1
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
2
|
Recktenwald M, Bhattacharya R, Benmassaoud MM, MacAulay J, Chauhan VM, Davis L, Hutt E, Galie PA, Staehle MM, Daringer NM, Pantazes RJ, Vega SL. Extracellular Peptide-Ligand Dimerization Actuator Receptor Design for Reversible and Spatially Dosed 3D Cell-Material Communication. ACS Synth Biol 2024. [PMID: 39705005 DOI: 10.1021/acssynbio.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Transmembrane receptors that endow mammalian cells with the ability to sense and respond to biomaterial-bound ligands will prove instrumental in bridging the fields of synthetic biology and biomaterials. Materials formed with thiol-norbornene chemistry are amenable to thiol-peptide patterning, and this study reports the rational design of synthetic receptors that reversibly activate cellular responses based on peptide-ligand recognition. This transmembrane receptor platform, termed Extracellular Peptide-ligand Dimerization Actuator (EPDA), consists of stimulatory or inhibitory receptor pairs that come together upon extracellular peptide dimer binding with corresponding monobody receptors. Intracellularly, Stimulatory EPDAs phosphorylate a substrate that merges two protein halves, whereas Inhibitory EPDAs revert split proteins back to their unmerged, inactive state via substrate dephosphorylation. To identify ligand-receptor pairs, over 2000 candidate monobodies were built in silico using PETEI, a novel computational algorithm we developed. The top 30 monobodies based on predicted peptide binding affinity were tested experimentally, and monobodies that induced the highest change in protein merging (green fluorescent protein, GFP) were incorporated in the final EPDA receptor design. In soluble form, stimulatory peptides induce intracellular GFP merging in a time- and concentration-dependent manner, and varying levels of green fluorescence were observed based on stimulatory and inhibitory peptide-ligand dosing. EPDA-programmed cells encapsulated in thiol-norbornene hydrogels patterned with stimulatory and inhibitory domains exhibited 3D activation or deactivation based on their location within peptide-patterned hydrogels. EPDA receptors can recognize a myriad of peptide-ligands bound to 3D materials, can reversibly induce cellular responses beyond fluorescence, and are widely applicable in biological research and regenerative medicine.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Ritankar Bhattacharya
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Mohammed Mehdi Benmassaoud
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Varun M Chauhan
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Robert J Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
- Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
3
|
Tang C, Tamura-Nakano M, Kobayakawa K, Ozawa T, Onojima T, Kajitani R, Itoh T, Tachibana K. A single gene determines allorecognition in hydrozoan jellyfish Cladonema radiatum inbred lines. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1002-1020. [PMID: 38973306 DOI: 10.1002/jez.2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Allorecognition-the ability of an organism to discriminate between self and nonself-is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid Hydractinia has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model Cladonema radiatum (C. radiatum). C. radiatum is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses-fusion or regression of stolons-are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six Alr genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. C. radiatum allorecognition genes show notable conservation with the Hydractinia Alr family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of Alr1 solely determine allorecognition outcomes in C. radiatum.
Collapse
Affiliation(s)
- Crystal Tang
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Miwa Tamura-Nakano
- Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenta Kobayakawa
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takuto Ozawa
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takao Onojima
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Kazunori Tachibana
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
4
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Deng M, Du S, Hou H, Xiao J. Structural insights into the high-affinity IgE receptor FcεRI complex. Nature 2024; 633:952-959. [PMID: 39169187 DOI: 10.1038/s41586-024-07864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Immunoglobulin E (IgE) plays a pivotal role in allergic responses1,2. The high-affinity IgE receptor, FcεRI, found on mast cells and basophils, is central to the effector functions of IgE. FcεRI is a tetrameric complex, comprising FcεRIα, FcεRIβ and a homodimer of FcRγ (originally known as FcεRIγ), with FcεRIα recognizing the Fc region of IgE (Fcε) and FcεRIβ-FcRγ facilitating signal transduction3. Additionally, FcRγ is a crucial component of other immunoglobulin receptors, including those for IgG (FcγRI and FcγRIIIA) and IgA (FcαRI)4-8. However, the molecular basis of FcεRI assembly and the structure of FcRγ have remained elusive. Here we elucidate the cryogenic electron microscopy structure of the Fcε-FcεRI complex. FcεRIα has an essential role in the receptor's assembly, interacting with FcεRIβ and both FcRγ subunits. FcεRIβ is structured as a compact four-helix bundle, similar to the B cell antigen CD20. The FcRγ dimer exhibits an asymmetric architecture, and coils with the transmembrane region of FcεRIα to form a three-helix bundle. A cholesterol-like molecule enhances the interaction between FcεRIβ and the FcεRIα-FcRγ complex. Our mutagenesis analyses further indicate similarities between the interaction of FcRγ with FcεRIα and FcγRIIIA, but differences in that with FcαRI. These findings deepen our understanding of the signalling mechanisms of FcεRI and offer insights into the functionality of other immune receptors dependent on FcRγ.
Collapse
Affiliation(s)
- Meijie Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shuo Du
- Changping Laboratory, Beijing, People's Republic of China.
| | - Handi Hou
- Changping Laboratory, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Changping Laboratory, Beijing, People's Republic of China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Cufré M, Pastorini M, Martín I, Failde R, Palmero D, Alemán M. Variants of human DECTIN-1 rs16910526 are linked to differential reactive oxygen species production and susceptibility to tuberculosis. J Biomed Sci 2024; 31:77. [PMID: 39103844 PMCID: PMC11302830 DOI: 10.1186/s12929-024-01067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Dectin-1 is a transmembrane receptor that plays a pivotal role in recognising fungi and Mycobacterium tuberculosis (Mtb). A specific variant, DECTIN-1 rs16910526, results in a truncated receptor that disrupts membrane expression and ligand binding and is clinically associated with recurrent cutaneous mycoses. Previous research has clarified the role of Dectin-1 in boosting immune defenses against mycobacteria by enhancing reactive oxygen species (ROS) production in neutrophils (PMNs). Here, we investigated the association between the rs16910526 variant and Dectin-1 expression in PMNs, as well as intracellular ROS production in response to Mtb. Furthermore, we explored the potential link between the rs16910526 gene variant and TB outcomes in Argentina. METHODS DNA was extracted from blood samples obtained from a cohort of 178 TB patients and healthy subjects (HS) in Argentina. PCR amplification and sequencing were performed to identify the rs16910526 variant. Flow cytometry was utilised to assess Dectin-1 expression on the PMN plasma membrane and to measure intracellular ROS levels, as indicated by the oxidation of DHR123 in response to the Mtb antigen. RESULTS PMNs carrying the rs16910526 variant exhibited diminished Dectin-1 expression and ROS production in response to Mtb (p < 0.0001). In a case‒control study, the rs16910526 variant had an allelic frequency of 0.112 in TB patients and 0.051 in HS. Notably, 10 out of 88 HS and 18 out of 62 TB patients harboured the variant (odds ratio [OR]: 2.55 [95% CI 1.1-5.9, p = 0.03]), indicating a potential association with TB disease. Furthermore, TB patients with the rs16910526 variant exhibited a delayed sputum smear conversion time (p < 0.004) and 100% positivity for acid-fast bacilli smears (p < 0.00001). CONCLUSION Our study identified a significant association between the SNP variant rs16910526 in the DECTIN-1 gene and Dectin-1 expression in the PMN, leading to altered ROS production. The higher frequency of this variant in TB patients compared to HS suggests a possible link with susceptibility to TB disease in Argentina.
