1
|
Aymerich N, Schlotheuber LJ, Bucheli OTM, Portmann K, Baudry J, Eyer K. Antibody density on bacteria regulates C1q recruitment by monoclonal IgG but not IgM. Eur J Immunol 2024; 54:e2451228. [PMID: 39233515 DOI: 10.1002/eji.202451228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Antibodies that trigger the complement system play a pivotal role in the immune defense against pathogenic bacteria and offer potential therapeutic avenues for combating antibiotic-resistant bacterial infections, a rising global concern. To gain a deeper understanding of the key parameters regulating complement activation by monoclonal antibodies, we developed a novel bioassay for quantifying classical complement activation at the monoclonal antibody level, and employed this assay to characterize rare complement-activating antibacterial antibodies on the single-antibody level in postimmunization murine antibody repertoires. We characterized monoclonal antibodies from various antibody isotypes against specific pathogenic bacteria (Bordetella pertussis and Neisseria meningitidis) to broaden the scope of our findings. We demonstrated activation of the classical pathway by individual IgM- and IgG-secreting cells, that is, monoclonal IgM and IgG2a/2b/3 subclasses. Additionally, we could observe different epitope density requirements for efficient C1q binding depending on antibody isotype, which is in agreement with previously proposed molecular mechanisms. In short, we found that antibody density most crucially regulated C1q recruitment by monoclonal IgG isotypes, but not IgM isotypes. This study provides additional insights into important parameters for classical complement initiation by monoclonal antibodies, a knowledge that might inform antibody screening and vaccination efforts.
Collapse
Affiliation(s)
- Nathan Aymerich
- Laboratoire Colloïdes et Matériaux Divisés (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, Paris, France
| | - Luca J Schlotheuber
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Olivia T M Bucheli
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Kevin Portmann
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Jean Baudry
- Laboratoire Colloïdes et Matériaux Divisés (LCMD), ESPCI Paris, PSL Research University, CNRS UMR8231 Chimie Biologie Innovation, Paris, France
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Ji W, Xie X, Bai G, Fan Y, He Y, Zhang L, Zhou H, Li L, Qiang D, Li H. Type 2 Diabetes Mellitus Aggravates Complement Dysregulation and Affects Cortisol Response in Patients with Post-COVID-19. Diabetes Metab Syndr Obes 2024; 17:3849-3861. [PMID: 39449862 PMCID: PMC11499617 DOI: 10.2147/dmso.s480457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose COVID-19 viral infection results in dysregulation of the complement system and a decrease in cortisol and adrenocorticotropin hormone (ACTH) levels. This study aimed to explore the complement system, as well as cortisol and ACTH responses in patients with post-COVID-19 conditions (PCC) and type 2 diabetes mellitus (T2DM). Patients and Methods This study recruited 31 patients with PCC and T2DM (PCC-T2DM), 19 patients with PCC (PCC), 10 patients with T2DM (T2DM), and 10 healthy participants (control). Cortisol and ACTH in the PCC and PCC-T2DM groups were assessed using the insulin tolerance test. In the fasting state, serum samples were collected for proteomic analyses. Spearman correlation analysis was performed between proteins and cortisol, as well as between proteins and ACTH. Results Cortisol and ACTH levels were consistently decreased in the PCC and PCC-T2DM groups. Proteomic analyses revealed that most of the differentially abundant proteins (DAPs) in the PCC vs control and PCC-T2DM vs T2DM were involved in the coagulation and complement cascade, and the essential complement C3 was significantly upregulated in the PCC and PCC-T2DM groups when compared to their controls. Additionally, complement-related DAPs in the PCC vs control and PCC-T2DM vs T2DM were significantly correlated with cortisol and ACTH levels. In comparing PCC-T2DM samples with PCC samples, we found that upregulated DAPs were linked to the complement system and other immune system, and most DAPs were negatively correlated with cortisol and ACTH. Conclusion Our study revealed that T2DM exacerbated dysregulation of the complement system in patients with PCC, and significant correlations were present between complement protein levels and those of cortisol and ACTH. These results provide novel insights into the dysregulation of complement and endocrine hormones in patients with PCC and T2DM.
Collapse
Affiliation(s)
- Wenrui Ji
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Xiaomin Xie
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Guirong Bai
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Yalei Fan
- The Second Clinical Medical School of Ningxia Medical University, Yinchuan, 750001, People’s Republic of China
| | - Yanting He
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Li Zhang
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Haiyan Zhou
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Ling Li
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Dan Qiang
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| | - Huan Li
- Department of Endocrinology, the First People’s Hospital of Yinchuan, Yinchuan, 750001, People’s Republic of China
| |
Collapse
|
3
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
4
|
Hamers SMWR, Boyle AL, Sharp TH. Engineering Agonistic Bispecifics to Investigate the Influence of Distance on Surface-Mediated Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:235-243. [PMID: 38819221 PMCID: PMC11215631 DOI: 10.4049/jimmunol.2400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
The development of agonists capable of activating the human complement system by binding to the C1 complex presents a novel approach for targeted cell killing. Bispecific nanobodies and Abs can successfully use C1 for this purpose; however, efficacy varies significantly between epitopes, Ab type, and bispecific design. To address this variability, we investigated monomeric agonists of C1 in the form of bispecific nanobodies, which lack Fc domains that lead to oligomerization in Abs. These therefore offer an ideal opportunity to explore the geometric parameters crucial for C1 activation. In this study, we explored the impact of linker length as a metric for Ag and epitope location. DNA nanotechnology and protein engineering allowed us to design linkers with controlled lengths and flexibilities, revealing a critical range of end-to-end distances for optimal complement activation. We discovered that differences in complement activation were not caused by differential C1 activation or subsequent cleavage of C4, but instead impacted C4b deposition and downstream membrane lysis. Considering the importance of Ab class and subclass, this study provides insights into the structural requirements of C1 binding and activation, highlighting linker and hinge engineering as a potential strategy to enhance potency over specific cellular targets. Additionally, using DNA nanotechnology to modify geometric parameters demonstrated the potential for synthetic biology in complement activation. Overall, this research offers valuable insights into the design and optimization of agonists for targeted cell killing through complement activation.
Collapse
Affiliation(s)
| | - Aimee L. Boyle
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Thomas H. Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
5
|
Budylowski P, Chau SLL, Banerjee A, Guvenc F, Samson R, Hu Q, Fiddes L, Seifried L, Chao G, Buchholz M, Estacio A, Cheatley PL, Pavenski K, Patriquin CJ, Liu Y, Sheikh-Mohamed S, Crasta K, Yue F, Pasic MD, Mossman K, Gingras AC, Gommerman JL, Ehrhardt GRA, Mubareka S, Ostrowski M. A Significant Contribution of the Classical Pathway of Complement in SARS-CoV-2 Neutralization of Convalescent and Vaccinee Sera. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1922-1931. [PMID: 38683124 DOI: 10.4049/jimmunol.2300320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Although high titers of neutralizing Abs in human serum are associated with protection from reinfection by SARS-CoV-2, there is considerable heterogeneity in human serum-neutralizing Abs against SARS-CoV-2 during convalescence between individuals. Standard human serum live virus neutralization assays require inactivation of serum/plasma prior to testing. In this study, we report that the SARS-CoV-2 neutralization titers of human convalescent sera were relatively consistent across all disease states except for severe COVID-19, which yielded significantly higher neutralization titers. Furthermore, we show that heat inactivation of human serum significantly lowered neutralization activity in a live virus SARS-CoV-2 neutralization assay. Heat inactivation of human convalescent serum was shown to inactivate complement proteins, and the contribution of complement in SARS-CoV-2 neutralization was often >50% of the neutralizing activity of human sera without heat inactivation and could account for neutralizing activity when standard titers were zero after heat inactivation. This effect was also observed in COVID-19 vaccinees and could be abolished in individuals who were undergoing treatment with therapeutic anti-complement Abs. Complement activity was mainly dependent on the classical pathway with little contributions from mannose-binding lectin and alternative pathways. Our study demonstrates the importance of the complement pathway in significantly increasing viral neutralization activity against SARS-CoV-2 in spike seropositive individuals.
