1
|
Xu S, Deng Y, Li C, Hu Y, Zhang Q, Zhuang B, Mosongo I, Jiang J, Yang J, Hu K. Metabolomics and molecular docking-directed anti-obesity study of the ethanol extract from Gynostemma pentaphyllum (Thunb.) Makino. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118577. [PMID: 39019414 DOI: 10.1016/j.jep.2024.118577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is an oriental herb documented to treat many diseases, including obesity, hyperlipidemia, metabolic syndromes and aging. However, the anti-obesity mechanism of G. pentaphyllum remains poorly understood. AIM OF THE STUDY To reveal the anti-obesity mechanism of G. pentaphyllum Extract (GPE) in High-Fat Diet (HFD)-induced obese mice through untargeted metabolomics, Real-Time Quantitative PCR (RT-qPCR), and immunohistochemical experiments. Additionally, to tentatively identify the active constituents through LC-MS/MS and molecular docking approaches. MATERIALS AND METHODS GPE was prepared using ethanol reflux and purified by HP-20 macroporous resins. The components of GPE were identified by Liquid Chromatography- Mass Spectrometry (LC-MS) system. Forty-two C57BL/6 J mice were randomly and evenly divided into six groups, with seven mice in each group: the control group, obese model group, Beinaglutide group (positive control), and GPE low, medium, and high-dose groups (50 mg/kg, 100 mg/kg, and 200 mg/kg of 80% ethanol extract). Body weight, liver weight, blood glucose, blood lipids, and liver histopathological changes were assessed. Untargeted metabolomics was employed to characterize metabolic changes in obese mice after GPE treatment. The expression of genes related to differential metabolites was verified using Real-Time Quantitative PCR (RT-qPCR) and immunohistochemical experiments. The constituents with anti-obesity effects from GPE were tentatively identified through molecular docking approaches. RESULTS A total of 17 compounds were identified in GPE. GPE significantly lowered body weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in obese mice and reduced liver weight and hepatic steatosis. Serum metabolomics identified 20 potential biomarkers associated with GPE treatment in obese mice, primarily related to tryptophan metabolism. GPE treatment downregulated the expression of Slc6a19 and Tph1 and upregulated Ucp1 expression. Molecular docking illustrated that compounds such as 20(R)-ginsenoside Rg3, Araliasaponin I, Damulin B, Gypenoside L, Oleifolioside B, and Tricin7-neohesperidoside identified in GPE exhibited favorable interaction with Tph1. CONCLUSION The extract of G. pentaphyllum can inhibit the absorption of tryptophan and its conversion to 5-HT through the Slc6a19/Tph1 pathway, upregulating the expression of Ucp1, thereby promoting thermogenesis in brown adipose tissue, facilitating weight loss, and mitigating symptoms of fatty liver. Triterpenoids such as Araliasaponin I, identified in GPE, could be the potential inhibitor of Tph1 and responsible for the anti-obesity activities.
Collapse
Affiliation(s)
- Suyun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Yaling Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Youfan Hu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qi Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Baojun Zhuang
- Yunnan Province Hospital of Traditional Chinese Medicine, Kunming, Yunnan, 650021, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiaming Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
2
|
Yang X, Lin R, Feng C, Kang Q, Yu P, Deng Y, Jin Y. Research Progress on Peptide Drugs for Type 2 Diabetes and the Possibility of Oral Administration. Pharmaceutics 2024; 16:1353. [PMID: 39598478 PMCID: PMC11597531 DOI: 10.3390/pharmaceutics16111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Diabetes is a global disease that can lead to a range of complications. Currently, the treatment of type 2 diabetes focuses on oral hypoglycemic drugs and insulin analogues. Studies have shown that drugs such as oral metformin are useful in the treatment of diabetes but can limit the liver's ability to release sugar. The development of glucose-lowering peptides has provided new options for the treatment of type 2 diabetes. Peptide drugs have low oral utilization due to their easy degradation, short half-life, and difficulty passing through the intestinal mucosa. Therefore, improving the oral utilization of peptide drugs remains an urgent problem. This paper reviews the research progress of peptide drugs in the treatment of diabetes mellitus and proposes that different types of nano-formulation carriers, such as liposomes, self-emulsifying drug delivery systems, and polymer particles, should be combined with peptide drugs for oral administration to improve their absorption in the gastrointestinal tract.
Collapse
Affiliation(s)
- Xinxin Yang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ruiting Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Changzhuo Feng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Qiyuan Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Peng Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; (C.F.); (Q.K.); (P.Y.)
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.Y.); (R.L.)
| |
Collapse
|
3
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
4
|
Perez-Frances M, Bru-Tari E, Cohrs C, Abate MV, van Gurp L, Furuyama K, Speier S, Thorel F, Herrera PL. Regulated and adaptive in vivo insulin secretion from islets only containing β-cells. Nat Metab 2024; 6:1791-1806. [PMID: 39169271 PMCID: PMC11422169 DOI: 10.1038/s42255-024-01114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.