Collapse
Affiliation(s)
- Mónica Cufré
- Hospital de Infecciosas Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Mercedes Pastorini
- Instituto de Medicina Experimental, IMEX-CONICET-ANM, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Ignacio Martín
- Hospital de Infecciosas Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Rodrigo Failde
- Hospital de Infecciosas Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Domingo Palmero
- Hospital de Infecciosas Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Mercedes Alemán
- Instituto de Medicina Experimental, IMEX-CONICET-ANM, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Wu Z, Yang S, Fang X, Shu Q, Chen Q. Function and mechanism of TREM2 in bacterial infection. PLoS Pathog 2024; 20:e1011895. [PMID: 38236825 PMCID: PMC10796033 DOI: 10.1371/journal.ppat.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2), which is a lipid sensing and phagocytosis receptor, plays a key role in immunity and inflammation in response to pathogens. Here, we review the function and signaling of TREM2 in microbial binding, engulfment and removal, and describe TREM2-mediated inhibition of inflammation by negatively regulating the Toll-like receptor (TLR) response. We further illustrate the role of TREM2 in restoring organ homeostasis in sepsis and soluble TREM2 (sTREM2) as a diagnostic marker for sepsis-associated encephalopathy (SAE). Finally, we discuss the prospect of TREM2 as an interesting therapeutic target for sepsis.
Collapse
Affiliation(s)
- Zehua Wu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shiyue Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiang Shu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qixing Chen
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Uribe-Querol E, Rosales C. Phagocytosis. Methods Mol Biol 2024; 2813:39-64. [PMID: 38888769 DOI: 10.1007/978-1-0716-3890-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process, named phagocytosis, for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this, he gave us the basis for our modern understanding of inflammation and the innate immune response. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In this chapter, we present a general view of our current knowledge on phagocytosis performed mainly by professional phagocytes through antibody and complement receptors and discuss aspects that remain incompletely understood.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Du Y, Zhang H, Hu H. Ubiquitination of Immune System and Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:35-45. [PMID: 39546134 DOI: 10.1007/978-981-97-7288-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ubiquitination is a post-translational modification mechanism which regulates a variety of signaling pathways and crucial biological processes. It has long been known that ubiquitination regulates the fundamental cellular processes through the induction of proteasomal degradation of target proteins. Meanwhile, the nondegradative types of polyubiquitination modification have been appreciated as important regulatory machinery by modulating the activity or subcellular localization of key signaling proteins. The function of ubiquitination plays an important role in immune responses, which helps to maintain the stability of the internal environment and to control over protein stability and function and are thus critical for the regulation of both innate and adaptive immunity. Furthermore, ubiquitination also regulates both tumor-suppressing and tumor-promoting pathways in cancer. In this review, we will discuss recent progress regarding how ubiquitination regulates immune responses, focusing on Toll-like receptors signaling in innate immunity, T cell activation, TCR signaling, and tumor immunotherapy.
Collapse
Affiliation(s)
- Yizhou Du
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
10
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
11
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557100. [PMID: 37745327 PMCID: PMC10515791 DOI: 10.1101/2023.09.11.557100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein phosphorylation signaling networks play a central role in how cells sense and respond to their environment. Here, we describe the engineering of artificial phosphorylation networks in which "push-pull" motifs-reversible enzymatic phosphorylation cycles consisting of opposing kinase and phosphatase activities-are assembled from modular protein domain parts and then wired together to create synthetic phosphorylation circuits in human cells. We demonstrate that the composability of our design scheme enables model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, while downstream connections can regulate gene expression. We leverage these capabilities to engineer cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach for designing and building phosphorylation signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jason W. Rocks
- Department of Physics, Boston University; Boston, MA 02215, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Andrew J. Walters
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Kshitij Rai
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jing Liu
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Pankaj Mehta
- Department of Physics, Boston University; Boston, MA 02215, USA
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Faculty of Computing and Data Science, Boston University; Boston, MA 02215, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University; Glassboro, NJ 08028, USA
| | - Caleb J. Bashor
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Biosciences, Rice University; Houston, TX 77030, USA
| |
Collapse
|
12
|
Yun K, Siegler EL, Kenderian SS. Who wins the combat, CAR or TCR? Leukemia 2023; 37:1953-1962. [PMID: 37626090 DOI: 10.1038/s41375-023-01976-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has drawn increasing attention over the last few decades given its remarkable effectiveness and breakthroughs in treating B cell hematological malignancies. Even though CAR-T cell therapy has outstanding clinical successes, most treated patients still relapse after infusion. CARs are derived from the T cell receptor (TCR) complex and co-stimulatory molecules associated with T cell activation; however, the similarities and differences between CARs and endogenous TCRs regarding their sensitivity, signaling pathway, killing mechanisms, and performance are still not fully understood. In this review, we discuss the parallel comparisons between CARs and TCRs from various aspects and how these current findings might provide novel insights and contribute to improvement of CAR-T cell therapy efficacy.
Collapse
Affiliation(s)
- Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Dangelmaier CA, Patchin M, Vajipayajula DN, Vari HR, Singh PK, Wright MN, Kostyak JC, Tsygankov AY, Kunapuli SP. Phosphorylation of spleen tyrosine kinase at Y346 negatively regulates ITAM-mediated signaling and function in platelets. J Biol Chem 2023; 299:104865. [PMID: 37268160 PMCID: PMC10320515 DOI: 10.1016/j.jbc.2023.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is expressed in a variety of hemopoietic cells. Upon phosphorylation of the platelet immunoreceptor-based activation motif of the glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor, both the tyrosine phosphorylation and activity of Syk are increased leading to downstream signaling events. Although it has been established that the activity of Syk is regulated by tyrosine phosphorylation, the specific roles of individual phosphorylation sites remain to be elucidated. We observed that Syk Y346 in mouse platelets was still phosphorylated when GPVI-induced Syk activity was inhibited. We then generated Syk Y346F mice and analyzed the effect this mutation exerts on platelet responses. Syk Y346F mice bred normally, and their blood cell count was unaltered. We did observe potentiation of GPVI-induced platelet aggregation and ATP secretion as well as increased phosphorylation of other tyrosines on Syk in the Syk Y346F mouse platelets when compared to WT littermates. This phenotype was specific for GPVI-dependent activation, since it was not seen when AYPGKF, a PAR4 agonist, or 2-MeSADP, a purinergic receptor agonist, was used to activate platelets. Despite a clear effect of Syk Y346F on GPVI-mediated signaling and cellular responses, there was no effect of this mutation on hemostasis as measured by tail-bleeding times, although the time to thrombus formation determined using the ferric chloride injury model was reduced. Thus, our results indicate a significant effect of Syk Y346F on platelet activation and responses in vitro and reveal its complex nature manifesting itself by the diversified translation of platelet activation into physiological responses.
Collapse
Affiliation(s)
- Carol A Dangelmaier
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Margaret Patchin
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Dhruv N Vajipayajula
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hymavathi Reddy Vari
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Pankaj K Singh
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Monica N Wright
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - John C Kostyak
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Department of Cardiovascular Sciences, Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
14
|
Ennerfelt H, Holliday C, Shapiro D, Zengeler K, Bolte A, Ulland T, Lukens J. CARD9 attenuates Aβ pathology and modifies microglial responses in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2023; 120:e2303760120. [PMID: 37276426 PMCID: PMC10268238 DOI: 10.1073/pnas.2303760120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023] Open
Abstract
Recent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD. Notably, TREM2, CD33, and CD22 have been described to influence signaling associated with the intracellular adaptor molecule CARD9 to mount downstream immune responses outside of the brain. However, the role of CARD9 in AD remains poorly understood. Here, we show that genetic ablation of CARD9 in the 5xFAD mouse model of AD results in exacerbated amyloid beta (Aβ) deposition, increased neuronal loss, worsened cognitive deficits, and alterations in microglial responses. We further show that pharmacological activation of CARD9 promotes improved clearance of Aβ deposits from the brains of 5xFAD mice. These results help to establish CARD9 as a key intracellular innate immune signaling molecule that regulates Aβ-mediated disease and microglial responses. Moreover, these findings suggest that targeting CARD9 might offer a strategy to improve Aβ clearance in AD.
