1
|
Zhang Q, Yang Z, Ou X, Zhang M, Qin X, Wu G. The role of immunity in insulin resistance in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2025; 15:1464561. [PMID: 39911236 PMCID: PMC11797073 DOI: 10.3389/fendo.2024.1464561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent disorder of the endocrine system with significant clinical implications, often leading to health complications related to adipose tissue accumulation, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes mellitus. While the precise pathogenesis of PCOS remains unclear, it is now recognized that genetic, endocrine, and metabolic dysregulations all contribute significantly to its onset. The immunopathogenesis of PCOS has not been extensively explored, but there is growing speculation that immune system abnormalities may play a pivotal role. This chronic inflammatory state is exacerbated by factors such as obesity and hyperinsulinemia. Therefore, this review aims to elucidate the interplay between IR in PCOS patients, the controlled immune response orchestrated by immune cells and immunomodulatory molecules, and their interactions with adipocytes, hyperandrogenemia, chronic inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Ou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengying Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gengxiang Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Meher AK, McNamara CA. B-1 lymphocytes in adipose tissue as innate modulators of inflammation linked to cardiometabolic disease. Immunol Rev 2024; 324:95-103. [PMID: 38747455 PMCID: PMC11262958 DOI: 10.1111/imr.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.
Collapse
Affiliation(s)
- Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Coleen A. McNamara
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Fernández-García P, Taxerås SD, Reyes-Farias M, González L, Soria-Gondek A, Pellitero S, Tarascó J, Moreno P, Sumoy L, Stephens JM, Yoo LG, Galán M, Izquierdo A, Medina-Gómez G, Herrero L, Corrales P, Villarroya F, Cereijo R, Sánchez-Infantes D. Claudin-1 as a novel target gene induced in obesity and associated to inflammation, fibrosis, and cell differentiation. Eur J Endocrinol 2024; 190:201-210. [PMID: 38375549 DOI: 10.1093/ejendo/lvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/13/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE T lymphocytes from visceral and subcutaneous white adipose tissues (vWAT and sWAT, respectively) can have opposing roles in the systemic metabolic changes associated with obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein involved canonically in tight junctions and tissue paracellular permeability. We evaluated T-lymphocyte gene expression in vWAT and sWAT and in the whole adipose depots in human samples. METHODS A Clariom D-based transcriptomic analysis was performed on T lymphocytes magnetically separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of candidate genes resulting from that analysis was determined in whole WAT from individuals with and without obesity (Cohort 2; patients with obesity: N = 13; patients without obesity: N = 14). RESULTS We observed transcriptional differences between T lymphocytes from sWAT compared with vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis, and adipogenesis. CONCLUSION These results suggest that CLDN1 is a novel marker induced in obesity and differentially expressed in T lymphocytes infiltrated in human vWAT as compared with sWAT. This protein may have a crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may contribute to inflammation, fibrosis, and alter homeostasis and promote metabolic disease in obesity.
Collapse
Affiliation(s)
- Pablo Fernández-García
- Department of Basic Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid E-28922, Spain
| | - Siri D Taxerås
- Endocrinology Department, Fundació Institut Germans Trias i Pujol, Barcelona 08916, Spain
| | - Marjorie Reyes-Farias
- Endocrinology Department, Fundació Institut Germans Trias i Pujol, Barcelona 08916, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Lorena González
- Endocrinology Department, Fundació Institut Germans Trias i Pujol, Barcelona 08916, Spain
| | - Andrea Soria-Gondek
- Pediatric Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain
| | - Silvia Pellitero
- Endocrinology Department, Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Jordi Tarascó
- General Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain
| | - Pau Moreno
- General Surgery Department, Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain
| | - Lauro Sumoy
- Endocrinology Department, Fundació Institut Germans Trias i Pujol, Barcelona 08916, Spain
| | - Jacqueline M Stephens
- Adipocyte Biology Department, Pennington Biomedical Research Center (PBRC), Louisiana State University, Baton Rouge, LA 70808, United States
| | - Lindsey G Yoo
- Adipocyte Biology Department, Pennington Biomedical Research Center (PBRC), Louisiana State University, Baton Rouge, LA 70808, United States
| | - María Galán
- Department of Basic Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid E-28922, Spain
| | - Adriana Izquierdo
- Department of Basic Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid E-28922, Spain
| | - Gema Medina-Gómez
- Department of Basic Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid E-28922, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Patricia Corrales
- Department of Basic Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid E-28922, Spain
| | - Francesc Villarroya
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Rubén Cereijo
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona 08028, Spain
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau (IIB-Sant Pau), Infectious Diseases Unit, Barcelona 08041, Spain
| | - David Sánchez-Infantes
- Department of Basic Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid E-28922, Spain
- Endocrinology Department, Fundació Institut Germans Trias i Pujol, Barcelona 08916, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
4
|
Han SC, Kang JI, Choi YK, Boo HJ, Yoon WJ, Kang HK, Yoo ES. Intermittent Fasting Modulates Immune Response by Generating Tregs via TGF-β Dependent Mechanisms in Obese Mice with Allergic Contact Dermatitis. Biomol Ther (Seoul) 2024; 32:136-145. [PMID: 37424516 PMCID: PMC10762271 DOI: 10.4062/biomolther.2023.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
People with obesity maintain low levels of inflammation; therefore, their exposure to foreign antigens can trigger an excessive immune response. In people with obesity or allergic contact dermatitis (ACD), symptoms are exacerbated by a reduction in the number of regulatory T cells (Tregs) and IL-10/TGF-β-modified macrophages (M2 macrophages) at the inflammatory site. Benefits of intermittent fasting (IF) have been demonstrated for many diseases; however, the immune responses regulated by macrophages and CD4+T cells in obese ACD animal models are poorly understood. Therefore, we investigated whether IF suppresses inflammatory responses and upregulates the generation of Tregs and M2 macrophages in experimental ACD animal models of obese mice. The IF regimen relieved various ACD symptoms in inflamed and adipose tissues. We showed that the IF regimen upregulates Treg generation in a TGF-β-dependent manner and induces CD4+T cell hypo-responsiveness. IF-M2 macrophages, which strongly express TGF-β and inhibit CD4+T cell proliferation, directly regulated Treg differentiation from CD4+T cells. These results indicate that the IF regimen enhances the TGF-β-producing ability of M2 macrophages and that the development of Tregs keeps mice healthy against ACD exacerbated by obesity. Therefore, the IF regimen may ameliorate inflammatory immune disorders caused by obesity.
Collapse
Affiliation(s)
- Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Il Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Youn Kyung Choi
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hye-Jin Boo
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 63208, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Sook Yoo
- Department of Medicine, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
Martinez N, Smulan LJ, Jameson ML, Smith CM, Cavallo K, Bellerose M, Williams J, West K, Sassetti CM, Singhal A, Kornfeld H. Glycerol contributes to tuberculosis susceptibility in male mice with type 2 diabetes. Nat Commun 2023; 14:5840. [PMID: 37730757 PMCID: PMC10511404 DOI: 10.1038/s41467-023-41519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Diabetes mellitus increases risk for tuberculosis disease and adverse outcomes. Most people with both conditions have type 2 diabetes, but it is unknown if type 1 and type 2 diabetes have identical effects on tuberculosis susceptibility. Here we show that male mice receiving a high-fat diet and streptozotocin to model type 2 diabetes, have higher mortality, more lung pathology, and higher bacterial burden following Mycobacterium tuberculosis infection compared to mice treated with streptozotocin or high-fat diet alone. Type 2 diabetes model mice have elevated plasma glycerol, which is a preferred carbon source for M. tuberculosis. Infection studies with glycerol kinase mutant M. tuberculosis reveal that glycerol utilization contributes to the susceptibility of the type 2 diabetes mice. Hyperglycemia impairs protective immunity against M. tuberculosis in both forms of diabetes, but our data show that elevated glycerol contributes to an additional adverse effect uniquely relevant to type 2 diabetes.
Collapse
Affiliation(s)
- Nuria Martinez
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lorissa J Smulan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael L Jameson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kelly Cavallo
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michelle Bellerose
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kim West
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Amit Singhal
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- A*STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Hao S, Zhang S, Ye J, Chen L, Wang Y, Pei S, Zhu Q, Xu J, Tao Y, Zhou N, Yin H, Duan C, Mao C, Zheng M, Xiao Y. Goliath induces inflammation in obese mice by linking fatty acid β-oxidation to glycolysis. EMBO Rep 2023; 24:e56932. [PMID: 36862324 PMCID: PMC10074109 DOI: 10.15252/embr.202356932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid β-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.
Collapse
Affiliation(s)
- Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yongzhen Tao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Neng Zhou
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiyong Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Cai‐Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaoming Mao
- Department of Nuclear MedicineThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia MedicaUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
7
|
Wang G, Song A, Bae M, Wang QA. Adipose Tissue Plasticity in Aging. Compr Physiol 2022; 12:4119-4132. [PMID: 36214190 DOI: 10.1002/cphy.c220005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.