Collapse
Affiliation(s)
- Marta Perez-Frances
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eva Bru-Tari
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Cohrs
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Maria Valentina Abate
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Léon van Gurp
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kenichiro Furuyama
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, iGE3 and Centre facultaire du diabète, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Qin XY, Zhu R, Hou XD, Zhu GH, Zhang M, Fan YF, Qi SL, Huang J, Tang H, Wang P, Ge GB. Discovery of baicalein derivatives as novel inhibitors against human pancreatic lipase: Structure-activity relationships and inhibitory mechanisms. Int J Biol Macromol 2024; 275:133523. [PMID: 38945336 DOI: 10.1016/j.ijbiomac.2024.133523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Human pancreatic lipase (hPL) is a vital digestive enzyme responsible for breaking down dietary fats in humans, inhibiting hPL is a feasible strategy for preventing and treating obesity. This study aims to investigate the structure-activity relationships (SARs) of flavonoids as hPL inhibitors, and to find potent hPL inhibitors from natural and synthetic flavonoids. In this work, the anti-hPL effects of forty-nine structurally diverse naturally occurring flavonoids were assessed and the SARs were summarized. The results demonstrated that the pyrogallol group on the A ring was a key moiety for hPL inhibition. Subsequently, a series of baicalein derivatives were synthesized, while 4'-amino baicalein (ABA) and 4'-pyrrolidine baicalein (PBA) were identified as novel potent hPL inhibitors (IC50 < 1 μM). Further investigations showed that scutellarein, ABA and PBA potently inhibited hPL in a non-competitive manner (Ki < 1 μM). Among all tested flavonoids, PBA showed the most potent anti-hPL effect in vitro, while this agent also exhibited favorable safety profiles, unique tissue distribution (high exposure level to intestinal system but low exposure levels to deep organs) and impressive in vivo effects for lowering blood triglyceride levels in mice. Collectively, this work uncovers the SARs of flavonoids against hPL, while a newly synthetic flavonoid (PBA) emerges as a potent hPL inhibitor with favorable safety profiles and impressive anti-hPL effects in vivo.
Collapse
Affiliation(s)
- Xiao-Ya Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang 832003, China
| | - Rong Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang 832003, China
| | - Yu-Fan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sheng-Lan Qi
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jian Huang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute for Food and Drug Control, Shanghai 200233, China.
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Pharmacy School of Shihezi University, Xinjiang 832003, China.
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Vergès B. Do anti-obesity medical treatments have a direct effect on adipose tissue? ANNALES D'ENDOCRINOLOGIE 2024; 85:179-183. [PMID: 38871515 DOI: 10.1016/j.ando.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
During the past years, several drugs have been developed for the treatment of obesity. Some are already used in clinical practice: orlistat, GLP-1 receptor agonists (RA), GLP-1/GIP biagonists and the melanocortin 4 receptor (MC4R) agonist, setmelanotide. Some should be available in the future: GLP-1/glucagon biagonists, GLP-1/GIP/glucagon triagonists. These drugs act mainly by reducing food intake or fat absorption. However, many of them show specific effects on the adipose tissue. All these drugs show significant reduction of fat mass and, more particularly of visceral fat. If most of the drugs, except orlistat, have been shown to increase energy expenditure in rodents with enhanced thermogenesis, this has not yet been clearly demonstrated in humans. However, biagonists or triagonist stimulating glucagon seem to a have a more potent effect to increase thermogenesis in the adipose tissue and, thus, energy expenditure. Most of these drugs have been shown to increase the production of adiponectin and to reduce the production of pro-inflammatory cytokines by the adipose tissue. GLP-1RAs reduce the size of adipocytes and promote their differentiation. GLP-1RAS and GLP-1/GIP biagonists reduce, in the adipose tissue, the expression of several genes involved in lipogenesis. Further studies are still needed to clarify the precise roles, on the adipose tissue, of these drugs dedicated for the treatment of obesity.
Collapse
Affiliation(s)
- Bruno Vergès
- Department of Endocrinology-Diabetology, University Hospital, Dijon, France; Inserm, LNR, UMR1231, University of Burgundy and Franche-Comté, Dijon, France.
| |
Collapse
|
7
|
Xu XY, Wang JX, Chen JL, Dai M, Wang YM, Chen Q, Li YH, Zhu GQ, Chen AD. GLP-1 in the Hypothalamic Paraventricular Nucleus Promotes Sympathetic Activation and Hypertension. J Neurosci 2024; 44:e2032232024. [PMID: 38565292 PMCID: PMC11112640 DOI: 10.1523/jneurosci.2032-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Min Dai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Ming Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
9
|
Chen K, Chen L, Shan Z, Wang G, Qu S, Qin G, Yu X, Xin W, Hsieh TH, Mu Y. Beinaglutide for weight management in Chinese individuals with overweight or obesity: A phase 3 randomized controlled clinical study. Diabetes Obes Metab 2024; 26:690-698. [PMID: 37945546 DOI: 10.1111/dom.15360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
AIM To investigate the efficacy and safety of beinaglutide as an adjunct to lifestyle intervention among non-diabetic Chinese individuals with overweight or obesity. METHODS This multicentre, randomized, double-blind, placebo-controlled trial (ChiCTR1900023428) included 427 Chinese adults with a body mass index of 28 kg/m2 or higher (obesity) or 24-27.9 kg/m2 (overweight) with weight-related complications. Patients were randomized in a 2:1 ratio to receive 0.2 mg of beinaglutide (subcutaneous) thrice daily or placebo for 16 weeks. Co-primary endpoints were body weight change and the proportion of patients with a weight reduction of 5% or more. RESULTS Mean body weight change from baseline to week 16 was -6.0% and -2.4% in the beinaglutide (n = 282) and placebo (n = 138) groups, respectively; the mixed model repeated measures difference was -3.6% (95% confidence interval: -4.6% to -2.6%; P < .0001). At week 16, more beinaglutide-treated patients achieved a weight reduction of 5% or more (58.2% vs. 25.4% [placebo], odds ratio: 4.4; P < .0001) and of 10% or more (21.3% vs. 5.1% [placebo], odds ratio: 5.5; P < .0001). Beinaglutide also resulted in greater waist circumference reduction (difference: -1.81 cm; P < .01). The weight regain rate 12 weeks after beinaglutide treatment was 0.78%. Nausea (transient and mild-to-moderate) was the most common adverse event in the beinaglutide group (49.3% vs. 7.1% [placebo]). More patients receiving beinaglutide discontinued treatment because of adverse events (5.9% vs. 0.7% [placebo]). Pancreatitis or an increased resting heart rate was not observed in the beinaglutide group. CONCLUSION Beinaglutide combined with lifestyle intervention resulted in significant and clinically meaningful weight reduction with good tolerance in non-diabetic Chinese individuals with overweight or obesity.