Collapse
Affiliation(s)
- Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Serena L L Chau
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arinjay Banerjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Queenie Hu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Lindsey Fiddes
- Microscopy Imaging Lab, University of Toronto, Toronto, Ontario, Canada
| | - Laurie Seifried
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Megan Buchholz
- Apheresis Unit, Kidney and Metabolism Program, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Antonio Estacio
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Patti Lou Cheatley
- Apheresis Unit, Kidney and Metabolism Program, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Katerina Pavenski
- Apheresis Unit, Kidney and Metabolism Program, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
- Department of Laboratory Medicine, St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| | - Christopher J Patriquin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Kimberly Crasta
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - FengYun Yue
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria D Pasic
- Department of Immunology, Unity Health Toronto, Toronto, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | | | - Götz R A Ehrhardt
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Sunnybrook Hospital, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, Unity Health, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
7
|
Djalali-Cuevas A, Rettel M, Stein F, Savitski M, Kearns S, Kelly J, Biggs M, Skoufos I, Tzora A, Prassinos N, Diakakis N, Zeugolis DI. Macromolecular crowding in human tenocyte and skin fibroblast cultures: A comparative analysis. Mater Today Bio 2024; 25:100977. [PMID: 38322661 PMCID: PMC10846491 DOI: 10.1016/j.mtbio.2024.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Although human tenocytes and dermal fibroblasts have shown promise in tendon engineering, no tissue engineered medicine has been developed due to the prolonged ex vivo time required to develop an implantable device. Considering that macromolecular crowding has the potential to substantially accelerate the development of functional tissue facsimiles, herein we compared human tenocyte and dermal fibroblast behaviour under standard and macromolecular crowding conditions to inform future studies in tendon engineering. Basic cell function analysis made apparent the innocuousness of macromolecular crowding for both cell types. Gene expression analysis of the without macromolecular crowding groups revealed expression of tendon related molecules in human dermal fibroblasts and tenocytes. Protein electrophoresis and immunocytochemistry analyses showed significantly increased and similar deposition of collagen fibres by macromolecular crowding in the two cell types. Proteomics analysis demonstrated great similarities between human tenocyte and dermal fibroblast cultures, as well as the induction of haemostatic, anti-microbial and tissue-protective proteins by macromolecular crowding in both cell populations. Collectively, these data rationalise the use of either human dermal fibroblasts or tenocytes in combination with macromolecular crowding in tendon engineering.
Collapse
Affiliation(s)
- Adrian Djalali-Cuevas
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mikhail Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jack Kelly
- Galway University Hospital, Galway, Ireland
| | - Manus Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Nikitas Prassinos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Diakakis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
8
|
Han FY, Wu RX, Miao BB, Niu SF, Wang QH, Liang ZB. Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals (Basel) 2024; 14:434. [PMID: 38338077 PMCID: PMC10854985 DOI: 10.3390/ani14030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Smallhead hairtail (Eupleurogrammus muticus) is an important marine economic fish distributed along the northern Indian Ocean and the northwest Pacific coast; however, little is known about the mechanism of its genetic evolution. This study generated the first genome assembly of E. muticus at the chromosomal level using a combination of PacBio SMRT, Illumina Nova-Seq, and Hi-C technologies. The final assembled genome size was 709.27 Mb, with a contig N50 of 25.07 Mb, GC content of 40.81%, heterozygosity rate of 1.18%, and repetitive sequence rate of 35.43%. E. muticus genome contained 21,949 protein-coding genes (97.92% of the genes were functionally annotated) and 24 chromosomes. There were 143 expansion gene families, 708 contraction gene families, and 4888 positively selected genes in the genome. Based on the comparative genomic analyses, we screened several candidate genes and pathways related to whip-like tail formation, innate immunity, and DNA repair in E. muticus. These findings preliminarily reveal some molecular evolutionary mechanisms of E. muticus at the genomic level and provide important reference genomic data for the genetic studies of other trichiurids.
Collapse
Affiliation(s)
- Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Ben-Ben Miao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Qing-Hua Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China;
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| |
Collapse
|
9
|
Ma YJ, Parente R, Zhong H, Sun Y, Garlanda C, Doni A. Complement-pentraxins synergy: Navigating the immune battlefield and beyond. Biomed Pharmacother 2023; 169:115878. [PMID: 37952357 DOI: 10.1016/j.biopha.2023.115878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
The complement is a crucial immune defense system that triggers rapid immune responses and offers efficient protection against foreign invaders and unwanted host elements, acting as a sentinel. Activation of the complement system occurs upon the recognition of pathogenic microorganisms or altered self-cells by pattern-recognition molecules (PRMs) such as C1q, collectins, ficolins, and pentraxins. Recent accumulating evidence shows that pentraxins establish a cooperative network with different classes of effector PRMs, resulting in synergistic effects in complement activation. This review describes the complex interaction of pentraxins with the complement system and the implications of this cooperative network for effective host defense during pathogen invasion.
Collapse
Affiliation(s)
- Ying Jie Ma
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark.
| | | | - Hang Zhong
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Doni
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
10
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Bennike TB. Advances in proteomics: characterization of the innate immune system after birth and during inflammation. Front Immunol 2023; 14:1254948. [PMID: 37868984 PMCID: PMC10587584 DOI: 10.3389/fimmu.2023.1254948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Proteomics is the characterization of the protein composition, the proteome, of a biological sample. It involves the large-scale identification and quantification of proteins, peptides, and post-translational modifications. This review focuses on recent developments in mass spectrometry-based proteomics and provides an overview of available methods for sample preparation to study the innate immune system. Recent advancements in the proteomics workflows, including sample preparation, have significantly improved the sensitivity and proteome coverage of biological samples including the technically difficult blood plasma. Proteomics is often applied in immunology and has been used to characterize the levels of innate immune system components after perturbations such as birth or during chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). In cancers, the tumor microenvironment may generate chronic inflammation and release cytokines to the circulation. In these situations, the innate immune system undergoes profound and long-lasting changes, the large-scale characterization of which may increase our biological understanding and help identify components with translational potential for guiding diagnosis and treatment decisions. With the ongoing technical development, proteomics will likely continue to provide increasing insights into complex biological processes and their implications for health and disease. Integrating proteomics with other omics data and utilizing multi-omics approaches have been demonstrated to give additional valuable insights into biological systems.
Collapse
Affiliation(s)
- Tue Bjerg Bennike
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
12
|
Li S, He J, Chu L, Ren S, He W, Ma X, Wang Y, Zhang M, Kong L, Liang B, Li Q. F8 gene inversion and duplication cause no obvious hemophilia A phenotype. Front Genet 2023; 14:1098795. [PMID: 36845383 PMCID: PMC9947239 DOI: 10.3389/fgene.2023.1098795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Hemophilia A (HA, OMIM#306700) is an X-linked recessive bleeding disorder caused by the defects in the F8 gene, which encodes coagulation factor VIII (FVIII). Intron 22 inversion (Inv22) is found in about 45% of patients with severe hemophilia A. Here, we reported a male without obvious hemophilia A phenotype but bearing an inherited segmental variant duplication encompassing F8 as well as Inv22. The duplication was approximately 0.16 Mb and involved from exon 1 to intron 22 of F8. This partial duplication and Inv22 in F8 was first found in the abortion tissue of his older sister with recurrent miscarriage. The genetic testing of his family revealed that his phenotypically normal older sister and mother also had this heterozygous Inv22 and a 0.16 Mb partial duplication of F8, while his father was genotypically normal. The integrity of the F8 gene transcript was verified by sequencing of the adjacent exons at the inversion breakpoint, which explained why this male had no phenotype for hemophilia A. Interestingly, although he had no significant hemophilia A phenotype, the expression of C1QA in his mother, sister, and the male subject was only about half of that in his father and normal population. Our report broadens the mutation spectrum of F8 inversion and duplication and its pathogenicity in hemophilia A.
