1
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Zhao F, Zhang C, Li G, Zheng H, Gu L, Zhou H, Xiao Y, Wang Z, Yu J, Hu Y, Zeng F, Wang X, Zhao Q, Hu J, Yue C, Zhou P, Huang N, Hao Y, Wu W, Cui K, Li W, Li J. A role for whey acidic protein four-disulfide-core 12 (WFDC12) in the pathogenesis and development of psoriasis disease. Front Immunol 2022; 13:873720. [PMID: 36148224 PMCID: PMC9485559 DOI: 10.3389/fimmu.2022.873720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Whey acidic protein four-disulfide core domain protein 12 (WFDC12) has been implicated in the pathogenesis of psoriasis but the specific molecular mechanism is not clearly defined. In this study, we found the expression of WFDC12 protein closely correlated with psoriasis. WFDC12 in keratinocyte might increase infiltration of Langerhans cells (LCs) and monocyte-derived dendritic cells (moDDCs), up-regulating the co-stimulation molecular CD40/CD86. Th1 cells in lymph nodes were higher in K14-WFDC12 transgenic psoiasis-like mice. Meanwhile, the mRNA of IL-12 and IFN-γ in the lesion skin was significantly increased in transgenic mice. Moreover, we found that the expression of the proteins that participated in the retinoic acid–related pathway and immune signaling pathway was more changed in the lesion skin of K14-WFDC12 transgenic psoriasis-like mice. Collectively, the results implied that WFDC12 might affect the activation of the retinoic acid signaling pathway and regulate the infiltration of DC cells in the skin lesions and lymph nodes, thereby inducing Th1 cells differentiation and increasing the secretion of IFN-γ to exacerbate psoriasis in mice.
Collapse
Affiliation(s)
- Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
- *Correspondence: Jiong Li,
| |
Collapse
|
3
|
Zhao Y, Peng C, Zhang J, Lai R, Zhang X, Guo Z. Mitochondrial Displacement Loop Region SNPs Modify Sjögren’s Syndrome Development by Regulating Cytokines Expression in Female Patients. Front Genet 2022; 13:847521. [PMID: 35360865 PMCID: PMC8963357 DOI: 10.3389/fgene.2022.847521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial dysfunction could induce innate immune response with cytokines releasing to initiate Sjögren’s syndrome (SS) onset. Single nucleotide polymorphisms (SNPs) in the mitochondrial displacement loop (D-loop) and mitochondrial DNA (mtDNA) copy number of female SS patients were evaluated for their association with SS in female patients. At the nucleotide site of 152, 16304, 16311 and 16362 in the D-loop, the frequencies for the minor alleles of 152C (p = 0.040, odds ratio [OR] = 0.504), 16304C (p = 0.045, OR = 0.406), 16311C (p = 0.045, OR = 0.406) and 16362C (p = 0.028, OR = 0.519) were significantly higher in the SS patients than those in the female controls, which indicated that 152,C, 16304C, 16311C, and 16362C allele in the D-loop of mtDNA were associated with the risk of SS. Meanwhile, the excessive SNPs were accumulated in D-loop region of SS patients (8.955 ± 2.028 versus 7.898 ± 1.987, p < 0.001, 95% confidence interval [CI]: 0.477–1.637) and mtDNA copy number increased in SS patients (1.509 ± 0.836 versus 1.221 ± 0.506, p = 0.006, 95% CI: 0.086–0.490) by a case-control analysis. The subsequent analysis showed that SS risk-related allele 16311C was associated with higher IL-2 levels (p = 0.010) at significantly statistical level whereas 152C associated with lower IL-10 levels (p = 0.058) at a borderline statistical levels. Our findings suggest that mitochondrial D-loop SNPs are predictors for SS risk, it might modify the SS development by regulating cytokine expression.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenxing Peng
- Department of Immunology and Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruixue Lai
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zhanjun Guo,
| |
Collapse
|
4
|
