR4-mediated functions.
Collapse
Affiliation(s)
- Dan Pu
- Clinical Skills Training Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Wang
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
38
|
Lavieri R, Piccioli P, Carta S, Delfino L, Castellani P, Rubartelli A. TLR costimulation causes oxidative stress with unbalance of proinflammatory and anti-inflammatory cytokine production. THE JOURNAL OF IMMUNOLOGY 2014; 192:5373-81. [PMID: 24771848 DOI: 10.4049/jimmunol.1303480] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1β acts in concert with anti-inflammatory cytokines, in particular, IL-1R antagonist (IL-1Ra), to ensure the correct development and outcome of the inflammation: imbalance in the IL-1β/IL-1Ra ratio is implicated in many human diseases and may lead to dramatic consequences. In this article, we show that single TLR engagement induces IL-1β and, with a little delay, IL-1Ra. Differently, costimulation of TLR2, TLR4, and TLR7/8 enhances IL-1β secretion but severely inhibits IL-1Ra production. The IL-1β/IL-1Ra unbalance after activation of multiple TLRs depends on the insurgence of oxidative stress, because of enhanced production of reactive oxygen species and failure of the antioxidant systems. Increased reactive oxygen species levels increase ATP externalization by monocytes, resulting in enhanced inflammasome activation and IL-1β secretion. Oxidative stress then induces cell responses to stress, including inhibition of protein synthesis, which, in turn, is responsible for the impaired production of IL-1Ra. IL-1Ra secretion is restored by exogenous antioxidants that oppose oxidative stress. Similar effects are evident also on other cytokines: TNF-α is induced, whereas IL-6 is inhibited by costimulation. Our findings provide a molecular basis to the imbalance between proinflammatory and regulatory cytokine circuits that occur in various pathologic conditions, and suggest new strategies for controlling inflammation.
Collapse
Affiliation(s)
- Rosa Lavieri
- Unità di Biologia Cellulare, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Patrizia Piccioli
- Unità di Biologia Cellulare, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Sonia Carta
- Unità di Biologia Cellulare, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Laura Delfino
- Unità di Biologia Cellulare, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Patrizia Castellani
- Unità di Biologia Cellulare, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| | - Anna Rubartelli
- Unità di Biologia Cellulare, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa, Italy
| |
Collapse
|
39
|
Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:261-70. [PMID: 24451328 DOI: 10.1128/cvi.00669-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore, regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particularly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understanding of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combination with other TLR ligands as an adjuvant in chicken vaccines.
Collapse
|
40
|
Cervantes JL, La Vake CJ, Weinerman B, Luu S, O'Connell C, Verardi PH, Salazar JC. Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes. J Leukoc Biol 2013; 94:1231-41. [PMID: 23906644 PMCID: PMC3828603 DOI: 10.1189/jlb.0413206] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/05/2013] [Accepted: 07/07/2013] [Indexed: 01/01/2023] Open
Abstract
Phagocytosed Borrelia burgdorferi (Bb), the Lyme disease spirochete, induces a robust and complex innate immune response in human monocytes, in which TLR8 cooperates with TLR2 in the induction of NF-κB-mediated cytokine production, whereas TLR8 is solely responsible for transcription of IFN-β through IRF7. We now establish the role of Bb RNA in TLR8-mediated induction of IFN-β. First, using TLR2-transfected HEK.293 cells, which were unable to phagocytose intact Bb, we observed TLR2 activation by lipoprotein-rich borrelial lysates and TLR2 synthetic ligands but not in response to live spirochetes. Purified Bb RNA, but not borrelial DNA, triggered TLR8 activation. Neither of these 2 ligands induced activation of TLR7. Using purified human monocytes we then show that phagocytosed live Bb, as well as equivalent amounts of borrelial RNA delivered into the phagosome by polyethylenimine (PEI), induces transcription of IFN-β and secretion of TNF-α. The cytokine response to purified Bb RNA was markedly impaired in human monocytes naturally deficient in IRAK-4 and in cells with knockdown TLR8 expression by small interfering RNA. Using confocal microscopy we provide evidence that TLR8 colocalizes with internalized Bb RNA in both early (EEA1) and late endosomes (LAMP1). Live bacterial RNA staining indicates that spirochetal RNA does not transfer from the phagosome into the cytosol. Using fluorescent dextran particles we show that phagosomal integrity in Bb-infected monocytes is not affected. We demonstrate, for the first time, that Bb RNA is a TLR8 ligand in human monocytes and that transcription of IFN-β in response to the spirochete is induced from within the phagosomal vacuole through the TLR8-MyD88 pathway.