Collapse
Affiliation(s)
- Kang Chen
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Zhongyan Shan
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guixia Wang
- The First Hospital of Jilin University, Jilin, China
| | - Shen Qu
- Shanghai Tenth People's Hospital, Shanghai, China
| | - Guijun Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuefeng Yu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiquan Xin
- Shanghai Benemae Pharmaceutical Corporation, Shanghai, China
| | - Tsung-Han Hsieh
- Shanghai Benemae Pharmaceutical Corporation, Shanghai, China
| | - Yiming Mu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Ruggiero R, Mascolo A, Spezzaferri A, Carpentieri C, Torella D, Sportiello L, Rossi F, Paolisso G, Capuano A. Glucagon-like Peptide-1 Receptor Agonists and Suicidal Ideation: Analysis of Real-Word Data Collected in the European Pharmacovigilance Database. Pharmaceuticals (Basel) 2024; 17:147. [PMID: 38399362 PMCID: PMC10892952 DOI: 10.3390/ph17020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND A potential risk of suicide associated with liraglutide or semaglutide treatments has recently emerged. Therefore, we decided to investigate the reporting probability of suicidal events among glucagon-like peptide-1 receptor agonists (GLP-1 RAs). METHODS A retrospective pharmacovigilance study of the European Pharmacovigilance database was conducted for the period from 1 January 2018 to 10 July 2023. Disproportionality analyses (reporting odds ratio, ROR) were performed to assess the reporting probability of suicidal events among GLP-1 RAs. RESULTS A total of 230 reports of suicidal events were identified. The most reported GLP-1 RA was liraglutide (38.3%), followed by semaglutide (36.5%) and dulaglutide (16.1%). The most reported events were suicidal ideation (65.3%) and suicide attempt (19.5%). Disproportionality analysis found a higher reporting probability of suicidal events for semaglutide than dulaglutide (ROR, 2.05; 95%CI, 1.40-3.01) and exenatide (ROR, 1.81; 95%CI, 1.08-3.05). In the same way, liraglutide was associated with a higher reporting probability of suicidal events than dulaglutide (ROR, 3.98; 95%CI, 2.73-5.82) and exenatide (ROR, 3.52; 95%CI, 2.10-5.92). On the contrary, a lower reporting probability was found for semaglutide than liraglutide (ROR, 0.51; 95%CI, 0.38-0.69). CONCLUSIONS Suicidal events were mostly reported with semaglutide and liraglutide, which were also associated with significantly higher reporting probabilities compared to other GLP1 RAs. Although this study provides the reporting frequencies of suicide-related events with GLP-1 RAs, establishing causality requires further investigation, which will probably be addressed by the Pharmacovigilance Risk Assessment Committee of the European Medicine Agency in the future.
Collapse
Affiliation(s)
- Rosanna Ruggiero
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Angela Spezzaferri
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Claudia Carpentieri
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
- UniCamillus International Medical University, 00131 Rome, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Napoli, Italy; (R.R.)
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy
| |
Collapse
|
11
|
Pal B, Chattopadhyay M. Recent clinical and pharmacological advancements of incretin-based therapy and the effects of incretin on physiology. JOURNAL OF DIABETOLOGY 2024; 15:24-37. [DOI: 10.4103/jod.jod_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 12/11/2024] Open
Abstract
Abstract
A novel therapeutic target for diabetes mellitus is incretin-based therapies, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides are released from the gastrointestinal (GI) tract and act on beta cells of pancreatic islets by increasing the secretion of insulin. The management and prevention of diabetes require habitual and pharmacological therapies along with quality and healthy lifestyle. This includes maintaining the body weight, blood glucose level, cardiovascular risk, complexity, and co-morbidities. The utilization of glucagon-like peptide-1 (GLP-1) agonists is an object of research with favorable hemoglobin A1C levels and weight loss in type 1 diabetic patients. However, cost-effectiveness and tolerability, remain significant barriers for patients to using these medications. The risk of suicidal tendencies and thoughts of self-harm have been increased in patients receiving GLP-1 receptor agonists. Tirzepatide treatment showed a potent glucose-lowering effect and promoted weight loss with minimum GI adverse effects in animal studies as well as phase I and II human trials, in comparison with established GLP-1 receptor agonists. The glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide-antagonist effectively blocks the action of gastric-inhibitory-polypeptide (GIP) in vitro and ex vivo in human pancreas and in vivo in rodent models. However, incretin-based therapies have received enormous attention in the last few decades for the treatment of diabetes, obesity, and other repurposing including central nervous system disorders. Therefore, in this article, we demonstrate the overview, physiological, and pharmacological advances of incretin-based pharmacotherapies and their physiological roles. Furthermore, the recent updates of glucagon-like peptide-1 receptor agonist, Glucagon-like peptide-2 receptor agonist, GLP-1/GIP co-agonists, GIP/GLP-1/glucagon triple agonist and GIP-antagonist are also discussed.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Debipur, West Bengal, India
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
12
|
Wang YH, Chen X, Bai YZ, Gao P, Yang Z, Guo Q, Lu YY, Zheng J, Liu D, Yang J, Tu PF, Zeng KW. Palmitoylation of PKCδ by ZDHHC5 in hypothalamic microglia presents as a therapeutic target for fatty liver disease. Theranostics 2024; 14:988-1009. [PMID: 38250049 PMCID: PMC10797291 DOI: 10.7150/thno.89602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The hypothalamus plays a fundamental role in controlling lipid metabolism through neuroendocrine signals. However, there are currently no available drug targets in the hypothalamus that can effectively improve human lipid metabolism. In this study, we found that the antimalarial drug artemether (ART) significantly improved lipid metabolism by specifically inhibiting microglial activation in the hypothalamus of high-fat diet-induced mice. Mechanically, ART protects the thyrotropin-releasing hormone (TRH) neurons surrounding microglial cells from inflammatory damage and promotes the release of TRH into the peripheral circulation. As a result, TRH stimulates the synthesis of thyroid hormone (TH), leading to a significant improvement in