Simon Q, Grasseau A, Boudigou M, Le Pottier L, Bettachioli E, Cornec D, Rouvière B, Jamin C, Le Lann L, Borghi MO, Aguilar-Quesada R, Renaudineau Y, Alarcón-Riquelme ME, Pers JO, Hillion S. A Proinflammatory Cytokine Network Profile in Th1/Type 1 Effector B Cells Delineates a Common Group of Patients in Four Systemic Autoimmune Diseases. Arthritis Rheumatol 2021; 73:1550-1561. [PMID: 33605069 DOI: 10.1002/art.41697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The effector T cell and B cell cytokine networks have been implicated in the pathogenesis of systemic autoimmune diseases, but the association of these cytokine networks with the heterogeneity of clinical manifestations and immune profiles has not been carefully examined. This study was undertaken to examine whether cytokine profiles can delineate distinct groups of patients in 4 systemic autoimmune diseases (systemic lupus erythematosus, Sjögren's syndrome, rheumatoid arthritis, and systemic sclerosis). METHODS A total of 179 patients and 48 healthy volunteers were enrolled in the multicenter cross-sectional PRECISE Systemic Autoimmune Diseases (PRECISESADS) study. Multi-low-dimensional omics data (cytokines, autoantibodies, circulating immune cells) were examined. Coculture experiments were performed to test the impact of the cytokine microenvironment on T cell/B cell cross-talk. RESULTS A proinflammatory cytokine profile defined by high levels of CXCL10, interleukin-6 (IL-6), IL-2, and tumor necrosis factor characterized a distinct group of patients in the 4 systemic autoimmune diseases. In each disease, this proinflammatory cluster was associated with a specific circulating immune cell signature, more severe disease, and higher levels of autoantibodies, suggesting an uncontrolled proinflammatory Th1 immune response. We observed in vitro that B cells reinforce Th1 differentiation and naive T cell proliferation, leading to the induction of type 1 effector B cells and IgG production. This process was associated with an increase in CXCL10, IL-6, IL-2, and interferon-γ production. CONCLUSION This composite analysis brings new insights into human B cell functional heterogeneity based on T cell/B cell cross-talk, and proposes a better stratification of patients with systemic autoimmune diseases, suggesting that combined biomarkers would be of great value for the design of personalized treatments.
Collapse
Affiliation(s)
- Quentin Simon
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Alexis Grasseau
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Marina Boudigou
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Laëtitia Le Pottier
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | | | - Divi Cornec
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Bénédicte Rouvière
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Christophe Jamin
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Lucas Le Lann
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | | | | | | | | | - Yves Renaudineau
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Marta E Alarcón-Riquelme
- Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Granada, Spain
| | - Jacques-Olivier Pers
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| | - Sophie Hillion
- Université de Brest, INSERM, UMR1227, Centre Hospitalier Universitaire de Brest, Brest, France
| |
Collapse
|
5
|
Manolakou T, Verginis P, Boumpas DT. DNA Damage Response in the Adaptive Arm of the Immune System: Implications for Autoimmunity. Int J Mol Sci 2021; 22:5842. [PMID: 34072535 PMCID: PMC8198144 DOI: 10.3390/ijms22115842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
In complex environments, cells have developed molecular responses to confront threats against the genome and achieve the maintenance of genomic stability assuring the transfer of undamaged DNA to their progeny. DNA damage response (DDR) mechanisms may be activated upon genotoxic or environmental agents, such as cytotoxic drugs or ultraviolet (UV) light, and during physiological processes requiring DNA transactions, to restore DNA alterations that may cause cellular malfunction and affect viability. In addition to the DDR, multicellular organisms have evolved specialized immune cells to respond and defend against infections. Both adaptive and innate immune cells are subjected to DDR processes, either as a prerequisite to the immune response, or as a result of random endogenous and exogenous insults. Aberrant DDR activities have been extensively studied in the immune cells of the innate arm, but not in adaptive immune cells. Here, we discuss how the aberrant DDR may lead to autoimmunity, with emphasis on the adaptive immune cells and the potential of therapeutic targeting.