Collapse
Affiliation(s)
- Hannah Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Coco Holliday
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Daniel A. Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
| | - Kristine E. Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
| | - Ashley C. Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| | - Tyler K. Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI53705
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA22908
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA22908
- Cell and Molecular Biology Graduate Training Program, University of Virginia, Charlottesville, VA22908
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA22908
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA22908
| |
Collapse
|
15
|
Cho S, Jang E, Yoon T, Hwang H, Youn J. A novel selective spleen tyrosine kinase inhibitor SKI-O-703 (cevidoplenib) ameliorates lupus nephritis and serum-induced arthritis in murine models. Clin Exp Immunol 2023; 211:31-45. [PMID: 36346114 PMCID: PMC9993459 DOI: 10.1093/cei/uxac096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Spleen tyrosine kinase (Syk) plays a pivotal role in the activation of B cells and innate inflammatory cells by transducing immune receptor-triggered signals. Dysregulated activity of Syk is implicated in the development of antibody-mediated autoimmune diseases including systemic lupus erythematosus (SLE) and rheumatoid arthritis, but the effect of Syk inhibition on such diseases remains to be fully evaluated. We have developed a novel selective Syk inhibitor, SKI-O-592, and its orally bioavailable salt form, SKI-O-703 (cevidoplenib). To examine the efficacy of SKI-O-703 on the progression of SLE, New Zealand black/white mice at the autoimmunity-established phase were administrated orally with SKI-O-703 for 16 weeks. Levels of IgG autoantibody, proteinuria, and glomerulonephritis fell significantly, and this was associated with hypoactivation of follicular B cells via the germinal center. In a model of serum-transferred arthritis, SKI-O-703 significantly ameliorated synovitis, with fewer neutrophils and macrophages infiltrated into the synovial tissue. This effect was recapitulated when mice otherwise refractory to anti-TNF therapy were treated by TNF blockade combined with a suboptimal dose of SKI-O-703. These results demonstrate that the novel selective Syk inhibitor SKI-O-703 attenuates the progression of autoantibody-mediated autoimmune diseases by inhibiting both autoantibody-producing and autoantibody-sensing cells.
Collapse
Affiliation(s)
- Somi Cho
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Eunkyeong Jang
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Taeyoung Yoon
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Haejun Hwang
- Department of Discovery Biology, Research Institute, Oscotec Inc., Seongnam-si, Gyeonggi-do 13488, Korea
| | - Jeehee Youn
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
16
|
Kostyak JC, Mauri B, Dangelmaier C, Vari HR, Patel A, Wright M, Reddy H, Tsygankov AY, Kunapuli SP. Phosphorylation on Syk Y342 is important for both ITAM and hemITAM signaling in platelets. J Biol Chem 2022; 298:102189. [PMID: 35753354 PMCID: PMC9287148 DOI: 10.1016/j.jbc.2022.102189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
17
|
Gordon KS, Kyung T, Perez CR, Holec PV, Ramos A, Zhang AQ, Agarwal Y, Liu Y, Koch CE, Starchenko A, Joughin BA, Lauffenburger DA, Irvine DJ, Hemann MT, Birnbaum ME. Screening for CD19-specific chimaeric antigen receptors with enhanced signalling via a barcoded library of intracellular domains. Nat Biomed Eng 2022; 6:855-866. [PMID: 35710755 PMCID: PMC9389442 DOI: 10.1038/s41551-022-00896-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 05/03/2022] [Indexed: 02/06/2023]
Abstract
The immunostimulatory intracellular domains (ICDs) of chimaeric antigen receptors (CARs) are essential for converting antigen recognition into antitumoural function. Although there are many possible combinations of ICDs, almost all current CARs rely on combinations of CD3𝛇, CD28 and 4-1BB. Here we show that a barcoded library of 700,000 unique CD19-specific CARs with diverse ICDs cloned into lentiviral vectors and transduced into Jurkat T cells can be screened at high throughput via cell sorting and next-generation sequencing to optimize CAR signalling for antitumoural functions. By using this screening approach, we identified CARs with new ICD combinations that, compared with clinically available CARs, endowed human primary T cells with comparable tumour control in mice and with improved proliferation, persistence, exhaustion and cytotoxicity after tumour rechallenge in vitro. The screening strategy can be adapted to other disease models, cell types and selection conditions, and could be used to improve adoptive cell therapies and to expand their utility to new disease indications.
Collapse
Affiliation(s)
- Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Taeyoon Kyung
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick V Holec
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Azucena Ramos
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angela Q Zhang
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Health, Science, and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yunpeng Liu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Catherine E Koch
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian A Joughin
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
- Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Xu YJ, Au NPB, Ma CHE. Functional and Phenotypic Diversity of Microglia: Implication for Microglia-Based Therapies for Alzheimer’s Disease. Front Aging Neurosci 2022; 14:896852. [PMID: 35693341 PMCID: PMC9178186 DOI: 10.3389/fnagi.2022.896852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is closely associated with the accumulation of β-amyloid (Aβ) and neurofibrillary tangles (NFTs). Apart from Aβ and NFT pathologies, AD patients also exhibit a widespread microglial activation in various brain regions with elevated production of pro-inflammatory cytokines, a phenomenon known as neuroinflammation. In healthy central nervous system, microglia adopt ramified, “surveying” phenotype with compact cell bodies and elongated processes. In AD, the presence of pathogenic proteins such as extracellular Aβ plaques and hyperphosphorylated tau, induce the transformation of ramified microglia into amoeboid microglia. Ameboid microglia are highly phagocytic immune cells and actively secrete a cascade of pro-inflammatory cytokines and chemokines. However, the phagocytic ability of microglia gradually declines with age, and thus the clearance of pathogenic proteins becomes highly ineffective, leading to the accumulation of Aβ plaques and hyperphosphorylated tau in the aging brain. The accumulation of pathogenic proteins further augments the neuroinflammatory responses and sustains the activation of microglia. The excessive production of pro-inflammatory cytokines induces a massive loss of functional synapses and neurons, further worsening the disease condition of AD. More recently, the identification of a subset of microglia by transcriptomic studies, namely disease-associated microglia (DAM), the progressive transition from homeostatic microglia to DAM is TREM2-dependent and the homeostatic microglia gradually acquire the state of DAM during the disease progression of AD. Recent in-depth transcriptomic analysis identifies ApoE and Trem2 from microglia as the major risk factors for AD pathogenesis. In this review, we summarize current understandings of the functional roles of age-dependent microglial activation and neuroinflammation in the pathogenesis of AD. To this end, the exponential growth in transcriptomic data provides a solid foundation for in silico drug screening and gains further insight into the development of microglia-based therapeutic interventions for AD.