Collapse
Affiliation(s)
- Guan Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Anying Song
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Marie Bae
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA
| | - Qiong A Wang
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, California, USA.,Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, California, USA
| |
Collapse
|
8
|
Use of Physical Activity and Exercise to Reduce Inflammation in Children and Adolescents with Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116908. [PMID: 35682490 PMCID: PMC9180584 DOI: 10.3390/ijerph19116908] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/13/2022]
Abstract
Childhood obesity is a leading public health problem worldwide, as it is increasingly prevalent and therefore responsible for serious obesity-related comorbidities, not only in childhood but also in adulthood. In addition to cardio-metabolic obesity-related disorders, recent evidence suggests that excess adipose tissue in turn is associated with immune cell infiltration, increased adipokine release, and the development of low-grade systemic inflammation obesity. Exercise is considered a non-pharmacological intervention that can delay obesity-related comorbidities, improving cardiovascular fitness and modulating the inflammatory processes. It has been reported that the anti-inflammatory effect of regular exercise may be mediated by a reduction in visceral fat mass, with a subsequent decrease in the release of adipokines from adipose tissue (AT) and/or by the induction of an anti-inflammatory environment. In this narrative review, we discuss the role of AT as an endocrine organ associated with chronic inflammation and its role in obesity-related complications, focusing on the effect of exercise in reducing inflammation in children and adolescents with obesity. Regular physical exercise must be considered as a natural part of a healthy lifestyle, and promoting physical activity starting from childhood is useful to limit the negative effects of obesity on health. The crucial role of the immune system in the development of obesity-induced inflammatory processes and the efficacy of exercise as an anti-inflammatory, non-pharmacological intervention may provide possible targets for the development of new treatments and early preventive strategies.
Collapse
|
9
|
Simón R, Martín-Martín A, Morel E, Díaz-Rosales P, Tafalla C. Functional and Phenotypic Characterization of B Cells in the Teleost Adipose Tissue. Front Immunol 2022; 13:868551. [PMID: 35619704 PMCID: PMC9127059 DOI: 10.3389/fimmu.2022.868551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response of the adipose tissue (AT) has been neglected in most animal models until investigations in human and mice linked obesity to chronic inflammation, highlighting the immune nature of this tissue. Despite this, in teleost fish, only a few studies have addressed the immune role of the AT. These studies have mostly focused on reporting transcriptional changes in the AT in response to diverse intraperitoneally delivered stimuli. Although the presence of B cells within the AT was also previously revealed, these cells have never been phenotypically or functionally characterized and this is what we have addressed in the current study. Initially, the B cell populations present in the rainbow trout (Oncorhynchus mykiss) AT were characterized in comparison to B cells from other sources. As occurs in other rainbow trout tissues, IgM+IgD+, IgM+IgD- and IgD+IgM- B cell subsets were identified in the AT. Interestingly, AT IgM+IgD- B cells showed a transcriptional profile that agrees with that of cells that have committed to plasmablasts/plasma cells, being this profile much more pronounced towards a differentiation state than that of blood IgM+IgD- B cells. Accordingly, the IgM-secreting capacity of AT B cells is significantly higher than that of blood B cells. Additionally, AT IgM+IgD+ B cells also showed specific phenotypic traits when compared to their counterparts in other tissues. Finally, we established how these B cell subsets responded when rainbow trout were intraperitoneally injected with a model antigen. Our results demonstrate that the AT hosts plasmablasts/plasma cells that secrete specific IgMs, as happens in the peritoneal cavity and systemic immune tissues. Although the presence of these antigen-specific IgM-secreting cells was more abundant in the peritoneal cavity, these specific differentiated B cells were detected in the AT for long time periods at levels similar to those of spleen and head kidney. Our results provide new evidence regarding the immune role of the teleost AT, indicating that it functions as a secondary lymphoid organ that promotes immunity to peritoneal antigens.
Collapse
Affiliation(s)
- Rocío Simón
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
10
|
Wrba L, Halbgebauer R, Roos J, Huber-Lang M, Fischer-Posovszky P. Adipose tissue: a neglected organ in the response to severe trauma? Cell Mol Life Sci 2022; 79:207. [PMID: 35338424 PMCID: PMC8956559 DOI: 10.1007/s00018-022-04234-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023]
Abstract
Despite the manifold recent efforts to improve patient outcomes, trauma still is a clinical and socioeconomical issue of major relevance especially in younger people. The systemic immune reaction after severe injury is characterized by a strong pro- and anti-inflammatory response. Besides its functions as energy storage depot and organ-protective cushion, adipose tissue regulates vital processes via its secretion products. However, there is little awareness of the important role of adipose tissue in regulating the posttraumatic inflammatory response. In this review, we delineate the local and systemic role of adipose tissue in trauma and outline different aspects of adipose tissue as an immunologically active modifier of inflammation and as an immune target of injured remote organs after severe trauma.
Collapse
Affiliation(s)
- Lisa Wrba
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
- Department of Trauma, Orthopedic, Plastic and Hand Surgery, University Hospital of Augsburg, Augsburg, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany.
| |
Collapse
|
11
|
Abstract
There are numbers of leukocytes present in peritoneal cavity, not only protecting body cavity from infection but also contributing to peripheral immunity including natural antibody production in circulation. The peritoneal leukocytes compose unique immune compartment, the functions of which cannot be replaced by other lymphoid organs. Atypical lymphoid clusters, called "milky spots", that are located in visceral adipose tissue omentum have the privilege of immune niche in terms of differentiation, recruitment, and activation of peritoneal immunity, yet mechanisms underlying the regulation are underexplored. In this review, I discuss the emerging views of peritoneal immune system in the contexts of its development, organization, and functions.
Collapse
Affiliation(s)
- Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center Osaka University, 3-1 Yamada-oka, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
12
|
|
13
|
Jeyaraman M, Muthu S, Sharma S, Ganta C, Ranjan R, Jha SK. Nanofat: A therapeutic paradigm in regenerative medicine. World J Stem Cells 2021; 13:1733-1746. [PMID: 34909120 PMCID: PMC8641019 DOI: 10.4252/wjsc.v13.i11.1733] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is a compact and well-organized tissue containing a heterogeneous cellular population of progenitor cells, including mesenchymal stromal cells. Due to its availability and accessibility, adipose tissue is considered a “stem cell depot.” Adipose tissue products possess anti-inflammatory, anti-fibrotic, anti-apoptotic, and immunomodulatory effects. Nanofat, being a compact bundle of stem cells with regenerative and tissue remodeling potential, has potential in translational and regenerative medicine. Considering the wide range of applicability of its reconstructive and regenerative potential, the applications of nanofat can be used in various disciplines. Nanofat behaves on the line of adipose tissue-derived mesenchymal stromal cells. At the site of injury, these stromal cells initiate a site-specific reparative response comprised of remodeling of the extracellular matrix, enhanced and sustained angiogenesis, and immune system modulation. These properties of stromal cells provide a platform for the usage of regenerative medicine principles in curbing various diseases. Details about nanofat, including various preparation methods, characterization, delivery methods, evidence on practical applications, and ethical concerns are included in this review. However, appropriate guidelines and preparation protocols for its optimal use in a wide range of clinical applications have yet to be standardized.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University , Greater Noida 201306, Uttar Pradesh, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University , Greater Noida 201306, Uttar Pradesh, India
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, New Delhi, India
| | - Charan Ganta
- Indian Stem Cell Study Group, Lucknow 226010, Uttar Pradesh, India
- Department of Stem Cells and Regenerative Medicine, Kansas State University, Manhattan, United States 10002, United States
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201306, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University , Greater Noida 201306, Uttar Pradesh, India
| |
Collapse
|
14
|
Diaz-Marin R, Crespo-Garcia S, Wilson AM, Buscarlet M, Dejda A, Fournier F, Juneau R, Alquier T, Sapieha P. Myeloid-resident neuropilin-1 influences brown adipose tissue in obesity. Sci Rep 2021; 11:15767. [PMID: 34344941 PMCID: PMC8333363 DOI: 10.1038/s41598-021-95064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
The beneficial effects of brown adipose tissue (BAT) on obesity and associated metabolic diseases are mediated through its capacity to dissipate energy as heat. While immune cells, such as tissue-resident macrophages, are known to influence adipose tissue homeostasis, relatively little is known about their contribution to BAT function. Here we report that neuropilin-1 (NRP1), a multiligand single-pass transmembrane receptor, is highly expressed in BAT-resident macrophages. During diet-induced obesity (DIO), myeloid-resident NRP1 influences interscapular BAT mass, and consequently vascular morphology, innervation density and ultimately core body temperature during cold exposure. Thus, NRP1-expressing myeloid cells contribute to the BAT homeostasis and potentially its thermogenic function in DIO.
