1
|
Astakhova EA, Baranov KO, Shilova NV, Polyakova SM, Zuev EV, Poteryaev DA, Taranin AV, Filatov AV. Antibody Avidity Maturation Following Booster Vaccination with an Intranasal Adenovirus Salnavac Vaccine. Vaccines (Basel) 2024; 12:1362. [PMID: 39772024 PMCID: PMC11680177 DOI: 10.3390/vaccines12121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation. In the context of vaccines against SARS-CoV-2, only a limited number of studies have investigated the avidity of antibodies, often solely focusing on the wild-type virus following vaccination. This study provides new insights into the avidity of serum antibodies following adenovirus-based boosters. We focused on the effects of an intranasal Salnavac booster, which is compared, using a single analytical platform, to an intramuscular Sputnik V. METHODS The avidity of RBD-specific IgGs and IgAs was investigated through ELISA using urea and biolayer interferometry. RESULTS The results demonstrated the similar avidities of serum antibodies, which were induced by both vaccines for six months post-booster. However, an increase in antibody avidity was observed for the wild-type and Delta variants, but not for the BA.4/5 variant. CONCLUSIONS Collectively, our data provide the insights into antibody avidity maturation after the adenovirus-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Street 20, 123592 Moscow, Russia
| | - Konstantin O. Baranov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Svetlana M. Polyakova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | | | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
2
|
Verbrugghe C, Wouters E, Devloo R, Nurmi V, Seghers S, De Bleser D, Harvala H, Compernolle V, Feys HB. Biochemical rationale for transfusion of high titre COVID-19 convalescent plasma. Sci Rep 2024; 14:23579. [PMID: 39384892 PMCID: PMC11464705 DOI: 10.1038/s41598-024-75093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
We aimed to model binding of donor antibodies to virus that infects COVID-19 patients following transfusion of convalescent plasma (CCP). An immunosorbent assay was developed to determine apparent affinity (Kd, app). Antibody binding to virus was modelled using antibody concentration and estimations of viral load. Assay and model were validated using reference antibodies and clinical data of monoclonal antibody therapy. A single Kd, app or two resolvable Kd, app were found for IgG in 11% or 89% of CCP donations, respectively. For IgA this was 50%-50%. Median IgG Kd, app was 0.8nM and 3.6nM for IgA, ranging from 0.1-14.7nM and 0.2-156.0nM respectively. The median concentration of IgG was 44.0nM (range 8.4-269.0nM) and significantly higher than IgA at 2.0nM (range 0.4-11.4nM). The model suggested that a double CCP transfusion (i.e. 500 mL) allows for > 80% binding of antibody to virus provided Kd, app was < 1nM and concentration > 150nM. In our cohort from the pre-vaccination era, 4% of donations fulfilled these criteria. Low and mid-range viral loads are found early post exposure, suggesting that convalescent plasma will be most effective then. This study provides a biochemical rationale for selecting high affinity and high antibody concentration CCP transfused early in the disease course.
Collapse
Affiliation(s)
- Caro Verbrugghe
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elise Wouters
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Visa Nurmi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sabrina Seghers
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Microbiology Services, NHS Blood and Transplant, Colindale, UK
- Infection and Immunity, University College of London, London, UK
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Blood Services of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- , Ottergemsesteenweg 413, Ghent, 9000, Belgium.
| |
Collapse
|
3
|
Losa M, Emmenegger M, De Rossi P, Schürch PM, Serdiuk T, Pengo N, Capron D, Bieli D, Bargenda N, Rupp NJ, Carta MC, Frontzek KJ, Lysenko V, Reimann RR, Schwarz P, Nuvolone M, Westermark GT, Nilsson KPR, Polymenidou M, Theocharides AP, Hornemann S, Picotti P, Aguzzi A. The ASC inflammasome adapter governs SAA-derived protein aggregation in inflammatory amyloidosis. EMBO Mol Med 2024; 16:2024-2042. [PMID: 39080493 PMCID: PMC11393341 DOI: 10.1038/s44321-024-00107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 09/14/2024] Open
Abstract
Extracellularly released molecular inflammasome assemblies -ASC specks- cross-seed Aβ amyloid in Alzheimer's disease. Here we show that ASC governs the extent of inflammation-induced amyloid A (AA) amyloidosis, a systemic disease caused by the aggregation and peripheral deposition of the acute-phase reactant serum amyloid A (SAA) in chronic inflammatory conditions. Using super-resolution microscopy, we found that ASC colocalized tightly with SAA in human AA amyloidosis. Recombinant ASC specks accelerated SAA fibril formation and mass spectrometry after limited proteolysis showed that ASC interacts with SAA via its pyrin domain (PYD). In a murine model of inflammatory AA amyloidosis, splenic amyloid load was conspicuously decreased in Pycard-/- mice which lack ASC. Treatment with anti-ASCPYD antibodies decreased amyloid loads in wild-type mice suffering from AA amyloidosis. The prevalence of natural anti-ASC IgG (-logEC50 ≥ 2) in 19,334 hospital patients was <0.01%, suggesting that anti-ASC antibody treatment modalities would not be confounded by natural autoimmunity. These findings expand the role played by ASC and IL-1 independent inflammasome employments to extraneural proteinopathies and suggest that anti-ASC immunotherapy may contribute to resolving such diseases.