Collapse
Affiliation(s)
- Yi-Jun Xu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Chi Him Eddie Ma,
| |
Collapse
|
19
|
Zhu L, Lei Z, Xia X, Zhang Y, Chen Y, Wang B, Li J, Li G, Yang G, Cao G, Yin Z. Yeast Shells Encapsulating Adjuvant AS04 as an Antigen Delivery System for a Novel Vaccine against Toxoplasma Gondii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40415-40428. [PMID: 34470103 DOI: 10.1021/acsami.1c12366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Toxoplasma gondii (T. gondii) infection causes severe zoonotic toxoplasmosis, which threatens the safety of almost one-third of the human population globally. However, there is no effective protective vaccine against human toxoplasmosis. This necessitates anti-T. gondii vaccine development, which is a main priority of public health. In this study, we optimized the adjuvant system 04 (AS04), a vaccine adjuvant constituted by 3-O-desacyl-4'-monophosphoryl lipid A (a TLR4 agonist) and aluminum salts, by packing it within natural extracts of β-glucan particles (GPs) from Saccharomyces cerevisiae to form a GP-AS04 hybrid adjuvant system. Through a simple mixing procedure, we loaded GP-AS04 particles with the total extract (TE) of T. gondii lysate, forming a novel anti-T. gondii vaccine GP-AS04-TE. Results indicated that the hybrid adjuvant can efficiently and stably load antigens, mediate antigen delivery, facilitate the dendritic uptake of antigens, boost dendritic cell maturation and stimulation, and increase the secretion of pro-inflammatory cytokines. In the mouse inoculation model, GP-AS04-TE significantly stimulated the function of dendritic cells, induced a very strong TE-specific humoral and cellular immune response, and finally showed a strong and effective protection against toxoplasma chronic and acute infections. This work proves the potential of GP-AS04 for exploitation as a vaccine against a range of pathogens.
Collapse
Affiliation(s)
- Leqing Zhu
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhiwei Lei
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Xichun Xia
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yingying Zhang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Baocheng Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Jiawei Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Guangqiang Li
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guangchao Cao
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 51900, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
20
|
Fischer DS, Ansari M, Wagner KI, Jarosch S, Huang Y, Mayr CH, Strunz M, Lang NJ, D'Ippolito E, Hammel M, Mateyka L, Weber S, Wolff LS, Witter K, Fernandez IE, Leuschner G, Milger K, Frankenberger M, Nowak L, Heinig-Menhard K, Koch I, Stoleriu MG, Hilgendorff A, Behr J, Pichlmair A, Schubert B, Theis FJ, Busch DH, Schiller HB, Schober K. Single-cell RNA sequencing reveals ex vivo signatures of SARS-CoV-2-reactive T cells through 'reverse phenotyping'. Nat Commun 2021; 12:4515. [PMID: 34312385 PMCID: PMC8313584 DOI: 10.1038/s41467-021-24730-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.
Collapse
Affiliation(s)
- David S Fischer
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Meshal Ansari
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Karolin I Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Yiqi Huang
- Institute of Virology, Technische Universität München (TUM), Munich, Germany
| | - Christoph H Mayr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Maximilian Strunz
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Niklas J Lang
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Monika Hammel
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Laura Mateyka
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Simone Weber
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Lisa S Wolff
- Institute of Virology, Technische Universität München (TUM), Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics and Molecular Diagnostics, Department of Transfusion Medicine, Cell Therapeutic Agents and Hemostaseology, LMU Munich, Munich, Germany
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Isis E Fernandez
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Gabriela Leuschner
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
| | - Marion Frankenberger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Lorenz Nowak
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Katharina Heinig-Menhard
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Ina Koch
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Biobank for pulmonary diseases, Gauting, Germany
- Member of the German Center for Lung Research (DZL), Center for Comprehensive Developmental Care (CDeCLMU), Department of Neonatology, Perinatal Center, Munich, Germany
| | - Mircea G Stoleriu
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- Asklepios Biobank for pulmonary diseases, Gauting, Germany
- Member of the German Center for Lung Research (DZL), Center for Comprehensive Developmental Care (CDeCLMU), Department of Neonatology, Perinatal Center, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for lung research (DZL), Munich, Germany
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Munich and Gauting, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technische Universität München (TUM), Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Benjamin Schubert
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- Focus Group 'Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, München, Germany
- Focus Group 'Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
- Grosshadern, Hospital of the Ludwig-Maximilians University (LMU), Munich, Germany
| | - Herbert B Schiller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany.
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Neuherberg, München, Germany.
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.
- Microbiological Institute-Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital of Erlangen, Erlangen, Germany.
| |
Collapse
|
21
|
Sun J, Gao L, Huang S, Wang L, Yang W, Zhang T, Jin Y, Song L. CLec-TM1-ERK-GSK3β Pathway Regulates Vibrio splendidus-Induced IL-17 Production in Oyster. THE JOURNAL OF IMMUNOLOGY 2021; 207:640-650. [PMID: 34193596 DOI: 10.4049/jimmunol.2100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/16/2021] [Indexed: 11/19/2022]
Abstract
C-type lectins are a family of pattern recognition receptors that recognize microbial components and subsequently activate the signaling cascade to induce the production of proinflammatory cytokines. In the current study, the homologs of ERK (named as CgERK) and GSK3β (named as CgGSK3β) and a novel C-type lectin with a transmembrane domain (named as CgCLec-TM1) were identified from oyster Crassostrea gigas CgCLec-TM1 was able to bind Escherichia coli and Vibrio splendidus through its carbohydrate recognition domain and then activated CgERK by inducing its phosphorylation. The activated CgERK interacted with CgGSK3β to phosphorylate it at Ser9, which eventually induced the expressions of CgIL-17-1 and CgIL-17-5. The interaction between CgERK and CgGSK3β, as well as the phosphorylation of CgGSK3β, could be inhibited by ERK inhibitor (PD98059) to reduce the expressions of CgIL-17-1 and CgIL-17-5. CgGSK3β in oyster was proposed as a new substrate of CgERK. The results defined a CLec-TM1-ERK-GSK3β signaling pathway in oyster, which was activated by V. splendidus and then induced CgIL-17 productions.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China; and.,Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China; and
| |
Collapse
|
22
|
Li W, Li M, Anthony SM, Yu Y. Spatial organization of FcγR and TLR2/1 on phagosome membranes differentially regulates their synergistic and inhibitory receptor crosstalk. Sci Rep 2021; 11:13430. [PMID: 34183758 PMCID: PMC8238967 DOI: 10.1038/s41598-021-92910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/14/2021] [Indexed: 11/09/2022] Open
Abstract
Many innate immune receptors function collaboratively to detect and elicit immune responses to pathogens, but the physical mechanisms that govern the interaction and signaling crosstalk between the receptors are unclear. In this study, we report that the signaling crosstalk between Fc gamma receptor (FcγR) and Toll-like receptor (TLR)2/1 can be overall synergistic or inhibitory depending on the spatial proximity between the receptor pair on phagosome membranes. Using a geometric manipulation strategy, we physically altered the spatial distribution of FcγR and TLR2 on single phagosomes. We demonstrate that the signaling synergy between FcγR and TLR2/1 depends on the proximity of the receptors and decreases as spatial separation between them increases. However, the inhibitory effect from FcγRIIb on TLR2-dependent signaling is always present and independent of receptor proximity. The overall cell responses are an integration from these two mechanisms. This study presents quantitative evidence that the nanoscale proximity between FcγR and TLR2 functions as a key regulatory mechanism in their signaling crosstalk.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Stephen M Anthony
- Department of Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
23
|
Elucidation of the molecular interactions that enable stable assembly and structural diversity in multicomponent immune receptors. Proc Natl Acad Sci U S A 2021; 118:2026318118. [PMID: 34155106 DOI: 10.1073/pnas.2026318118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent immune receptors are essential complexes in which distinct ligand-recognition and signaling subunits are held together by interactions between acidic and basic residues of their transmembrane helices. A 2:1 acidic-to-basic motif in the transmembrane domains of the subunits is necessary and sufficient to assemble these receptor complexes. Here, we study a prototype for these receptors, a DAP12-NKG2C 2:1 heterotrimeric complex, in which the two DAP12 subunits each contribute a single transmembrane Asp residue, and the NKG2C subunit contributes a Lys to form the complex. DAP12 can also associate with 20 other subunits using a similar motif. Here, we use molecular-dynamics simulations to understand the basis for the high affinity and diversity of interactions in this group of receptors. Simulations of the transmembrane helices with differing protonation states of the Asp-Asp-Lys triad identified a structurally stable interaction in which a singly-protonated Asp-Asp pair forms a hydrogen-bonded carboxyl-carboxylate clamp that clasps onto a charged Lys side chain. This polar motif was also supported by density functional theory and a Protein Data Bank-wide search. In contrast, the helices are dynamic at sites distal to the stable carboxyl-carboxylate clamp motif. Such a locally stable but globally dynamic structure is well suited to accommodate the sequence and structural variations in the transmembrane helices of multicomponent receptors, which mix and match subunits to create combinatorial functional diversity from a limited number of subunits. It also supports a signaling mechanism based on multisubunit clustering rather than propagation of rigid conformational changes through the membrane.