Collapse
Affiliation(s)
- Shaoying Li
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Jianchun He
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Liming Chu
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Shuai Ren
- Basecare Medical Device Co., Ltd, Suzhou, China
| | - Wenzhi He
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaoyan Ma
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Yanchao Wang
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Mincong Zhang
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | | | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Qing Li, ; Bo Liang,
| | - Qing Li
- Department of Obstetrics and Gynecology, Experimental Department of Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China,*Correspondence: Qing Li, ; Bo Liang,
| |
Collapse
|
13
|
Ye J, Xu J, Zhang C, Zhu L, Xia S. Quantitative fluorescence resonance energy transfer-based immunoassay for activated complement C1s. Front Immunol 2023; 14:1081793. [PMID: 36761732 PMCID: PMC9904206 DOI: 10.3389/fimmu.2023.1081793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Objectives C1s activation is associated with the pathogenesis of various diseases, indicating the potential value of C1s activation detection in clinic. Here we aimed to establish fluorescence resonance energy transfer (FRET)-based immunoassay for the quantitative detection of activated C1s in serum. Methods FRET-based fluorogenic peptides, sensitive to the enzymatic activity of activated C1s, were prepared and labeled with the fluorophore ortho-aminobenzoic acid (Abz) and quencher 2,4-dinitrophenyl (Dnp), and then were further selected depending on its Kcat/Km value. C1s in the samples was captured and separated using anti-C1s-conjugated magnetic microbeads. Next, enzymatic activity of activated C1s in samples and standards was examined using fluorescent quenched substrate assays. Limit of detection (LOD), accuracy, precision, and specificity of FRET-based immunoassay were also investigated. Results This method presented a linear quantification range for the enzymatic activity of activated C1s up to 10 μmol min-1 mL-1 and LOD of 0.096 μmol·min-1·mL-1 for serum samples. The recovery of the method was in the range of 90% ~ 110%. All CV values of the intra-analysis and inter-analysis of three levels in samples were less than 10%. The cross-reaction rates with C1r enzyme, MASP1, and MASP2 were less than 0.5%. No significant interferences were found with bilirubin (0.2 mg mL-1), Chyle (2000 FTU), and haemoglobin (5 mg mL-1), but anticoagulants (EDTA, citrate and heparin) inhibited the enzymatic ability of activated C1s. Thus, this established method can be used for the determination of active C1s in human serum samples in the concentration interval of 0.096-10.000 μmol min-1 mL-1. Conclusions One anti-C1s-based FRET immunoassay for activated C1s detection in serum samples were established, and it will be useful to explore the role of C1s activation in the pathogenesis, diagnosis and treatment in complement-related diseases.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Jie Xu
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Chuanmeng Zhang
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Li Zhu
- The Center for Translational Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
Yuan M, Liu L, Wang C, Zhang Y, Zhang J. The Complement System: A Potential Therapeutic Target in Liver Cancer. Life (Basel) 2022; 12:life12101532. [PMID: 36294966 PMCID: PMC9604633 DOI: 10.3390/life12101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is the sixth most common cancer and the fourth most fatal cancer in the world. Immunotherapy has already achieved modest results in the treatment of liver cancer. Meanwhile, the novel and optimal combinatorial strategies need further research. The complement system, which consists of mediators, receptors, cofactors and regulators, acts as the connection between innate and adaptive immunity. Recent studies demonstrate that complement system can influence tumor progression by regulating the tumor microenvironment, tumor cells, and cancer stem cells in liver cancer. Our review concentrates on the potential role of the complement system in cancer treatment, which is a promising strategy for killing tumor cells by the activation of complement components. Conclusions: Our review demonstrates that complement components and regulators might function as biomarkers and therapeutic targets for liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Li Liu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Jiandong Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
15
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
16
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
17
|
Ostrycharz E, Hukowska-Szematowicz B. New Insights into the Role of the Complement System in Human Viral Diseases. Biomolecules 2022; 12:226. [PMID: 35204727 PMCID: PMC8961555 DOI: 10.3390/biom12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
The complement system (CS) is part of the human immune system, consisting of more than 30 proteins that play a vital role in the protection against various pathogens and diseases, including viral diseases. Activated via three pathways, the classical pathway (CP), the lectin pathway (LP), and the alternative pathway (AP), the complement system leads to the formation of a membrane attack complex (MAC) that disrupts the membrane of target cells, leading to cell lysis and death. Due to the increasing number of reports on its role in viral diseases, which may have implications for research on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this review aims to highlight significant progress in understanding and defining the role of the complement system in four groups of diseases of viral etiology: (1) respiratory diseases; (2) acute liver failure (ALF); (3) disseminated intravascular coagulation (DIC); and (4) vector-borne diseases (VBDs). Some of these diseases already present a serious global health problem, while others are a matter of concern and require the collaboration of relevant national services and scientists with the World Health Organization (WHO) to avoid their spread.
Collapse
Affiliation(s)
- Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Doctoral School of the University of Szczecin, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| |
Collapse
|
18
|
Biochemically prepared C-reactive protein conformational states differentially affect C1q binding. BBA ADVANCES 2022; 2:100058. [PMID: 37082597 PMCID: PMC10074840 DOI: 10.1016/j.bbadva.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
C-reactive protein (CRP) is commonly measured as an inflammatory marker in patient studies for coronary heart disease, autoimmune disease and recent acute infections. Due to a correlation of CRP to a vast number of disease states, CRP is a well-studied protein in medical literature with over 16000 references in PubMed [1]. However, the biochemical and structural variations of CRP are not well understood in regards to their binding of complement immune response proteins. Conformations of CRP are thought to affect disease states differently, with a modified form showing neoepitopes and activating the complement immune response through C1q binding. In this work, we compare the unfolding of CRP using chemical denaturants and identify which states of CRP bind a downstream complement immune response binding partner (C1q). We used guanidine HCl (GndHCl), urea/EDTA, and 0.01% SDS with heat to perturb the pentameric state. All treatments give rise to a monomeric state in non-denaturing polyacrylamide gel electrophoresis experiments, but only treatment with certain concentrations of denaturant or dilute SDS with heat maintains CRP function with a key downstream binding partner, C1q, as measured by enzyme-linked immunosorbent assays. The results suggest that the final form of modified CRP and its ability to mimic biological binding is dependent on the preparation method.
Collapse
|
19
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
den Boer MA, Lai SH, Xue X, van Kampen MD, Bleijlevens B, Heck AJR. Comparative Analysis of Antibodies and Heavily Glycosylated Macromolecular Immune Complexes by Size-Exclusion Chromatography Multi-Angle Light Scattering, Native Charge Detection Mass Spectrometry, and Mass Photometry. Anal Chem 2021; 94:892-900. [PMID: 34939405 PMCID: PMC8771642 DOI: 10.1021/acs.analchem.1c03656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Qualitative and quantitative mass analysis of antibodies and related macromolecular immune complexes is a prerequisite for determining their identity, binding partners, stoichiometries, and affinities. A plethora of bioanalytical technologies exist to determine such characteristics, typically based on size, interaction with functionalized surfaces, light scattering, or direct mass measurements. While these methods are highly complementary, they also exhibit unique strengths and weaknesses. Here, we benchmark mass photometry (MP), a recently introduced technology for mass measurement, against native mass spectrometry (MS) and size exclusion chromatography multi-angle light scattering (SEC-MALS). We examine samples of variable complexity, namely, IgG4Δhinge dimerizing half-bodies, IgG-RGY hexamers, heterogeneously glycosylated IgG:sEGFR antibody-antigen complexes, and finally megadalton assemblies involved in complement activation. We thereby assess the ability to determine (1) binding affinities and stoichiometries, (2) accurate masses, for extensively glycosylated species, and (3) assembly pathways of large heterogeneous immune complexes. We find that MP provides a sensitive approach for characterizing antibodies and stable assemblies, with dissociation correction enabling us to expand the measurable affinity range. In terms of mass resolution and accuracy, native MS performs the best but is occasionally hampered by artifacts induced by electrospray ionization, and its resolving power diminishes when analyzing extensively glycosylated proteins. In the latter cases, MP performs well, but single-particle charge detection MS can also be useful in this respect, measuring masses of heterogeneous assemblies even more accurately. Both methods perform well compared to SEC-MALS, still being the most established method in biopharma. Together, our data highlight the complementarity of these approaches, each having its unique strengths and weaknesses.