Collapse
Affiliation(s)
- Roberto Diaz-Marin
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Sergio Crespo-Garcia
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Ariel M Wilson
- Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, Université de Montréal, Montréal, QC, H1T2M4, Canada
| | - Manuel Buscarlet
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, Université de Montréal, Montréal, QC, H1T2M4, Canada
| | - Frédérik Fournier
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Rachel Juneau
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Centre and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 rue Saint-Denis, Montréal, QC, H2X0A9, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, 5415 Assumption Boulevard, Montréal, QC, H1T 2M4, Canada. .,Department of Ophthalmology, Maisonneuve-Rosemont Research Centre, Université de Montréal, Montréal, QC, H1T2M4, Canada.
| |
Collapse
|
15
|
Tahmasebi S, Neishaboori H, Jafari D, Faghihzadeh E, Esmaeilzadeh A, Mirshafiey A. The effects of guluronic acid (G2013), a new emerging treatment, on inflammatory factors in nonalcoholic steatohepatitis patients under in vitro conditions. Immunopharmacol Immunotoxicol 2021; 43:562-570. [PMID: 34314306 DOI: 10.1080/08923973.2021.1954946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Nonalcoholic Steatohepatitis (NASH) results from the accumulation of fatty acids in the liver. The elevated production of pro-inflammatory factors is the reason for the hyper inflammation in NASH. The α-L-Guluronic acid (G2013), a new member of NSAID family, is a plant-originated agent with immunomodulatory properties. The current study investigated the effects of G2013 on inflammatory factors in PBMCs of NASH patients. METHODS PBMCs of 14 NASH patients and 14 healthy controls were isolated and cultured. The patient's cells were treated with low (5 µg/mL) and moderate (25 µg/mL) doses of G2013 alongside the diclofenac optimum dose (3 µg/mL). The expression and secretion levels of variables were assessed by real-time PCR and ELISA, respectively. RESULTS Findings indicated that the expression levels of TLR4 and NF-κB, as well as the secretion levels of TNF-α and IL-6 cytokines, were significantly elevated in NASH patients compared to healthy individuals. The expression levels of TLR4 and NF-κB were strikingly downregulated in treated cells of patients in both low and moderate doses of G2013. A considerable reduction was obtained in the secretion level of IL-6 using both low and moderate doses of G2013 and in the secretion level of TNF-α using the moderate dose of G2013. CONCLUSION The results indicated that G2013 could meaningfully decrease the expression and secretion levels of evaluated factors (TLR4, NF-κB, TNF-α, and IL-6) in PMBCs of NASH cases. Since there is no effective treatment for NASH patients, we hope that G2013 would be a promising immunomodulatory agent in reducing inflammation and improvement of patients.
Collapse
Affiliation(s)
- Safa Tahmasebi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Neishaboori
- Department of Internal Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davood Jafari
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Faghihzadeh
- Department of Epidemiology and Biostatics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Clarke M, Goodchild LM, Evans S, Giles LC, Sullivan SG, Barr IG, Lambert S, Marshall H. Body mass index and vaccine responses following influenza vaccination during pregnancy. Vaccine 2021; 39:4864-4870. [PMID: 34266699 DOI: 10.1016/j.vaccine.2021.06.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Influenza vaccination is recommended by the World Health Organisation for pregnant women, offering the dual benefit of protecting pregnant women and their newborn infants against influenza infection. Various factors can influence vaccine immunogenicity, with obesity being one factor implicated in varied responses. This study aimed to investigate the impact of body mass index (BMI) on vaccine responses following influenza vaccination during pregnancy. METHODS Pregnant women attending the Women's and Children's Hospital in South Australia during 2014-2016 were invited to participate. Participant's clinical and demographic factors were recorded prior to administration of licensed seasonal influenza vaccination. Blood samples were collected before and one month post-vaccination to measure antibody responses by haemagglutination inhibition (HI) assay. Seroprotection was defined as a post-vaccination HI titre ≥ 1:40. Regression models assessed associations with failure to achieve seroprotective antibodies to H1, H3, and B influenza strains. RESULTS A total of 96 women were enrolled in the study at a median gestation of 22 weeks with a BMI range of 18-49 kg/m2. Paired sera samples were available for 90/96 (94%). Most pregnant women (72/90, 80%) demonstrated seroprotective antibody titres to all three influenza vaccine antigens (A(H1N1)pdm09, A(H3N2), B/Yamagata) following vaccination. Compared with women with BMI < 30 kg/m2, those with high BMI were less likely to fail to achieve seroprotective antibodies, however this was not statistically significant (RR 0.42, 95% CI 0.11-1.68; p = 0.22). A greater proportion of women vaccinated during their second (47/53, 93%) or third trimester (18/25, 72%) demonstrated seroprotection to all three vaccine antigens following vaccination compared with women vaccinated during their first trimester (7/12, 58%). CONCLUSION High BMI did not impair seroprotection levels following influenza vaccination in pregnant women. Gestation at vaccination may be an important consideration for optimising vaccine protection for pregnant women and their newborns. Further assessment of first trimester influenza vaccine responses is warranted.
Collapse
Affiliation(s)
- Michelle Clarke
- Women's and Children's Health Network, North Adelaide, SA, Australia; Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| | | | - Sue Evans
- Women's and Children's Health Network, North Adelaide, SA, Australia.
| | - Lynne C Giles
- School of Public Health and The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Epidemiology, University of California, Los Angeles, USA.
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Stephen Lambert
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, Australia.
| | - Helen Marshall
- Women's and Children's Health Network, North Adelaide, SA, Australia; Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
17
|
Kuper CF, Pieters RHH, van Bilsen JHM. Nanomaterials and the Serosal Immune System in the Thoracic and Peritoneal Cavities. Int J Mol Sci 2021; 22:ijms22052610. [PMID: 33807632 PMCID: PMC7961545 DOI: 10.3390/ijms22052610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The thoracic and peritoneal cavities are lined by serous membranes and are home of the serosal immune system. This immune system fuses innate and adaptive immunity, to maintain local homeostasis and repair local tissue damage, and to cooperate closely with the mucosal immune system. Innate lymphoid cells (ILCs) are found abundantly in the thoracic and peritoneal cavities, and they are crucial in first defense against pathogenic viruses and bacteria. Nanomaterials (NMs) can enter the cavities intentionally for medical purposes, or unintentionally following environmental exposure; subsequent serosal inflammation and cancer (mesothelioma) has gained significant interest. However, reports on adverse effects of NM on ILCs and other components of the serosal immune system are scarce or even lacking. As ILCs are crucial in the first defense against pathogenic viruses and bacteria, it is possible that serosal exposure to NM may lead to a reduced resistance against pathogens. Additionally, affected serosal lymphoid tissues and cells may disturb adipose tissue homeostasis. This review aims to provide insight into key effects of NM on the serosal immune system.
Collapse
Affiliation(s)
- C. Frieke Kuper
- Consultant, Haagstraat 13, 3581 SW Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| | - Raymond H. H. Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
- Innovative Testing in Life Sciences & Chemistry, Research Centre for Healthy and Sustainable Living, University of Applied Sciences Utrecht, Padualaan 97, 3584 CH Utrecht, The Netherlands
| | - Jolanda H. M. van Bilsen
- Department for Risk Analysis for Products in Development, Netherlands Organization for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
- Correspondence: (C.F.K.); (J.H.M.v.B.)
| |
Collapse
|
18
|
Wen J, Liu Q, Liu M, Wang B, Li M, Wang M, Shi X, Liu H, Wu J. Increasing Imbalance of Treg/Th17 Indicates More Severe Glucose Metabolism Dysfunction in Overweight/obese Patients. Arch Med Res 2020; 52:339-347. [PMID: 33317842 DOI: 10.1016/j.arcmed.2020.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic low-grade inflammation and dysfunction of metabolism has been reported to be involved in obesity. Regulatory T cell (Treg) and helper T cell 17 (Th17) are involved in chronic inflammatory diseases. Impaired balance of Treg/Th17 is one of the major factors contributing to inflammatory status in obesity. METHODS Overweight/obese patients (n = 80) were recruited and classified into three subgroups: normal glucose tolerance group (NGT, n = 32), impaired glucose regulation group (IGR, n = 19) and type two diabetes mellitus group (T2DM, n = 29). Healthy individuals were paired as normal control group (NC, n = 37). We used flow cytometry to test the frequencies of circulating Treg and Th17 cells of all subjects. Serum IL-6, IL-10, TNF-α, IL-17A levels were detected by cytometric bead array and clinical information was extracted from medical records. RESULTS In group IGR and T2DM, we revealed a severe decrease in peripheral ratio of Treg/Th17 compared with NC, but no significant difference was seen in group NGT. The serum level of IL-6 in group NGT and T2DM was higher than healthy subjects. The FPG and HbA1c levels were negatively correlated with the ratio of Treg/Th17 in overweight/obese patients. ROC curve analysis revealed that peripheral Treg/Th17 ratio <1.255 was a risk factor for prediabetes and diabetes in overweight/obese patients. CONCLUSION Peripheral Treg/Th17 imbalance exists in overweight/obese patients with IGR or T2DM and peripheral Treg/Th17 imbalance might be a risk factor for prediabetes and diabetes in overweight/obese patients.