Collapse
|
24
|
Alemán OR, Mora N, Rosales C. The Antibody Receptor Fc Gamma Receptor IIIb Induces Calcium Entry via Transient Receptor Potential Melastatin 2 in Human Neutrophils. Front Immunol 2021; 12:657393. [PMID: 34054821 PMCID: PMC8155622 DOI: 10.3389/fimmu.2021.657393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of β1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.
Collapse
Affiliation(s)
| | | | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
25
|
Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR Signaling in Osteoclastogenesis and Bone Disease. Front Cell Dev Biol 2021; 9:641162. [PMID: 33912557 PMCID: PMC8072347 DOI: 10.3389/fcell.2021.641162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Formation of mature bone-resorbing cells through osteoclastogenesis is required for the continuous remodeling and repair of bone tissue. In aging and disease this process may become aberrant, resulting in excessive bone degradation and fragility fractures. Interaction of receptor-activator of nuclear factor-κB (RANK) with its ligand RANKL activates the main signaling pathway for osteoclastogenesis. However, compelling evidence indicates that this pathway may not be sufficient for the production of mature osteoclast cells and that co-stimulatory signals may be required for both the expression of osteoclast-specific genes and the activation of osteoclasts. Osteoclast-associated receptor (OSCAR), a regulator of osteoclast differentiation, provides one such co-stimulatory pathway. This review summarizes our present knowledge of osteoclastogenesis signaling and the role of OSCAR in the normal production of bone-resorbing cells and in bone disease. Understanding the signaling mechanism through this receptor and how it contributes to the production of mature osteoclasts may offer a more specific and targeted approach for pharmacological intervention against pathological bone resorption.
Collapse
Affiliation(s)
- Iva R Nedeva
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Mattia Vitale
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jordi Bella
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Pohlmeyer CW, Shang C, Han P, Cui ZH, Jones RM, Clarke AS, Murray BP, Lopez DA, Newstrom DW, Inzunza MD, Matzkies FG, Currie KS, Di Paolo JA. Characterization of the mechanism of action of lanraplenib, a novel spleen tyrosine kinase inhibitor, in models of lupus nephritis. BMC Rheumatol 2021; 5:15. [PMID: 33781343 PMCID: PMC8008554 DOI: 10.1186/s41927-021-00178-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background B cells are critical mediators of systemic lupus erythematosus (SLE) and lupus nephritis (LN), and antinuclear antibodies can be found in the serum of approximately 98% of patients with SLE. Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase that mediates signaling from immunoreceptors, including the B cell receptor. Active, phosphorylated SYK has been observed in tissues from patients with SLE or cutaneous lupus erythematosus, and its inhibition is hypothesized to ameliorate disease pathogenesis. We sought to evaluate the efficacy and characterize the mechanism of action of lanraplenib, a selective oral SYK inhibitor, in the New Zealand black/white (NZB/W) murine model of SLE and LN. Methods Lanraplenib was evaluated for inhibition of primary human B cell functions in vitro. Furthermore, the effect of SYK inhibition on ameliorating LN-like disease in vivo was determined by treating NZB/W mice with lanraplenib, cyclophosphamide, or a vehicle control. Glomerulopathy and immunoglobulin G (IgG) deposition were quantified in kidneys. The concentration of proinflammatory cytokines was measured in serum. Splenocytes were analyzed by flow cytometry for B cell maturation and T cell memory maturation, and the presence of T follicular helper and dendritic cells. Results In human B cells in vitro, lanraplenib inhibited B cell activating factor-mediated survival as well as activation, maturation, and immunoglobulin M production. Treatment of NZB/W mice with lanraplenib improved overall survival, prevented the development of proteinuria, and reduced blood urea nitrogen concentrations. Kidney morphology was significantly preserved by treatment with lanraplenib as measured by glomerular diameter, protein cast severity, interstitial inflammation, vasculitis, and frequency of glomerular crescents; treatment with lanraplenib reduced glomerular IgG deposition. Mice treated with lanraplenib had reduced concentrations of serum proinflammatory cytokines. Lanraplenib blocked disease-driven B cell maturation and T cell memory maturation in the spleen. Conclusions Lanraplenib blocked the progression of LN-like disease in NZB/W mice. Human in vitro and murine in vivo data suggest that lanraplenib may be efficacious in preventing disease progression in patients with LN at least in part by inhibiting B cell maturation. These data provide additional rationale for the use of lanraplenib in the treatment of SLE and LN. Supplementary Information The online version contains supplementary material available at 10.1186/s41927-021-00178-3.
Collapse
Affiliation(s)
| | - Ching Shang
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Pei Han
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Zhi-Hua Cui
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Randall M Jones
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Astrid S Clarke
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - Bernard P Murray
- Department of Drug Metabolism, Gilead Sciences, Inc., Foster City, CA, USA
| | - David A Lopez
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| | - David W Newstrom
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | - M David Inzunza
- Department of Nonclinical Safety and Pathobiology, Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Kevin S Currie
- Department of Chemistry, Gilead Sciences, Inc., Foster City, CA, USA
| | - Julie A Di Paolo
- Department of Biology, Gilead Sciences, Inc., 333 Lakeside Dr, Foster City, CA, 94404, USA
| |
Collapse
|
27
|
Kalia N, Singh J, Kaur M. The role of dectin-1 in health and disease. Immunobiology 2021; 226:152071. [PMID: 33588306 DOI: 10.1016/j.imbio.2021.152071] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/07/2021] [Accepted: 01/31/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as β-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India.
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143001, India.
| |
Collapse
|
28
|
Constitutively Activated DAP12 Induces Functional Anti-Tumor Activation and Maturation of Human Monocyte-Derived DC. Int J Mol Sci 2021; 22:ijms22031241. [PMID: 33513928 PMCID: PMC7865632 DOI: 10.3390/ijms22031241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen presenting cells with a great capacity for cross-presentation of exogenous antigens from which robust anti-tumor immune responses ensue. However, this function is not always available and requires DCs to first be primed to induce their maturation. In particular, in the field of DC vaccine design, currently available methodologies have been limited in eliciting a sustained anti-tumor immune response. Mechanistically, part of the maturation response is influenced by the presence of stimulatory receptors relying on ITAM-containing activating adaptor molecules like DAP12, that modulates their function. We hypothesize that activating DAP12 in DC could force their maturation and enhance their potential anti-tumor activity for therapeutic intervention. For this purpose, we developed constitutively active DAP12 mutants that can promote activation of monocyte-derived DC. Here we demonstrate its ability to induce the maturation and activation of monocyte-derived DCs which enhances migration, and T cell stimulation in vitro using primary human cells. Moreover, constitutively active DAP12 stimulates a strong immune response in a murine melanoma model leading to a reduction of tumor burden. This provides proof-of-concept for investigating the pre-activation of antigen presenting cells to enhance the effectiveness of anti-tumor immunotherapies.