Collapse
Affiliation(s)
- Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Szu-Hsueh Lai
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Xiaoguang Xue
- Genmab, Uppsalalaan 15, 3584 CT Utrecht, The Netherlands
| | | | | | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
21
|
Wang M, Liu Z, Du J, Yuan Y, Jiao B, Zhang X, Hou X, Shen L, Guo J, Jiang H, Xia K, Tang J, Zhang R, Tang B, Wang J. Evaluation of Peripheral Immune Activation in Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:628710. [PMID: 34248812 PMCID: PMC8264193 DOI: 10.3389/fneur.2021.628710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence has revealed that immunity plays an important role in amyotrophic lateral sclerosis (ALS) progression. However, the results regarding the serum levels of immunoglobulin and complement are inconsistent in patients with ALS. Although immune dysfunctions have also been reported in patients with other neurodegenerative diseases, few studies have explored whether immune dysfunction in ALS is similar to that in other neurodegenerative diseases. Therefore, we performed this study to address these gaps. In the present study, serum levels of immunoglobulin and complement were measured in 245 patients with ALS, 65 patients with multiple system atrophy (MSA), 60 patients with Parkinson's disease (PD), and 82 healthy controls (HCs). Multiple comparisons revealed that no significant differences existed between patients with ALS and other neurodegenerative diseases in immunoglobulin and complement levels. Meta-analysis based on data from our cohort and eight published articles was performed to evaluate the serum immunoglobulin and complement between patients with ALS and HCs. The pooled results showed that patients with ALS had higher C4 levels than HCs. In addition, we found that the IgG levels were lower in early-onset ALS patients than in late-onset ALS patients and HCs, and the correlations between age at onset of ALS and IgG or IgA levels were significant positive. In conclusion, our data supplement existing literature on understanding the role of peripheral immunity in ALS.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Relationship of complement activation pathway to clinical and pathological characteristics and renal outcome in patients with lupus nephritis. Z Rheumatol 2021; 81:760-765. [PMID: 34152436 DOI: 10.1007/s00393-021-00999-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Involvement of the complement system in the pathogenesis of lupus nephritis (LN) is well accepted, but its exact role remains unclear. The aim of this study was to investigate the relationship of complement activation pathway to clinical and pathological characteristics and renal outcome in patients with LN. MATERIAL AND METHODS Patients with LN were divided into two groups: those in whom the complement system was mainly activated through the classical pathway (low serum C3 and C4 levels; CP group); and those in whom the complement system was solely activated through the alternative pathway (low serum C3 with normal C4 levels; AP group). Clinical and pathological data and renal outcomes were compared between the two groups. RESULTS A total of 102 LN patients were enrolled in this study, 63 patients (61.8%) in the CP group and 39 patients (38.2%) in the AP group. LN patients in the CP group had significantly higher SLEDAI (p < 0.001), more anti-dsDNA (p = 0.001), higher renal activity index (p < 0.001), and more class IV LN (p = 0.008) than LN patients in the AP group. Mean length of follow-up was 50.6 ± 26.4 months. Renal outcome in the form of progression of kidney disease was significantly poorer in the CP group in the AP group (p = 0.037). CONCLUSION Our findings suggest that evaluation of the complement activation pattern may be useful for evaluating disease activity and predicting the prognosis of LN.
Collapse
|
23
|
Sultan EY, Rizk DE, Kenawy HI, Hassan R. A small fragment of factor B as a potential inhibitor of complement alternative pathway activity. Immunobiology 2021; 226:152106. [PMID: 34147816 DOI: 10.1016/j.imbio.2021.152106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The complement system is a key player in innate immunity and a modulator of the adaptive immune system. Among the three pathways of complement, the alternative pathway (AP) accounts for most of the complement activation. Factor B (FB) is a major protease of the AP, making it a promising target to inhibit the AP activity in conditions of uncontrolled complement activation. METHODS Based on the data obtained from sequence analysis and conformational changes associated with FB, we expressed and purified a recombinant FB fragment (FBfr). We tested the inhibitory activity of the protein against the AP by in vitro assays. RESULTS FBfr protein was proven to inhibit the complement AP activity when tested by C3b deposition assay and rabbit erythrocyte hemolytic assay. CONCLUSION Our recombinant FBfr was able to compete with the native human FB, which allowed it to inhibit the AP activity. This novel compound is a good candidate for further characterization and testing to be used in complement diagnostic tests and as a drug lead in the field of complement therapeutics.
Collapse
Affiliation(s)
- Enas Yasser Sultan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Dina Eid Rizk
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hany Ibrahim Kenawy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Ramadan Hassan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
24
|
Trendelenburg M. Autoantibodies against complement component C1q in systemic lupus erythematosus. Clin Transl Immunology 2021; 10:e1279. [PMID: 33968409 PMCID: PMC8082710 DOI: 10.1002/cti2.1279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the archetype of a systemic autoimmune disease, but the multifaceted pathogenic mechanisms leading to inflammation and organ damage are not fully understood. Homozygous deficiency of complement C1q, the first component of the classical pathway of complement, is strongly associated with the development of SLE, thus pointing at a primarily protective role of C1q. However, while most SLE patients do not have hereditary C1q deficiency, there is indirect evidence for the importance of C1q in the inflammatory processes of the disease, including hypocomplementemia as a result of activation via the classical pathway, deposition of C1q in affected tissues and the occurrence of autoantibodies against C1q (anti‐C1q). The growing body of knowledge on anti‐C1q led to the establishment of a biomarker that is used in the routine clinical care of SLE patients. Exploring the binding characteristics of anti‐C1q allows to understand the mechanisms, that lead to the expression of relevant autoantigenic structures and the role of genetic as well as environmental factors. Lastly, the analysis of the pathophysiological consequences of anti‐C1q is of importance because C1q, the target of anti‐C1q, is a highly functional molecule whose downstream effects are altered by the binding of the autoantibody. This review summarises current study data on anti‐C1q and their implications for the understanding of SLE.
Collapse
Affiliation(s)
- Marten Trendelenburg
- Division of Internal Medicine University Hospital Basel Basel Switzerland.,Clinical Immunology Department of Biomedicine University of Basel Basel Switzerland
| |
Collapse
|
25
|
Emerging Role of C5 Complement Pathway in Peripheral Neuropathies: Current Treatments and Future Perspectives. Biomedicines 2021; 9:biomedicines9040399. [PMID: 33917266 PMCID: PMC8067968 DOI: 10.3390/biomedicines9040399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
The complement system is a key component of innate immunity since it plays a critical role in inflammation and defense against common pathogens. However, an inappropriate activation of the complement system is involved in numerous disorders, including peripheral neuropathies. Current strategies for neuropathy-related pain fail to achieve adequate pain relief, and although several therapies are used to alleviate symptoms, approved disease-modifying treatments are unavailable. This urgent medical need is driving the development of therapeutic agents for this condition, and special emphasis is given to complement-targeting approaches. Recent evidence has underscored the importance of complement component C5a and its receptor C5aR1 in inflammatory and neuropathic pain, indicating that C5a/C5aR1 axis activation triggers a cascade of events involved in pathophysiology of peripheral neuropathy and painful neuro-inflammatory states. However, the underlying pathophysiological mechanisms of this signaling in peripheral neuropathy are not fully known. Here, we provide an overview of complement pathways and major components associated with dysregulated complement activation in peripheral neuropathy, and of drugs under development targeting the C5 system. C5/C5aR1 axis modulators could represent a new strategy to treat complement-related peripheral neuropathies. Specifically, we describe novel C5aR allosteric modulators, which may potentially become new tools in the therapeutic armory against neuropathic pain.
