1
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Sanidad KZ, Rager SL, Carrow HC, Ananthanarayanan A, Callaghan R, Hart LR, Li T, Ravisankar P, Brown JA, Amir M, Jin JC, Savage AR, Luo R, Rowdo FM, Martin ML, Silver RB, Guo CJ, Krumsiek J, Inohara N, Zeng MY. Gut bacteria-derived serotonin promotes immune tolerance in early life. Sci Immunol 2024; 9:eadj4775. [PMID: 38489352 PMCID: PMC11328322 DOI: 10.1126/sciimmunol.adj4775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Stephanie L Rager
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Hannah C Carrow
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Aparna Ananthanarayanan
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryann Callaghan
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Lucy R Hart
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tingting Li
- Jill Roberts Institute for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10065, USA
| | - Purnima Ravisankar
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Julia A Brown
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mohammed Amir
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenny C Jin
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alexandria Rose Savage
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan Luo
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - M Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Randi B Silver
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jan Krumsiek
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Naohiro Inohara
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melody Y Zeng
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY 10065, USA
| |
Collapse
|
3
|
Ma Z, Akhtar M, Pan H, Liu Q, Chen Y, Zhou X, You Y, Shi D, Liu H. Fecal microbiota transplantation improves chicken growth performance by balancing jejunal Th17/Treg cells. MICROBIOME 2023; 11:137. [PMID: 37344888 DOI: 10.1186/s40168-023-01569-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Intestinal inflammation has become a threatening concern in chicken production worldwide and is closely associated with Th17/Treg cell imbalance. Several studies described that gut microbiota is significantly implicated in chicken growth by modulating intestinal immune homeostasis and immune cell differentiation. Whether reshaping gut microbiota by fecal microbiota transplantation (FMT) could improve chicken growth by balancing Th17/Treg cells is an interesting question. RESULTS Here, the chickens with significantly different body weight from three different breeds (Turpan cockfighting × White Leghorn chickens, white feather chickens, and yellow feather chickens) were used to compare Th17 and Treg cells. qPCR and IHC staining results indicated that Th17 cell-associated transcriptional factors Stat3 and rorγt and cytokines IL-6, IL-17A, and IL-21 were significantly (P < 0.05) higher in the jejunum of low body weight chickens, while Treg cell-associated transcriptional factor foxp3 and cytokines TGF-β and IL-10 were significantly (P < 0.05) lower in the jejunum of low body weight chickens, indicating imbalanced Th17/Treg cells were closely related to chicken growth performance. Transferring fecal microbiota from the healthy donor with better growth performance and abundant Lactobacillus in feces to 1-day-old chicks markedly increased growth performance (P < 0.001), significantly decreased Th17 cell-associated transcriptional factors and cytokines, and increased Treg cell-associated transcriptional factors and cytokines in the jejunum (P < 0.05). Furthermore, FMT increased the abundance of Lactobacillus (FMT vs Con; 84.98% vs 66.94%). Besides, the metabolites of tryptophan including serotonin, indole, and 5-methoxyindoleacetate were increased as well, which activated their receptor aryl-hydrocarbon-receptor (AhR) and expressed more CYP1A2 and IL-22 to maintain Th17/Treg cell balance and immune homeostasis. CONCLUSION These findings suggested that imbalanced Th17/Treg cells decreased chicken growth performance, while FMT-reshaped gut microbiota, i.e., higher Lactobacilli, increased chicken growth performance by balancing Th17/Treg cells. Video Abstract.
Collapse
Affiliation(s)
- Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinxin Zhou
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingting You
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Wang X, Wang H, Ye Y, Yang P, Liu G, Hu Y, Tu Z. Ultrasound-assisted glycation and the allergenicity of α-lactalbumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3830-3839. [PMID: 36303537 DOI: 10.1002/jsfa.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ultrasound-assisted glycation is a promising method for decreasing the allergenicity of α-lactalbumin (ALA). However, there is a lack of in vivo studies on the allergenicity of ultrasound-assisted glycated ALA. In this study, the effects of the ultrasound-assisted glycation of ALA on the allergenicity and intestinal microflora were characterized using a BALB/c mouse model. RESULTS Increased immunoglobulin -G/ immunoglobulin-E (IgG/IgE) and interleukin-4/6 (IL-4/6) secretions, and reduced interferon-γ (IFN-γ) secretions were found in the serum of ALA sensitized and challenged, mice in comparison with a control group. However, there was no significant difference between the mice fed with ultrasound-assisted glycated ALA and the control group. Mice that were sensitized and challenged with ALA showed disrupted intestinal microflora, manifesting in significantly decreased Firmicutes and significantly increased Proteobacteria. It was found that 100ALA-gal could maintain the intestinal microflora of mice in a normal state. Pearson's rank correlation showed that Proteobacteria and Spirochaetota were correlated positively with the IL-4/IL-6 level and were correlated negatively with the expression of IFN-γ. Proteobacteria were also significantly positively correlated with IL-6 and negatively correlated with IFN-γ (P < 0.05). CONCLUSION These results suggested that ultrasound-assisted glycation on ALA can maintain the intestinal microflora in a normal state thus balancing the proportion of Th1/Th2 to decrease allergic reaction. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xumei Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yunhua Ye
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ping Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Guangxian Liu
- Institute of Food Science and Technology, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
5
|
Robles LM, Reichenberg LH, Grissom Ⅲ JH, Chi RJ, Piller KJ. Recombinant MBP-pσ1 expressed in soybean seeds delays onset and reduces developing disease in an animal model of multiple sclerosis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:367-379. [PMID: 37283612 PMCID: PMC10240915 DOI: 10.5511/plantbiotechnology.22.0926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/26/2022] [Indexed: 06/08/2023]
Abstract
It is estimated that multiple sclerosis (MS) affects over 2.8 million people worldwide, with a prevalence that is expected to continue growing over time. Unfortunately, there is no cure for this autoimmune disease. For several decades, antigen-specific treatments have been used in animal models of experimental autoimmune encephalomyelitis (EAE) to demonstrate their potential for suppressing autoimmune responses. Successes with preventing and limiting ongoing MS disease have been documented using a wide variety of myelin proteins, peptides, autoantigen-conjugates, and mimics when administered by various routes. While those successes were not translatable in the clinic, we have learned a great deal about the roadblocks and hurdles that must be addressed if such therapies are to be useful. Reovirus sigma1 protein (pσ1) is an attachment protein that allows the virus to target M cells with high affinity. Previous studies showed that autoantigens tethered to pσ1 delivered potent tolerogenic signals and diminished autoimmunity following therapeutic intervention. In this proof-of-concept study, we expressed a model multi-epitope autoantigen (human myelin basic protein, MBP) fused to pσ1 in soybean seeds. The expression of chimeric MBP-pσ1 was stable over multiple generations and formed the necessary multimeric structures required for binding to target cells. When administered to SJL mice prophylactically as an oral therapeutic, soymilk formulations containing MBP-pσ1 delayed the onset of clinical EAE and significantly reduced developing disease. These results demonstrate the practicality of soybean as a host for producing and formulating immune-modulating therapies to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | - James H. Grissom Ⅲ
- University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Richard J. Chi
- University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Kenneth J. Piller
- SoyMeds, Inc., Charlotte, North Carolina 28223, USA
- University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| |
Collapse
|
6
|
Zhao L, Shi F, Xie Q, Zhang Y, Evivie SE, Li X, Liang S, Chen Q, Xin B, Li B, Huo G. Co-fermented cow milk protein by Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 attenuates its allergic immune response in Balb/c mice. J Dairy Sci 2022; 105:7190-7202. [PMID: 35879161 DOI: 10.3168/jds.2022-21844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
Milk protein is one of the major food allergens. As an effective processing method, fermentation may reduce the potential allergenicity of allergens. This study aimed to evaluate the therapeutic potential of co-fermented milk protein using Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 in cow milk protein allergy (CMPA) management. This study determined the secondary and tertiary structures of the fermented versus unfermented proteins by Fourier-transform infrared spectroscopy and surface hydrophobicity to evaluate its conformational changes. Our results showed that different fermentation methods have significantly altered the conformational structures of the cow milk protein, especially the tertiary structure. Further, the potential allergenicity of the fermented cow milk protein was assessed in Balb/c mice, and mice treated with the unfermented milk and phosphate-buffered saline were used as a control. We observed a significant reduction in allergenicity via the results of the spleen index, serum total IgE, specific IgE, histamine, and mouse mast cell protease 1 in the mice treated with the co-fermented milk protein. In addition, we analyzed the cytokines and transcription factors expression levels of spleen and jejunum and confirmed that co-fermentation could effectively reduce the sensitization of cow milk protein by regulating the imbalance of T helper (Th1/Th2 and Treg/Th17). This study suggested that changes of conformational structure could reduce the potential sensitization of cow milk protein; thus, fermentation may be a promising strategy for developing a method of hypoallergenic dairy products.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Fengyi Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, University of Benin, Benin City 300001, Nigeria; Department of Animal Science, University of Benin, Benin City 300001, Nigeria
| | - Xuetong Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bowen Xin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| |
Collapse
|
7
|
Linares R, Francés R, Gutiérrez A, Juanola O. Bacterial Translocation as Inflammatory Driver in Crohn's Disease. Front Cell Dev Biol 2021; 9:703310. [PMID: 34557484 PMCID: PMC8452966 DOI: 10.3389/fcell.2021.703310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract responsible for intestinal lesions. The multifactorial etiology attributed to CD includes a combination of environmental and host susceptibility factors, which result in an impaired host–microbe gut interaction. Bacterial overgrowth and dysbiosis, increased intestinal barrier permeability, and altered inflammatory responses in patients with CD have been described in the past. Those events explain the pathogenesis of luminal translocation of bacteria or its products into the blood, a frequent event in CD, which, in turn, favors a sustained inflammatory response in these patients. In this review, we navigate through the interaction between bacterial antigen translocation, permeability of the intestinal barrier, immunologic response of the host, and genetic predisposition as a combined effect on the inflammatory response observed in CD. Several lines of evidence support that translocation of bacterial products leads to uncontrolled inflammation in CD patients, and as a matter of fact, the presence of gut bacterial genomic fragments at a systemic level constitutes a marker for increased risk of relapse among CD patients. Also, the significant percentage of CD patients who lose response to biologic therapies may be influenced by the translocation of bacterial products, which are well-known drivers of proinflammatory cytokine production by host immune cells. Further mechanistic studies evaluating cellular and humoral immune responses, gut microbiota alterations, and genetic predisposition will help clinicians to better control and personalize the management of CD patients in the future.