hepatic lipid disorders. Subsequently, we employed a biotin-labeled ART chemical probe to identify the direct cellular target in microglial cells as protein kinase Cδ (PKCδ). Importantly, ART directly targeted PKCδ to inhibit its palmitoylation modification by blocking the binding of zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5), which resulted in the inhibition of downstream neuroinflammation signaling. In vivo, hypothalamic microglia-specific PKCδ knockdown markedly impaired ART-dependent neuroendocrine regulation and lipid metabolism improvement in mice. Furthermore, single-cell transcriptomics analysis in human brain tissues revealed that the level of PKCδ in microglia positively correlated with individuals who had hyperlipemia, thereby highlighting a clinical translational value. Collectively, these data suggest that the palmitoylation of microglial PKCδ in the hypothalamus plays a role in modulating peripheral lipid metabolism through hypothalamus-liver communication, and provides a promising therapeutic target for fatty liver diseases.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Chen
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Yi-Zhen Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Yuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiao Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Jun Yang
- Department of Neurosurgery, Peking University Third Hospital, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Wilbon SS, Kolonin MG. GLP1 Receptor Agonists-Effects beyond Obesity and Diabetes. Cells 2023; 13:65. [PMID: 38201269 PMCID: PMC10778154 DOI: 10.3390/cells13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) have been transformative for patients and clinicians in treating type-2 diabetes and obesity. Drugs of this class, the bioavailability of which is continuously improving, enable weight loss and control blood glucose with minimal unwanted side effects. Since adopting GLP1RA for treating metabolic diseases, animal and clinical studies have revealed their beneficial effects on several other pathologies, including cardiovascular diseases, neurodegeneration, kidney disease, and cancer. A notable commonality between these diseases is their association with older age. Clinical trials and preclinical data suggest that GLP1RA may improve outcomes in these aging-related diseases. Some of the benefits of GLP1RA may be indirect due to their effects on obesity and glucose metabolism. However, there is building evidence that GLP1RA may also act directly on multiple organs implicated in aging-related pathology. This review aims to compile the studies reporting the effects of GLP1RA on aging-related diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| |
Collapse
|
14
|
Han CY, Lu JP, Ye XM, Jin HY, Xu WW, Wang P, Zhang M. Effect of beinaglutide combined with metformin versus aspart 30 with metformin on metabolic profiles and antidrug antibodies in patients with type 2 diabetes: a randomized clinical trial. Front Endocrinol (Lausanne) 2023; 14:1267503. [PMID: 38125788 PMCID: PMC10731293 DOI: 10.3389/fendo.2023.1267503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Objective This prospective study aimed to evaluate the effect of beinaglutide combined with metformin versus aspart 30 with metformin on metabolic profiles and antidrug antibodies (ADAs) in patients with type 2 diabetes (T2D). Methods A total of 134 eligible participants were randomly assigned to the test group and the control group. Patients in the test group were treated with beinaglutide and metformin, whereas patients in the control group were randomly treated with aspart 30 and metformin, with a follow-up period of 6 months. The metabolic profiles and ADAs over 6 months were evaluated. Results After 6 months, 101 (75.37%) patients completed the study. Compared with the control group, the beinaglutide group had significant reductions in 2-h postprandial blood glucose (2hBG) and low blood glucose index (LBGI). Glycated hemoglobin (HbA1c) decreased in both groups relative to baseline. In the test group, one had treatment-emergent beinaglutide ADAs. Significant reductions in triglycerides (TG), non-fasting TG, weight, waist circumference (WC), and body mass index (BMI) were observed. The values of insulin sensitivity index (HOMA-IR) were decreased to a statistically higher degree with beinaglutide treatment. Conclusion Beinaglutide reduces metabolic dysfunction, LBGI, and weight in patients of T2D with a low risk of ADAs. Beinaglutide may offer the potential for a disease-modifying intervention in cardiovascular disease (CVD). Clinical trial registration www.chictr.org.cn, identifier ChiCTR2200061003.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Zhang
- Department of Endocrinology, Qingpu Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kim J, Chang N, Kim Y, Lee J, Oh D, Choi J, Kim O, Kim S, Choi M, Lee J, Lee J, Kim J, Cho M, Kim M, Lee K, Hwang D, Sa JK, Park S, Baek S, Im D. The Novel Tetra-Specific Drug C-192, Conjugated Using UniStac, Alleviates Non-Alcoholic Steatohepatitis in an MCD Diet-Induced Mouse Model. Pharmaceuticals (Basel) 2023; 16:1601. [PMID: 38004466 PMCID: PMC10674394 DOI: 10.3390/ph16111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a complex disease resulting from chronic liver injury associated with obesity, type 2 diabetes, and inflammation. Recently, the importance of developing multi-target drugs as a strategy to address complex diseases such as NASH has been growing; however, their manufacturing processes remain time- and cost-intensive and inefficient. To overcome these limitations, we developed UniStac, a novel enzyme-mediated conjugation platform for multi-specific drug development. UniStac demonstrated high conjugation yields, optimal thermal stabilities, and robust biological activities. We designed a tetra-specific compound, C-192, targeting glucagon-like peptide 1 (GLP-1), glucagon (GCG), fibroblast growth factor 21 (FGF21), and interleukin-1 receptor antagonist (IL-1RA) simultaneously for the treatment of NASH using UniStac. The biological activity and treatment efficacy of C-192 were confirmed both in vitro and in vivo using a methionine-choline-deficient (MCD) diet-induced mouse model. C-192 exhibited profound therapeutic efficacies compared to conventional drugs, including liraglutide and dulaglutide. C-192 significantly improved alanine transaminase levels, triglyceride accumulation, and the non-alcoholic fatty liver disease activity score. In this study, we demonstrated the feasibility of UniStac in creating multi-specific drugs and confirmed the therapeutic potential of C-192, a drug that integrates multiple mechanisms into a single molecule for the treatment of NASH.