Collapse
Affiliation(s)
- Jorge L Cervantes
- 1.Connecticut Children's Medical Center, Division of Infectious Diseases and Immunology, 282 Washington St., Hartford, CT 06106.
| | | | | | | | | | | | | |
Collapse
|
41
|
Rodríguez-Fandiño O, Hernández-Ruíz J, López-Vidal Y, Charúa L, Bandeh-Moghaddam H, Minzoni A, Guzmán C, Schmulson M. Intestinal recruiting and activation profiles in peripheral blood mononuclear cells in response to pathogen-associated molecular patterns stimulation in patients with IBS. Neurogastroenterol Motil 2013; 25:872-e699. [PMID: 23937411 DOI: 10.1111/nmo.12204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/18/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Immune activation, increased Toll-like Receptors (TLR) expression, and gut epithelial diffusion of bacterial molecules have been reported in irritable bowel syndrome (IBS). Thus, we sought to relate these factors by analyzing gut homing (integrin α4β7), intestinal recruiting (CCR5) and activation (CD28) phenotypes, and the cytokines and chemokines concentration in peripheral blood T-lymphocytes stimulated with TLR-ligands. METHODS Twenty-one IBS-Rome II (1 PI-IBS) patients and 19 controls were studied. Isolated peripheral blood mononuclear cells were cultured with and without Escherichia coli lipopolysaccharide (LPS), Staphylococcus aureus peptidoglycan (PGN), and unmethylated cytosine-phosphate-guanine motifs (CpG). Phenotypes were investigated by flow cytometry and supernatant cytokines and chemokines were also measured. KEY RESULTS After LPS, CCR5 expression in CD4⁺ α4β7⁺ cells remained unchanged in IBS, but decreased in controls (p = 0.002), to lower levels than in IBS (Mean fluorescence intensity [MFI]: 1590 ± 126.9 vs 2417 ± 88.4, p < 0.001). There were less CD8(+) α4β7⁺ CCR5⁺ cells (85.7 ± 1.5 vs 90.8 ± 0.9%, p = 0.006) after LPS and CD3⁺ α4β7⁺ CCR5⁺ (40.0 ± 1.7 vs 51.2 ± 4.3%, p = 0.006) after PGN in controls. Also, after LPS, CD28 decreased in CD4⁺ α4β7⁺ CCR5⁺ in IBS (MFI: 2337 ± 47.2 vs 1779 ± 179.2, p < 0.001), but not in controls. Cytokines and chemokines were similar, except for lower IL8/CXCL8 in the unstimulated condition in IBS (4.18, 95% CI: 3.94-4.42 vs 3.77, 3.59-3.95; p = 0.006). CONCLUSIONS & INFERENCES Pathogen-associated molecular patterns stimulation of peripheral blood T cells expressing gut homing marker in IBS compared with controls resulted in an unsuccessful down-regulation of the co-expression of intestinal recruiting/residence phenotype and a state of activation. These findings support an interaction between an innate immune predisposition and microbial triggers, which may unleash or exacerbate IBS.
Collapse
Affiliation(s)
- O Rodríguez-Fandiño
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Departamento de Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, México Distrito Federal, México
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Recombinant flagellin and its cross-talk with lipopolysaccharide--effect on pooled chicken peripheral blood mononuclear cells. Res Vet Sci 2013; 95:930-5. [PMID: 23937992 DOI: 10.1016/j.rvsc.2013.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/01/2013] [Accepted: 07/13/2013] [Indexed: 01/14/2023]
Abstract
Toll-like receptors (TLRs) are one of the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. TLRs link innate and adaptive arms of immune system and are implicated in the development of defense against invading pathogens. Lipopolysaccharide (LPS) and flagellin are recognized by TLR4 and TLR5, respectively. In this study, the effect of flagellin and lipopolysaccharide alone and in combination on chicken peripheral blood mononuclear cells (PBMCs) was investigated. The FliC gene of Salmonella typhimurium was expressed in a prokaryotic expression system and the recombinant flagellin was used to stimulate the chicken PBMCs. A combination of recombinant flagellin and LPS synergistically upregulated nitric oxide production, IL-12 and IL-6 expression but antagonistically down regulated IL-4 expression in comparison to recombinant flagellin alone. The results indicate that these agonists synergistically interact and enhance macrophage function and promote Th1 immune response in chicken PBMCs.