Collapse
|
26
|
Bally I, Ancelet S, Reiser JB, Rossi V, Gaboriaud C, Thielens NM. Functional recombinant human complement C1q with different affinity tags. J Immunol Methods 2021; 492:113001. [PMID: 33621564 DOI: 10.1016/j.jim.2021.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Complement C1q is a multifunctional protein able to sense pathogens and immune molecules such as immunoglobulins and pentraxins, and to trigger the classical complement pathway through activation of its two associated proteases, C1r and C1s. C1q is a multimeric protein composed of three homologous yet distinct polypeptide chains A, B, and C, each composed of an N-terminal collagen-like sequence and a C-terminal globular gC1q module, that assemble into six heterotrimeric (A-B-C) subunits. This hexameric structure exhibits the characteristic shape of a bouquet of flowers, comprising six collagen-like triple helices, each terminating in a trimeric C-terminal globular head. We have produced previously functional recombinant full-length C1q in stably transfected HEK 293-F cells, with a FLAG tag inserted at the C-terminal end of C1qC chain. We report here the generation of additional recombinant C1q proteins, with a FLAG tag fused to the C-terminus of C1qA or C1qB chains, or to the N-terminus of the C1qC chain. Two other variants harboring a Myc or a 6-His tag at the C-terminal end of C1qC were also produced. We show that all C1q variants, except for the His-tagged protein, can be produced at comparable yields and are able to bind with similar affinities to either IgM, a ligand of the globular regions, or to the C1r2-C1s2 tetramer, and to trigger IgM-mediated serum complement activation. These new recombinant C1q variants provide additional tools to investigate the multiple functions of C1q.
Collapse
Affiliation(s)
- Isabelle Bally
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Sarah Ancelet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Véronique Rossi
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
27
|
Fatoba O, Itokazu T, Yamashita T. Complement cascade functions during brain development and neurodegeneration. FEBS J 2021; 289:2085-2109. [PMID: 33599083 DOI: 10.1111/febs.15772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022]
Abstract
The complement system, an essential tightly regulated innate immune system, is a key regulator of normal central nervous system (CNS) development and function. However, aberrant complement component expression and activation in the brain may culminate into marked neuroinflammatory response, neurodegenerative processes and cognitive impairment. Over the years, complement-mediated neuroinflammatory responses and complement-driven neurodegeneration have been increasingly implicated in the pathogenesis of a wide spectrum of CNS disorders. This review describes how complement system contributes to normal brain development and function. We also discuss how pathologic insults such as misfolded proteins, lipid droplet/lipid droplet-associated protein or glycosaminoglycan accumulation could trigger complement-mediated neuroinflammatory responses and neurodegenerative process in neurodegenerative proteinopathies, age-related macular degeneration and neurodegenerative lysosomal storage disorders.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI-Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
28
|
Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, de Haas CJC, Aerts PC, Wang G, de Jong RN, Bagnoli F, van Strijp JAG, van Kessel KPM, Schuurman J, Preiner J, Heck AJR, Rooijakkers SHM. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A 2021; 118:e2016772118. [PMID: 33563762 PMCID: PMC7896290 DOI: 10.1073/pnas.2016772118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Collapse
Affiliation(s)
- Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maurits A den Boer
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Guanbo Wang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | | | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
29
|
Song L, Ge T, Li Z, Sun J, Li G, Sun Y, Fang L, Ma YJ, Garred P. Artesunate: A natural product-based immunomodulator involved in human complement. Biomed Pharmacother 2021; 136:111234. [PMID: 33454596 DOI: 10.1016/j.biopha.2021.111234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 01/14/2023] Open
Abstract
Complement is an important innate immune defence machinery. Once dysregulated, it is often linked to pathogenesis of diverse autoimmune diseases. Artesunate (ART) is a well-known anti-malarial compound. Recently, ART has been highlighted by its potential therapeutic effects on certain complement-related autoimmune diseases. However, the underlying mechanisms are hitherto unknown. In the present study, we found that ART mediated complement interception as validated by analysis of complement haemolytic assay. In cell-based setup using dying Jurkat cells, ART-mediated complement interception was also confirmed. Further, we newly established an ELISA system selectively allowing complement activation via the classical pathway, the lectin pathway and the alternative pathway, respectively. ELISA analysis revealed that ART dose-dependently inhibited C4 activation, C3 activation and terminal complement complex assembly via the effector pathways. ART was found to blockade C1q, C3 and C5 with a lesser extent to properdin. The interaction of ART with C1q was determined to be mediated via C1q globular head region. FACS analysis using ART-conjugated mesoporous silica particles revealed that ART specifically bound the key therapeutic targets of C1q, C3 and C5 on microparticles. In conclusion, we for the first time report the anti-complement bioactivities of ART and suggest a potential therapeutic benefit of ART in the complement-related human diseases.
Collapse
Affiliation(s)
- Lihong Song
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark; Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Tongqi Ge
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark; School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Zeqin Li
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jinfeng Sun
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, China
| | - Gao Li
- Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University College of Pharmacy, Yanji, China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Liang Fang
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| | - Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark.
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloesvej 26, 2200, Copenhagen N, Denmark
| |
Collapse
|
30
|
A pentapeptide enabled AL3810 liposome-based glioma-targeted therapy with immune opsonic effect attenuated. Acta Pharm Sin B 2021; 11:283-299. [PMID: 33532193 PMCID: PMC7838056 DOI: 10.1016/j.apsb.2020.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
AL3810, a molecular dual inhibitor of the vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR), has earned the permission of phase II clinical trial for tumor treatment by China FDA. As a reversible ATP-competitive inhibitor, AL3810 targets ATP-binding site on intracellular region of VEGFR and FGFR, whereas, AL3810 lacking interplay with extracellular region of receptors rendered deficient blood–brain tumor barrier (BBTB) recognition, poor brain penetration and unsatisfactory anti-glioma efficacy. Integrin αvβ3 overexpressed on capillary endothelial cells of BBTB as well as glioma cells illuminated ligand-modified liposomes for pinpoint spatial delivery into glioma. The widely accepted peptide c(RGDyK)-modified liposome loading AL3810 of multiple dosing caused hypothermia, activated anti-c(RGDyK)-liposome IgG and IgM antibody and pertinent complements C3b and C5b-9, and experienced complement-dependent opsonization. We newly proposed a pentapeptide mn with superb αvβ3-binding affinity and tailored AL3810-loaded mn-modified liposome that afforded impervious blood circulation, targeting ability, and glioma therapeutic expertise as vastly alleviated immune opsonization on the underpinning of the finite antibodies and complements assembly. Stemming from attenuated immunogenicity, peptide mn strengthened liposome functions as a promising nanocarrier platform for molecular targeting agents.
Collapse
|
31
|
Cole GB, Bateman TJ, Moraes TF. The surface lipoproteins of gram-negative bacteria: Protectors and foragers in harsh environments. J Biol Chem 2021; 296:100147. [PMID: 33277359 PMCID: PMC7857515 DOI: 10.1074/jbc.rev120.008745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022] Open
Abstract
Gram-negative pathogens are enveloped by an outer membrane that serves as a double-edged sword: On the one hand, it provides a layer of protection for the bacterium from environmental insults, including other bacteria and the host immune system. On the other hand, it restricts movement of vital nutrients into the cell and provides a plethora of antigens that can be detected by host immune systems. One strategy used to overcome these limitations is the decoration of the outer surface of gram-negative bacteria with proteins tethered to the outer membrane through a lipid anchor. These surface lipoproteins (SLPs) fulfill critical roles in immune evasion and nutrient acquisition, but as more bacterial genomes are sequenced, we are beginning to discover their prevalence and their different roles and mechanisms and importantly how we can exploit them as antimicrobial targets. This review will focus on representative SLPs that gram-negative bacteria use to overcome host innate immunity, specifically the areas of nutritional immunity and complement system evasion. We elaborate on the structures of some notable SLPs required for binding target molecules in hosts and how this information can be used alongside bioinformatics to understand mechanisms of binding and in the discovery of new SLPs. This information provides a foundation for the development of therapeutics and the design of vaccine antigens.