Collapse
Affiliation(s)
- Jihye Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Nakho Chang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Yunki Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaehyun Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Daeseok Oh
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaeyoung Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Onyou Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Sujin Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Myongho Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junyeob Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junghwa Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jungyul Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minji Cho
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minsu Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Kwanghwan Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Dukhyun Hwang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungjin Park
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Seungjae Baek
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daeseong Im
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| |
Collapse
|
16
|
Liu X, Yang W, Liu J, Huang X, Fang Y, Ming J, Lai J, Fu J, Ji Q, Wang L. The efficacy and safety of beinaglutide alone or in combination with insulin glargine in Chinese patients with type 2 diabetes mellitus who are inadequately controlled with oral antihyperglycemic therapy: A multicenter, open-label, randomized trial. J Diabetes 2023; 16:e13483. [PMID: 37864379 PMCID: PMC10850920 DOI: 10.1111/1753-0407.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/03/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND To compare glycemic control in Chinese patients with type 2 diabetes mellitus (T2DM) whose blood glucose levels were inadequately controlled with oral antidiabetic drugs after beinaglutide alone or combined with insulin glargine (IGlar). METHODS In this 16-week multicenter, randomized clinical trial, 68 participants randomly received beinaglutide or IGlar for 8 weeks, then the two drugs in combination for 8 weeks. The primary outcomes were the proportion of individuals achieving their glycemic target and the change in glucose variability as measured with a continuous glucose monitoring system from baseline to 8 and 16 weeks. RESULTS Both the beinaglutide and IGlar groups showed increased proportions achieving their glycemic target at 8 weeks, and the combination augmented the proportion reaching the glycated hemoglobin target from 25.42% at 8 weeks to 40.68% at 16 weeks. The beinaglutide group showed a significant reduction in body weight, body mass index, waist circumference, and systolic blood pressure. Beinaglutide elevated high-density lipoprotein cholesterol by 0.08 mmol/L (95% confidence interval [CI], 0.00-0.16), and diminished low-density lipoprotein cholesterol by 0.21 mmol/L (95% CI, 0.05-0.48), whereas IGlar showed no effect. Though IGlar was more efficient in lowering fasting plasma glucose than beinaglutide at comparable efficacies (to -1.57 mmol/L [95% CI, -2.60 to -0.54]), this difference was abolished in patients whose fasting C-peptide was ≥0.9 ng/mL. CONCLUSION Beinaglutide exhibited a favorable hypoglycemic effect on patients with T2DM, and in combination with IGlar, glucose level was further decreased. Low fasting C-peptide in patients may reduce the glycemic response to beinaglutide therapy. We recommend that C-peptide levels be evaluated when using or switching to the novel glucagon-like peptide-1 receptor agonists beinaglutide. TRIAL REGISTRATION ClinicalTrials.gov: NCT03829891.