Collapse
Affiliation(s)
- Marco Losa
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Tetiana Serdiuk
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Niklas Bargenda
- Department of Quantitative Biomedicine, University of Zürich, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Manfredi C Carta
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Karl J Frontzek
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Regina R Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, University of Pavia, Pavia, Italy
| | | | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | | - Simone Hornemann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Rubio-Casillas A, Cowley D, Raszek M, Uversky VN, Redwan EM. Review: N1-methyl-pseudouridine (m1Ψ): Friend or foe of cancer? Int J Biol Macromol 2024; 267:131427. [PMID: 38583833 DOI: 10.1016/j.ijbiomac.2024.131427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Due to the health emergency created by SARS-CoV-2, the virus that causes the COVID-19 disease, the rapid implementation of a new vaccine technology was necessary. mRNA vaccines, being one of the cutting-edge new technologies, attracted significant interest and offered a lot of hope. The potential of these vaccines in preventing admission to hospitals and serious illness in people with comorbidities has recently been called into question due to the vaccines' rapidly waning immunity. Mounting evidence indicates that these vaccines, like many others, do not generate sterilizing immunity, leaving people vulnerable to recurrent infections. Additionally, it has been discovered that the mRNA vaccines inhibit essential immunological pathways, thus impairing early interferon signaling. Within the framework of COVID-19 vaccination, this inhibition ensures an appropriate spike protein synthesis and a reduced immune activation. Evidence is provided that adding 100 % of N1-methyl-pseudouridine (m1Ψ) to the mRNA vaccine in a melanoma model stimulated cancer growth and metastasis, while non-modified mRNA vaccines induced opposite results, thus suggesting that COVID-19 mRNA vaccines could aid cancer development. Based on this compelling evidence, we suggest that future clinical trials for cancers or infectious diseases should not use mRNA vaccines with a 100 % m1Ψ modification, but rather ones with the lower percentage of m1Ψ modification to avoid immune suppression.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | - David Cowley
- University of Lincoln, Brayford Pool, Lincoln, Lincolnshire LN6 7TS, United Kingdom
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
6
|
Priddey A, Chen-Xu MXH, Cooper DJ, MacMillan S, Meisl G, Xu CK, Hosmillo M, Goodfellow IG, Kollyfas R, Doffinger R, Bradley JR, Mohorianu II, Jones R, Knowles TPJ, Smith R, Kosmoliaptsis V. Microfluidic antibody profiling after repeated SARS-CoV-2 vaccination links antibody affinity and concentration to impaired immunity and variant escape in patients on anti-CD20 therapy. Front Immunol 2024; 14:1296148. [PMID: 38259440 PMCID: PMC10800570 DOI: 10.3389/fimmu.2023.1296148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background Patients with autoimmune/inflammatory conditions on anti-CD20 therapies, such as rituximab, have suboptimal humoral responses to vaccination and are vulnerable to poorer clinical outcomes following SARS-CoV-2 infection. We aimed to examine how the fundamental parameters of antibody responses, namely, affinity and concentration, shape the quality of humoral immunity after vaccination in these patients. Methods We performed in-depth antibody characterisation in sera collected 4 to 6 weeks after each of three vaccine doses to wild-type (WT) SARS-CoV-2 in rituximab-treated primary vasculitis patients (n = 14) using Luminex and pseudovirus neutralisation assays, whereas we used a novel microfluidic-based immunoassay to quantify polyclonal antibody affinity and concentration against both WT and Omicron (B.1.1.529) variants. We performed comparative antibody profiling at equivalent timepoints in healthy individuals after three antigenic exposures to WT SARS-CoV-2 (one infection and two vaccinations; n = 15) and in convalescent patients after WT SARS-CoV-2 infection (n = 30). Results Rituximab-treated patients had lower antibody levels and neutralisation titres against both WT and Omicron SARS-CoV-2 variants compared to healthy individuals. Neutralisation capacity was weaker against Omicron versus WT both in rituximab-treated patients and in healthy individuals. In the rituximab cohort, this was driven by lower antibody affinity against Omicron versus WT [median (range) KD: 21.6 (9.7-38.8) nM vs. 4.6 (2.3-44.8) nM, p = 0.0004]. By contrast, healthy individuals with hybrid immunity produced a broader antibody response, a subset of which recognised Omicron with higher affinity