Collapse
Affiliation(s)
- Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Byrne AB, Talarico LB. Role of the complement system in antibody-dependent enhancement of flavivirus infections. Int J Infect Dis 2020; 103:404-411. [PMID: 33352325 DOI: 10.1016/j.ijid.2020.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022] Open
Abstract
Flavivirus infections have increased dramatically in the last decades in tropical and subtropical regions of the world. Antibody-dependent enhancement of dengue virus infections has been one of the main hypotheses to explain severity of disease and one of the major challenges to safe and effective vaccine development. In the presence of cross-reactive sub-neutralizing concentrations of anti-dengue antibodies, immune complexes can amplify viral infection in mononuclear phagocytic cells, triggering a cytokine cascade and activating the complement system that leads to severe disease. The complement system comprises a family of plasma and cellular surface proteins that recognize pathogen associated molecular patterns, modified ligands and immune complexes, interacting in a regulated manner and forming an enzymatic cascade. Pathogenic as well as protective effects of complement have been reported in flavivirus infections. This review provides updated knowledge on complement activation during flavivirus infection, including antiviral effects of complement and its regulation, as well as mechanisms of complement evasion and dysregulation of complement activity during viral infection leading to pathogenesis. Particularly, insights into classical pathway activation and its protective role on antibody-dependent enhancement of flavivirus infections are highlighted.
Collapse
Affiliation(s)
- Alana B Byrne
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| | - Laura B Talarico
- Laboratorio de Investigaciones Infectológicas y Biología Molecular, Unidad de Infectología, Departamento de Medicina, Hospital de Niños Dr. Ricardo Gutiérrez, Buenos Aires 1425, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
33
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Complement System: Promoter or Suppressor of Cancer Progression? Antibodies (Basel) 2020; 9:antib9040057. [PMID: 33113844 PMCID: PMC7709131 DOI: 10.3390/antib9040057] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Constituent of innate immunity, complement is present in the tumor microenvironment. The functions of complement include clearance of pathogens and maintenance of homeostasis, and as such could contribute to an anti-tumoral role in the context of certain cancers. However, multiple lines of evidence show that in many cancers, complement has pro-tumoral actions. The large number of complement molecules (over 30), the diversity of their functions (related or not to the complement cascade), and the variety of cancer types make the complement-cancer topic a very complex matter that has just started to be unraveled. With this review we highlight the context-dependent role of complement in cancer. Recent studies revealed that depending of the cancer type, complement can be pro or anti-tumoral and, even for the same type of cancer, different models presented opposite effects. We aim to clarify the current knowledge of the role of complement in human cancers and the insights from mouse models. Using our classification of human cancers based on the prognostic impact of the overexpression of complement genes, we emphasize the strong potential for therapeutic targeting the complement system in selected subgroups of cancer patients.
Collapse
|
35
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
36
|
Murin CD. Considerations of Antibody Geometric Constraints on NK Cell Antibody Dependent Cellular Cytotoxicity. Front Immunol 2020; 11:1635. [PMID: 32849559 PMCID: PMC7406664 DOI: 10.3389/fimmu.2020.01635] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well-established that antibody isotype, glycosylation, and epitope all play roles in the process of antibody dependent cellular cytotoxicity (ADCC). For natural killer (NK) cells, these phenotypes are linked to cellular activation through interaction with the IgG receptor FcγRIIIa, a single pass transmembrane receptor that participates in cytoplasmic signaling complexes. Therefore, it has been hypothesized that there may be underlying spatial and geometric principles that guide proper assembly of an activation complex within the NK cell immune synapse. Further, synergy of antibody phenotypic properties as well as allosteric changes upon antigen binding may also play an as-of-yet unknown role in ADCC. Understanding these facets, however, remains hampered by difficulties associated with studying immune synapse dynamics using classical approaches. In this review, I will discuss relevant NK cell biology related to ADCC, including the structural biology of Fc gamma receptors, and how the dynamics of the NK cell immune synapse are being studied using innovative microscopy techniques. I will provide examples from the literature demonstrating the effects of spatial and geometric constraints on the T cell receptor complex and how this relates to intracellular signaling and the molecular nature of lymphocyte activation complexes, including those of NK cells. Finally, I will examine how the integration of high-throughput and "omics" technologies will influence basic NK cell biology research moving forward. Overall, the goal of this review is to lay a basis for understanding the development of drugs and therapeutic antibodies aimed at augmenting appropriate NK cell ADCC activity in patients being treated for a wide range of illnesses.
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
37
|
Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G. Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol 2020; 55:111-165. [PMID: 32290726 DOI: 10.1080/10409238.2020.1742090] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are a diverse group of hydrolytic enzymes, ranging from single-domain catalytic molecules to sophisticated multi-functional macromolecules. Human proteases are divided into five mechanistic classes: aspartate, cysteine, metallo, serine and threonine proteases, based on the catalytic mechanism of hydrolysis. As a protective mechanism against uncontrolled proteolysis, proteases are often produced and secreted as inactive precursors, called zymogens, containing inhibitory N-terminal propeptides. Protease propeptide structures vary considerably in length, ranging from dipeptides and propeptides of about 10 amino acids to complex multifunctional prodomains with hundreds of residues. Interestingly, sequence analysis of the different protease domains has demonstrated that propeptide sequences present higher heterogeneity compared with their catalytic domains. Therefore, we suggest that protease inhibition targeting propeptides might be more specific and have less off-target effects than classical inhibitors. The roles of propeptides, besides keeping protease latency, include correct folding of proteases, compartmentalization, liganding, and functional modulation. Changes in the propeptide sequence, thus, have a tremendous impact on the cognate enzymes. Small modifications of the propeptide sequences modulate the activity of the enzymes, which may be useful as a therapeutic strategy. This review provides an overview of known human proteases, with a focus on the role of their propeptides. We review propeptide functions, activation mechanisms, and possible therapeutic applications.
Collapse
Affiliation(s)
- Lise Boon
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Immunobiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Magdalon J, Mansur F, Teles E Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci 2020; 14:23. [PMID: 32116493 PMCID: PMC7015047 DOI: 10.3389/fnins.2020.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023] Open
Abstract
Current evidence indicates that certain immune molecules such as components of the complement system are directly involved in neurobiological processes related to brain development, including neurogenesis, neuronal migration, synaptic remodeling, and response to prenatal or early postnatal brain insults. Consequently, complement system dysfunction has been increasingly implicated in disorders of neurodevelopmental origin, such as schizophrenia, autism spectrum disorder (ASD) and Rett syndrome. However, the mechanistic evidence for a causal relationship between impaired complement regulation and these disorders varies depending on the disease involved. Also, it is still unclear to what extent altered complement expression plays a role in these disorders through inflammation-independent or -dependent mechanisms. Furthermore, pathogenic mutations in specific complement components have been implicated in the etiology of 3MC syndrome, a rare autosomal recessive developmental disorder. The aims of this review are to discuss the current knowledge on the roles of the complement system in sculpting brain architecture and function during normal development as well as after specific inflammatory insults, such as maternal immune activation (MIA) during pregnancy, and to evaluate the existing evidence associating aberrant complement with developmental brain disorders.