Collapse
Affiliation(s)
- Raquel Linares
- Hepatic and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Ana Gutiérrez
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Oriol Juanola
- Translational Research Laboratory, Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Universitá della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
8
|
Shi T, Li N, He Y, Feng J, Mei Z, Du Y, Jie Z. Th17/Treg cell imbalance plays an important role in respiratory syncytial virus infection compromising asthma tolerance in mice. Microb Pathog 2021; 156:104867. [PMID: 33957244 DOI: 10.1016/j.micpath.2021.104867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Mucosal tolerance is induced early in life and is an important mechanism of protection from diseases, such as asthma. Respiratory syncytial virus (RSV) is a main cause of bronchiolitis and pneumonia in infants. Clinical studies have found that there is a strong association between RSV infection in infancy and later development of asthma, but the underlying mechanisms are unclear. A mouse model of immune tolerance induced by oral feeding of ovalbumin(OVA) was successfully established in our previous studies. We found that RSV infection could break the oral immune tolerance state.RSV infection increased the mRNA expression of IL-17A and IL-17A/Foxp3(the transcription factor forkhead box P3) in OT mice, but the mRNA expression of IL-4 and other T helper(Th)2 cytokines did not change significantly. As detected by flow cytometry analysis, RSV infection elevated Th17 cell levels and correspondingly decreased Regulatory T(Treg) cell levels in the hilar lymph nodes (HLNs) and mesenteric lymph nodes (MLNs), but there were no significant differences in the spleen or peripheral blood.We hypothesized that an imbalance in Th cells played an important role in RSV infection compromising asthma tolerance.RSV infection disrupted asthma tolerance by increasing the Th17/Treg ratio rather than the Th1/Th2 ratio'.Therefore, altering the Th17/Treg ratio has been identified as a potential therapeutic target in asthma caused by RSV or another virus.
Collapse
Affiliation(s)
- Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Zhoufang Mei
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Yong Du
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China; Center of Community-Based Health Research, Fudan University, China.
| |
Collapse
|
9
|
Minichová L, Škultéty Ľ, Lakota J. Autoimmune phenomena and spontaneous tumour regression. The role of carbonic anhydrase I. J Cell Mol Med 2021; 25:5339-5340. [PMID: 33817968 PMCID: PMC8178281 DOI: 10.1111/jcmm.16525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Ľudovít Škultéty
- Biomedical Center, SAS, Bratislava, Slovakia.,Institute of Microbiology, CAS, Praha, Slovakia
| | - Ján Lakota
- Biomedical Center, SAS, Bratislava, Slovakia.,Center of Experimental Medicine, SAS, Bratislava, Slovakia.,Faculty of Management, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Chu KH, Lin SY, Chiang BL. STAT6 Pathway Is Critical for the Induction and Function of Regulatory T Cells Induced by Mucosal B Cells. Front Immunol 2021; 11:615868. [PMID: 33584704 PMCID: PMC7878545 DOI: 10.3389/fimmu.2020.615868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
B cells could convert naïve T cells into regulatory T cells (so-called Treg-of-B cells) which have the ability to treat animal models of inflammatory diseases, including allergic asthma, collagen-induced arthritis and colitis; however, the mechanisms of Treg-of-B cell generation remain unclear. In this study, we investigated the role of STAT6 in the generation of Treg-of-B (P) cells, which Treg cells were generated by Peyer’s patch B cells (P stands for Peyer’s patch). CD4+CD25- T cells from wild type, STAT6 knockout and IL-4 knockout mice were cocultured with wild type Peyer’s patch B cells for Treg-of-B (P) cell generation. A murine asthmatic model was used to analyze the in vivo regulatory function of Treg-of-B (P) cells. The data demonstrated that STAT6 played a critical role in the generation of Treg-of-B (P) cells, which confirmed with STAT6-deficient T cells and the STAT6 inhibitor AS1517499. When STAT6 was lacking, Treg-of-B (P) cells exerted impaired suppressive ability with decreased LAG3 expression. Furthermore, Peyer’s patch B cells played an essential role in regulatory T cell generation. In the absence of Peyer’s patch B cells, T cells expressed decreased phosphorylated STAT6, which was followed by decreased LAG3 expression and impaired suppressive ability, suggesting that Peyer’s patch B cells provided the critical signal to activate STAT6 phosphorylation in T cells. Moreover, STAT6 deficient Treg-of-B (P) cells could not alleviate inflammation in an animal model of asthma in vivo. IL-4 was downstream of phosphorylated STAT6 and maintained Treg-of-B (P) cell survival with increased expression of Bcl-2 and BclXL. We reported a novel finding that the STAT6-LAG3 signaling axis is important for the induction and function of Treg-of-B (P) cells.
Collapse
Affiliation(s)
- Kuan-Hua Chu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Lin
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.,Allergy Center, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Suzuki T, Kusano K, Kondo N, Nishikawa K, Kuge T, Ohno N. Biological Activity of High-Purity β-1,3-1,6-Glucan Derived from the Black Yeast Aureobasidium pullulans: A Literature Review. Nutrients 2021; 13:242. [PMID: 33467004 PMCID: PMC7830965 DOI: 10.3390/nu13010242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023] Open
Abstract
The black yeast Aureobasidium pullulans produces abundant soluble β-1,3-1,6-glucan-a functional food ingredient with known health benefits. For use as a food material, soluble β-1,3-1,6-glucan is produced via fermentation using sucrose as the carbon source. Various functionalities of β-1,3-1,6-glucan have been reported, including its immunomodulatory effect, particularly in the intestine. It also exhibits antitumor and antimetastatic effects, alleviates influenza and food allergies, and relieves stress. Moreover, it reduces the risk of lifestyle-related diseases by protecting the intestinal mucosa, reducing fat, lowering postprandial blood glucose, promoting bone health, and healing gastric ulcers. Furthermore, it induces heat shock protein 70. Clinical studies have reported the antiallergic and triglyceride-reducing effects of β-1,3-1,6-glucan, which are indicators of improvement in lifestyle-related diseases. The primary and higher-order structures of β-1,3-1,6-glucan have been elucidated. Specifically, it comprises a single highly-branched glucose residue with the β-1,6 bond (70% or more) on a backbone of glucose with 1,3-β bonds. β-Glucan shows a triple helical structure, and studies on its use as a drug delivery system have been actively conducted. β-Glucan in combination with anti-inflammatory substances or fullerenes can be used to target macrophages. Based on its health functionality, β-1,3-1,6-glucan is an interesting material as both food and medicine.