than antibodies in rituximab-treated patients [median (range) KD: 1.05 (0.45-1.84) nM vs. 20.25 (13.2-38.8) nM, p = 0.0002], underpinning the stronger serum neutralisation capacity against Omicron in the former group. Rituximab-treated patients had similar anti-WT antibody levels and neutralisation titres to unvaccinated convalescent individuals, despite two more exposures to SARS-CoV-2 antigen. Temporal profiling of the antibody response showed evidence of affinity maturation in healthy convalescent patients after a single SARS-CoV-2 infection, which was not observed in rituximab-treated patients, despite repeated vaccination. Discussion Our results enrich previous observations of impaired humoral immune responses to SARS-CoV-2 in rituximab-treated patients and highlight the significance of quantitative assessment of serum antibody affinity and concentration in monitoring anti-viral immunity, viral escape, and the evolution of the humoral response.
Collapse
Affiliation(s)
- Ashley Priddey
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Michael Xin Hua Chen-Xu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel James Cooper
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Serena MacMillan
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Catherine K. Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Myra Hosmillo
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Ian G. Goodfellow
- Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kollyfas
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - John R. Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Irina I. Mohorianu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Jones
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Rona Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Department of Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge and the NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| |
Collapse
|
7
|
Emmenegger M, Emmenegger V, Shambat SM, Scheier TC, Gomez-Mejia A, Chang CC, Wendel-Garcia PD, Buehler PK, Buettner T, Roggenbuck D, Brugger SD, Frauenknecht KBM. Antiphospholipid antibodies are enriched post-acute COVID-19 but do not modulate the thrombotic risk. Clin Immunol 2023; 257:109845. [PMID: 37995947 DOI: 10.1016/j.clim.2023.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND AND OBJECTIVES COVID-19-associated coagulopathy, shown to increase the risk for the occurrence of thromboses and microthromboses, displays phenotypic features of the antiphospholipid syndrome (APS), a prototype antibody-mediated autoimmune disease. Several groups have reported elevated levels of criteria and non-criteria antiphospholipid antibodies (aPL), assumed to cause APS, during acute or post-acute COVID-19. However, disease heterogeneity of COVID-19 is accompanied by heterogeneity in molecular signatures, including aberrant cytokine profiles and an increased occurrence of autoantibodies. Moreover, little is known about the association between autoantibodies and the clinical events. Here, we first aim to characterise the antiphospholipid antibody, anti-SARS-CoV-2 antibody, and the cytokine profiles in a diverse collective of COVID-19 patients (disease severity: asymptomatic to intensive care), using vaccinated individuals and influenza patients as comparisons. We then aim to assess whether the presence of aPL in COVID-19 is associated with an increased incidence of thrombotic events in COVID-19. METHODS AND RESULTS We conducted anti-SARS-CoV-2 IgG and IgA microELISA and IgG, IgA, and IgM antiphospholipid line immunoassay (LIA) against 10 criteria and non-criteria antigens in 155 plasma samples of 124 individuals, and we measured 16 cytokines and chemokines in 112 plasma samples. We additionally employed clinical and demographic parameters to conduct multivariable regression analyses within multiple paradigms. In line with recent results, we find that IgM autoantibodies against annexin V (AnV), β2-glycoprotein I (β2GPI), and prothrombin (PT) are enriched upon infection with SARS-CoV-2. There was no evidence for seroconversion from IgM to IgG or IgA. PT, β2GPI, and AnV IgM as well as cardiolipin (CL) IgG antiphospholipid levels were significantly elevated in the COVID-19 but not in the influenza or control groups. They were associated predominantly with the strength of the anti-SARS-CoV-2 antibody titres and the major correlate for thromboses was SARS-CoV-2 disease severity. CONCLUSION While we have recapitulated previous findings, we conclude that the presence of the aPL, most notably PT, β2GPI, AnV IgM, and CL IgG in COVID-19 are not associated with a higher incidence of thrombotic events.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland; Division of Medical Immunology, Department of Laboratory Medicine, University Hospital Basel, 4031 Basel, Switzerland.