Collapse
Affiliation(s)
- Juliana Magdalon
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Fernanda Mansur
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - André Luiz Teles E Silva
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Vitor Abreu de Goes
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Medicine, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Andréa Laurato Sertié
- Center for Experimental Research, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
39
|
Yan F, Zhou E, Liu S, Gao A, Kong L, Li B, Tu X, Guo Z, Mo J, Chen M, Ye J. Complement C1q subunit molecules from Xenopus laevis possess conserved function in C1q-immunoglobulin interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103532. [PMID: 31678076 DOI: 10.1016/j.dci.2019.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Complement component 1q (C1q), together with C1r and C1s to form C1, recognize and bind immune complex to initiate the classical complement pathway. In this study, C1q subunit molecules (XlC1qA, XlC1qB, XlC1qC) were cloned and analyzed from Xenopus laevis (X. laevis). The open reading frame (ORF) of XlC1qA is 819 bp of nucleotide sequence encoding 272 amino acids, the ORF of XlC1qB is 711 bp encoding 236 aa, and the XlC1qC is consists of 732 bp encoding 243 aa. The deduced amino acid sequences contain a collagen-like region (CLR), Gly-X-Y repeats in the N-terminus and a C1q family domain at the C-terminus. Phylogenetic analysis revealed that the XlC1qs are clustered with the amphibian clade. Expression analysis indicated that the XlC1qs exhibited constitutive expression in all examined tissues, with the highest expression in liver. Additionally, XlC1q could interact with heat-aggregated mouse IgG and IgM, Xenopus IgM and Nile tilapia IgM, respectively, indicating the functional conservation of XlC1q binding to immunoglobulins. Further, XlC1qs can inhibit C1q-dependent hemolysis of sensitized sheep red blood cells with concentration-dependent manner. These data collectively suggest that the function of C1qs in X. laevis may be conserved in interaction with immunoglobulins, as that of mammals and teleosts.
Collapse
Affiliation(s)
- Fangfang Yan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Enxu Zhou
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shuo Liu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiao Tu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jinfeng Mo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Meng Chen
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
40
|
Malachowski T, Hassel A. Engineering nanoparticles to overcome immunological barriers for enhanced drug delivery. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
41
|
Ren J, Cai R, Wang J, Daniyal M, Baimanov D, Liu Y, Yin D, Liu Y, Miao Q, Zhao Y, Chen C. Precision Nanomedicine Development Based on Specific Opsonization of Human Cancer Patient-Personalized Protein Coronas. NANO LETTERS 2019; 19:4692-4701. [PMID: 31244235 DOI: 10.1021/acs.nanolett.9b01774] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
When a nanomedicine is administrated into the human body, biomolecules in biological fluids, particularly proteins, form a layer on the surface of the nanoparticle known as a "personalized protein corona". An understanding of the formation and behavior of the personalized protein corona not only benefits the nanotherapy treatment efficacy but also can aid in disease diagnosis. Here we used Gd@C82(OH)22 nanoparticles, a nanomedicine effective against several types of cancer, as a model nanomedicine to investigate the natural protein fingerprint of the personalized protein corona formed in 10 human lung squamous cell carcinoma patients. Our analysis revealed a specific biomarker, complement component C1q, in lung cancer personalized protein coronas, abundantly bound to Gd@C82(OH)22 NPs. This binding altered the secondary structure of C1q protein and led to the activation of an innate immune response, which could be exploited for cancer immune therapy. On the basis of this finding, we provide a new strategy for the development of precision nanomedicine derived from opsonization of a unique protein fingerprint within patients. This approach overcomes the common pitfall of protein corona formation and exploits the corona proteins to generate a precision nanomedicine and diagnostic tool.
Collapse
Affiliation(s)
- Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
| | - Muhammad Daniyal
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Dongtao Yin
- Department of Thoracic Surgery , Chinese PLA General Hospital , Beijing 100853 , China
| | - Yang Liu
- Department of Thoracic Surgery , Chinese PLA General Hospital , Beijing 100853 , China
| | - Qing Miao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
42
|
van den Broek B, van der Flier M, de Groot R, de Jonge MI, Langereis JD. Common Genetic Variants in the Complement System and their Potential Link with Disease Susceptibility and Outcome of Invasive Bacterial Infection. J Innate Immun 2019; 12:131-141. [PMID: 31269507 DOI: 10.1159/000500545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/19/2019] [Indexed: 01/01/2023] Open
Abstract
Streptococcus pneumoniae and Neisseria meningitidis are pathogens that frequently colonize the nasopharynx in an asymptomatic manner but are also a cause of invasive bacterial infections mainly in young children. The complement system plays a crucial role in humoral immunity, complementing the ability of antibodies to clear microbes, thereby protecting the host against bacterial infections, including S. pneumoniae and N. meningitidis. While it is widely accepted that complement deficiencies due to rare genetic variants increase the risk for invasive bacterial infection, not much is known about the common genetic variants in the complement system in relation to disease susceptibility. In this review, we provide an overview of the effects of common genetic variants on complement activation and on complement-mediated inflammation.
Collapse
Affiliation(s)
- Bryan van den Broek
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Michiel van der Flier
- Paediatric Infectious Diseases and Immunology, Amalia Children's Hospital, Nijmegen, The Netherlands.,Expertise Center for Immunodeficiency and Auto inflammation (REIA), Radboudumc, Nijmegen, The Netherlands.,Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Ronald de Groot
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands, .,Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands,
| |
Collapse
|
43
|
Proteomic analysis reveals greater abundance of complement and inflammatory proteins in subcutaneous adipose tissue from postpartum cows treated with sodium salicylate. J Proteomics 2019; 204:103399. [DOI: 10.1016/j.jprot.2019.103399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
|
44
|
Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0046-2018. [PMID: 31267926 PMCID: PMC10957221 DOI: 10.1128/microbiolspec.gpp3-0046-2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The surface of Staphylococcus aureus is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent S. aureus infections.
Collapse
|
45
|
Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol 2019; 10:1296. [PMID: 31231397 PMCID: PMC6568213 DOI: 10.3389/fimmu.2019.01296] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies and Fc-fusion antibody-like proteins have become successful biologics developed for cancer treatment, passive immunity against infection, addiction, and autoimmune diseases. In general these biopharmaceuticals can be used for blocking protein:protein interactions, crosslinking host receptors to induce signaling, recruiting effector cells to targets, and fixing complement. With the vast capability of antibodies to affect infectious and genetic diseases much effort has been placed on improving and tailoring antibodies for specific functions. While antibody:antigen engagement is critical for an efficacious antibody biologic, equally as important are the hinge and constant domains of the heavy chain. It is the hinge and constant domains of the antibody that engage host receptors or complement protein to mediate a myriad of effector functions and regulate antibody circulation. Molecular and structural studies have provided insight into how the hinge and constant domains from antibodies across different species, isotypes, subclasses, and alleles are recognized by host cell receptors and complement protein C1q. The molecular details of these interactions have led to manipulation of the sequences and glycosylation of hinge and constant domains to enhance or reduce antibody effector functions and circulating half-life. This review will describe the concepts being applied to optimize the hinge and crystallizable fragment of antibodies, and it will detail how these interactions can be tuned up or down to mediate a biological function that confers a desired disease outcome.
Collapse
Affiliation(s)
- Kevin O. Saunders
- Laboratory of Protein Expression, Departments of Surgery, Molecular Genetics and Microbiology, and Immunology, Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| |
Collapse
|
46
|
Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part Fibre Toxicol 2019; 16:18. [PMID: 30975174 PMCID: PMC6460856 DOI: 10.1186/s12989-019-0299-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Carbon nanomaterials are a growing family of materials featuring unique physicochemical properties, and their widespread application is accompanied by increasing human exposure. MAIN BODY Considerable efforts have been made to characterize the potential toxicity of carbon nanomaterials in vitro and in vivo. Many studies have reported various toxicology profiles of carbon nanomaterials. The different results of the cytotoxicity of the carbon-based materials might be related to the differences in the physicochemical properties or structures of carbon nanomaterials, types of target cells and methods of particle dispersion, etc. The reported cytotoxicity effects mainly included reactive oxygen species generation, DNA damage, lysosomal damage, mitochondrial dysfunction and eventual cell death via apoptosis or necrosis. Despite the cellular toxicity, the immunological effects of the carbon-based nanomaterials, such as the pulmonary macrophage activation and inflammation induced by carbon nanomaterials, have been thoroughly studied. The roles of carbon nanomaterials in activating different immune cells or inducing immunosuppression have also been addressed. CONCLUSION Here, we provide a review of the latest research findings on the toxicological profiles of carbon-based nanomaterials, highlighting both the cellular toxicities and immunological effects of carbon nanomaterials. This review provides information on the overall status, trends, and research needs for toxicological studies of carbon nanomaterials.