Collapse
Affiliation(s)
- Xiangyang Liu
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Wenjuan Yang
- Department of EndocrinologyShaanxi Aerospace HospitalXi'anChina
| | - Jianrong Liu
- Department of EndocrinologyXi'an Chang An HospitalXi'anChina
| | - Xinxi Huang
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Yujie Fang
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Jie Ming
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Jingbo Lai
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Jianfang Fu
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Qiuhe Ji
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Li Wang
- Department of Endocrinology, Xijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
17
|
Cho YK, Lee S, Lee J, Doh J, Park JH, Jung YS, Lee YH. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med 2023; 55:1955-1973. [PMID: 37653032 PMCID: PMC10545718 DOI: 10.1038/s12276-023-01071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 09/02/2023] Open
Abstract
Adipose tissue is a dynamic and metabolically active organ that plays a crucial role in energy homeostasis and endocrine function. Recent advancements in lipidomics techniques have enabled the study of the complex lipid composition of adipose tissue and its role in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, adipose tissue lipidomics has emerged as a powerful tool for understanding the molecular mechanisms underlying these disorders and identifying bioactive lipid mediators and potential therapeutic targets. This review aims to summarize recent lipidomics studies that investigated the dynamic remodeling of adipose tissue lipids in response to specific physiological changes, pharmacological interventions, and pathological conditions. We discuss the molecular mechanisms of lipid remodeling in adipose tissue and explore the recent identification of bioactive lipid mediators generated in adipose tissue that regulate adipocytes and systemic metabolism. We propose that manipulating lipid-mediator metabolism could serve as a therapeutic approach for preventing or treating obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Yoon Keun Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sumin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX Institute, Soft Foundry Institute, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Yun-Hee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Han CY, Ye XM, Lu JP, Jin HY, Wang P, Xu WW, Zhang M. Effect of Benaglutide on Gut Microbiota and Fecal Metabolites in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:2329-2344. [PMID: 37577040 PMCID: PMC10416789 DOI: 10.2147/dmso.s418757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Objective Benaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1RA) that has been approved in the treatment of type 2 diabetes mellitus (T2DM). It is known to lead to significant weight loss, and it is hypothesized that changes in gut microbiota may play a significant role in such weight loss. However, it is unclear how gut microbiota and metabolites change as a result of benaglutide treatment. Methods Healthy participants and patients with T2DM were included in this study. They received differentiated treatments, and stool specimens were collected separately. These stool specimens were subjected to 16S ribosomal RNA amplicon and metagenomic sequencing to create fecal metabolomic profiles. The diversity of gut microbiota and metabolic products in the stools of each participant was analyzed. Results The data showed that Faecalibacterium prausnitzii was abundant in the gut microbiota of the control group, which was entirely made up of healthy individuals; however, it showed a statistically significant decrease in patients with T2DM treated with metformin alone, while no significant decrease was observed in patients treated with metformin combined with benaglutide. A metagenomic analysis revealed that benaglutide could improve the fecal microbiota diversity in patients with T2DM. Furthermore, there was a statistically significant correlation between the changes in the metabolites of patients with T2DM and the changes in their gut microbiota (including F. prausnitzii) after treatment with metformin and benaglutide. Conclusion These findings suggest that the weight-reducing effect of benaglutide is attributed to its ability to normalize the gut microbiota of patients with T2DM, particularly by increasing the abundance of F. prausnitzii.
Collapse
Affiliation(s)
- Chen-Yu Han
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Xiao-Mei Ye
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Jia-Ping Lu
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Hai-Ying Jin
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Ping Wang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Wei-Wei Xu
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Min Zhang
- Department of Endocrinology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| |
Collapse
|
19
|
Alorfi NM, Alshehri FS. Usage of Glucagon-Like Peptide-1 for Obesity in Children; Updated Review of Clinicaltrials.gov. J Multidiscip Healthc 2023; 16:2179-2187. [PMID: 37547806 PMCID: PMC10402718 DOI: 10.2147/jmdh.s419245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Background Obesity in both adults and children is a primary health concern that can lead to many complications at a young age, including insulin resistance, type 2 diabetes, and other diseases. Glucagon-like peptide-1 receptor agonists (GLP-1) are drugs utilized to treat diabetes, but they are also approved as an adjunct to a low-calorie diet to reduce body weight and to enhance the metabolic profile readings for diabetic and non-diabetic patients. However, their efficacy and safety in children have not been extensively examined. Aim To identify glucagon-like peptide-1 medications for obesity in pediatric participants (aged up to 17 years old). Methods Analysis of all clinical trials registered on ClinicalTrials.gov for obesity using GLP-1 as a treatment for children. Results As of January 26th, 2023, 10,828 clinical trials were found. The search included childhood obesity using GLP-1. The number of trials on the use of GLP-1 to treat childhood obesity is limited. The final number of analyzed trials was 19. GLP-1 has been shown to result in the effective management of body gain among children. Conclusion Exenatide, semaglutide, and liraglutide were the only GLP-1 medications used as the pharmacotherapy option. It has been studied in many circumstances eg, to treat children with severe obesity, PCOS, hypothalamic obesity, glucose tolerance, and as a complementary treatment alongside behavior-lifestyle change and surgery for obesity.
Collapse
Affiliation(s)
- Nasser M Alorfi
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad S Alshehri
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
20
|
Khalifa O, Ouararhni K, Errafii K, Alajez NM, Arredouani A. Targeted MicroRNA Profiling Reveals That Exendin-4 Modulates the Expression of Several MicroRNAs to Reduce Steatosis in HepG2 Cells. Int J Mol Sci 2023; 24:11606. [PMID: 37511368 PMCID: PMC10380891 DOI: 10.3390/ijms241411606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/β-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.
Collapse
Affiliation(s)
- Olfa Khalifa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Khaoula Errafii
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43151, Morocco
| | - Nehad M Alajez
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
21
|
Cases A. Glucagon-like peptide 1(GLP-1) receptor agonists in the management of the patient with type 2diabetes mellitus and chronic kidney disease: an approach for the nephrologist. Nefrologia 2023; 43:399-412. [PMID: 37813741 DOI: 10.1016/j.nefroe.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 10/11/2023] Open
Abstract
Diabetic kidney disease, a common complication in patients with type 2 diabetes mellitus, is associated with a markedly increased morbidity and mortality, especially of cardiovascular origin, and faster progression to end-stage renal disease. To date, reducing cardiovascular and renal risk in this population was based on strict control of cardiovascular risk factors and the renin-angiotensin system blockade. More recently, sodium-glucose cotransporter type 2 inhibitors have demonstrated to offer cardiovascular and renal protection, but the residual risk remains high and their antihyperglycemic efficacy is limited in moderate-severe CKD. Therefore, drugs with a potent antihyperglycemic effect, independent of the glomerular filtration rate, with a low risk of hypoglycemia, that reduce weight in overweight/obese patients and that provide cardiovascular and renal protection, such as GLP-1 receptor agonists, are needed. However, these drugs require subcutaneous administration, which may limit their early use. The recent availability of oral semaglutide may facilitate the early introduction of this family with proven cardiovascular and renal benefits and excellent safety profile. In this review the family is analyzed as well as their cardiovascular and renal effects.