Collapse
Affiliation(s)
- Jie Wen
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingjing Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengmeng Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bian Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mei Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiajie Shi
- Department of Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
20
|
Monteiro L, Pereira JADS, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol 2019; 106:703-716. [PMID: 31087711 DOI: 10.1002/jlb.mr1218-478r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2025] Open
Abstract
Obesity is a pandemic disease affecting around 15% of the global population. Obesity is a major risk factor for other conditions, such as type 2 diabetes and cardiovascular diseases. The adipose tissue is the main secretor of leptin, an adipokine responsible for the regulation of food intake and energy expenditure. Obese individuals become hyperleptinemic due to increased adipogenesis. Leptin acts through the leptin receptor and induces several immunometabolic changes in different cell types, including adipocytes and Mϕs. Adipose tissue resident Mϕs (ATMs) are the largest leukocyte population in the adipose tissue and these ATMs are in constant contact with the excessive leptin levels secreted in obese conditions. Leptin activates both the JAK2-STAT3 and the PI3K-AKT-mTOR pathways. The activation of these pathways leads to intracellular metabolic changes, with increased glucose uptake, upregulation of glycolytic enzymes, and disruption of mitochondrial function, as well as immunologic alterations, such as increased phagocytic activity and proinflammatory cytokines secretion. Here, we discuss the immunometabolic effects of leptin in Mϕs and how hyperleptinemia can contribute to the low-grade systemic inflammation in obesity.
Collapse
Affiliation(s)
- Lauar Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Manoel M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
21
|
Caroleo M, Carbone EA, Greco M, Corigliano DM, Arcidiacono B, Fazia G, Rania M, Aloi M, Gallelli L, Segura-Garcia C, Foti DP, Brunetti A. Brain-Behavior-Immune Interaction: Serum Cytokines and Growth Factors in Patients with Eating Disorders at Extremes of the Body Mass Index (BMI) Spectrum. Nutrients 2019; 11:E1995. [PMID: 31450770 PMCID: PMC6770139 DOI: 10.3390/nu11091995] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations of the immune system are known in eating disorders (EDs), however the importance of cytokine balance in this context has not been clarified. We compared cytokines and growth factors at opposite ends of BMI ranges, in 90 patients classified in relation to BMI, depressive and EDs comorbidities. Serum concentrations of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) were determined by a biochip analyzer (Randox Labs). Differences were calculated through ANOVA. Possible predictors of higher cytokine levels were evaluated through regression analysis. IL-1α, IL-10, EGF, and IFN-γ were altered individuals with anorexia nervosa (AN) and binge eating disorder (BED). Night-eating was associated with IL-8 and EGF levels, IL-10 concentrations with post-dinner eating and negatively with sweet-eating, long fasting with higher IFN-γ levels. IL-2 increase was not linked to EDs, but to the interaction of depression and BMI. Altogether, for the first time, IL-1α, IL-10, EGF, and IFN-γ were shown to differ between AN and HCs, and between AN and individuals with obesity with or without BED. Only IL-2 was influenced by depression. Dysfunctional eating behaviors predicted abnormal concentrations of IL-10, EGF, IL-8 and IFN-γ.
Collapse
Affiliation(s)
- Mariarita Caroleo
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Elvira Anna Carbone
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marta Greco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | | | - Biagio Arcidiacono
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Gilda Fazia
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Marianna Rania
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Matteo Aloi
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
| | - Daniela Patrizia Foti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Sarfarazi A, Lee G, Mirjalili SA, Phillips ARJ, Windsor JA, Trevaskis NL. Therapeutic delivery to the peritoneal lymphatics: Current understanding, potential treatment benefits and future prospects. Int J Pharm 2019; 567:118456. [PMID: 31238102 DOI: 10.1016/j.ijpharm.2019.118456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022]
Abstract
The interest in approaches to deliver therapeutics to the lymphatic system has increased in recent years as the lymphatics have been discovered to play an important role in a range of disease states such as cancer metastases, inflammatory and metabolic disease, and acute and critical illness. Therapeutic delivery to lymph has the potential to enhance treatment of these conditions. Currently much of the existing data explores therapeutic delivery to the lymphatic vessels and nodes that drain peripheral tissues and the intestine. Relatively little focus has been given to understanding the anatomy, function and therapeutic delivery to the peritoneal lymphatics. Gaining a better understanding of peritoneal lymphatic structure and function would contribute to the understanding of disease processes involving these lymphatics and facilitate the development of delivery systems to target therapeutics to the peritoneal lymphatics. This review explores the basic anatomy and ultrastructure of the peritoneal lymphatics system, the lymphatic drainage pathways from the peritoneum, and therapeutic and delivery system characteristics (size, lipophilicity and surface properties) that favour lymph uptake and retention after intraperitoneal delivery. Finally, techniques that can be used to quantify uptake into peritoneal lymph are outlined, providing a platform for future studies.
Collapse
Affiliation(s)
- Ali Sarfarazi
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Given Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - S Ali Mirjalili
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony R J Phillips
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Surgical and Translational Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Applied Surgery and Metabolism Laboratory, School of Biological Sciences, University of Auckland, Auckland, New Zealand; HBP/Upper GI Unit, Department of General Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.
| |
Collapse
|
23
|
Kuper CF, van Bilsen J, Wijnands MVW. The Serosal Immune System of the Thorax in Toxicology. Toxicol Sci 2019; 164:31-38. [PMID: 29648628 DOI: 10.1093/toxsci/kfy085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The thoracic cavities receive increasing attention in toxicology, because inhaled fibers and (nano)particles can reach these cavities and challenge the local lymphoid tissues. The thoracic and abdominopelvic cavities are controlled by the serosal immune system with its special, loosely organized lymphoid clusters, namely the fat-associated lymphoid clusters and milky spots, which together can be denoted as serosa-associated lymphoid clusters. These clusters house numerous innate lymphoid cells, namely the nonconventional, innate B lymphoid cell and innate lymphocyte type 2 populations. The fat depots in the thorax play a significant role in the serosal immunity, and they can be modulated by health issues such as metabolic syndrome. The serosal immune system operates in a unique way at the interface of the innate and acquired immunity and therefore exposure-related modulation of the system may have a distinct impact on the body's immunity. To add to the investigation of the serosal immune system in the thorax, this review describes the (micro)anatomy of the immune system in relation to exposure, with a focus on the rat and mouse as preferred species in toxicology and immunology.
Collapse
Affiliation(s)
- Christine F Kuper
- The Netherlands Organization for Applied Scientific Research (TNO), Zeist, 3700 AJ, The Netherlands.,Retired
| | - Jolanda van Bilsen
- The Netherlands Organization for Applied Scientific Research (TNO), Zeist, 3700 AJ, The Netherlands
| | | |
Collapse
|
24
|
Lu J, Zhao J, Meng H, Zhang X. Adipose Tissue-Resident Immune Cells in Obesity and Type 2 Diabetes. Front Immunol 2019; 10:1173. [PMID: 31191541 PMCID: PMC6540829 DOI: 10.3389/fimmu.2019.01173] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation is an important contributor to the pathogenesis of obesity-related type 2 diabetes (T2D). Adipose tissue-resident immune cells have been observed, and the potential contribution of these cells to metabolic dysfunction has been appreciated in recent years. This review focused on adipose tissue-resident immune cells that are dysregulated in the context of obesity and T2D. We comprehensively overviewed emerging knowledge regarding the phenotypic and functional properties of these cells and local factors that control their development. We discussed their function in controlling the immune response cascade and disease progression. We also characterized the metabolic profiles of these cells to explain the functional consequences in obese adipose tissues. Finally, we discussed the potential therapeutic targeting of adipose tissue-resident immune cells with the aim of addressing novel therapeutic approaches for the treatment of this disease.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis. AIDS 2019; 33:953-964. [PMID: 30946149 DOI: 10.1097/qad.0000000000002168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE HIV-infected patients receiving antiretroviral treatment (ART) often present adipose tissue accumulation and/or redistribution. adipose tissue has been shown to be an HIV/SIV reservoir and viral proteins as Tat or Nef can be released by infected immune cells and exert a bystander effect on adipocytes or precursors. Our aim was to demonstrate that SIV/HIV infection per se could alter adipose tissue structure and/or function. DESIGN Morphological and functional alterations of subcutaneous (SCAT) and visceral adipose tissue (VAT) were studied in SIV-infected macaques and HIV-infected ART-controlled patients. To analyze the effect of Tat or Nef, we used human adipose stem cells (ASCs) issued from healthy donors, and analyzed adipogenesis and extracellular matrix component production using two dimensional (2D) and three-dimensional (3D) culture models. METHODS Adipocyte size and index of fibrosis were determined on Sirius red-stained adipose tissue samples. Proliferating and adipocyte 2D-differentiating or 3D-differentiating ASCs were treated chronically with Tat or Nef. mRNA, protein expression and secretion were examined by RT-PCR, western-blot and ELISA. RESULTS SCAT and VAT from SIV-infected macaques displayed small adipocytes, decreased adipogenesis and severe fibrosis with collagen deposition. SCAT and VAT from HIV-infected ART-controlled patients presented similar alterations. In vitro, Tat and/or Nef induced a profibrotic phenotype in undifferentiated ASCs and altered adipogenesis and collagen production in adipocyte-differentiating ASCs. CONCLUSION We demonstrate here a specific role for HIV/SIV infection per se on adipose tissue fibrosis and adipogenesis, probably through the release of viral proteins, which could be involved in adipose tissue dysfunction contributing to cardiometabolic alterations of HIV-infected individuals.