Collapse
Affiliation(s)
- Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Xiangxian Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Lu Sun
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041 People’s Republic of China
| |
Collapse
|
47
|
Soltys J, Liu Y, Ritchie A, Wemlinger S, Schaller K, Schumann H, Owens GP, Bennett JL. Membrane assembly of aquaporin-4 autoantibodies regulates classical complement activation in neuromyelitis optica. J Clin Invest 2019; 129:2000-2013. [PMID: 30958797 DOI: 10.1172/jci122942] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
Neuromyelitis optica (NMO) is an autoimmune CNS disorder mediated by pathogenic aquaporin-4 (AQP4) water channel autoantibodies (AQP4-IgG). Although AQP4-IgG-driven complement-dependent cytotoxicity (CDC) is critical for the formation of NMO lesions, the molecular mechanisms governing optimal classical pathway activation are unknown. We investigated the molecular determinants driving CDC in NMO using recombinant AQP4-specific autoantibodies (AQP4 rAbs) derived from affected patients. We identified a group of AQP4 rAbs targeting a distinct extracellular loop C epitope that demonstrated enhanced CDC on target cells. Targeted mutations of AQP4 rAb Fc domains that enhance or diminish C1q binding or antibody Fc-Fc interactions showed that optimal CDC was driven by the assembly of multimeric rAb platforms that increase multivalent C1q binding and facilitate C1q activation. A peptide that blocks antibody Fc-Fc interaction inhibited CDC induced by AQP4 rAbs and polyclonal NMO patient sera. Super-resolution microscopy revealed that AQP4 rAbs with enhanced CDC preferentially formed organized clusters on supramolecular AQP4 orthogonal arrays, linking epitope-dependent multimeric assembly with enhanced C1q binding and activation. The resulting model of AQP4-IgG CDC provides a framework for understanding classical complement activation in human autoantibody-mediated disorders and identifies a potential new therapeutic avenue for treating NMO.
Collapse
Affiliation(s)
- John Soltys
- Neuroscience and Medical Scientist Training Programs
| | | | | | | | | | | | | | - Jeffrey L Bennett
- Neuroscience and Medical Scientist Training Programs.,Department of Neurology, and.,Department of Ophthalmology, University of Colorado at Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
48
|
Arato V, Gasperini G, Giusti F, Ferlenghi I, Scarselli M, Leuzzi R. Dual role of the colonization factor CD2831 in Clostridium difficile pathogenesis. Sci Rep 2019; 9:5554. [PMID: 30944377 PMCID: PMC6447587 DOI: 10.1038/s41598-019-42000-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/12/2019] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile is a Gram-positive, anaerobic bacterium and the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis. C. difficile modulates its transition from a motile to a sessile lifestyle through a mechanism of riboswitches regulated by cyclic diguanosine monophosphate (c-di-GMP). Previously described as a sortase substrate positively regulated by c-di-GMP, CD2831 was predicted to be a collagen-binding protein and thus potentially involved in sessility. By overexpressing CD2831 in C. difficile and heterologously expressing it on the surface of Lactococcus lactis, here we further demonstrated that CD2831 is a collagen-binding protein, able to bind to immobilized collagen types I, III and V as well as native collagen produced by human fibroblasts. We also observed that the overexpression of CD2831 raises the ability to form biofilm on abiotic surface in both C. difficile and L. lactis. Notably, we showed that CD2831 binds to the collagen-like domain of the human complement component C1q, suggesting a role in preventing complement cascade activation via the classical pathway. This functional characterization places CD2831 in the Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMMs) family, a class of virulence factors with a dual role in adhesion to collagen-rich tissues and in host immune evasion by binding to human complement components.
Collapse
Affiliation(s)
- Vanessa Arato
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy.,University of Padova, Department of Biomedical Sciences, 35131, Padua, Italy
| | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100, Siena, Italy
| | - Fabiola Giusti
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Ilaria Ferlenghi
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Maria Scarselli
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy
| | - Rosanna Leuzzi
- Glaxo Smith Kline Vaccines, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
49
|
Rizk DV, Maillard N, Julian BA, Knoppova B, Green TJ, Novak J, Wyatt RJ. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Front Immunol 2019; 10:504. [PMID: 30941137 PMCID: PMC6433978 DOI: 10.3389/fimmu.2019.00504] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and a common cause of end-stage renal disease. Evaluation of a kidney biopsy is necessary for diagnosis, with routine immunofluorescence microscopy revealing dominant or co-dominant IgA immunodeposits usually with complement C3 and sometimes IgG and/or IgM. IgA nephropathy reduces life expectancy by more than 10 years and leads to kidney failure in 20–40% of patients within 20 years of diagnosis. There is accumulating clinical, genetic, and biochemical evidence that complement plays an important role in the pathogenesis of IgA nephropathy. The presence of C3 differentiates the diagnosis of IgA nephropathy from the subclinical deposition of glomerular IgA. Markers for the activation of the alternative and mannan-binding lectin (MBL) pathways in renal-biopsy specimens are associated with disease activity and portend a worse renal outcome. Complement proteins in the circulation have also been evaluated in IgA nephropathy and found to be of prognostic value. Recently, genetic studies have identified IgA nephropathy-associated loci. Within these loci are genes encoding products involved in complement regulation and interaction with immune complexes. Put together, these data identify the complement cascade as a rational treatment target for this chronic kidney disease. Recent case reports on the successful use of humanized anti-C5 monoclonal antibody eculizumab are consistent with this hypothesis, but a better understanding of the role of complement in IgA nephropathy is needed to guide future therapeutic interventions.
Collapse
Affiliation(s)
- Dana V Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicolas Maillard
- Department of Nephrology, Dialysis, Transplantation, CHU de Saint-Etienne, GIMAP, EA3064, Université Jean Monnet, COMUE Université de Lyon, Rhône-Alpes, France
| | - Bruce A Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert J Wyatt
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
50
|
Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol 2019; 26:116-124. [PMID: 30879901 DOI: 10.1016/j.tracli.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intravascular hemolysis is a hallmark of a large spectrum of diseases, including the sickle cell disease (SCD), and is characterized by liberation of red blood cell (RBC) degradation products in the circulation. Released Hb, heme, RBC fragments and microvesicles (MVs) exert pro-inflammatory, pro-oxidative and cytotoxic effects and contribute to vascular and tissue damage. The innate immune complement system not only contributes to the RBC lysis, but it is also itself activated by heme, RBC MVs and the hypoxia-altered endothelium, amplifying thus the cell and tissue damage. This review focuses on the implication of the complement system in hemolysis and hemolysis-mediated injuries in SCD and in cases of delayed hemolytic transfusion reactions (DHTR). We summarize the evidences for presence of biomarkers of complement activation in patients with SCD and the mechanisms of complement activation in DHTR. We discuss the role of antibodies-dependent activation of the classical complement pathway as well as the heme-dependent activation of the alternative pathway. Finally, we describe the available evidences for the efficacy of therapeutic blockade of complement in cases of DHTR. In conclusion, complement blockade is holding promises but future prospective studies are required to introduce Eculizumab or another upcoming complement therapeutic for DHTR and even in SCD.
Collapse
|