Collapse
Affiliation(s)
- Toshio Suzuki
- Research and Development Laboratories, Fujicco, Co., Ltd., 6-13-4 Minatojima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-8558, Japan
| | - Kisato Kusano
- Aureo Co., Ltd., 54-1, Kazusa Koito, Kimitsu-shi, Chiba 292-1149, Japan;
| | - Nobuhiro Kondo
- Research and Development Division, Itochu Sugar Co., Ltd., 3, Tamatsuura, Hekinan, Aichi 447-8506, Japan;
| | - Kouji Nishikawa
- Innovation Center, Osaka Soda Co., Ltd., 9, Otakasu-cho, Amagasaki, Hyogo 660-0842, Japan;
| | - Takao Kuge
- Life Science Materials Laboratory, ADEKA Corporation., 7-2-34, Higashi-Ogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Naohito Ohno
- Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan;
| |
Collapse
|
12
|
Marana MH, Chettri JK, Salten MB, Bach-Olesen NE, Kania PW, Dalsgaard I, Buchmann K. Primary immunization using low antigen dosages and immunological tolerance in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2020; 105:16-23. [PMID: 32619627 DOI: 10.1016/j.fsi.2020.06.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/20/2020] [Accepted: 06/23/2020] [Indexed: 05/04/2023]
Abstract
Enteric redmouth disease (ERM), caused by the Gram negative enterobacterium Yersinia ruckeri, affects farming of salmonids, but vaccination against ERM confers a certain degree of protection dependent on the administration route. Recent studies on oral vaccination of rainbow trout suggest that immunological tolerance may be induced by primary immunization using a low antigen dosage. We have examined if low dosages of Y. ruckeri antigens, applied in feed or bath exposure over a prolonged period of time, leave rainbow trout more susceptible to infection. Groups of rainbow trout were immunized, either by immersion or feeding using different vaccine dosages, and subsequently challenged by live Y. ruckeri. Survival was recorded and immune reactions in surviving fish were evaluated (ELISA and qPCR). Trout, bath-vaccinated in a highly diluted vaccine or fed the same amount of bacterin in feed over 10 days, were not protected against Y. ruckeri challenge infection and in some cases these sub-optimally immunized fish experienced lower survival compared to non-primed controls. Genes encoding FoxP3 and immune-suppressive cytokines were down-regulated in fish vaccinated with a high antigen dosage when compared to groups exposed to low antigen dosages, suggesting a higher regulatory T cell activity in the latter fish groups. The study suggests that repeated exposure to low antigen concentrations induces some degree of immune tolerance in rainbow trout and we recommend application of high antigen dosages for primary immunization of trout.
Collapse
Affiliation(s)
- M H Marana
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - J K Chettri
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M Brahe Salten
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - N Emmervadt Bach-Olesen
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - P W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - I Dalsgaard
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - K Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
13
|
Nedelkopoulou N, Dhawan A, Xinias I, Gidaris D, Farmaki E. Interleukin 10: the critical role of a pleiotropic cytokine in food allergy. Allergol Immunopathol (Madr) 2020; 48:401-408. [PMID: 32046867 DOI: 10.1016/j.aller.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/19/2023]
Abstract
Despite advances in research, the pathophysiology of food allergy has not yet been fully elucidated. IL-10 has both a pro- and anti-inflammatory effect on the development of food allergy and in order to understand its different immune-modulatory effects the factors that influence the inflammatory microenvironment need to be taken into account. Specific single nucleotide polymorphisms of the IL-10 gene seem to confer an increased risk of developing food allergy, but to date there is a substantial lack of genome- wide association studies regarding the genetic and epigenetic underpinnings of the disease. Special interest has been drawn to the development of allergen-specific regulatory CD4+CD25+ T-cells secreting IL-10 in the immunotherapy of allergic diseases. In addition, a distinct population of human tolerogenic dendritic cells (DC), DC-10 seems to hold great potential and could potentially serve as a therapeutic tool to improve the management of food allergy.
Collapse
Affiliation(s)
- Natalia Nedelkopoulou
- Pediatric Immunology and Rheumatology Referral Center, 1(st)Department of Paediatrics, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece; Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| | - Anil Dhawan
- King's College Hospital NHS Foundation Trust and MowatLabs, London, UK
| | - Ioannis Xinias
- 3(rd) Department of Paediatrics, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece
| | | | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1(st)Department of Paediatrics, Hippokration General Hospital, Aristotle University, Thessaloniki, Greece.
| |
Collapse
|
14
|
Uto T, Takagi H, Fukaya T, Nasu J, Fukui T, Miyanaga N, Arimura K, Nakamura T, Choijookhuu N, Hishikawa Y, Sato K. Critical role of plasmacytoid dendritic cells in induction of oral tolerance. J Allergy Clin Immunol 2018; 141:2156-2167.e9. [PMID: 29477579 DOI: 10.1016/j.jaci.2017.11.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/06/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Exposure to dietary constituents through the mucosal surface of the gastrointestinal tract generates oral tolerance that prevents deleterious T cell-mediated immunity. Although oral tolerance is an active process that involves emergence of CD4+ forkhead box p3 (Foxp3)+ regulatory T (Treg) cells in gut-associated lymphoid tissues (GALTs) for suppression of effector T (Teff) cells, how antigen-presenting cells initiate this process remains unclear. OBJECTIVE We sought to determine the role of plasmacytoid dendritic cells (pDCs), which are known as unconventional antigen-presenting cells, in establishment of oral tolerance. METHODS GALT-associated pDCs in wild-type mice were examined for their ability to induce differentiation of CD4+ Teff cells and CD4+Foxp3+ Treg cells in vitro. Wild-type and pDC-ablated mice were fed oral antigen to compare their intestinal generation of CD4+Foxp3+ Treg cells and induction of oral tolerance to protect against Teff cell-mediated allergic inflammation. RESULTS GALT-associated pDCs preferentially generate CD4+Foxp3+ Treg cells rather than CD4+ Teff cells, and such generation requires an autocrine loop of TGF-β for its robust production. A deficiency of pDCs abrogates antigen-specific de novo generation of CD4+Foxp3+ Treg cells occurring in GALT after antigenic feeding. Furthermore, the absence of pDCs impairs development of oral tolerance, which ameliorates the progression of delayed-type hypersensitivity and systemic anaphylaxis, as well as allergic asthma, accompanied by an enhanced antigen-specific CD4+ Teff cell response and antibody production. CONCLUSION pDCs are required for establishing oral tolerance to prevent undesirable allergic responses, and they might serve a key role in maintaining gastrointestinal immune homeostasis.
Collapse
Affiliation(s)
- Tomofumi Uto
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Hideaki Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Tomohiro Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Junta Nasu
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takehito Fukui
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Noriaki Miyanaga
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Arimura
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takeshi Nakamura
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Narantsog Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| |
Collapse
|
15
|
Kawashima T, Ikari N, Watanabe Y, Kubota Y, Yoshio S, Kanto T, Motohashi S, Shimojo N, Tsuji NM. Double-Stranded RNA Derived from Lactic Acid Bacteria Augments Th1 Immunity via Interferon-β from Human Dendritic Cells. Front Immunol 2018; 9:27. [PMID: 29410667 PMCID: PMC5787129 DOI: 10.3389/fimmu.2018.00027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria (LAB) are one of the major commensal species in the small intestine and known for contributing to maintenance of protective immunity and immune homeostasis. However, currently there has been no evidence regarding the cellular mechanisms involved in the probiotic effects of LAB on human immune cells. Here, we demonstrated that LAB double-stranded RNA (dsRNA) triggered interferon-β (IFN-β) production by human dendritic cells (DCs), which activated IFN-γ-producing T cells. Interleukin-12 (IL-12) secretion from human DCs in response to LAB was abrogated by depletion of bacterial dsRNA, and was attenuated by neutralizing IFN-β, indicating LAB dsRNA primarily activated the IFN-β/IL-12 pathway. Moreover, the induction of IL-12 secretion from DCs by LAB was abolished by the inhibition of endosomal acidification, confirming the critical role of the endosomal digestion of LAB. In a coculture of human naïve CD4+ T cells and BDCA1+ DCs, DCs stimulated with LAB containing dsRNA induced IFN-γ-producing T cells. These results indicate that human DCs activated by LAB enhance Th1 immunity depending on IFN-β secretion in response to bacterial dsRNA.