Collapse
|
29
|
Wu X, Thylur RP, Dayanand KK, Punnath K, Norbury CC, Gowda DC. IL-4 Treatment Mitigates Experimental Cerebral Malaria by Reducing Parasitemia, Dampening Inflammation, and Lessening the Cytotoxicity of T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 206:118-131. [PMID: 33239419 DOI: 10.4049/jimmunol.2000779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Cytokine responses to malaria play important roles in both protective immunity development and pathogenesis. Although the roles of cytokines such as TNF-α, IL-12, IFN-γ, and IL-10 in immunity and pathogenesis to the blood stage malaria are largely known, the role of IL-4 remains less understood. IL-4 targets many cell types and induces multiple effects, including cell proliferation, gene expression, protection from apoptosis, and immune regulation. Accordingly, IL-4 has been exploited as a therapeutic for several inflammatory diseases. Malaria caused by Plasmodium falciparum manifests in many organ-specific fatal pathologies, including cerebral malaria (CM), driven by a high parasite load, leading to parasite sequestration in organs and consequent excessive inflammatory responses and endothelial damage. We investigated the therapeutic potential of IL-4 against fatal malaria in Plasmodium berghei ANKA-infected C57BL/6J mice, an experimental CM model. IL-4 treatment significantly reduced parasitemia, CM pathology, and mortality. The therapeutic effect of IL-4 is mediated through multiple mechanisms, including enhanced parasite clearance mediated by upregulation of phagocytic receptors and increased IgM production, and decreased brain inflammatory responses, including reduced chemokine (CXCL10) production, reduced chemokine receptor (CXCR3) and adhesion molecule (LFA-1) expression by T cells, and downregulation of cytotoxic T cell lytic potential. IL-4 treatment markedly reduced the infiltration of CD8+ T cells and brain pathology. STAT6, PI3K-Akt-NF-κB, and Src signaling mediated the cellular and molecular events that contributed to the IL-4-dependent decrease in parasitemia. Overall, our results provide mechanistic insights into how IL-4 treatment mitigates experimental CM and have implications in developing treatment strategies for organ-specific fatal malaria.
Collapse
Affiliation(s)
- Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Ramesh P Thylur
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Kiran K Dayanand
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Kishore Punnath
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Christopher C Norbury
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| |
Collapse
|
30
|
Truong AD, Hong Y, Nguyen HT, Nguyen CT, Chu NT, Tran HTT, Dang HV, Lillehoj HS, Hong YH. Molecular identification and characterisation of a novel chicken leukocyte immunoglobulin-like receptor A5. Br Poult Sci 2020; 62:68-80. [PMID: 32812773 DOI: 10.1080/00071668.2020.1812524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Leukocyte immunoglobulin-like receptor A5 (LILRA5) is a key molecule that regulates the immune system. However, the LILRA5 gene has not been characterised in avian species, including chickens. The present study aimed to identify and functionally characterise LILRA5 identified from two genetically disparate chicken lines, viz., Marek's disease (MD)-resistant (R) line 6.3 and MD-susceptible (S) line 7.2. 2. Multiple sequence alignment and phylogenetic analyses confirmed that the identity and similarity homologies of amino acids of LILRA5 in chicken lines 6.3 and 7.2 ranged between 93% and 93.7%, whereas those between chicken and mammals ranged between 20.9% and 43.7% and 21.1% to 43.9%, respectively. The newly cloned LILRA5 from chicken lines 6.3 and 7.2 revealed high conservation and a close relationship with other known mammalian LILRA5 proteins. 3. The results indicated that LILRA5 from chicken lines 6.3 and 7.2 was associated with phosphorylation of Src kinases and protein tyrosine phosphatase non-receptor type 11 (SHP2), which play a regulatory role in immune functions. Moreover, the results demonstrated that LILRA5 in these lines was associated with the activation of major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of the transporter associated with antigen processing. In addition, LILRA5 in both chicken lines activated and induced Janus kinase (JAK)-signal transducer and the activator of transcription (STAT), nuclear factor kappa B (NF-κB), phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) and the extracellular signal-regulated kinase (ERK)1/2 signalling pathways; toll-like receptors; and Th1-, Th2-, and Th17- cytokines. 4. The data suggested that LILRA5 has innate immune receptors essential for macrophage immune response and provide novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- A D Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam.,Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - Y Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| | - H T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - C T Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - N T Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H T T Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H V Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research , Dong Da, Hanoi, Vietnam
| | - H S Lillehoj
- United States Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services , Beltsville, MD, USA
| | - Y H Hong
- Department of Animal Science and Technology, Chung-Ang University , Anseong, Republic of Korea
| |
Collapse
|
31
|
Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol 2020; 11:1066. [PMID: 32582172 PMCID: PMC7280488 DOI: 10.3389/fimmu.2020.01066] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022] Open
Abstract
Phagocytosis is a cellular process for ingesting and eliminating particles larger than 0.5 μm in diameter, including microorganisms, foreign substances, and apoptotic cells. Phagocytosis is found in many types of cells and it is, in consequence an essential process for tissue homeostasis. However, only specialized cells termed professional phagocytes accomplish phagocytosis with high efficiency. Macrophages, neutrophils, monocytes, dendritic cells, and osteoclasts are among these dedicated cells. These professional phagocytes express several phagocytic receptors that activate signaling pathways resulting in phagocytosis. The process of phagocytosis involves several phases: i) detection of the particle to be ingested, ii) activation of the internalization process, iii) formation of a specialized vacuole called phagosome, and iv) maturation of the phagosome to transform it into a phagolysosome. In this review, we present a general view of our current understanding on cells, phagocytic receptors and phases involved in phagocytosis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
32
|
Denning NL, Aziz M, Murao A, Gurien SD, Ochani M, Prince JM, Wang P. Extracellular CIRP as an endogenous TREM-1 ligand to fuel inflammation in sepsis. JCI Insight 2020; 5:134172. [PMID: 32027618 DOI: 10.1172/jci.insight.134172] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/30/2020] [Indexed: 01/24/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern. Understanding the precise mechanism by which it exacerbates inflammation is essential. Here we identified that eCIRP is a new biologically active endogenous ligand of triggering receptor expressed on myeloid cells-1 (TREM-1), fueling inflammation in sepsis. Surface plasmon resonance revealed a strong binding affinity between eCIRP and TREM-1, and fluorescence resonance energy transfer assay confirmed eCIRP's interaction with TREM-1 in macrophages. Targeting TREM-1 by its siRNA or a decoy peptide, LP17, or by using TREM-1-/- mice dramatically reduced eCIRP-induced inflammation. We developed a potentially novel 7-aa peptide derived from human eCIRP, M3, which blocked the interaction of TREM-1 and eCIRP. M3 suppressed inflammation induced by eCIRP or agonist TREM-1 antibody cross-linking in murine macrophages or human peripheral blood monocytes. M3 also inhibited eCIRP-induced systemic inflammation and tissue injury. Treatment with M3 further protected mice from sepsis, improved acute lung injury, and increased survival. Thus, we have discovered a potentially novel TREM-1 ligand and developed a new peptide, M3, to block eCIRP-TREM-1 interaction and improve outcomes in sepsis.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Steven D Gurien
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Mahendar Ochani
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jose M Prince
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, New York, USA.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
33
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
34
|
Paving New Roads for CARs. Trends Cancer 2019; 5:583-592. [DOI: 10.1016/j.trecan.2019.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
|
35
|
Estus S, Shaw BC, Devanney N, Katsumata Y, Press EE, Fardo DW. Evaluation of CD33 as a genetic risk factor for Alzheimer's disease. Acta Neuropathol 2019; 138:187-199. [PMID: 30949760 PMCID: PMC7035471 DOI: 10.1007/s00401-019-02000-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/30/2019] [Indexed: 12/23/2022]
Abstract
In 2011, genome-wide association studies implicated a polymorphism near CD33 as a genetic risk factor for Alzheimer's disease. This finding sparked interest in this member of the sialic acid-binding immunoglobulin-type lectin family which is linked to innate immunity. Subsequent studies found that CD33 is expressed in microglia in the brain and then investigated the molecular mechanism underlying the CD33 genetic association with Alzheimer's disease. The allele that protects from Alzheimer's disease acts predominately to increase a CD33 isoform lacking exon 2 at the expense of the prototypic, full-length CD33 that contains exon 2. Since this exon encodes the sialic acid ligand-binding domain, the finding that the loss of exon 2 was associated with decreased Alzheimer's disease risk was interpreted as meaning that a decrease in functional CD33 and its associated immune suppression was protective from Alzheimer's disease. However, this interpretation may need to be reconsidered given current findings that a genetic deletion which abrogates CD33 is not associated with Alzheimer's disease risk. Therefore, integrating currently available findings leads us to propose a model wherein the CD33 isoform lacking the ligand-binding domain represents a gain of function variant that reduces Alzheimer's disease risk.