Collapse
Affiliation(s)
- Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Panayotis Verginis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 700 13 Heraklion, Greece;
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 700 13 Heraklion, Greece
| | - Dimitrios T. Boumpas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| |
Collapse
|
6
|
Development of JAK inhibitors for the treatment of immune-mediated diseases: kinase-targeted inhibitors and pseudokinase-targeted inhibitors. Arch Pharm Res 2020; 43:1173-1186. [PMID: 33161563 DOI: 10.1007/s12272-020-01282-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
JAKs are a family of intracellular tyrosine kinases consisting of four members, JAK1, JAK2, JAK3, and TYK2. They are key components of the JAK-STAT pathway that transmit signals of many cytokines involved in the pathogenesis of numerous immune-mediated diseases and have been major molecular targets in developing new drugs for the treatment of such diseases. Some small-molecule inhibitors of JAKs have been approved by the FDA for rheumatoid arthritis, psoriatic arthritis, and inflammatory bowel disease. Now, newer JAK inhibitors with isoform-selectivity among the four different JAKs are being developed, with the aim of improving clinical outcomes compared with earlier developed drugs with pan-JAK inhibition. Most of these selective inhibitors target the kinase domains of JAKs, functioning through the traditional inhibition mode of kinases; but recently those that target their pseudokinase domains, allosterically inhibiting the enzymes, have been under development. In this review, key characteristics, efficacy, and safety of FDA-approved and representative drugs in late stages of development are briefly described in order to provide clinical implications with respect to JAK inhibitor selectivity and future development perspectives. The recent development of pseudokinase-targeted inhibitors of JAKs is also included.
Collapse
|
7
|
Cichoric acid from extracted Echinacea purpurea induces the proliferation and apoptosis of peripheral blood mononuclear cells from yaks. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
8
|
The Endocannabinoid System in Pediatric Inflammatory and Immune Diseases. Int J Mol Sci 2019; 20:ijms20235875. [PMID: 31771129 PMCID: PMC6928713 DOI: 10.3390/ijms20235875] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Endocannabinoid system consists of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. CB2, to a great extent, and CB1, to a lesser extent, are involved in regulating the immune response. They also regulate the inflammatory processes by inhibiting pro-inflammatory mediator release and immune cell proliferation. This review provides an overview on the role of the endocannabinoid system with a major focus on cannabinoid receptors in the pathogenesis and onset of inflammatory and autoimmune pediatric diseases, such as immune thrombocytopenia, juvenile idiopathic arthritis, inflammatory bowel disease, celiac disease, obesity, neuroinflammatory diseases, and type 1 diabetes mellitus. These disorders have a high social impact and represent a burden for the healthcare system, hence the importance of individuating more innovative and effective treatments. The endocannabinoid system could address this need, representing a possible new diagnostic marker and therapeutic target.
Collapse
|
9
|
Klarlund JK, Callaghan JD, Stella NA, Kowalski RP, McNamara NA, Shanks RMQ. Use of Collagen Binding Domains to Deliver Molecules to the Cornea. J Ocul Pharmacol Ther 2019; 35:491-496. [PMID: 31593501 DOI: 10.1089/jop.2019.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: The combined activity of the tear film and blinking is remarkably efficient at removal of foreign materials from the ocular surface. This has prevented the use of certain classes of drugs for the treatment of ocular surface problems. We propose that the use of peptide and protein domains that bind to moieties on the cornea could be used to deliver therapeutics by anchoring the drugs on the ocular surface long enough to provide therapeutic effects. Methods: In this study, we evaluated 4 different collagen binding domains fused to bacterial β-galactosidase for delivery of a reporter protein to collagen I and collagen IV-coated plates, rabbit corneas, and Herpes simplex virus (HSV-1) infected mouse corneas. Results: All 4 domains bound to collagen I and IV in vitro, whereas only a 10 amino acid (AA) sequence from bovine von Willebrand factor (vWF) and a 215 AA collagen binding domain from the bacterial protein ColH efficiently bound to abraded rabbit corneas. To test binding to corneas in a clinically relevant model, we assessed binding of the vWF collagen binding peptide fusions to HSV-1 infected mouse corneas. We observed that the vWF derived peptide mediated attachment to infected corneas, whereas the reporter protein without a collagen binding domain did not bind. Conclusions: Moving forward, the vWF collagen binding peptide could be used as an anchor to deliver therapeutics to prevent scarring and vision loss from damaged corneal surfaces due to disease and inflammation.