Collapse
|
26
|
Nutritional Status of Elderly Patients after Coronary Artery Bypass Surgery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020226. [PMID: 30650558 PMCID: PMC6352014 DOI: 10.3390/ijerph16020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/31/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
Surgical trauma can result in immobilization of biological material, degradation of muscle proteins, synthesis of acute-phase proteins in the liver, occurrence of catabolism phase and anabolism simultaneously, and as a consequence weight loss and nutritional deficiencies. The aim of this study was to assess the nutritional status of patients with ischemic heart disease subjected to coronary artery bypass surgery and physical activity and postoperative complications. The analysis among 96 men included total number of lymphocytes (TNL), body mass index (BMI), case history of a patient and results of laboratory tests. The activities of daily living (ADL) and the mini nutritional assessment (MNA) questionnaires were used. According to TNL, before the procedure malnutrition occurred in 46% of patients. BMI revealed overweight in 62.5% and obesity in 26.0%. After the surgery, no changes were observed. According to MNA, 59% of patients before the surgery were at risk of malnutrition. After the operation, the number of people at risk of malnutrition increased by 50% (p < 0.0001). The correlation was noted between BMI and patients’ efficiency in the fifth day after the surgery (p = 0.0031). Complications after the surgery occurred in 35.4% of patients. After the surgery, the risk of malnutrition increased, decreased activity and complications occurred more frequently in people with underweight, obesity, and overweight than in people with normal BMI.
Collapse
|
27
|
Reiche ME, den Toom M, Willemsen L, van Os B, Gijbels MJJ, Gerdes N, Aarts SABM, Lutgens E. Deficiency of T cell CD40L has minor beneficial effects on obesity-induced metabolic dysfunction. BMJ Open Diabetes Res Care 2019; 7:e000829. [PMID: 31908798 PMCID: PMC6936585 DOI: 10.1136/bmjdrc-2019-000829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Obesity-associated metabolic dysfunction increases the risk of multiple diseases such as type 2 diabetes and cardiovascular disease. The importance of the co-stimulatory CD40-CD40L dyad in diet-induced obesity (DIO), with opposing phenotypes arising when either the receptor (aggravating) or the ligand (protective) is deleted, has been described previously. The functions of CD40 and CD40L are cell type dependent. As co-stimulation via T cell-mediated CD40L is essential for driving inflammation, we here investigate the role of T cell CD40L in DIO. RESEARCH DESIGN AND METHODS CD4CreCD40Lfl/fl mice on a C57BL/6 background were generated and subjected to DIO by administration of 15 weeks of high fat diet (HFD). RESULTS HFD-fed CD4CreCD40Lfl/fl mice had similar weight gain, adipocyte sizes, plasma cholesterol and triglyceride levels as their wild-type (WT) counterparts. Insulin and glucose tolerance were comparable, although CD4CreCD40Lfl/fl mice did have a decreased plasma insulin concentration, suggesting a minor improvement of insulin resistance. Furthermore, although the degree of hepatosteatosis was similar in both genotypes, the gene expression of fatty acid synthase 1 and ATP-citrate lyase had decreased, whereas expression of peroxisome proliferator-activated receptor-α had increased in livers of CD4CreCD40Lfl/fl mice, suggesting decreased hepatic lipid uptake in absence of T cell CD40L.Moreover, CD4CreCD40Lfl/fl mice displayed significantly lower numbers of effector memory CD4+ T cells and regulatory T cells in blood and lymphoid organs compared with WT. However, immune cell composition and inflammatory status of the adipose tissue was similar in CD4CreCD40Lfl/fl and WT mice. CONCLUSIONS T cell CD40L deficiency results in a minor improvement of insulin sensitivity and hepatic steatosis in DIO, despite the strong decrease in effector T cells and regulatory T cells in blood and lymphoid organs. Our data indicate that other CD40L-expressing cell types are more relevant in the pathogenesis of obesity-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Myrthe E Reiche
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Bram van Os
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Marion J J Gijbels
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
- Pathology, CARIM, Maastricht, The Netherlands
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Suzanne A B M Aarts
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
| | - Esther Lutgens
- Medical Biochemistry, Amsterdam UMC—Location AMC, Amsterdam, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Munich, Germany
| |
Collapse
|
28
|
Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity. Proc Natl Acad Sci U S A 2018; 116:723-731. [PMID: 30598443 PMCID: PMC6338860 DOI: 10.1073/pnas.1809046116] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The global obesity epidemic is the subject of an immense, diversely specialized research effort. An evolutionary analysis reveals connections among disparate findings, starting with two well-documented facts: Obesity-associated illnesses (e.g., type-2 diabetes and cardiovascular disease), are especially common in: (i) adults with abdominal obesity, especially enlargement of visceral adipose tissue (VAT), a tissue with important immune functions; and (ii) individuals with poor fetal nutrition whose nutritional input increases later in life. I hypothesize that selection favored the evolution of increased lifelong investment in VAT in individuals likely to suffer lifelong malnutrition because of its importance in fighting intraabdominal infections. Then, when increased nutrition violates the adaptive fetal prediction of lifelong nutritional deficit, preferential VAT investment could contribute to abdominal obesity and chronic inflammatory disease. VAT prioritization may help explain several patterns of nutrition-related disease: the paradoxical increase of chronic disease with increased food availability in recently urbanized and migrant populations; correlations between poor fetal nutrition, improved childhood (catch-up) growth, and adult metabolic syndrome; and survival differences between children with marasmus and kwashiorkor malnutrition. Fats and sugars can aggravate chronic inflammation via effects on intestinal bacteria regulating gut permeability to visceral pathogens. The extremes in a nutrition-sensitive trade-off between visceral (immune-function) vs. subcutaneous (body shape) adiposity may have been favored by selection in highly stratified premedicine societies. Altered adipose allocation in populations with long histories of social stratification and malnutrition may be the result of genetic accommodation of developmental responses to poor maternal/fetal conditions, increasing their vulnerability to inflammatory disease.
Collapse
|
29
|
Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in Immunometabolism. Front Immunol 2018; 9:2509. [PMID: 30459770 PMCID: PMC6232870 DOI: 10.3389/fimmu.2018.02509] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue performs immunoregulatory functions in addition to fat storage. Various T cells in different fat depots either help maintain metabolic homeostasis under healthy conditions or contribute to metabolic disorders in pathological conditions such as obesity, diabetes, cardiovascular diseases, or even cancer. These T cells play critical roles in immunometabolism, which refers to the intersection of immunity and metabolism. Numerous studies have examined the presence and changes of different T cell subsets, including helper T cells, regulatory T cells, cytotoxic T cells, and natural killer T cells, in adipose depots in health and diseases. In this review, we will discuss the adipose tissue niches that influence the patterns and functions of T cell subsets and in turn the impact of these T cells on cell- or body-based immunometabolism accounting for health and obesity.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huaizhu Wu
- Department of Medicine and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
30
|
Kim SJ, Ye S, Ha E, Chun EM. Association of body mass index with incident tuberculosis in Korea. PLoS One 2018; 13:e0195104. [PMID: 29668698 PMCID: PMC5906015 DOI: 10.1371/journal.pone.0195104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/17/2018] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Overweight or obesity might be protective factors of tuberculosis (TB), but the evidence is inconclusive. The objective of study was to evaluate association between BMI and incident TB. METHODS The National Health Insurance database was used. Eligible participants were individuals aged 20-89 years without history of TB before 2007, and who underwent national health examinations between January 2002 and December 2006. The latest record of BMI was used as the exposure and categorized as follows: <18.5, 18.5-23, 23-25, 25-30, and ≥30 kg/m2. TB was defined as the first recorded diagnosis of TB, using ICD-10 between January 2007 and December 2013. RESULTS Among 301,081 individuals, 3,772 (1.26%) incident TB cases were detected. The incidence rate of the event was 19.65 per 10,000 person-years. After adjusting age, sex, household income, smoking status, alcohol use, and diabetes, incident TB was decreased as BMI was increased in an inverse dose-response relationship. However, when stratified by age and sex, BMI >30 kg/m2 did not show protective effect of TB in female under 50 years. Additionally, BMI >30 kg/m2 did not decrease incident TB in diabetics. CONCLUSION Our study suggests that high BMI might be associated with decreased risk of TB. However, very high BMI did not reduce the risk of TB in young females or diabetics participants with in Korean population.