| | - Vishalini Emmenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gomez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro D Wendel-Garcia
- Institute of Intensive Care Medicine, University and University Hospital Zurich, Zurich, Switzerland
| | - Philipp K Buehler
- Institute of Intensive Care Medicine, University and University Hospital Zurich, Zurich, Switzerland
| | | | - Dirk Roggenbuck
- GA Generic Assays GmbH, Dahlewitz, Germany; Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences Brandenburg, University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg
| |
Collapse
|
8
|
Routhu NK, Stampfer SD, Lai L, Akhtar A, Tong X, Yuan D, Chicz TM, McNamara RP, Jakkala K, Davis-Gardner ME, St Pierre EL, Smith B, Green KM, Golden N, Picou B, Jean SM, Wood J, Cohen J, Moore IN, Patel N, Guebre-Xabier M, Smith G, Glenn G, Kozlowski PA, Alter G, Ahmed R, Suthar MS, Amara RR. Efficacy of mRNA-1273 and Novavax ancestral or BA.1 spike booster vaccines against SARS-CoV-2 BA.5 infection in nonhuman primates. Sci Immunol 2023; 8:eadg7015. [PMID: 37191508 PMCID: PMC10451060 DOI: 10.1126/sciimmunol.adg7015] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G (Ig) dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared with NVX-CoV2373 animals, suggesting a better recall of BA.1-specific memory B cells by the BA.1 spike-specific vaccine compared with the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. After challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, because vaccines that lower nasopharyngeal virus may help to reduce transmission.
Collapse
Affiliation(s)
- Nanda Kishore Routhu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Samuel David Stampfer
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lilin Lai
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Akil Akhtar
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Xin Tong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Dansu Yuan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kishor Jakkala
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E. Davis-Gardner
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandon Smith
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Breanna Picou
- Tulane National Primate Research Center, Covington, LA, USA
| | - Sherrie M. Jean
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Joyce Cohen
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Nita Patel
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | - Gale Smith
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Greg Glenn
- Novavax, Inc., 21 Firstfield Road, Gaithersburg, MD 20878, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mehul S. Suthar
- Department of Pediatrics, Division of Infectious Diseases Vaccine Center, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Selva KJ, Ramanathan P, Haycroft ER, Reynaldi A, Cromer D, Tan CW, Wang LF, Wines BD, Hogarth PM, Downie LE, Davis SK, Purcell RA, Kent HE, Juno JA, Wheatley AK, Davenport MP, Kent SJ, Chung AW. Preexisting immunity restricts mucosal antibody recognition of SARS-CoV-2 and Fc profiles during breakthrough infections. JCI Insight 2023; 8:e172470. [PMID: 37737263 PMCID: PMC10561726 DOI: 10.1172/jci.insight.172470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19-recovered vaccinees (recovered, vaccinated), and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19-recovered vaccinees displayed improved antibody-neutralizing activity, Fcγ receptor (FcγR) engagement, and IgA levels compared with COVID-19-uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma; however, these rises only negatively correlated with FcγR engagement in plasma. IgG and FcγR engagement, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased preexisting vaccine-induced immunity against the ancestral strain. Salivary antibodies delayed initiation following breakthrough COVID-19 infection, especially Omicron BA.2, but rose rapidly thereafter. Importantly, salivary antibody FcγR engagements were enhanced following breakthrough infections. Our data highlight how preexisting immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.