Collapse
Affiliation(s)
- Tadaomi Kawashima
- Research and Development Division, Kikkoman Corporation, Chiba, Japan.,Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Naho Ikari
- Research and Development Division, Kikkoman Corporation, Chiba, Japan.,Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yohei Watanabe
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshiro Kubota
- Kikkoman General Hospital, Kikkoman Corporation, Chiba, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriko M Tsuji
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
16
|
Fernandes SM, Pires AR, Matoso P, Ferreira C, Nunes-Cabaço H, Correia L, Valadas E, Poças J, Pacheco P, Veiga-Fernandes H, Foxall RB, Sousa AE. HIV-2 infection is associated with preserved GALT homeostasis and epithelial integrity despite ongoing mucosal viral replication. Mucosal Immunol 2018; 11:236-248. [PMID: 28513595 DOI: 10.1038/mi.2017.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023]
Abstract
The mechanisms that enable preservation of gut mucosal integrity during persistent viral replication and inherent inflammation remain unclear. Here, we investigated, for the first time, gut homeostasis in HIV-2 infection, a naturally occurring form of attenuated HIV disease. We found viral replication in both sigmoid and ileum of asymptomatic HIV-2+ patients (range: 240-851 circulating CD4+T-cells per μl) despite their undetectable viremia, accompanied by interferon-γ-producing CD8 T-cell expansion, irrespective of antiretroviral treatment. Nevertheless, there was no CD4 T-cell depletion, and Foxp3+ and IL-17- or IL-22-producing CD4 T-cell numbers were unaffected. Moreover, IL-22-producing innate lymphoid cells and IL-22-induced antimicrobial peptides and mucins were maintained. In agreement, the epithelium histology was preserved, including tight junction protein zonula occludens (ZO-1) levels. Furthermore, in vitro infection of colon epithelia with primary isolates revealed no HIV-2 impact on ZO-1 expression. Notably, sigmoid transcriptional levels of CCL20 and CCL28 were significantly increased, in direct correlation with GM-CSF, indicating a local response able to enhance CD4 T-cell recruitment. In conclusion, maintenance of mucosal integrity in HIV-2 infection was associated with T-cell recruitment responses, potentially counteracting CD4 T-cell depletion due to HIV-2 replication. These data have unique implications for the design of therapies targeting gut homeostasis in HIV-1 infection and other chronic inflammatory settings.
Collapse
Affiliation(s)
- S M Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
| | - A R Pires
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - P Matoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - C Ferreira
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
| | - H Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - L Correia
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
| | - E Valadas
- Hospital de Santa Maria, Centro Hospitalar Lisboa Norte-EPE, Lisboa, Portugal
- Clínica Universitária de Doenças Infecciosas, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J Poças
- Serviço de Infecciologia, Hospital de S. Bernardo, Setúbal, Portugal
| | - P Pacheco
- Serviço de Infecciologia, Hospital Fernando da Fonseca, Amadora, Portugal
| | - H Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - R B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - A E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 2017; 52:1185-1193. [PMID: 28697651 DOI: 10.1080/00365521.2017.1349173] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract (GI tract) is a unique organ inhabited by a range of commensal microbes, while also being exposed to an overwhelming load of antigens in the form of dietary antigens on a daily basis. The GI tract has dual roles in the body, in that it performs digestion and uptake of nutrients while also carrying out the complex and important task of maintaining immune homeostasis, i.e., keeping the balance between the good and the bad. It is equally important that we protect ourselves from reacting against the good, meaning that we stay tolerant to harmless food, commensal bacteria and self-antigens, as well as react with force against the bad, meaning induction of immune responses against harmful microorganisms. This complex task is achieved through the presence of a highly efficient mucosal barrier and a specialized multifaceted immune system, made up of a large population of scattered immune cells and organized lymphoid tissues termed the gut-associated lymphoid tissue (GALT). This review provides an overview of the primary components of the human mucosal immune system and how the immune responses in the GI tract are coordinated and induced.
Collapse
Affiliation(s)
- Bani Ahluwalia
- a Department of Microbiology and Immunology , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,b Research Unit , Calmino Group AB , Gothenburg , Sweden
| | - Maria K Magnusson
- a Department of Microbiology and Immunology , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Lena Öhman
- a Department of Microbiology and Immunology , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,c Department of Internal Medicine and Clinical Nutrition , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
18
|
Gupta RK, Raghav A, Sharma A, Gupta K, Neelabh, Mandal P, Tripathi A, Ansari IA, Das M, Dwivedi PD. Glycation of clinically relevant chickpea allergen attenuates its allergic immune response in Balb/c mice. Food Chem 2017; 235:244-256. [DOI: 10.1016/j.foodchem.2017.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023]
|
19
|
Phillips BE, Garciafigueroa Y, Trucco M, Giannoukakis N. Clinical Tolerogenic Dendritic Cells: Exploring Therapeutic Impact on Human Autoimmune Disease. Front Immunol 2017; 8:1279. [PMID: 29075262 PMCID: PMC5643419 DOI: 10.3389/fimmu.2017.01279] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022] Open
Abstract
Tolerogenic dendritic cell (tDC)-based clinical trials for the treatment of autoimmune diseases are now a reality. Clinical trials are currently exploring the effectiveness of tDC to treat autoimmune diseases of type 1 diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS), and Crohn's disease. This review will address tDC employed in current clinical trials, focusing on cell characteristics, mechanisms of action, and clinical findings. To date, the publicly reported human trials using tDC indicate that regulatory lymphocytes (largely Foxp3+ T-regulatory cell and, in one trial, B-regulatory cells) are, for the most part, increased in frequency in the circulation. Other than this observation, there are significant differences in the major phenotypes of the tDC. These differences may affect the outcome in efficacy of recently launched and impending phase II trials. Recent efforts to establish a catalog listing where tDC converge and diverge in phenotype and functional outcome are an important first step toward understanding core mechanisms of action and critical "musts" for tDC to be therapeutically successful. In our view, the most critical parameter to efficacy is in vivo stability of the tolerogenic activity over phenotype. As such, methods that generate tDC that can induce and stably maintain immune hyporesponsiveness to allo- or disease-specific autoantigens in the presence of powerful pro-inflammatory signals are those that will fare better in primary endpoints in phase II clinical trials (e.g., disease improvement, preservation of autoimmunity-targeted tissue, allograft survival). We propose that pre-treatment phenotypes of tDC in the absence of functional stability are of secondary value especially as such phenotypes can dramatically change following administration, especially under dynamic changes in the inflammatory state of the patient. Furthermore, understanding the outcomes of different methods of cell delivery and sites of delivery on functional outcomes, as well as quality control variability in the functional outcomes resulting from the various approaches of generating tDC for clinical use, will inform more standardized ex vivo generation methods. An understanding of these similarities and differences, with a reference point the large number of naturally occurring tDC populations with different immune profiles described in the literature, could explain some of the expected and unanticipated outcomes of emerging tDC clinical trials.