Collapse
Affiliation(s)
- Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Benjamin C Shaw
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Nicholas Devanney
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Yuriko Katsumata
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
36
|
Duhan V, Hamdan TA, Xu HC, Shinde P, Bhat H, Li F, Al-Matary Y, Häussinger D, Bezgovsek J, Friedrich SK, Hardt C, Lang PA, Lang KS. NK cell-intrinsic FcεRIγ limits CD8+ T-cell expansion and thereby turns an acute into a chronic viral infection. PLoS Pathog 2019; 15:e1007797. [PMID: 31220194 PMCID: PMC6605677 DOI: 10.1371/journal.ppat.1007797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 07/02/2019] [Accepted: 04/29/2019] [Indexed: 11/18/2022] Open
Abstract
During viral infection, tight regulation of CD8+ T-cell functions determines the outcome of the disease. Recently, others and we determined that the natural killer (NK) cells kill hyperproliferative CD8+ T cells in the context of viral infection, but molecules that are involved in shaping the regulatory capability of NK cells remain virtually unknown. Here we used mice lacking the Fc-receptor common gamma chain (FcRγ, FcεRIγ, Fcer1g–/– mice) to determine the role of Fc-receptor and NK-receptor signaling in the process of CD8+ T-cell regulation. We found that the lack of FcRγ on NK cells limits their ability to restrain virus-specific CD8+ T cells and that the lack of FcRγ in Fcer1g–/– mice leads to enhanced CD8+ T-cell responses and rapid control of the chronic docile strain of the lymphocytic choriomeningitis virus (LCMV). Mechanistically, FcRγ stabilized the expression of NKp46 but not that of other killer cell–activating receptors on NK cells. Although FcRγ did not influence the development or activation of NK cell during LCMV infection, it specifically limited their ability to modulate CD8+ T-cell functions. In conclusion, we determined that FcRγ plays an important role in regulating CD8+ T-cell functions during chronic LCMV infection. FcRγ is a signaling molecule for Fc receptors and NK cell killer activating receptor (KAR) complex. FcRγ is highly expressed by NK cells and involved in NK cell activity. NK cells are widely defined to regulate the expansion of T cells. Here using chronic LCMV model, we described the role of FcRγ in NK cell mediated shaping of CD8+ T cell response and viral control. We observed that FcRγ does not affect the early activity of NK cells which is mainly innate immune cytokines driven, but rather the specific activation due to NKp46 inadequacy. We detected that FcRγ stabilizes NKp46 protein by preventing it from proteasomal degradation. Due to lack of NKp46 expression in absence of FcRγ, we observed strong CD8+ T cell response and faster viral clearance during chronic LCMV infection. These data demonstrate that FcRγ is crucial for specific activity of NK cells for regulation of CD8+ T cell response during viral infection.
Collapse
Affiliation(s)
- Vikas Duhan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Thamer A. Hamdan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Haifeng C. Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Prashant Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hilal Bhat
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Fanghui Li
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich‐Heine‐University, Düsseldorf, Germany
| | - Judith Bezgovsek
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Sarah-Kim Friedrich
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
37
|
Abstract
Receptors recognizing the Fc-part of immunoglobulins (FcR) are important in the engagement of phagocytes with opsonized micro-organisms, but they also play a major role in the pathogenesis of chronic inflammatory diseases. Different FcRs are specifically recognizing and binding the different classes of immunoglobulins, transmitting different signals into the cell. The function of IgG (FcγR's) and IgA (FcαR) recognizing receptors is controlled by cellular signals evoked by activation of heterologous receptors in a process generally referred to as inside-out control. This concept is clearly described for the regulation of integrin receptors. Inside-out control can be achieved at different levels by modulation of: (i) receptor affinity, (ii) receptor avidity/valency, (iii) interaction with signaling chains, (iv) interaction with other receptors and (v) localization in functionally different membrane domains. The inside-out control of FcRs is an interesting target for novel therapy by therapeutical antibodies as it can potentiate or decrease the functionality of the response to the antibodies depending on the mechanisms of the diseases they are applied for.
Collapse
Affiliation(s)
- Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
38
|
Jones LO, Stafford JL. Imaging flow cytometry and confocal microscopy-based examination of F-actin and phosphoinositide dynamics during leukocyte immune-type receptor-mediated phagocytic events. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:199-211. [PMID: 30503359 DOI: 10.1016/j.dci.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Cells of the innate immune system rapidly detect and eliminate invading microbes using surface-expressed immunoregulatory receptors that translate extracellular binding events into potent effector responses. Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) are a family of immunoregulatory proteins that have been shown to regulate several innate immune cell effector responses including the phagocytic process. The mechanisms by which these receptors regulate phagocytosis are not entirely understood but we have previously shown that different IpLITR-types use ITAM-dependent as well as ITAM-independent pathways for controlling target engulfment. The main objective of this study was to develop and use imaging flow cytometry and confocal microscopy-based assays to further examine both F-actin and phosphoinositide dynamics that occur during the different IpLITR-mediated phagocytic pathways. Results show that the ITAM-dependent IpLITR-induced phagocytic response promotes canonical changes in F-actin polymerization and PI(4,5)P2 redistributions. However, the ITAM-independent IpLITR phagocytic response induced unique patterns of F-actin and PI(4,5)P2 redistributions, which are likely due to its ability to regulate alternative signaling pathways. Additionally, both IpLITR-induced phagocytic pathways induced target internalization into PI(3)P-enriched phagosomes indicative of a maturing phagosome compartment. Overall, this imaging-based platform can be further applied to monitor the recruitment and distribution of signaling molecules during IpLITR-mediated phagocytic processes and may serve as a useful strategy for functional examinations of other immunoregulatory receptor-types in fish.
Collapse
Affiliation(s)
- Lena O Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
39
|
Getts D, Hofmeister R, Quintás-Cardama A. Synthetic T cell receptor-based lymphocytes for cancer therapy. Adv Drug Deliv Rev 2019; 141:47-54. [PMID: 30981835 DOI: 10.1016/j.addr.2019.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T cells have been remarkably successful in patients with hematological malignancies expressing the CD19 surface antigen, but such level of success is far from being replicated in solid tumors. Engineered T cell receptor (TCR) T cells targeting cancer antigens were first developed over two decades ago and represent an alternative adoptive T cell approach that has produced provocative clinical data in solid cancers. However, several factors may hinder this technology from realizing its full potential, including the need for HLA matching, HLA downregulation by cancer cells, the suppressive tumor microenvironment, and tissue liabilities resulting from targeting antigens shared with normal tissues. Efforts therefore continue to engineer enhanced versions of CAR T and TCR T therapies that can overcome current barriers. Furthermore, emergent novel TCR-based, HLA-unrestricted platforms may also provide unique tools that integrate the complexity of the TCR signaling cascade that can be applied to treat solid tumors. This article reviews the current state of development of TCR T cell approaches and discusses next generation improvements to overcome their current limitations.