Collapse
Affiliation(s)
- Soo Jung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Shinhee Ye
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eunhee Ha
- Department of Occupational and Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Mi Chun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Ivanov S, Merlin J, Lee MKS, Murphy AJ, Guinamard RR. Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis 2018; 271:102-110. [PMID: 29482037 DOI: 10.1016/j.atherosclerosis.2018.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity.
Collapse
Affiliation(s)
- Stoyan Ivanov
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France.
| | - Johanna Merlin
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rodolphe R Guinamard
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France.
| |
Collapse
|
32
|
Lepreux S, Villeneuve J, Dewitte A, Bérard AM, Desmoulière A, Ripoche J. CD40 signaling and hepatic steatosis: Unanticipated links. Clin Res Hepatol Gastroenterol 2017; 41:357-369. [PMID: 27989689 DOI: 10.1016/j.clinre.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Obesity predisposes to an increased risk of nonalcoholic fatty liver disease (NAFLD). Hepatic steatosis is the key pathological feature of NAFLD and has emerged as a metabolic disorder in which innate and adaptive arms of the immune response play a central role in disease pathogenesis. Recent studies have revealed unexpected relationships between CD40 signaling and hepatic steatosis in high fat diet rodent models. CD154, the ligand of CD40, is a mediator of inflammation and controls several critical events of innate and adaptive immune responses. In the light of these reports, we discuss potential links between CD40 signaling and hepatic steatosis in NAFLD.
Collapse
Affiliation(s)
| | - Julien Villeneuve
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Antoine Dewitte
- Service d'Anesthésie-Réanimation II, CHU de Bordeaux, 33600 Pessac, France
| | - Annie M Bérard
- Service de Biochimie, CHU de Bordeaux, 33000 Bordeaux, France
| | | | - Jean Ripoche
- INSERM U1026, Université de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
33
|
Veenstra KA, Wang T, Alnabulsi A, Douglas A, Russell KS, Tubbs L, Arous JB, Secombes CJ. Analysis of adipose tissue immune gene expression after vaccination of rainbow trout with adjuvanted bacterins reveals an association with side effects. Mol Immunol 2017. [DOI: 10.1016/j.molimm.2017.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Endo Y, Yokote K, Nakayama T. The obesity-related pathology and Th17 cells. Cell Mol Life Sci 2017; 74:1231-1245. [PMID: 27757507 PMCID: PMC11107749 DOI: 10.1007/s00018-016-2399-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
Abstract
Chronic inflammation associated with obesity plays a major role in the development of metabolic diseases, cancer, and autoimmune diseases. Among Th subsets, Th17 cells are involved in the pathogenesis of autoimmune disorders such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Accumulating data suggest that reciprocal interactions between the metabolic systems and immune system play pivotal roles in the pathogenesis of obesity-associated diseases. We herein outline the developing principles in the control of T cell differentiation and function via their cellular metabolism. Also discussed are recent findings that changes in the intracellular metabolism, including fatty acid metabolism, affect the Th17 cell function in obese individuals. Finally, we will also highlight the unique molecular mechanism involved in the activation of retinoid-related orphan receptor-gamma-t (RORγt) by intracellular metabolism and discuss a new therapeutic approach for treating autoimmune disorders through the inhibition of RORγt.
Collapse
Affiliation(s)
- Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
35
|
Anti-Inflammatory Properties of Irisin, Mediator of Physical Activity, Are Connected with TLR4/MyD88 Signaling Pathway Activation. Int J Mol Sci 2017; 18:ijms18040701. [PMID: 28346354 PMCID: PMC5412287 DOI: 10.3390/ijms18040701] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/09/2023] Open
Abstract
Irisin, an adipomiokine known as a mediator of physical activity, induces the browning of adipose tissue and it has potentially protective properties in the development of obesity-related states, such as insulin resistance, arteriosclerosis, and type 2 diabetes. Despite numerous studies conducted on this factor, still little is known about its impact on the functioning of immunocompetent cells, but its potential anti-inflammatory properties were previously suggested. In the current study we investigated the role of irisin (0-100 nM) in the downstream pathway activation of Toll-like receptor 4 (TLR4) in RAW 264.7 macrophages stimulated with lipopolysaccharide (LPS; 100 ng/mL). The results have shown that irisin in high concentrations (50, 100 nM) significantly decreased the TLR4 and MyD88 protein levels, as well as the phosphorylation of nuclear factor-κB (NF-κB), consequently leading to the reduction in the release of crucial pro-inflammatory cytokines. The above was confirmed for interleukin 1β (IL-1β), tumor necrosis factor α (TNFα), interleukin 6 (IL-6), keratinocyte chemoattractant (KC), monocyte chemotactic protein 1 (MCP-1), as well as for high mobility group box 1 (HMGB1). Moreover, our results indicate that this effect is connected with irisin's impact on the phosphorylation of mitogen-activated protein kinases (MAPKs), where a significant reduction in p-JNK and p-ERK but not p-p38 was observed. In conclusion, these data suggest that irisin has potentially anti-inflammatory properties connected with the downregulation of downstream pathways of TLR4/MyD88.
Collapse
|
36
|
Sanada Y, Yamamoto T, Satake R, Yamashita A, Kanai S, Kato N, van de Loo FA, Nishimura F, Scherer PE, Yanaka N. Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator of the Interaction with Macrophages. Sci Rep 2016; 6:38697. [PMID: 27929048 PMCID: PMC5144138 DOI: 10.1038/srep38697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
The infiltration of macrophages into adipose tissue and their interaction with adipocytes are essential for the chronic low-grade inflammation of obese adipose tissue. In this study, we identified the serum amyloid A3 (Saa3) gene as a key adipocyte-derived factor that is affected by interaction with macrophages. We showed that the Saa3 promoter in adipocytes actually responds to activated macrophages in a co-culture system. Decreasing C/EBPβ abundance in 3T3-L1 adipocytes or point mutation of C/EBPβ elements suppressed the increased promoter activity in response to activated macrophages, suggesting an essential role of C/EBPβ in Saa3 promoter activation. Bioluminescence based on Saa3 promoter activity in Saa3-luc mice was promoted in obese adipose tissue, showing that Saa3 promoter activity is most likely related to macrophage infiltration. This study suggests that the level of expression of the Saa3 gene could be utilized for the number of infiltrated macrophages in obese adipose tissue.
Collapse
Affiliation(s)
- Yohei Sanada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takafumi Yamamoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Rika Satake
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | | | - Sumire Kanai
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Norihisa Kato
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Fons Aj van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, USA
| | - Noriyuki Yanaka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
37
|
Espes D, Lau J, Quach M, Ullsten S, Christoffersson G, Carlsson PO. Rapid Restoration of Vascularity and Oxygenation in Mouse and Human Islets Transplanted to Omentum May Contribute to Their Superior Function Compared to Intraportally Transplanted Islets. Am J Transplant 2016; 16:3246-3254. [PMID: 27321369 DOI: 10.1111/ajt.13927] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/08/2016] [Accepted: 06/12/2016] [Indexed: 01/25/2023]
Abstract
Transplantation of islets into the liver confers several site-specific challenges, including a delayed vascularization and prevailing hypoxia. The greater omentum has in several experimental studies been suggested as an alternative implantation site for clinical use, but there has been no direct functional comparison to the liver. In this experimental study in mice, we characterized the engraftment of mouse and human islets in the omentum and compared engraftment and functional outcome with those in the intraportal site. The vascularization and innervation of the islets transplanted into the omentum were restored within the first month by paralleled ingrowth of capillaries and nerves. The hypoxic conditions in the islets early posttransplantation were transient and restricted to the first days. Newly formed blood vessels were fully functional, and the blood perfusion and oxygenation of the islets became similar to that of endogenous islets. Furthermore, islet grafts in the omentum showed at 1 month posttransplantation functional superiority to intraportally transplanted grafts. We conclude that in contrast to the liver the omentum provides excellent engraftment conditions for transplanted islets. Future studies in humans will be of great interest to investigate the capability of this site to also harbor larger grafts without interfering with islet functionality.