Collapse
Affiliation(s)
- Brett Eugene Phillips
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Yesica Garciafigueroa
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States
| | - Massimo Trucco
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Allegheny Health Network Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, PA, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Chen X, Zhang D, Chen X, Meng G, Zheng Q, Mai W, Wu Y, Ye L, Wang L. Oral administration of visceral adipose tissue antigens ameliorates metabolic disorders in mice and elevates visceral adipose tissue-resident CD4 +CD25 +Foxp3 + regulatory T cells. Vaccine 2017; 35:4612-4620. [PMID: 28736203 DOI: 10.1016/j.vaccine.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are linked with chronic, low-grade inflammation in visceral adipose tissue (VAT). A unique population of VAT-resident CD4+Foxp3+ Tregs plays a crucial role in regulating VAT inflammation and metabolic homeostasis. VAT-resident Tregs display a highly restricted TCR repertoire, suggesting they recognize certain autoantigen(s) in VAT. A dramatic reduction of VAT-resident Tregs has been shown to closely correlate with obesity-related VAT chronic inflammation and metabolic disorders. Oral tolerance strategy may modulate inflammatory response to autoantigens by several mechanisms including induction of autoantigen-specific Tregs. Here, we explored the effects and cellular mechanism of oral administration of VAT pooled antigens on high-fat diet (HFD)-induced metabolic disorders in mice. Indeed, we found that oral treatment of VAT mixture antigens effectively inhibited gain in body weight and fat mass, ameliorated serum lipid parameters, and improved insulin sensitivity in HFD mice. This strategy was shown to significantly restore HFD-induced decrease of VAT-resident Tregs, accompanied by a hampered M2-type to M1-type macrophages phenotypic switch as well as decreased CD8+ T cells infiltration in VAT. Thus, oral administration of VAT antigens may be a novel and safe strategy against obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Xiangyu Chen
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Dali Zhang
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China; Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qian Zheng
- Function Center, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Wenli Mai
- Function Center, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Yuzhang Wu
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Lilin Ye
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
21
|
Arimura K, Takagi H, Uto T, Fukaya T, Nakamura T, Choijookhuu N, Hishikawa Y, Yamashita Y, Sato K. Crucial role of plasmacytoid dendritic cells in the development of acute colitis through the regulation of intestinal inflammation. Mucosal Immunol 2017; 10:957-970. [PMID: 27848952 DOI: 10.1038/mi.2016.96] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/23/2016] [Indexed: 02/04/2023]
Abstract
Disruption of intestinal homeostasis can lead to inflammatory bowel diseases endowed susceptibility genes and environmental factors affecting intestinal accumulation and activation of colitogenic phagocytes. Plasmacytoid dendritic cells (pDCs) are immune cells that had been proposed to control innate and adaptive immunity through the massive secretion of type I interferon (IFN-I). However, the contribution of pDCs to the progression of intestinal inflammation remains unclear. Here we show a critical role of pDCs in the initiation of acute colonic inflammation using T-cell-independent acute colitis model with a selective ablation of pDCs. Although pDCs accumulated in the inflamed colon upon mucosal injury, deficiency of pDCs attenuated the development of acute colitis independent of IFN-I signaling, accompanied by the diminished colonic production of proinflammatory cytokines. Furthermore, deficiency of pDCs impaired the mobilization of colitogenic phagocytes into the inflamed colon possibly mediated by the abrogated mucosal production of C-C chemokine receptor 2 ligand. Thus, our findings highlight a critical role of pDCs in the induction of the colonic inflammation that regulates the colonic accumulation of inflammatory phagocytes leading to the initiation and exacerbation of acute colitis, and they may serve a key role in controlling gut mucosal immune homeostasis.
Collapse
Affiliation(s)
- K Arimura
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - H Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - T Uto
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - T Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - T Nakamura
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - N Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Y Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Y Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - K Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
22
|
Tsuji NM, Yan H, Watanabe Y. Gut to systemic immune-homeostasis mediated by innate signals. ACTA ACUST UNITED AC 2017; 38:448-56. [PMID: 27118332 DOI: 10.2177/jsci.38.448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To accommodate the vast antigenic exposure from both food components and commensal bacteria, the gut has evolved a naturally anti-inflammatory environment. We have recently shown that lactic acid bacteria (LAB), a major population of small intestinal microbiota and often found in fermented foods, contain a large amount of double-stranded RNA and capable of inducing interferon-β (IFN-β) production from dendritic cells (DCs) via the Toll-like receptor 3 (TLR3) pathway. It is a significant feature of LAB and was not observed in other bacteria tested. Moreover, IFN-β secreted in response to LAB prevented experimental colitis. These results identify TLR3 as a sensor to small intestinal commensal bacteria and contribute to anti-inflammatory mechanism. We also show that oral administration of β-glucan enhance intestinal and systemic immune response in dectin-1-dependent manner. Thus elucidation of "gut to systemic immune-homeostasis" mediated by innate signals will be valued for the development of gut-biology and science-based food immunology, with a focus on innovation in the health and medical industries.
Collapse
Affiliation(s)
- Noriko M Tsuji
- Immune Homeostasis Lab., Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | |
Collapse
|
23
|
Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep 2017; 7:41971. [PMID: 28176796 PMCID: PMC5296740 DOI: 10.1038/srep41971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was the evaluation of 15 days dietary regimen of depurinized (DP) milk (obtained using our patented technological procedures) or 1.5% fat UHT milk instead of standard chow diet, on rat thymus and bone marrow MyD88/Akt/p38, NF-κB, caspase-1 and endonuclease pathways, in relation to peripheral blood cell composition. To determine whether the reduced mass of the thymus is a consequence of the direct effect of DP/UHT milk on apoptosis of thymocytes, in vitro Annexin-V-FITC/PI assay was performed. Significant decreases in the thymus wet weight, thymocyte MyD88, Akt-1/phospho-Akt-1 kinase, p38/phospho-p38, NF-κB, caspase-1 activity and CD4+/CD8+ antigen expression were obtained, especially in the DP milk group. The activity of thymocyte alkaline and acid DNase increased in the DP but not in the UHT milk group. The level of IL-6 significantly decreased in DP milk treated group, while the level of total TGF-β and IL-6 increased in UHT milk group. Significant differences in hematological parameters were obtained in commercial milk fed group. Observed results about prevention of experimental diabetes in DP pretreated groups may suggest that purine compounds, uric acid and other volatile toxic compounds of commercial milk may suppress oral tolerance, probably via IL-6 and TGF-β cytokine effects.
Collapse
|
24
|
Improvement of Intestinal Immune Cell Function by Lactic Acid Bacteria for Dairy Products. Microorganisms 2016; 5:microorganisms5010001. [PMID: 28025548 PMCID: PMC5374378 DOI: 10.3390/microorganisms5010001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Lactic acid bacteria (LAB) form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552) and Streptococcus thermophilus ME-553 (ME553). In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ) and interleukin 17 (IL-17) produced by cluster of differentiation (CD) 4+ T cells from Peyer’s patches (PPs) were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity.
Collapse
|
25
|
Adachi T, Kakuta S, Aihara Y, Kamiya T, Watanabe Y, Osakabe N, Hazato N, Miyawaki A, Yoshikawa S, Usami T, Karasuyama H, Kimoto-Nira H, Hirayama K, Tsuji NM. Visualization of Probiotic-Mediated Ca 2+ Signaling in Intestinal Epithelial Cells In Vivo. Front Immunol 2016; 7:601. [PMID: 28018362 PMCID: PMC5159486 DOI: 10.3389/fimmu.2016.00601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/30/2016] [Indexed: 01/28/2023] Open
Abstract
Probiotics, such as lactic acid bacteria (LAB) and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60) transgenic mouse line and established 5D (x, y, z, time, and Ca2+) intravital imaging systems of lymphoid tissues including those in Peyer’s patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed B. subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.
Collapse
Affiliation(s)
- Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Shigeru Kakuta
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Yoshiko Aihara
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University , Kobe , Japan
| | - Tomonori Kamiya
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Yohei Watanabe
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Naomi Osakabe
- Department of Bio-science and Engineering, Shibaura Institute of Technology , Saitama , Japan
| | - Naoki Hazato
- Department of Bio-science and Engineering, Shibaura Institute of Technology , Saitama , Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN , Saitama , Japan
| | - Soichiro Yoshikawa
- Department of Immune Regulation, Tokyo Medical and Dental University , Tokyo , Japan
| | - Takako Usami
- Laboratory of Recombinant Animals, Medical Research Institute, Tokyo Medical and Dental University , Tokyo , Japan
| | - Hajime Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University , Tokyo , Japan
| | - Hiromi Kimoto-Nira
- NARO Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba , Ibaraki , Japan
| | - Kazuhiro Hirayama
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Noriko M Tsuji
- Biomedical Research Institute, National Institute for Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| |
Collapse
|
26
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Ai C, Ma N, Zhang Q, Wang G, Liu X, Tian F, Chen P, Chen W. Immunomodulatory Effects of Different Lactic Acid Bacteria on Allergic Response and Its Relationship with In Vitro Properties. PLoS One 2016; 11:e0164697. [PMID: 27764153 PMCID: PMC5072832 DOI: 10.1371/journal.pone.0164697] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Some studies reported that probiotic could relieve allergy-induced damage to the host, but how to get a useful probiotic is still a challenge. In this study, the protective effects of three lactic acid bacteria (La, Lp and Lc) were evaluated in a mouse model, and its relationship with the in vitro properties was analyzed. The in vitro results indicated that La with the capacity to inhibit IL-4 production could have a better anti-allergy effect in vivo than two others. However, the animal trials showed that all LAB strains could alleviate allergen-induced airway inflammation. Among them, LAB strain Lp had a better effect in inhibiting allergic response through a modulation of Th1/Th2 balance and an increase of regulatory T cells. This difference could be explained by that different LAB strains have a strain-specific effect on gut microbiota closely associated with host immune responses. Finally, this study did not only obtain an effective anti-allergy probiotic strain via animal study, but also indicate that probiotic-induced effect on intestinal microbiota should be considered as an important screening index, apart from its inherent characteristics.