Collapse
Affiliation(s)
- Jes K Klarlund
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jake D Callaghan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicholas A Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nancy A McNamara
- School of Optometry, University of California, Berkeley, Berkeley, California.,Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
McGowan LM, Davey Smith G, Gaunt TR, Richardson TG. Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease. Hum Mol Genet 2019; 28:3293-3300. [PMID: 31276585 PMCID: PMC6859431 DOI: 10.1093/hmg/ddz155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023] Open
Abstract
Immune-mediated diseases (IMDs) arise when tolerance is lost and chronic inflammation is targeted towards healthy tissues. Despite their growing prevalence, therapies to treat IMDs are lacking. Cytokines and their receptors orchestrate inflammatory responses by regulating elaborate signalling networks across multiple cell types making it challenging to pinpoint therapeutically relevant drivers of IMDs. We developed an analytical framework that integrates Mendelian randomization (MR) and multiple-trait colocalization (moloc) analyses to highlight putative cell-specific drivers of IMDs. MR evaluated causal associations between the levels of 10 circulating cytokines and 9 IMDs within human populations. Subsequently, we undertook moloc analyses to assess whether IMD trait, cytokine protein and corresponding gene expression are driven by a shared causal variant. Moreover, we leveraged gene expression data from three separate cell types (monocytes, neutrophils and T cells) to discern whether associations may be attributed to cell type-specific drivers of disease. MR analyses supported a causal role for IL-18 in inflammatory bowel disease (IBD) (P = 1.17 × 10-4) and eczema/dermatitis (P = 2.81 × 10-3), as well as associations between IL-2rα and IL-6R with several other IMDs. Moloc strengthened evidence of a causal association for these results, as well as providing evidence of a monocyte and neutrophil-driven role for IL-18 in IBD pathogenesis. In contrast, IL-2rα and IL-6R associations were found to be T cell specific. Our analytical pipeline can help to elucidate putative molecular pathways in the pathogeneses of IMDs, which could be applied to other disease contexts.
Collapse
Affiliation(s)
- Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences Institute, University of Bristol, Bristol, BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, Population Health Sciences Institute, University of Bristol, Bristol, BS8 2BN, UK
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit, Population Health Sciences Institute, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
11
|
Wang Z, Zheng H, Zhou H, Huang N, Wei X, Liu X, Teng X, Hu Z, Zhang J, Zhou X, Li W, Li J. Systematic screening and identification of novel psoriasis‑specific genes from the transcriptome of psoriasis‑like keratinocytes. Mol Med Rep 2018; 19:1529-1542. [PMID: 30592269 PMCID: PMC6390042 DOI: 10.3892/mmr.2018.9782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/05/2018] [Indexed: 02/05/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease. Keratinocytes (KCs), as skin‑specific cells, serve an important role in the immunopathogenesis of psoriasis. In the present study, transcriptome data derived from psoriasis‑like KCs were used together with the reported transcriptome data from the skin/epidermis of patient with psoriasis, excluding known psoriasis‑associated genes that have been well described in the previous studies according to GeneCards database, to screen for novel psoriasis‑associated genes. According to the human expressed sequence tag of UniGene dataset, six genes that are located near psoriasis‑associated loci were highly expressed in skin. Among these six genes, four genes (epiregulin, NIPA like domain containing 4, serpin family B member 7 and WAP four‑disulfide core domain 12) were highly expressed in normal mouse epidermis (mainly KCs) and mouse psoriatic epidermis cells, but not in psoriatic dermis cells, which further emphasized the specificity of these genes. Furthermore, in systemic inflammatory response syndrome (SIRS), SERPINB7 showed no difference in expression in immune‑activated tissues from SIRS and control mice. It was also found that the mRNA expression levels of SERPINB in lesional skin of patients with psoriasis were significantly higher than in non‑lesional psoriatic skin from the same patients. SERPINB7 may be a valuable candidate for further studies. In the present study, a method for identifying novel key pathogenic skin‑specific molecules is presented, which may be used for investigating and treating psoriasis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Huaping Zheng