Collapse
|
43
|
Tamegai H, Takada Y, Okabe M, Asada Y, Kusano K, Katagiri YU, Nagahara Y. Aureobasidium pullulans culture supernatant significantly stimulates R-848-activated phagocytosis of PMA-induced THP-1 macrophages. Immunopharmacol Immunotoxicol 2013; 35:455-61. [PMID: 23786444 DOI: 10.3109/08923973.2013.800106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toll-like receptors (TLRs), which recognize a wide range of microbial pathogens and pathogen-related products, play important roles in innate immunology. Macrophages have a variety of TLRs, and pathogen binding to TLR resulted in the activation of macrophages. R-848, an immune response modifier, is an analog of imidazoquinoline derivative and binds to an endosome-localized TLR to exert an anti-viral response on leukocytes. In the present study, we verified that co-treatment of R-848 with other TLR agonists would enhance immune response. The culture supernatant of Aureobasidium pullulans (A. pullulans, which contains predominantly soluble β-glucan), which binds to cell membrane-localized TLR, and to C-type lectin receptor Dectin-1, was treated together with R-848 to THP-1 macrophages. Compared to R-848 treatment alone, co-treatment of R-848 with A. pullulans culture supernatant significantly augmented TNF-α and IL-12p40 cytokine expression. Next, we investigated whether or not apoptotic cell uptake would be increased by co-treatment of R-848 with A. pullulans culture supernatant. To detect engulfed apoptotic cells, we induced apoptosis in human lymphoma Jurkat cells by 5-fluorouracil and stained them with fluorescent dye 5(6)-carboxytetramethylrhodamine (TAMRA), whereas THP-1 macrophage was labeled with fluorescein isothiocyanate-anti-CD14 and determined the percentage increase in TAMRA-positive THP-1 macrophages by flow cytometric assay. Since R-848 or A. pullulans treatment alone stimulated THP-1 macrophages to induce phagocytosis, co-treatment of R-848 with A. pullulans culture supernatant significantly augmented phagocytosis of apoptotic Jurkat cells. These results suggest that the activation of several different innate immune receptor pathways may enhance the immune response of R-848 significantly.
Collapse
Affiliation(s)
- Hidekazu Tamegai
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Dowling DJ, Tan Z, Prokopowicz ZM, Palmer CD, Matthews MAH, Dietsch GN, Hershberg RM, Levy O. The ultra-potent and selective TLR8 agonist VTX-294 activates human newborn and adult leukocytes. PLoS One 2013; 8:e58164. [PMID: 23483986 PMCID: PMC3587566 DOI: 10.1371/journal.pone.0058164] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/01/2013] [Indexed: 11/20/2022] Open
Abstract
Background Newborns display distinct immune responses that contribute to susceptibility to infection and reduced vaccine responses. Toll-like receptor (TLR) agonists may serve as vaccine adjuvants, when given individually or in combination, but responses of neonatal leukocytes to many TLR agonists are diminished. TLR8 agonists are more effective than other TLR agonists in activating human neonatal leukocytes in vitro, but little is known about whether different TLR8 agonists may distinctly activate neonatal leukocytes. We characterized the in vitro immuno-stimulatory activities of a novel benzazepine TLR8 agonist, VTX-294, in comparison to imidazoquinolines that activate TLR8 (R-848; (TLR7/8) CL075; (TLR8/7)), with respect to activation of human newborn and adult leukocytes. Effects of VTX-294 and R-848 in combination with monophosphoryl lipid A (MPLA; TLR4) were also assessed. Methods TLR agonist specificity was assessed using TLR-transfected HEK293 cells expressing a NF-κB reporter gene. TLR agonist-induced cytokine production was measured in human newborn cord and adult peripheral blood using ELISA and multiplex assays. Newborn and adult monocytes were differentiated into monocyte-derived dendritic cells (MoDCs) and TLR agonist-induced activation assessed by cytokine production (ELISA) and co-stimulatory molecule expression (flow cytometry). Results VTX-294 was ∼100x more active on TLR8- than TLR7-transfected HEK cells (EC50, ∼50 nM vs. ∼5700 nM). VTX-294-induced TNF and IL-1β production were comparable in newborn cord and adult peripheral blood, while VTX-294 was ∼ 1 log more potent in inducing TNF and IL-1β production than MPLA, R848 or CL075. Combination of VTX-294 and MPLA induced greater blood TNF and IL-1β responses than combination of R-848 and MPLA. VTX-294 also potently induced expression of cytokines and co-stimulatory molecules HLA-DR and CD86 in human newborn MoDCs. Conclusions VTX-294 is a novel ultra-potent TLR8 agonist that activates newborn and adult leukocytes and is a candidate vaccine adjuvant in both early life and adulthood.