Collapse
Affiliation(s)
- Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ebene R. Haycroft
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Singhealth Duke-NUS Global Health Institute, Singapore
| | - Bruce D. Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - P. Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Victoria, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura E. Downie
- Department of Optometry and Vision Sciences, University of Melbourne, Carlton, Victoria, Australia
| | - Samantha K. Davis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Helen E. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Emmenegger M, Worth R, Fiedler S, Devenish SRA, Knowles TPJ, Aguzzi A. Protocol to determine antibody affinity and concentration in complex solutions using microfluidic antibody affinity profiling. STAR Protoc 2023; 4:102095. [PMID: 36853663 PMCID: PMC9925161 DOI: 10.1016/j.xpro.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Conventional methods of measuring affinity are limited by artificial immobilization, large sample volumes, and homogeneous solutions. This protocol describes microfluidic antibody affinity profiling on complex human samples in solution to obtain a fingerprint reflecting both affinity and active concentration of the target protein. To illustrate the protocol, we analyze the antibody response in SARS-CoV-2 omicron-naïve samples against different SARS-CoV-2 variants of concern. However, the protocol and the technology are amenable to a broad spectrum of biomedical questions. For complete details on the use and execution of this protocol, please refer to Emmenegger et al. (2022),1 Schneider et al. (2022),2 and Fiedler et al. (2022).3.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland.
| | - Roland Worth
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
11
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|
12
|
Emmenegger M, De Cecco E, Lamparter D, Jacquat RP, Riou J, Menges D, Ballouz T, Ebner D, Schneider MM, Morales IC, Doğançay B, Guo J, Wiedmer A, Domange J, Imeri M, Moos R, Zografou C, Batkitar L, Madrigal L, Schneider D, Trevisan C, Gonzalez-Guerra A, Carrella A, Dubach IL, Xu CK, Meisl G, Kosmoliaptsis V, Malinauskas T, Burgess-Brown N, Owens R, Hatch S, Mongkolsapaya J, Screaton GR, Schubert K, Huck JD, Liu F, Pojer F, Lau K, Hacker D, Probst-Müller E, Cervia C, Nilsson J, Boyman O, Saleh L, Spanaus K, von Eckardstein A, Schaer DJ, Ban N, Tsai CJ, Marino J, Schertler GF, Ebert N, Thiel V, Gottschalk J, Frey BM, Reimann RR, Hornemann S, Ring AM, Knowles TP, Puhan MA, Althaus CL, Xenarios I, Stuart DI, Aguzzi A. Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region. iScience 2023; 26:105928. [PMID: 36619367 PMCID: PMC9811913 DOI: 10.1016/j.isci.2023.105928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - David Lamparter
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Raphaël P.B. Jacquat
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Julien Riou
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dominik Menges
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Tala Ballouz
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Daniel Ebner
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Matthias M. Schneider
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | - Berre Doğançay
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Julie Domange
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Marigona Imeri
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chryssa Zografou
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Leyla Batkitar
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Dezirae Schneider
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | | | | | - Irina L. Dubach
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Catherine K. Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomas Malinauskas
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | | | - Ray Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
- The Rosalind Franklin Institute, Harwell Campus, Oxford OX11 0FA, UK
| | - Stephanie Hatch
- Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, England
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gavin R. Screaton
- Nuffield Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katharina Schubert
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - John D. Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Florence Pojer
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | - David Hacker
- Protein Production and Structure Core Facility, EPFL SV PTECH PTPSP, 1015 Lausanne, Switzerland
| | | | - Carlo Cervia
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jakob Nilsson
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Lanja Saleh
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Katharina Spanaus
- Institute of Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ching-Ju Tsai
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Jacopo Marino
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
| | - Gebhard F.X. Schertler
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, 5303 Villigen-PSI, Switzerland
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Nadine Ebert
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jochen Gottschalk
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Beat M. Frey
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, 8952 Schlieren, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tuomas P.J. Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Milo A. Puhan
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Christian L. Althaus
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Ioannis Xenarios
- Health2030 Genome Center, 9 Chemin des Mines, 1202 Geneva, Switzerland
- Agora Center, University of Lausanne, 25 Avenue du Bugnon, 1005 Lausanne, Switzerland
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
13
|
Fiedler S, Devenish SRA, Morgunov AS, Ilsley A, Ricci F, Emmenegger M, Kosmoliaptsis V, Theel ES, Mills JR, Sholukh AM, Aguzzi A, Iwasaki A, Lynn AK, Knowles TPJ. Serological fingerprints link antiviral activity of therapeutic antibodies to affinity and concentration. Sci Rep 2022; 12:19791. [PMID: 36396691 PMCID: PMC9672333 DOI: 10.1038/s41598-022-22214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK.
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Alexey S Morgunov
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Alison Ilsley
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Francesco Ricci
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091, Zurich, Switzerland
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anton M Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091, Zurich, Switzerland
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Andrew K Lynn
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Tuomas P J Knowles
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK.
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|