Collapse
Affiliation(s)
- D Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden. .,Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - J Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - M Quach
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - S Ullsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - G Christoffersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - P O Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Abstract
The African trypanosome was thought to primarily develop in the bloodstream and interstitial spaces of its mammalian host. In this issue of Cell Host & Microbe, Trindade et al. (2016) report the surprising finding that during ongoing persistent infections in mice, a major fraction of the parasites reside within fatty tissues.
Collapse
Affiliation(s)
- Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Gyllenhammer LE, Lam J, Alderete TL, Allayee H, Akbari O, Katkhouda N, Goran MI. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower β-cell function in adults with obesity. Obesity (Silver Spring) 2016; 24:1274-82. [PMID: 27133873 PMCID: PMC4882248 DOI: 10.1002/oby.21507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. METHODS SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. RESULTS Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. CONCLUSIONS Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function.
Collapse
Affiliation(s)
- Lauren E Gyllenhammer
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Lam
- Department of Molecular and Cellular Immunology, University of Southern California, Los Angeles, California, USA
| | - Tanya L Alderete
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Hooman Allayee
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Omid Akbari
- Department of Molecular and Cellular Immunology, University of Southern California, Los Angeles, California, USA
| | - Namir Katkhouda
- Department of Surgery, University of Southern California, Los Angeles, California, USA
| | - Michael I Goran
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
40
|
Pandolfi JB, Ferraro AA, Sananez I, Gancedo MC, Baz P, Billordo LA, Fainboim L, Arruvito L. ATP-Induced Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity. THE JOURNAL OF IMMUNOLOGY 2016; 196:3287-96. [PMID: 26951799 DOI: 10.4049/jimmunol.1502506] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
Obesity-induced inflammation is conducted by a metabolic pathway, which eventually causes activation of specialized immune cells and leads to an unresolved inflammatory response within the tissue. For this reason, it is critically important to determine how hypertrophic fat tissue alters T cell balance to drive inflammation. In this study, we identify the purinergic signaling as a novel mechanism driving the adaptive Th17 response in human visceral adipose tissue (VAT) of metabolically unhealthy obese patients. We demonstrate that ATP acting via the P2X7 receptor pathway promotes a Th17 polarizing microenvironment with high levels of IL-1β, IL-6, and IL-17 in VAT explants from lean donors. Moreover, in vitro blockade of the P2X7 receptor abrogates the levels of these cytokines. These findings are consistent with a greater frequency of Th17 cells in tissue from metabolically unhealthy obese donors, revealed not only by the presence of a baseline Th17-promoting milieu, but also by the higher expression of steadily recognized Th17 markers, such as RORC, IL-17 cytokine, and IL-23R, in comparison with metabolically healthy obese and lean donors. In addition, we demonstrate that CD39 expression on CD4(+)effector T cells represents a novel Th17 marker in the inflamed VAT, which also confers protection against ATP-induced cell death. The manipulation of the purinergic signaling might represent a new therapeutic target to shift the CD4(+)T cell balance under inflammatory conditions.
Collapse
Affiliation(s)
- Julieta B Pandolfi
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Ariel A Ferraro
- División Cirugía Gastroenterológica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Maria C Gancedo
- División Cirugía Gastroenterológica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina
| | - Plácida Baz
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Luis A Billordo
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Leonardo Fainboim
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| | - Lourdes Arruvito
- Instituto de Inmunología, Genética y Metabolismo, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, C1120AAF Buenos Aires, Argentina; and
| |
Collapse
|
41
|
Majdoubi A, Kishta OA, Thibodeau J. Role of antigen presentation in the production of pro-inflammatory cytokines in obese adipose tissue. Cytokine 2016; 82:112-21. [PMID: 26854212 DOI: 10.1016/j.cyto.2016.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.
Collapse
Affiliation(s)
- Abdelilah Majdoubi
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada
| | - Osama A Kishta
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada
| | - Jacques Thibodeau
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Québec, Canada.
| |
Collapse
|
42
|
Abstract
Low-grade inflammation in the obese AT (AT) and the liver is a critical player in the development of obesity-related metabolic dysregulation, including insulin resistance, type 2 diabetes and non-alcoholic steatohepatitis (NASH). Myeloid as well as lymphoid cells infiltrate the AT and the liver and expand within these metabolic organs as a result of excessive nutrient intake, thereby exacerbating tissue inflammation. Macrophages are the paramount cell population in the field of metabolism-related inflammation; as obesity progresses, a switch takes place within the AT environment from an M2-alternatively activated macrophage state to an M1-inflammatory macrophage-dominated milieu. M1-polarized macrophages secrete inflammatory cytokines like TNF in the obese AT; such cytokines contribute to insulin resistance in adipocytes. Besides macrophages, also CD8+ T cells promote inflammation in the AT and the liver and thereby the deterioration of the metabolic balance in adipocytes and hepatocytes. Other cells of the innate immunity, such as neutrophils or mast cells, interfere with metabolic homeostasis as well. On the other hand, eosinophils or T-regulatory cells, the number of which in the AT decreases in the course of obesity, function to maintain metabolic balance by ameliorating inflammatory processes. In addition, eosinophils and M2-polarized macrophages may contribute to "beige" adipogenesis under lean conditions; beige adipocytes are located predominantly in the subcutaneous AT and have thermogenic and optimal energy-dispensing properties like brown adipocytes. This chapter will summarize the different aspects of the regulation of homeostasis of metabolic tissues by immune cells.
Collapse
Affiliation(s)
- Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany.
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany
| |
Collapse
|
43
|
Dam V, Sikder T, Santosa S. From neutrophils to macrophages: differences in regional adipose tissue depots. Obes Rev 2016; 17:1-17. [PMID: 26667065 DOI: 10.1111/obr.12335] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/01/2015] [Accepted: 09/23/2015] [Indexed: 12/27/2022]
Abstract
Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.
Collapse
Affiliation(s)
- V Dam
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - T Sikder
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - S Santosa
- Department of Exercise Science, Concordia University, Montreal, QC, Canada.,Nutrition, Obesity, and Metabolism Lab, PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
44
|
Maioli TU, Gonçalves JL, Miranda MCG, Martins VD, Horta LS, Moreira TG, Godard ALB, Santiago AF, Faria AMC. High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice. Inflamm Res 2015; 65:169-78. [PMID: 26650032 DOI: 10.1007/s00011-015-0902-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The purpose of the study was to develop a novel diet based on standard AIN93G diet that would be able to induce experimental obesity and impair immune regulation with high concentrations of both carbohydrate and lipids. METHODS To compare the effects of this high sugar and butter (HSB) diet with other modified diets, male C57BL/6 mice were fed either mouse chow, or AIN93G diet, or high sugar (HS) diet, or high-fat (HF) diet, or high sugar and butter (HSB) diet for 11 weeks ad libitum. HSB diet induced higher weight gain. Therefore, control AIN93G and HSB groups were chosen for additional analysis. Regulatory T cells were studied by flow cytometry, and cytokine levels were measured by ELISA. RESULTS Although HF and HSB diets were able to induce a higher weight gain compatible with obesity in treated mice, HSB-fed mice presented the higher levels of serum glucose after fasting and the lowest frequency of regulatory T cells in adipose tissue. In addition, mice that were fed HSB diet presented higher levels of cholesterol and triglycerides, hyperleptinemia, increased resistin and leptin levels as well as reduced adiponectin serum levels. Importantly, we found increased frequency of CD4(+)CD44(+) effector T cells, reduction of CD4(+)CD25(+)Foxp3(+) and Th3 regulatory T cells as well as decreased levels of IL-10 and TGF-β in adipose tissue of HSB-fed mice. CONCLUSION Therefore, HSB represents a novel model of obesity-inducing diet that was efficient in triggering alterations compatible with metabolic syndrome as well as impairment in immune regulatory parameters.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Av. Alfredo Balena, Belo Horizonte, MG, CEP: 30130-100, Brazil.