Collapse
Affiliation(s)
- Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Na Ma
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- * E-mail: (QXZ); (WC)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Pei Chen
- Shaanxi University of Technology, School of Biological Science and Engineering, Hanzhong 723001, P. R. China
- Shanxi Radio & TV University, Xi'an 710119, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- * E-mail: (QXZ); (WC)
| |
Collapse
|
28
|
Oral Tolerance to Environmental Mycobacteria Interferes with Intradermal, but Not Pulmonary, Immunization against Tuberculosis. PLoS Pathog 2016; 12:e1005614. [PMID: 27153120 PMCID: PMC4859477 DOI: 10.1371/journal.ppat.1005614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB) and is administered in over 150 countries worldwide. Despite its widespread use, the vaccine has a variable protective efficacy of 0-80%, with the lowest efficacy rates in tropical regions where TB is most prevalent. This variability is partially due to ubiquitous environmental mycobacteria (EM) found in soil and water sources, with high EM prevalence coinciding with areas of poor vaccine efficacy. In an effort to elucidate the mechanisms underlying EM interference with BCG vaccine efficacy, we exposed mice chronically to Mycobacterium avium (M. avium), a specific EM, by two different routes, the oral and intradermal route, to mimic human exposure. After intradermal BCG immunization in mice exposed to oral M. avium, we saw a significant decrease in the pro-inflammatory cytokine IFN-γ, and an increase in T regulatory cells and the immunosuppressive cytokine IL-10 compared to naïve BCG-vaccinated animals. To circumvent the immunosuppressive effect of oral M. avium exposure, we vaccinated mice by the pulmonary route with BCG. Inhaled BCG immunization rescued IFN-γ levels and increased CD4 and CD8 T cell recruitment into airways in M. avium-presensitized mice. In contrast, intradermal BCG vaccination was ineffective at T cell recruitment into the airway. Pulmonary BCG vaccination proved protective against Mtb infection regardless of previous oral M. avium exposure, compared to intradermal BCG immunization. In conclusion, our data indicate that vaccination against TB by the pulmonary route increases BCG vaccine efficacy by avoiding the immunosuppressive interference generated by chronic oral exposure to EM. This has implications in TB-burdened countries where drug resistance is on the rise and health care options are limited due to economic considerations. A successful vaccine against TB is necessary in these areas as it is both effective and economical.
Collapse
|
29
|
Watanabe N, Kaminuma O, Kitamura N, Hiroi T. Induced Treg Cells Augment the Th17-Mediated Intestinal Inflammatory Response in a CTLA4-Dependent Manner. PLoS One 2016; 11:e0150244. [PMID: 26950218 PMCID: PMC4780716 DOI: 10.1371/journal.pone.0150244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
Th17 cells and Foxp3+ regulatory T cells (Tregs) are thought to promote and suppress inflammatory responses, respectively. However, whether they counteract each other or synergize in regulating immune reactions remains controversial. To determine their interactions, we describe the results of experiments employing mouse models of intestinal inflammation by transferring antigen-specific Th cells (Th1, Th2, and Th17) differentiated in vitro followed by the administration of the cognate antigen via enema. We show that cotransfer of induced Tregs (iTregs) suppressed Th1- and Th2-mediated colon inflammation. In contrast, colon inflammation induced by transfer of Th17 cells, was augmented by the cotransfer of iTregs. Furthermore, oral delivery of antigen potentiated Th17-mediated colon inflammation. Administration of a blocking antibody against cytotoxic T lymphocyte-associated antigen 4 (CTLA4) abrogated the effects of cotransfer of iTregs, while the injection of a soluble recombinant immunoglobulin (Ig) fusion protein, CTLA4-Ig substituted for the cotransfer of iTregs. These results suggest that antigen-specific activation of iTregs in a local environment stimulates the Th17-mediated inflammatory response in a CTLA4-dependent manner.
Collapse
Affiliation(s)
- Nobumasa Watanabe
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Osamu Kaminuma
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Noriko Kitamura
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takachika Hiroi
- Allergy and Immunology Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Richard C, Lewis ED, Goruk S, Field CJ. Feeding a Diet Enriched in Docosahexaenoic Acid to Lactating Dams Improves the Tolerance Response to Egg Protein in Suckled Pups. Nutrients 2016; 8:103. [PMID: 26907333 PMCID: PMC4772065 DOI: 10.3390/nu8020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to determine the effect of feeding a maternal diet supplemented with docosahexaenoic acid (DHA) during the suckling period on the development of the immune system and oral tolerance (OT) in offspring. Dams were randomized to consume one of two nutritionally adequate diets throughout the suckling period: control (N = 12, 0% DHA) or DHA (N = 8, 0.9% DHA) diet. At 11 days, pups from each dam were randomly assigned to a mucosal OT challenge: the placebo or the ovalbumin (OVA) treatment. At three weeks, plasma immunoglobulins and splenocyte cytokine production ex vivo were measured. OVA-tolerized pups had a lower Th2 (IL-13) response to OVA despite the presence of more activated T cells and memory cells (CD27+, all p < 0.05). Feeding a high DHA diet improved the ability of splenocytes to respond to mitogens toward a skewed Th1 response and led to a higher IL-10 and a lower TGF-β production after stimulation with OVA (all p < 0.05). Untolerized DHA-fed pups had lower plasma concentrations of OVA-specific immunoglobulin E (p for interaction < 0.05). Overall, feeding a high DHA maternal diet improves the tolerance response in untolerized suckled pups in a direction that is thought to be beneficial for the establishment of OT.
Collapse
Affiliation(s)
- Caroline Richard
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Erin D Lewis
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Susan Goruk
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Catherine J Field
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
31
|
Abstract
Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy.
Collapse
Affiliation(s)
- Pajau Vangay
- Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tonya Ward
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dan Knights
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA; Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Rosales-Mendoza S, Angulo C, Meza B. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles. Trends Biotechnol 2016; 34:124-136. [DOI: 10.1016/j.tibtech.2015.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
33
|
Kim AR, Kim HS, Kim DK, Nam ST, Kim HW, Park YH, Lee D, Lee MB, Lee JH, Kim B, Beaven MA, Kim HS, Kim YM, Choi WS. Mesenteric IL-10-producing CD5+ regulatory B cells suppress cow's milk casein-induced allergic responses in mice. Sci Rep 2016; 6:19685. [PMID: 26785945 PMCID: PMC4726293 DOI: 10.1038/srep19685] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Food allergy is a hypersensitive immune reaction to food proteins. We have previously demonstrated the presence of IL-10-producing CD5(+) B cells and suggested their potential role in regulating cow's milk casein allergy in humans and IgE-mediated anaphylaxis in mice. In this study, we determined whether IL-10-producing CD5(+) regulatory B cells control casein-induced food allergic responses in mice and, if so, the underlying mechanisms. The induction of oral tolerance (OT) by casein suppressed casein-induced allergic responses including the decrease of body temperature, symptom score, diarrhea, recruitment of mast cells and eosinophils into jejunum, and other biological parameters in mice. Notably, the population of IL-10-producing CD5(+) B cells was increased in mesenteric lymph node (MLN), but not in spleen or peritoneal cavity (PeC) in OT mice. The adoptive transfer of CD5(+) B cells from MLN, but not those from spleen and PeC, suppressed the casein-induced allergic responses in an allergen-specific and IL-10-dependent manner. The inhibitory effect of IL-10-producing CD5(+) B cells on casein-induced allergic response was dependent on Foxp3(+) regulatory T cells. Taken together, mesenteric IL-10-producing regulatory B cells control food allergy via Foxp3(+) regulatory T cells and could potentially act as a therapeutic regulator for food allergy.
Collapse
Affiliation(s)
- A-Ram Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Do Kyun Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Seung Taek Nam
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyun Woo Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Young Hwan Park
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Dajeong Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Min Bum Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jun Ho Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Bokyung Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women’s University, Seoul 132-714, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
34
|
Rueter K, Haynes A, Prescott SL. Developing Primary Intervention Strategies to Prevent Allergic Disease. Curr Allergy Asthma Rep 2015; 15:40. [PMID: 26143389 DOI: 10.1007/s11882-015-0537-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases are a major cause of morbidity in the developed world, now affecting up to 40 % of the population with no evidence that this is abating. If anything, the prevalence of early onset allergic diseases such as eczema and food allergy appears to be still increasing. This is almost certainly due to the changing modern environment and lifestyle factors, acting to promote immune dysfunction through early perturbations in immune maturation, immune tolerance and regulation. This early propensity to inflammation may also have implications for the rising risk of other inflammatory non-communicable diseases (NCDs) later in life. Identifying risk factors and pathways for preventing early onset immune disease like allergy is likely to have benefits for many aspects of human health, particularly as many NCDs share similar risk factors. This review focuses on recent advances in primary intervention strategies for promoting early immune health and preventing allergic disease, highlighting the current evidence-based guidelines where applicable and areas requiring further investigation.