Collapse
Affiliation(s)
- Aleix Cases
- Departament de Medicina, Facultat de Medicina, Campus Clínic, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Wen Q, Fang S, Liang Y, Tian Y, Chen Y, Yuan J, Chen Q. Short-term effect of beinaglutide combined with metformin versus metformin alone on weight loss and metabolic profiles in obese patients with polycystic ovary syndrome: a pilot randomized trial. Front Endocrinol (Lausanne) 2023; 14:1156521. [PMID: 37347114 PMCID: PMC10280986 DOI: 10.3389/fendo.2023.1156521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023] Open
Abstract
Objective To observe the effect of beinaglutide combined with metformin versus metformin alone on weight loss and metabolic profiles in obese patients with polycystic ovary syndrome(PCOS). Methods A total of 64 overweight/obese women with PCOS diagnosed via the Rotterdam criteria were randomly assigned to metformin(MET) 850 mg twice a day(BID) or combined MET 850 mg BID with beinaglutide (COMB) starting at 0.1mg three times a day(TID)and increasing to 0.2mg TID two weeks later. The main endpoints were changes in anthropometric measurements of obesity. Glucose and lipid metabolic, gonadal profiles, and antral follicle count changes as secondary outcomes were also observed. Results 60(93.75%) patients completed the study. In terms of lowering weight, body mass index (BMI),waist circumference(WC) and waist to height ratio(WHtR), COMB treatment outperformed MET monotherapy. Subjects in the COMB arm lost weight 4.54±3.16kg compared with a 2.47±3.59kg loss in the MET arm. In the COMB group, BMI,WC and WHtR were reduced significantly compared with that in the MET group, respectively. COMB therapy is also more favorable in the reduction of fasting insulin(FINS), total testosterone(TT), and homeostasis model assessment-insulin resistance(HOMA-IR) when compared to MET therapy. Antral follicle count and ovarian volume were non-significantly changed in both groups.The most frequent side effects in both groups were mild and moderate digestive symptoms. Itching and induration at the injection site were reported with COMB treatment. Conclusion Short-term combined treatment with beinaglutide and metformin appears superior to metformin monotherapy in lowering body weight, BMI, WC,WHtR and improving insulin sensitivity and androgen excess in women with PCOS and obesity, with tolerable adverse events. Clinical trial registration https://www.chictr.org.cn/listbycreater.aspx, identifier ChiCTR2000033741.
Collapse
Affiliation(s)
- Qing Wen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Fang
- Medical Department of Endocrinology, The Traditional Chinese Medicine Hospital of Longquanyi, Chengdu, China
| | - Yanjing Liang
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Tian
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Yuan
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Medical Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Petrovic A, Igrec D, Rozac K, Bojanic K, Kuna L, Kolaric TO, Mihaljevic V, Sikora R, Smolic R, Glasnovic M, Wu GY, Smolic M. The Role of GLP1-RAs in Direct Modulation of Lipid Metabolism in Hepatic Tissue as Determined Using In Vitro Models of NAFLD. Curr Issues Mol Biol 2023; 45:4544-4556. [PMID: 37367037 DOI: 10.3390/cimb45060288] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to improve glucose and lipid homeostasis, promote weight loss, and reduce cardiovascular risk factors. They are a promising therapeutic option for non-alcoholic fatty liver disease (NAFLD), the most common liver disease, associated with T2DM, obesity, and metabolic syndrome. GLP-1RAs have been approved for the treatment of T2DM and obesity, but not for NAFLD. Most recent clinical trials have suggested the importance of early pharmacologic intervention with GLP-1RAs in alleviating and limiting NAFLD, as well as highlighting the relative scarcity of in vitro studies on semaglutide, indicating the need for further research. However, extra-hepatic factors contribute to the GLP-1RA results of in vivo studies. Cell culture models of NAFLD can be helpful in eliminating extrahepatic effects on the alleviation of hepatic steatosis, modulation of lipid metabolism pathways, reduction of inflammation, and prevention of the progression of NAFLD to severe hepatic conditions. In this review article, we discuss the role of GLP-1 and GLP-1RA in the treatment of NAFLD using human hepatocyte models.