| | - Juliana Lauar Gonçalves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Mariana Camila Gonçalves Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinícius Dantas Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Laila Sampaio Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thais Garcias Moreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Lucia Brunialti Godard
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andrezza Fernanda Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
45
|
Kaplan JL, Marshall MA, C. McSkimming C, Harmon DB, Garmey JC, Oldham SN, Hallowell P, McNamara CA. Adipocyte progenitor cells initiate monocyte chemoattractant protein-1-mediated macrophage accumulation in visceral adipose tissue. Mol Metab 2015; 4:779-94. [PMID: 26629403 PMCID: PMC4632113 DOI: 10.1016/j.molmet.2015.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Macrophages are important producers of obesity-induced MCP-1; however, initial obesity-induced increases in MCP-1 production precede M1 macrophage accumulation in visceral adipose tissue (VAT). The initial cellular source of obesity-induced MCP-1 in vivo is currently unknown. Preliminary reports based on in vitro studies of preadipocyte cell lines and adherent stroma-vascular fraction cells suggest that resident stromal cells express MCP-1. In the past several years, elegant methods of identifying adipocyte progenitor cells (AdPCs) have become available, making it possible to study these cells in vivo. We have previously published that global deletion of transcription factor Inhibitor of Differentiation 3 (Id3) attenuates high fat diet-induced obesity, but it is unclear if Id3 plays a role in diet-induced MCP-1 production. We sought to determine the initial cellular source of MCP-1 and identify molecular regulators mediating MCP-1 production. METHODS Id3 (+/+) and Id3 (-/-) mice were fed either a standard chow or HFD for varying lengths of time. Flow cytometry, semi-quantitative real-time PCR, ELISAs and adoptive transfers were used to assess the importance of AdPCs during diet-induced obesity. Flow cytometry was also performed on a cohort of 14 patients undergoing bariatric surgery. RESULTS Flow cytometry identified committed CD45(-)CD31 (-) Ter119(-)CD29(+)CD34(+)Sca-1(+)CD24(-) adipocyte progenitor cells as producers of high levels of MCP-1 in VAT. High-fat diet increased AdPC numbers, an effect dependent on Id3. Loss of Id3 increased p21(Cip1) levels and attenuated AdPC proliferation, resulting in reduced MCP-1 and M1 macrophage accumulation in VAT, compared to Id3 (+/+) littermate controls. AdPC rescue by adoptive transfer of 50,000 Id3 (+/+) AdPCs into Id3 (-/-) recipient mice increased MCP-1 levels and M1 macrophage number in VAT. Additionally, flow cytometry identified MCP-1-producing CD45(-)CD31(-)CD34(+)CD44(+)CD90(+) AdPCs in human omental and subcutaneous adipose tissue, with a higher percentage in omental adipose. Furthermore, high surface expression of CD44 marked abundant MCP-1 producers, only in visceral adipose tissue. CONCLUSIONS This study provides the first in vivo evidence, to our knowledge, that committed AdPCs in VAT are the initial source of obesity-induced MCP-1 and identifies the helix-loop-helix transcription factor Id3 as a critical regulator of p21(Cip1) expression, AdPC proliferation, MCP-1 expression and M1 macrophage accumulation in VAT. Inhibition of Id3 and AdPC expansion, as well as CD44 expression in human AdPCs, may serve as unique therapeutic targets for the regulation of adipose tissue inflammation.
Collapse
Affiliation(s)
- Jennifer L. Kaplan
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Melissa A. Marshall
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Chantel C. McSkimming
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Daniel B. Harmon
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry, Molecular Biology, and Genetics, University of Virginia, Charlottesville, VA, United States
| | - James C. Garmey
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Stephanie N. Oldham
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
| | - Peter Hallowell
- Department of Surgery, University of Virginia, Charlottesville, VA, United States
| | - Coleen A. McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
46
|
Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie AP, Mélard A, David L, Gommet C, Ghosn J, Noel N, Pourcher G, Martinez V, Benoist S, Béréziat V, Cosma A, Favier B, Vaslin B, Rouzioux C, Capeau J, Müller-Trutwin M, Dereuddre-Bosquet N, Le Grand R, Lambotte O, Bourgeois C. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog 2015; 11:e1005153. [PMID: 26402858 PMCID: PMC4581628 DOI: 10.1371/journal.ppat.1005153] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.
Collapse
Affiliation(s)
- Abderaouf Damouche
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Thierry Lazure
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’anatomo-pathologie, Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fènoël
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | | | - Anne-Pascale Satie
- INSERM, U1085-IRSET, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Adeline Mélard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Ludivine David
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | | | - Jade Ghosn
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
| | - Nicolas Noel
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Guillaume Pourcher
- Assistance Publique—Hôpitaux de Paris, Hôpital Béclère, Service de Chirurgie Viscérale Minimale invasive, Clamart, France
- INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Valérie Martinez
- Assistance Publique—Hôpitaux de Paris, Hôpital Antoine Béclère, Service de Médecine Interne et Immunologie clinique, Clamart, France
| | - Stéphane Benoist
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie générale et digestive, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Antonio Cosma
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Christine Rouzioux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Jacqueline Capeau
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | | | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
47
|
Endo Y, Asou H, Matsugae N, Hirahara K, Shinoda K, Tumes D, Tokuyama H, Yokote K, Nakayama T. Obesity Drives Th17 Cell Differentiation by Inducing the Lipid Metabolic Kinase, ACC1. Cell Rep 2015; 12:1042-55. [DOI: 10.1016/j.celrep.2015.07.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/01/2015] [Accepted: 07/08/2015] [Indexed: 01/21/2023] Open
|
48
|
Vonghia L, Francque S. Cross talk of the immune system in the adipose tissue and the liver in non-alcoholic steatohepatitis: Pathology and beyond. World J Hepatol 2015; 7:1905-1912. [PMID: 26244065 PMCID: PMC4517150 DOI: 10.4254/wjh.v7.i15.1905] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/30/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is considered to be the hepatic manifestation of the metabolic syndrome, thus has a tight correlation with systemic metabolic impairment. The complex mechanisms underlying the pathogenesis of NASH involve different organs and systems that cross talk together contributing to the onset of NASH. A crucial role is played by inflammatory mediators, especially those deriving from the adipose tissue and the liver, which are involved in the cascade of inflammation, fibrosis and eventually tumorigenesis. In this setting cytokines and adipokines as well as immunity are emerging drivers of the key features of NASH. The immune system participates in this process with disturbances of the cells constituting both the innate and the adaptive immune systems that have been reported in different organs, such as in the liver and in the adipose tissue, in clinical and preclinical studies. The role of the immune system in NASH is increasingly studied, not only because of its contribution to the pathogenetic mechanisms of NASH but also because of the new potential therapeutic options it offers in this setting. Indeed, novel treatments acting on the immune system could offer new options in the management of NASH and the correlated clinical consequences.
Collapse
|
49
|
Teixeira L, Moreira J, Melo J, Bezerra F, Marques RM, Ferreirinha P, Correia A, Monteiro MP, Ferreira PG, Vilanova M. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology 2015; 145:242-57. [PMID: 25581844 DOI: 10.1111/imm.12440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/29/2014] [Accepted: 01/04/2015] [Indexed: 12/17/2022] Open
Abstract
The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.
Collapse
Affiliation(s)
- Luzia Teixeira
- UMIB - Unidade Multidisciplinar de Investigação Biomédica, Departamento de Anatomia, ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yang T, Gao X, Sandberg M, Zollbrecht C, Zhang XM, Hezel M, Liu M, Peleli M, Lai EY, Harris RA, Persson AEG, Fredholm BB, Jansson L, Carlström M. Abrogation of adenosine A1 receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses. Diabetologia 2015; 58:1610-20. [PMID: 25835725 DOI: 10.1007/s00125-015-3570-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS Adenosine is an important regulator of metabolism; however, the role of the A1 receptor during ageing and obesity is unclear. The aim of this study was to investigate the effects of A1 signalling in modulating metabolic function during ageing. METHODS Age-matched young and aged A 1 (also known as Adora1)-knockout (A1(-/-)) and wild-type (A1(+/+)) mice were used. Metabolic regulation was evaluated by body composition, and glucose and insulin tolerance tests. Isolated islets and islet arterioles were used to detect islet endocrine and vascular function. Oxidative stress and inflammation status were measured in metabolic organs and systemically. RESULTS Advanced age was associated with both reduced glucose clearance and insulin sensitivity, as well as increased visceral adipose tissue (VAT) in A1(+/+) compared with A1(-/-) mice. Islet morphology and insulin content were similar between genotypes, but relative changes in in vitro insulin release following glucose stimulation were reduced in aged A1(+/+) compared with A1(-/-) mice. Islet arteriolar responses to angiotensin II were stronger in aged A1(+/+) mice, this being associated with increased NADPH oxidase activity. Ageing resulted in multiple changes in A1(+/+) compared with A1(-/-) mice, including enhanced NADPH oxidase-derived O2(-) formation and NADPH oxidase isoform 2 (Nox2) protein expression in pancreas and VAT; elevated levels of circulating insulin, leptin and proinflammatory cytokines (TNF-α, IL-1β, IL-6 and IL-12); and accumulation of CD4(+) T cells in VAT. This was associated with impaired insulin signalling in VAT from aged A1(+/+) mice. CONCLUSIONS/INTERPRETATION These studies emphasise that A1 receptors regulate metabolism and islet endocrine and vascular functions during ageing, including via the modulation of oxidative stress and inflammatory responses, among other things.
Collapse
Affiliation(s)
- Ting Yang
- Department of Physiology and Pharmacology, Karolinska Institutet, Nanna Svartz Väg 2, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|