Collapse
Affiliation(s)
- David J. Dowling
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Tan
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pediatrics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zofia M. Prokopowicz
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine D. Palmer
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Gregory N. Dietsch
- VentiRx Pharmaceuticals, Inc., Seattle, Washington, United States of America
| | - Robert M. Hershberg
- VentiRx Pharmaceuticals, Inc., Seattle, Washington, United States of America
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Thaxton JE, Nevers T, Lippe EO, Blois SM, Saito S, Sharma S. NKG2D blockade inhibits poly(I:C)-triggered fetal loss in wild type but not in IL-10-/- mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:3639-47. [PMID: 23455498 DOI: 10.4049/jimmunol.1203488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection and inflammation can disturb immune tolerance at the maternal-fetal interface, resulting in adverse pregnancy outcomes. However, the underlying mechanisms for detrimental immune responses remain ill defined. In this study, we provide evidence for immune programming of fetal loss in response to polyinosinic:polycytidylic acid (polyI:C), a viral mimic and an inducer of inflammatory milieu. IL-10 and uterine NK (uNK) cells expressing the activating receptor NKG2D play a critical role in poly(I:C)-induced fetal demise. In wild type (WT) mice, poly(I:C) treatment induced expansion of NKG2D(+) uNK cells and expression of Rae-1 (an NKG2D ligand) on uterine macrophages and led to fetal resorption. In IL-10(-/-) mice, NKG2D(-) T cells instead became the source of fetal resorption during the same gestation period. Interestingly, both uterine NK and T cells produced TNF-α as the key cytotoxic factor contributing to fetal loss. Treatment of WT mice with poly(I:C) resulted in excessive trophoblast migration into the decidua and increased TUNEL-positive signal. IL-10(-/-) mice supplemented with recombinant IL-10 induced fetal loss through NKG2D(+) uNK cells, similar to the response in WT mice. Blockade of NKG2D in poly(I:C)-treated WT mice led to normal pregnancy outcome. Thus, we demonstrate that pregnancy-disrupting inflammatory events mimicked by poly(I:C) are regulated by IL-10 and depend on the effector function of uterine NKG2D(+) NK cells in WT mice and NKG2D(-) T cells in IL-10 null mice.
Collapse
Affiliation(s)
- Jessica E Thaxton
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, Rhode Island 02905, USA
| | | | | | | | | | | |
Collapse
|
46
|
Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem 2013; 8:360-76. [PMID: 23316023 DOI: 10.1002/cmdc.201200487] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/08/2012] [Indexed: 12/11/2022]
Abstract
Traditional vaccines, based on the administration of killed or attenuated microorganisms, have proven to be among the most effective methods for disease prevention. Safety issues related to administering these complex mixtures, however, prevent their universal application. Through identification of the microbial components responsible for protective immunity, vaccine formulations can be simplified, enabling molecular-level vaccine characterization, improved safety profiles, prospects to develop new high-priority vaccines (e.g. for HIV, tuberculosis, and malaria), and the opportunity for extensive vaccine component optimization. This subunit approach, however, comes at the expense of decreased immunity, requiring the addition of immunostimulatory agents (adjuvants). As few adjuvants are currently used in licensed vaccines, adjuvant development represents an exciting area for medicinal chemists to play a role in the future of vaccine development. In addition, immune responses can be further customized though optimization of delivery systems, tuning the size of particulate vaccines, targeting specific cells of the immune system (e.g. dendritic cells), and adding components to aid vaccine efficacy in whole immunized populations (e.g. promiscuous T-helper epitopes). Herein we review the current state of the art and future direction in subunit vaccine development, with a focus on the described components and their potential to steer the immune response toward a desired response.