Collapse
Affiliation(s)
- Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dunja Igrec
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Karla Rozac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tea Omanovic Kolaric
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljevic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Glasnovic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - George Y Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
24
|
Lee E, Korf H, Vidal-Puig A. An adipocentric perspective on the development and progression of non-alcoholic fatty liver disease. J Hepatol 2023; 78:1048-1062. [PMID: 36740049 DOI: 10.1016/j.jhep.2023.01.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Alongside the liver, white adipose tissue (WAT) is critical in regulating systemic energy homeostasis. Although each organ has its specialised functions, they must work coordinately to regulate whole-body metabolism. Adipose tissues and the liver are relatively resilient and can adapt to an energy surplus by facilitating triglyceride (TG) storage up to a certain threshold level without significant metabolic disturbances. However, lipid storage in WAT beyond a "personalised" adiposity threshold becomes dysfunctional, leading to metabolic inflexibility, progressive inflammation, and aberrant adipokine secretion. Moreover, the failure of adipose tissue to store and mobilise lipids results in systemic knock-on lipid overload, particularly in the liver. Factors contributing to hepatic lipid overload include lipids released from WAT, dietary fat intake, and enhanced de novo lipogenesis. In contrast, extrahepatic mechanisms counteracting toxic hepatic lipid overload entail coordinated compensation through oxidation of surplus fatty acids in brown adipose tissue and storage of fatty acids as TGs in WAT. Failure of these integrated homeostatic mechanisms leads to quantitative increases and qualitative alterations to the lipidome of the liver. Initially, hepatocytes preferentially accumulate TG species leading to a relatively "benign" non-alcoholic fatty liver. However, with time, inflammatory responses ensue, progressing into more severe conditions such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma, in some individuals (often without an early prognostic clue). Herein, we highlight the pathogenic importance of obesity-induced "adipose tissue failure", resulting in decreased adipose tissue functionality (i.e. fat storage capacity and metabolic flexibility), in the development and progression of NAFL/NASH.
Collapse
Affiliation(s)
- Eunyoung Lee
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Medical Physiology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Centro de Innvestigacion Principe Felipe, Valencia, Spain; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| |
Collapse
|
25
|
Wang JY, Wang QW, Yang XY, Yang W, Li DR, Jin JY, Zhang HC, Zhang XF. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front Endocrinol (Lausanne) 2023; 14:1085799. [PMID: 36843578 PMCID: PMC9945324 DOI: 10.3389/fendo.2023.1085799] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Obesity is a complex disease characterized by excessive fat accumulation which is caused by genetic, environmental and other factors. In recent years, there has been an increase in the morbidity, disability rate,and mortality due to obesity, making it great threat to people's health and lives, and increasing public health care expenses. Evidence from previous studies show that weight loss can significantly reduce the risk of obesity-related complications and chronic diseases. Diet control, moderate exercise, behavior modification programs, bariatric surgery and prescription drug treatment are the major interventions used to help people lose weight. Among them, anti-obesity drugs have high compliance rates and cause noticeable short-term effects in reducing obese levels. However, given the safety or effectiveness concerns of anti-obesity drugs, many of the currently used drugs have limited clinical use. Glucagon-like peptide-1 receptor (GLP-1R) agonists are a group of drugs that targets incretin hormone action, and its receptors are widely distributed in nerves, islets, heart, lung, skin, and other organs. Several animal experiments and clinical trials have demonstrated that GLP-1R agonists are more effective in treating or preventing obesity. Therefore, GLP-1R agonists are promising agents for the treatment of obese individuals. This review describes evidence from previous research on the effects of GLP-1R agonists on obesity. We anticipate that this review will generate data that will help biomedical researchers or clinical workers develop obesity treatments based on GLP-1R agonists.
Collapse
Affiliation(s)
- Jing-Yue Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Quan-Wei Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xin-Yu Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dong-Rui Li
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing-Yu Jin
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hui-Cong Zhang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xian-Feng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Zhu R, Chen S. Proteomic analysis reveals semaglutide impacts lipogenic protein expression in epididymal adipose tissue of obese mice. Front Endocrinol (Lausanne) 2023; 14:1095432. [PMID: 37025414 PMCID: PMC10070826 DOI: 10.3389/fendo.2023.1095432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Obesity is a global health problem with few pharmacologic options. Semaglutide is a glucagon-like peptide-1 (GLP-1) analogue that induces weight loss. Yet, the role of semaglutide in adipose tissue has not yet been examined. The following study investigated the mechanism of semaglutide on lipid metabolism by analyzing proteomics of epididymal white adipose tissue (eWAT) in obese mice. METHODS A total of 36 C57BL/6JC mice were randomly divided into a normal-chow diet group (NCD, n = 12), high-fat diet (HFD, n = 12), and HFD+semaglutide group (Sema, n = 12). Mice in the Sema group were intraperitoneally administered semaglutide, and the HFD group and the NCD group were intraperitoneally administered an equal volume of normal saline. Serum samples were collected to detect fasting blood glucose and blood lipids. The Intraperitoneal glucose tolerance test (IPGTT) was used to measure the blood glucose value at each time point and calculate the area under the glucose curve. Tandem Mass Tag (TMT) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to study the expression of eWAT, while cellular processes, biological processes, corresponding molecular functions, and related network molecular mechanisms were analyzed by bioinformatics. RESULTS Compared with the model group, the semaglutide-treated mice presented 640 differentially expressed proteins (DEPs), including 292 up-regulated and 348 down-regulated proteins. Bioinformatics analysis showed a reduction of CD36, FABP5, ACSL, ACOX3, PLIN2, ANGPTL4, LPL, MGLL, AQP7, and PDK4 involved in the lipid metabolism in the Sema group accompanied by a decrease in visceral fat accumulation, blood lipids, and improvement in glucose intolerance. CONCLUSION Semaglutide can effectively reduce visceral fat and blood lipids and improve glucose metabolism in obese mice. Semaglutide treatment might have beneficial effects on adipose tissues through the regulation of lipid uptake, lipid storage, and lipolysis in white adipose tissue.
Collapse
Affiliation(s)
- Ruiyi Zhu
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Shuchun Chen
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, Hebei, China
- *Correspondence: Shuchun Chen,
| |
Collapse
|
27
|
Agonistas del receptor de péptido similar al glucagón tipo 1 (GLP-1) en el manejo del paciente con diabetes mellitus tipo 2. Una aproximación para el nefrólogo. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|