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Hong Zhou
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Nongyu Huang
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqiong Wei
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xiao Liu
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xiu Teng
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Zhonglan Hu
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Jun Zhang
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Xikun Zhou
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Wei Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Jiong Li
- Department of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Ding H, Kiguchi N, Kishioka S, Ma T, Peters CM, Ko MC. Differential mRNA expression of neuroinflammatory modulators in the spinal cord and thalamus of type 2 diabetic monkeys. J Diabetes 2018; 10:886-895. [PMID: 29749036 PMCID: PMC6172150 DOI: 10.1111/1753-0407.12780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/25/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Given that diabetes-associated complications are closely associated with neuroinflammation, it is imperative to study potential changes in neuroinflammatory modulators in the central nervous system of diabetic primates. METHODS The mRNA levels of pro- and anti-inflammatory cytokines, toll-like receptors (TLRs), growth factors, and cannabinoid receptors were compared in the spinal dorsal horn (SDH) and thalamus of naturally occurring type 2 diabetic monkeys and an age-matched control group using reverse transcription and quantitative real-time polymerase chain reaction. RESULTS In the SDH of diabetic monkeys, mRNA levels of proinflammatory cytokines (i.e. interleukin [IL]-1β and tumor necrosis factor [TNF] α), TLR1, and TLR2 were increased, whereas mRNA levels of IL-10, an anti-inflammatory cytokine, were decreased. No changes were observed in the mRNA levels of growth factors and cannabinoid receptors. In line with the mRNA data, TNFα immunoreactivity was significantly increased in diabetic monkeys. Moreover, mRNA expression levels of IL-1β, TNFα, TLR1, and TLR2 in the SDH were positively correlated with plasma glucose concentrations in all monkeys. CONCLUSIONS Several ligands and receptors involved in neuroinflammation are simultaneously dysregulated in the spinal cord of diabetic monkeys. This primate disease model will facilitate the design of novel treatment approaches to ameliorate neuroinflammation-driven adverse effects in diabetic patients.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Norikazu Kiguchi
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - Tao Ma
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Department of Internal Medicine - Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mei-Chuan Ko
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
13
|
Ferrao RD, Wallweber HJ, Lupardus PJ. Receptor-mediated dimerization of JAK2 FERM domains is required for JAK2 activation. eLife 2018; 7:38089. [PMID: 30044226 PMCID: PMC6078494 DOI: 10.7554/elife.38089] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cytokines and interferons initiate intracellular signaling via receptor dimerization and activation of Janus kinases (JAKs). How JAKs structurally respond to changes in receptor conformation induced by ligand binding is not known. Here, we present two crystal structures of the human JAK2 FERM and SH2 domains bound to Leptin receptor (LEPR) and Erythropoietin receptor (EPOR), which identify a novel dimeric conformation for JAK2. This 2:2 JAK2/receptor dimer, observed in both structures, identifies a previously uncharacterized receptor interaction essential to dimer formation that is mediated by a membrane-proximal peptide motif called the ‘switch’ region. Mutation of the receptor switch region disrupts STAT phosphorylation but does not affect JAK2 binding, indicating that receptor-mediated formation of the JAK2 FERM dimer is required for kinase activation. These data uncover the structural and molecular basis for how a cytokine-bound active receptor dimer brings together two JAK2 molecules to stimulate JAK2 kinase activity.