Collapse
Affiliation(s)
- Peter Michael Moyle
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | | |
Collapse
|
47
|
Leleux J, Roy K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2013; 2:72-94. [PMID: 23225517 DOI: 10.1002/adhm.201200268] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/31/2012] [Indexed: 01/09/2023]
Abstract
The development and widespread application of vaccines has been one of the most significant achievements of modern medicine. Vaccines have not only been instrumental in controlling and even eliminating life-threatening diseases like polio, measles, diphtheria, etc., but have also been immensely powerful in enhancing the worldwide outlook of public health over the past century. Despite these successes, there are still many complex disorders (e.g., cancer, HIV, and other emerging infectious diseases) for which effective preventative or therapeutic vaccines have been difficult to develop. This failure can be attributed primarily to our inability to precisely control and modulate the highly complex immune memory response, specifically the cellular response. Dominated by B and T cell maturation and function, the cellular response is primarily initiated by potent immunostimulators and antigens. Efficient and targeted delivery of these immunomodulatory and immunostimulatory molecules to appropriate cells is key to successful development of next generation vaccine formulations. Over the past decade, particulate carriers have emerged as an attractive means for enhancing the delivery efficacy and potency of vaccines and associated immunomodulatory molecules. Specifically, polymer-based micro and nanoparticles are being extensively studied for a wide variety of applications. In this review, we discuss the immunological fundamentals for developing effective vaccines and how materials and material properties can be exploited to improve these therapies. Particular emphasis is given to polymer-based particles and how the route of administration of particulate systems affects the phenotype and robustness of an immune response. Comparison of various strategies and recent advancements in the field are discussed along with insights into current limitations and future directions.
Collapse
Affiliation(s)
- Jardin Leleux
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
48
|
Cervantes JL, Weinerman B, Basole C, Salazar JC. TLR8: the forgotten relative revindicated. Cell Mol Immunol 2012; 9:434-8. [PMID: 23085951 PMCID: PMC3498840 DOI: 10.1038/cmi.2012.38] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endosomal Toll-like receptors (TLRs) TLR3, TLR7, TLR8 and TLR9 are important in sensing foreign nucleic acids encountered by phagocytes. Because TLR8 was initially thought to be non-functional in mice, less is known about TLR8 than the genetically and functionally related TLR7. Originally associated with the recognition of single-stranded RNA of viral origin, there is now evidence that human TLR8 is also able to sense bacterial RNA released within phagosomal vacuoles, inducing the production of both nuclear factor (NF)-κB-dependent cytokines and type I interferons (IFNs), such as IFN-β. The functions of TLR8 extend beyond the recognition of foreign pathogens and include cross-talk with other endosomal TLRs, a process that may also have a role in the generation of autoimmunity.
Collapse
Affiliation(s)
- Jorge L Cervantes
- Department of Pediatrics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
49
|
Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012; 11:237-56. [PMID: 22309671 DOI: 10.1586/erv.11.189] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The innate immune system plays an essential role in the host's first line of defense against microbial invasion, and involves the recognition of distinct pathogen-associated molecular patterns by pattern recognition receptors (PRRs). Activation of PRRs triggers cell signaling leading to the production of proinflammatory cytokines, chemokines and Type 1 interferons, and the induction of antimicrobial and inflammatory responses. These innate responses are also responsible for instructing the development of an appropriate pathogen-specific adaptive immune response. In this review, the focus is on different classes of PRRs that have been identified, including Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and the retinoic acid-inducible gene-I-like receptors, and their importance in host defense against infection. The role of PRR cooperation in generating optimal immune responses required for protective immunity and the potential of targeting PRRs in the development of a new generation of vaccine adjuvants is also discussed.
Collapse
Affiliation(s)
- Colleen Olive
- The Queensland Institute of Medical Research, Locked Bag 2000, Royal Brisbane Hospital, Herston, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
50
|
Bruserud Ø. Bidirectional crosstalk between platelets and monocytes initiated by Toll-like receptor: an important step in the early defense against fungal infections? Platelets 2012; 24:85-97. [PMID: 22646762 DOI: 10.3109/09537104.2012.678426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monocytes are important in the defense against fungal infections due to their phagocytic and immunoregulatory functions. Platelets also contribute in such immune responses through their release of soluble mediators, including chemokines as well as several other soluble mediators. Both monocytes and platelets express several Toll-like receptors (TLRs) that can recognize fungal molecules and thus initiate intracellular signaling events. TLR ligation on monocytes and platelets may thereby be an early immunological event and function as an initiator of a local proinflammatory crosstalk between platelets and monocytes resulting in (i) monocyte-induced increase of platelet activation and (ii) platelet-associated enhancement of the monocyte activation/function. These effects may have clinical implications both for the efficiency of antifungal treatment and for the predisposition to fungal infections, for example, increased predisposition in patients with thrombocytopenia/monocytopenia due to chemotherapy- or disease-induced bone marrow failure.
Collapse
Affiliation(s)
- Øyvind Bruserud
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|