Collapse
Affiliation(s)
- Kristina Rueter
- Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | | | | |
Collapse
|
35
|
Takaiwa F, Wakasa Y, Takagi H, Hiroi T. Rice seed for delivery of vaccines to gut mucosal immune tissues. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1041-55. [PMID: 26100952 DOI: 10.1111/pbi.12423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 05/09/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is the biggest lymphoid organ in the body. It plays a role in robust immune responses against invading pathogens while maintaining immune tolerance against nonpathogenic antigens such as foods. Oral vaccination can induce mucosal and systemic antigen-specific immune reactions and has several advantages including ease of administration, no requirement for purification and ease of scale-up of antigen. Thus far, taking advantage of these properties, various plant-based oral vaccines have been developed. Seeds provide a superior production platform over other plant tissues for oral vaccines; they offer a suitable delivery vehicle to GALT due to their high stability at room temperature, ample and stable deposition space, high expression level, and protection from digestive enzymes in gut. A rice seed production system for oral vaccines was established by combining stable deposition in protein bodies or protein storage vacuoles and enhanced endosperm-specific expression. Various types of rice-based oral vaccines for infectious and allergic diseases were generated. Efficacy of these rice-based vaccines was evaluated in animal models.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Yuhya Wakasa
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hidenori Takagi
- Functional Crop Research and Development Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takachika Hiroi
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
36
|
Richard C, Lewis ED, Goruk S, Field CJ. The content of docosahexaenoic acid in the maternal diet differentially affects the immune response in lactating dams and suckled offspring. Eur J Nutr 2015; 55:2255-64. [DOI: 10.1007/s00394-015-1035-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
|
37
|
Immune Homeostasis in Epithelial Cells: Evidence and Role of Inflammasome Signaling Reviewed. J Immunol Res 2015; 2015:828264. [PMID: 26355424 PMCID: PMC4556877 DOI: 10.1155/2015/828264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
The epithelium regulates the interaction between the noxious xenogenous, as well as the microbial environment and the immune system, not only by providing a barrier but also by expressing a number of immunoregulatory membrane receptors, and intracellular danger sensors and their downstream effectors. Amongst these are a number of inflammasome sensor subtypes, which have been initially characterized in myeloid cells and described to be activated upon assembly into multiprotein complexes by microbial and environmental triggers. This review compiles a vast amount of literature that supports a pivotal role for inflammasomes in the various epithelial barriers of the human body as essential factors maintaining immune signaling and homeostasis.
Collapse
|
38
|
Yamashita T, Sasaki N, Kasahara K, Hirata KI. Anti-inflammatory and immune-modulatory therapies for preventing atherosclerotic cardiovascular disease. J Cardiol 2015; 66:1-8. [DOI: 10.1016/j.jjcc.2015.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 12/28/2022]
|
39
|
rMCP-2, the Major Rat Mucosal Mast Cell Protease, an Analysis of Its Extended Cleavage Specificity and Its Potential Role in Regulating Intestinal Permeability by the Cleavage of Cell Adhesion and Junction Proteins. PLoS One 2015; 10:e0131720. [PMID: 26114959 PMCID: PMC4482586 DOI: 10.1371/journal.pone.0131720] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/05/2015] [Indexed: 11/25/2022] Open
Abstract
Mast cells of the rat intestinal mucosa express three chymotryptic enzymes named rMCP-2, -3 and 4. rMCP-2, the most abundant of these enzymes, has been shown to increase the permeability of the intestinal epithelium, most likely by cleavage of cell adhesion and junction proteins and thereby play a role in intestinal parasite clearance. However, no target for this effect has yet been identified. To address this question we here present its extended cleavage specificity. Phage display analysis showed that it is a chymase with a specificity similar to the corresponding enzyme in mice, mMCP-1, with a preference for Phe or Tyr in the P1 position, and a general preference for aliphatic amino acids both upstream and downstream of the cleavage site. The consensus sequence obtained from the phage display analysis was used to screen the rat proteome for potential targets. A few of the most interesting candidate substrates were cell adhesion and cell junction molecules. To see if these proteins were also susceptible to cleavage in their native conformation we cleaved 5 different recombinant cell adhesion and cell junction proteins. Three potential targets were identified: the loop 1 of occludin, protocadherin alpha 4 and cadherin 17, which indicated that these proteins were at least partly responsible for the previously observed prominent role of rMCP-2 in mucosal permeability and in parasite clearance.
Collapse
|
40
|
Oral tolerance failure upon neonatal gut colonization with Escherichia coli producing the genotoxin colibactin. Infect Immun 2015; 83:2420-9. [PMID: 25824839 DOI: 10.1128/iai.00064-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/23/2015] [Indexed: 01/06/2023] Open
Abstract
The intestinal barrier controls the balance between tolerance and immunity to luminal antigens. When this finely tuned equilibrium is deregulated, inflammatory disorders can occur. There is a concomitant increase, in urban populations of developed countries, of immune-mediated diseases along with a shift in Escherichia coli population from the declining phylogenetic group A to the newly dominant group B2, including commensal strains producing a genotoxin called colibactin that massively colonized the gut of neonates. Here, we showed that mother-to-offspring early gut colonization by colibactin-producing E. coli impairs intestinal permeability and enhances the transepithelial passage of luminal antigen, leading to an increased immune activation. Functionally, this was accompanied by a dramatic increase in local and systemic immune responses against a fed antigen, decreased regulatory T cell population, tolerogenic dendritic cells, and enhanced mucosal delayed-type hypersensitivity response. Conversely, the abolition of colibactin expression by mutagenesis abrogates the alteration of oral tolerance induced by neonatal colonization by E. coli. In conclusion, the vertical colonization by E. coli producing the genotoxin colibactin enhances intestinal translocation and subsequently alters oral tolerance. Thus, early colonization by E. coli from the newly dominant phylogenetic group B2, which produces colibactin, may represent a risk factor for the development of immune-mediated diseases.
Collapse
|
41
|
Concentrated protein body product derived from rice endosperm as an oral tolerogen for allergen-specific immunotherapy--a new mucosal vaccine formulation against Japanese cedar pollen allergy. PLoS One 2015; 10:e0120209. [PMID: 25774686 PMCID: PMC4361645 DOI: 10.1371/journal.pone.0120209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/20/2015] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum-derived type-I protein body (PB-I) from rice endosperm cells is an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolerogens for allergen-specific immunotherapy. In the present study, PBs containing the deconstructed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1) and Cry j 2 were concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product were more resistant to enzymatic digestion than those in the milled seed powder despite the absence of intact cell wall and starch, and remained stable for at least 10 months at room temperature without detectable loss or degradation. The high resistance of these allergens could be attributed to changes in protein physicochemical properties induced by the high temperature concentration process, as suggested by the decreased solubility of the antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microscopy showed that the morphology of antigen-containing PB-Is was preserved in the concentrated PB product. The concentrated PB product induced specific immune tolerance against Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel oral tolerogen formulation.
Collapse
|
42
|
Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, Zhao J, Zhang H, Chen YQ, Chen W. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 2014; 9:e109461. [PMID: 25290938 PMCID: PMC4188596 DOI: 10.1371/journal.pone.0109461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/10/2014] [Indexed: 11/30/2022] Open
Abstract
Background Mucosal vaccine based on lactic acid bacteria is an attractive concept for the prevention and treatment of allergic diseases, but their mechanisms of action in vivo are poorly understood. Therefore, we sought to investigate how recombinant major dust mite allergen Der p2-expressing Lactococcus lactis as a mucosal vaccine induced the immune tolerance against house dust mite allergy in a mouse model. Methods Three strains of recombinant L. lactis producing Der p2 in different cell components (extracellular, intracellular and cell wall) were firstly constructed. Their prophylactic potential was evaluated in a Der p2-sensitised mouse model, and immunomodulation properties at the cellular level were determined by measuring cytokine production in vitro. Results Der p2 expressed in the different recombinant L. lactis strains was recognized by a polyclonal anti-Der p2 antibody. Oral treatment with the recombinant L. lactis prior sensitization significantly prevented the development of airway inflammation in the Der p2-sensitized mice, as determined by the attenuation of inflammatory cells infiltration in the lung tissues and decrease of Th2 cytokines IL-4 and IL-5 levels in bronchoalveolar lavage. In addition, the serum allergen-specific IgE levels were significantly reduced, and the levels of IL-4 in the spleen and mesenteric lymph nodes cell cultures were also markedly decreased upon allergen stimulation in the mice fed with the recombinant L. lactis strains. These protective effects correlated with a significant up-regulation of regulatory T cells in the mesenteric lymph nodes. Conclusion Oral pretreatment with live recombinant L. lactis prevented the development of allergen-induced airway inflammation primarily by the induction of specific mucosal immune tolerance.