Collapse
Affiliation(s)
- Daniel Getts
- TCR(2) Therapeutics, 100 Binney St., Suite 710, Cambridge, MA 02142, USA
| | - Robert Hofmeister
- TCR(2) Therapeutics, 100 Binney St., Suite 710, Cambridge, MA 02142, USA
| | | |
Collapse
|
40
|
|
41
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
42
|
Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092710. [PMID: 30208630 PMCID: PMC6163679 DOI: 10.3390/ijms19092710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, β2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Collapse
|
43
|
Del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol 2018; 9:804. [PMID: 29755458 PMCID: PMC5932189 DOI: 10.3389/fimmu.2018.00804] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that work in concert with other pattern recognition receptors (PRRs). CLRs have been previously classified based on their signaling motifs as activating or inhibitory receptors. However, specific features of the ligand binding process may result in distinct signaling through a single motif, resulting in the triggering of non-canonical pathways. In addition, CLR ligands are frequently exposed in complex structures that simultaneously bind different CLRs and other PRRs, which lead to integration of heterologous signaling among diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk with heterologous receptors is modulated by many factors affecting their signaling and resulting in differential outcomes for immunity and inflammation. Finding common features among those flexible responses initiated by diverse CLR-ligand partners will help to harness CLR function in immunity and inflammation.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula Saz-Leal
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Martínez-López
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
44
|
Karamichali E, Serti E, Gianneli A, Papaefthymiou A, Kakkanas A, Foka P, Seremetakis A, Katsarou K, Trougakos IP, Georgopoulou U. The unexpected function of a highly conserved YXXΦ motif in HCV core protein. INFECTION GENETICS AND EVOLUTION 2017; 54:251-262. [PMID: 28687362 DOI: 10.1016/j.meegid.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 01/09/2023]
Abstract
Hepatitis C virus (HCV) is an RNA positive strand virus, member of the Flaviviridae family. The HCV viral particle is composed of a capsid containing the genome, surrounded by an endoplasmic reticulum (ER)-derived lipid bilayer where E1 and E2 are assembled as heterodimers. However, different forms of viral particles have been identified in the serum of HCV-infected patients, including non-enveloped particles. Previous reports have demonstrated that HCV non-enveloped capsid-like particles (HCVne) can be generated by HCV core protein sequence. This sequence possesses a highly conserved ΥΧΧΦ motif and distal di-leucine motifs that confer primary endocytosis signals, enabling HCVne to enter hepatic cells via clathrin-mediated endocytosis. Although HCV core's primary function is to encapsidate the viral genome, it also interacts with a variety of cellular proteins in order to regulate host cell functions such as gene transcription, lipid metabolism, apoptosis and several signaling pathways. In this report, we demonstrate that the YXXΦ motif of HCV core protein is crucial for the architectural integrity of the particulate form of HCVne. Moreover, we show that the YXXΦ motif in the HCV core sequence plays a pivotal role in the signaling events following HCVne clathrin-mediated endocytosis by inducing the AP-2 clathrin adaptor protein, which in turn redirect HCVne trafficking to the lipid droplets (LDs) via the endosomal-lysosomal pathway. HCVne and LDs co-localization affects the HCV life cycle by enhancing viral replication.
Collapse
Affiliation(s)
| | - Elisavet Serti
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Greece
| | | | | | | | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Greece
| | | | | | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | | |
Collapse
|
45
|
Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. Front Immunol 2017; 8:280. [PMID: 28373871 PMCID: PMC5357773 DOI: 10.3389/fimmu.2017.00280] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Antibodies participate in defense of the organism from all types of pathogens, including viruses, bacteria, fungi, and protozoa. IgG antibodies recognize their associated antigen via their two Fab portions and are in turn recognized though their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of immune cells. Multiple types and polymorphic variants of FcγR exist. These receptors are expressed in many cells types and are also redundant in inducing cell responses. Crosslinking of FcγR on the surface of leukocytes activates several effector functions aimed toward the destruction of pathogens and the induction of an inflammatory response. In the past few years, new evidence on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG-FcγR interaction has been presented. Despite these advances, our knowledge of what particular effector function is activated in a certain cell and in response to a specific type of FcγR remains very limited today. On one hand, each immune cell could be programmed to perform a particular cell function after FcγR crosslinking. On the other, each FcγR could activate a particular signaling pathway leading to a unique cell response. In this review, I describe the main types of FcγRs and our current view of how particular FcγRs activate various signaling pathways to promote unique leukocyte functions.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
46
|
Abstract
Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.
Collapse
|
47
|
C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol 2016; 147:223-237. [DOI: 10.1007/s00418-016-1523-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 01/26/2023]
|
48
|
Thankam FG, Dilisio MF, Dougherty KA, Dietz NE, Agrawal DK. Triggering receptor expressed on myeloid cells and 5'adenosine monophosphate-activated protein kinase in the inflammatory response: a potential therapeutic target. Expert Rev Clin Immunol 2016; 12:1239-1249. [PMID: 27266327 PMCID: PMC5158012 DOI: 10.1080/1744666x.2016.1196138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The events in the cellular and molecular signaling triggered during inflammation mitigate tissue healing. The metabolic check-point control mediated by 5'-adenosine monophosphate-activated protein kinase (AMPK) is crucial for switching the cells into an activated state capable of mediating inflammatory events. The cell metabolism involved in the inflammatory response represents a potential therapeutic target for the pharmacologic management of inflammation. Areas covered: In this article, a critical review is presented on triggering receptor expressed on myeloid cell (TREM) receptors and their role in the inflammatory responses, as well as homeostasis between different TREM molecules and their regulation. Additionally, we discussed the relationship between TREM and AMPK to identify novel targets to limit the inflammatory response. Literature search was carried out from the National Library of Medicine's Medline database (using PubMed as the search engine) and Google Scholar and identified relevant studies up to 30 March 2016 using inflammation, TREM, AMPK, as the key words. Expert commentary: The prevention of phenotype switching of immune cells during inflammation by targeting AMPK and TREM-1 could be beneficial for developing novel management strategies for inflammation and associated complications.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | | | - Nicholas E. Dietz
- Department of Pathology, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
49
|
Dickinson BL. Unraveling the immunopathogenesis of glomerular disease. Clin Immunol 2016; 169:89-97. [PMID: 27373970 DOI: 10.1016/j.clim.2016.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 02/08/2023]
Abstract
Immune-mediated damage to glomerular structures is largely responsible for the pathology associated with the majority of glomerular diseases. Therefore, a detailed understanding of the basic immune mechanisms responsible for glomerular damage is needed to inform the design of novel intervention strategies. Glomerular injury of immune origin is complex and involves both inflammatory and non-inflammatory processes driven by elements of the innate and adaptive immune system. This review summarizes the basic immune mechanisms that cause glomerular injury leading to the nephritic and nephrotic syndromes. A major focus of the review is to highlight the mechanisms by which antibodies cause glomerular injury through their interactions with glomerular cells, complement proteins, phagocytes bearing complement and Fcγ receptors, and dendritic cells expressing the neonatal receptor for IgG, FcRn.
Collapse
Affiliation(s)
- Bonny L Dickinson
- Department of Biomedical Science, Western Michigan University Homer Stryker MD School of Medicine, 1000 Oakland Drive, Kalamazoo, MI 49008, United States.
| |
Collapse
|
50
|
Vance DT, Dufresne J, Florentinus-Mefailoski A, Tucholska M, Trimble W, Grinstein S, Marshall JG. A phagocytosis assay for oxidized low-density lipoprotein versus immunoglobulin G-coated microbeads in human U937 macrophages. Anal Biochem 2016; 500:24-34. [DOI: 10.1016/j.ab.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/24/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
|