Collapse
Affiliation(s)
- Chunqing Ai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (QZ); (WC)
| | - Chengcheng Ren
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
- * E-mail: (QZ); (WC)
| |
Collapse
|
43
|
Intestine-derived Clostridium leptum induces murine tolerogenic dendritic cells and regulatory T cells in vitro. Hum Immunol 2014; 75:1232-8. [PMID: 25300998 DOI: 10.1016/j.humimm.2014.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 01/17/2023]
Abstract
Patients with autoimmune and allergic diseases frequently present with reduced numbers and functionally impaired regulatory T cells (Tregs) and/or tolerogenic dendritic cells (tDCs). tDC-mediated regulation of Treg proliferation (numbers) and activation is crucial to establishing and maintaining an appropriate level of immune tolerance. Colonic colonization of Clostridium spp. is associated with accumulation of Tregs, which inhibits development of inflammatory lesions. To investigate whether infection with the Clostridium leptum sp. can specifically induce Tregs and/or tDCs bone marrow-derived dendritic cells were cultured in the presence or absence of C. leptum then co-cultured with CD4(+)CD25(-) T cells or not. Changes in tDC numbers, Treg numbers, percentages of T cell subsets, and expression of cytokines related to Tregs (IL-10 and transforming growth factor-beta (TGF-β1)), DCs (IL-12p40 and IL-6) and effector T cells (IFN-γ, IL-4, IL-5, IL-13, and IL-17A) were measured. In the co-culture system, C. leptum-stimulated tDCs were able to increase the percentage and total number of Tregs attenuate activation of T helper cells (Th1, Th2, and Th17), and decrease the amount of secreted IL-4, IL-5, IL-13, IFN-γ and IL-17A. Thus, C. leptum exposure can induce the tDC-mediated stimulation of Tregs while disrupting the immune inflammatory response mediated by Th1, Th2 and Th17 cells.
Collapse
|
44
|
Lightfoot YL, Yang T, Sahay B, Zadeh M, Cheng SX, Wang GP, Owen JL, Mohamadzadeh M. Colonic immune suppression, barrier dysfunction, and dysbiosis by gastrointestinal bacillus anthracis Infection. PLoS One 2014; 9:e100532. [PMID: 24945934 PMCID: PMC4063899 DOI: 10.1371/journal.pone.0100532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal (GI) anthrax results from the ingestion of Bacillus anthracis. Herein, we investigated the pathogenesis of GI anthrax in animals orally infected with toxigenic non-encapsulated B. anthracis Sterne strain (pXO1+ pXO2−) spores that resulted in rapid animal death. B. anthracis Sterne induced significant breakdown of intestinal barrier function and led to gut dysbiosis, resulting in systemic dissemination of not only B. anthracis, but also of commensals. Disease progression significantly correlated with the deterioration of innate and T cell functions. Our studies provide critical immunologic and physiologic insights into the pathogenesis of GI anthrax infection, whereupon cleavage of mitogen-activated protein kinases (MAPKs) in immune cells may play a central role in promoting dysfunctional immune responses against this deadly pathogen.
Collapse
Affiliation(s)
- Yaíma L. Lightfoot
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Bikash Sahay
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sam X. Cheng
- Division of Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Gary P. Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jennifer L. Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ma S, Yin J. Imbalance of serum IL-10 and TGF-β in patients with pollen food syndrome. Allergol Immunopathol (Madr) 2014; 42:198-205. [PMID: 23660507 DOI: 10.1016/j.aller.2013.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Pollen food syndrome is one of the main causes of food allergies in adults. However, the intrinsic immunological mechanisms remain unclear. METHODS Forty pollinosis sufferers [23 with a food allergy (PSFA) and 17 without a food allergy (PS)] and 17 non-atopic healthy controls were included in this study. The PSFA group was subdivided into an oral allergy syndrome group, a systemic reaction group, and an anaphylactic reaction group according to their symptoms after eating the suspected foods. Serum IL-10 and TGF-β levels of all participants were determined by ELISA. Clinical characteristics of the patients were also evaluated. RESULTS There were no significant differences in age, sex, pollen-associated symptoms, duration of respiratory disease, and positive parental history of atopy between the PSFA and PS groups. Compared to healthy controls, serum IL-10 levels of both the PSFA group and PS group were significantly lower (p≤0.01), but TGF β levels were significantly higher in the PSFA group (35.3±5.6ng/ml vs. 31.2±6.6ng/ml, respectively; p=0.037). Within the PSFA group, IL-10 levels in the anaphylactic reaction subgroup were significantly lower compared to oral allergy syndrome subgroup (1.87±0.47pg/ml vs. 1.40±0.30pg/ml, respectively; p=0.027). More severe food allergy symptoms were associated with lower serum IL-10 levels. In contrast, the highest serum levels of TGF-β were found in patients from the anaphylactic reaction subgroup. CONCLUSIONS With the exception of a defect in regulatory cells represented by the reduction of IL-10, other potential immunological mechanisms (e.g., Th17 or IL-23 together with TGF-β) may be involved in the development of pollen food syndrome.
Collapse
|
46
|
Antigen targeting to M cells for enhancing the efficacy of mucosal vaccines. Exp Mol Med 2014; 46:e85. [PMID: 24626171 PMCID: PMC3972786 DOI: 10.1038/emm.2013.165] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023] Open
Abstract
Vaccination is one of the most successful applications of immunology and for a long time has depended on parenteral administration protocols. However, recent studies have pointed to the promise of mucosal vaccination because of its ease, economy and efficiency in inducing an immune response not only systemically, but also in the mucosal compartment where many pathogenic infections are initiated. However, successful mucosal vaccination requires the help of an adjuvant for the efficient delivery of vaccine material into the mucosa and the breaking of the tolerogenic environment, especially in oral mucosal immunization. Given that M cells are the main gateway to take up luminal antigens and initiate antigen-specific immune responses, understanding the role and characteristics of M cells is crucial for the development of successful mucosal vaccines. Especially, particular interest has been focused on the regulation of the tolerogenic mucosal microenvironment and the introduction of the luminal antigen into the lymphoid organ by exploiting the molecules of M cells. Here, we review the characteristics of M cells and the immune regulatory factors in mucosa that can be exploited for mucosal vaccine delivery and mucosal immune regulation.
Collapse
|
47
|
Kumar S, Sharma A, Neelabh, Singh G, Verma AK, Roy R, Gupta R, Misra A, Tripathi A, Ansari KM, Das M, Shanker R, Dwivedi PD. Allergenic responses of green gram (Vigna radiata L. Millsp) proteins can be vitiated by induction of oral tolerance due to single acute dose in BALB/c mice. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.01.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Abstract
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | |
Collapse
|
49
|
Park KS, Park MJ, Cho ML, Kwok SK, Ju JH, Ko HJ, Park SH, Kim HY. Type II collagen oral tolerance; mechanism and role in collagen-induced arthritis and rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0210-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
50
|
Miller AD, Blutt SE, Conner ME. FoxP3+ regulatory T cells are not important for rotavirus clearance or the early antibody response to rotavirus. Microbes Infect 2014; 16:67-72. [PMID: 24095866 PMCID: PMC3947018 DOI: 10.1016/j.micinf.2013.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/23/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022]
Abstract
Regulatory T cells produce TGF-β that contributes to IgA induction by intestinal commensal bacteria but their importance in IgA responses to pathogens has not been determined. Immunity against the enteropathogen, rotavirus, is dependent on intestinal IgA, but whether FoxP3(+) regulatory T cells contribute to this IgA is unknown. Infection with rotavirus increased the numbers of intestinal FoxP3(+) regulatory T cells. Depletion of FoxP3(+) regulatory T cells altered leukocyte activation but did not significantly alter rotavirus clearance or specific antibody levels. These data suggest FoxP3(+) regulatory T cells are not critical for the early antibody response to rotavirus infection.
Collapse
Affiliation(s)
- Amber D Miller
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA.
| |
Collapse
|