Collapse
Affiliation(s)
- Ryan D Ferrao
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| | - Heidi Ja Wallweber
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| | - Patrick J Lupardus
- Department of Structural Biology, Genentech, Inc., South San Francisco, United States
| |
Collapse
|
14
|
Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci Rep 2017; 7:17842. [PMID: 29259216 PMCID: PMC5736560 DOI: 10.1038/s41598-017-17865-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022] Open
Abstract
Cytokine-based diagnostic assays are increasingly used in research and clinical practice. Assays developed for adults such as the interferon-gamma release assay for tuberculosis show inferior performance in children. Limited evidence suggests that release of cytokines is influenced by age but normal ranges of cytokines in children are lacking. Whole blood of healthy children (0-12 years) undergoing elective/diagnostic procedures was stimulated with SEB, PHA, Candida albicans for 24 hours or left unstimulated. Concentrations of eight cytokines were measured by multiplex bead-based immunoassays and associations with age and other factors quantified by regression analysis. 271 children (median age 5.2 years) were included. In unstimulated samples IL-1ra, IP-10 and TNF-α concentrations decreased by up to -60% with age. Following antigen stimulation, an age-associated increase (ranging from +90% to +500%) was observed for all cytokines except IL-1ra (significant for IL-4, IFN-γ and TNF-α). Inter-individual variability in cytokine concentrations was large with a coefficient of variation ranging from 42% to 1412%. Despite inter-individual variation age was identified as a strong influencing factor of cytokine concentrations. Age-specific normal values need to be considered for cytokine-based diagnostic purposes. These results are relevant for development of novel cytokine-based diagnostic assays and for optimal dosing of therapeutic agents targeting cytokines.
Collapse
|
15
|
Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Pharmacological Regulation of Neuropathic Pain Driven by Inflammatory Macrophages. Int J Mol Sci 2017; 18:ijms18112296. [PMID: 29104252 PMCID: PMC5713266 DOI: 10.3390/ijms18112296] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain can have a major effect on quality of life but current therapies are often inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury. Among these, the most abundant cell type is macrophages, which produce several key molecules involved in pain enhancement, including cytokines and chemokines. Given their central role in the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1) macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1 macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Daichi Kobayashi
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Fumihiro Saika
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shinsuke Matsuzaki
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama 641-0012, Japan.
| |
Collapse
|
16
|
Development of aptamers against unpurified proteins. Biotechnol Bioeng 2017; 114:2706-2716. [DOI: 10.1002/bit.26389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/24/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
|
17
|
Kay MW. Interleukin 1 receptor inhibition dampens the flame of postinfarction arrhythmias. Heart Rhythm 2017; 14:737-738. [DOI: 10.1016/j.hrthm.2017.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 11/15/2022]
|
18
|
Wang H, Guo X, Liu J, Li T, Fu X, Liu RH. Comparative suppression of NLRP3 inflammasome activation with LPS-induced inflammation by blueberry extracts (Vaccinium spp.). RSC Adv 2017. [DOI: 10.1039/c7ra02562a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate the anti-inflammation effects of blueberry extracts through NLRP3 inflammasome.
Collapse
Affiliation(s)
- Huailing Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xinbo Guo
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- Department of Food Science
| | - Jie Liu
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Tong Li
- Department of Food Science
- Stocking Hall
- Cornell University
- Ithaca
- USA
| | - Xiong Fu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Rui Hai Liu
- Department of Food Science
- Stocking Hall
- Cornell University
- Ithaca
- USA
| |
Collapse
|
19
|
Tang H, Panemangalore R, Yarde M, Zhang L, Cvijic ME. 384-Well Multiplexed Luminex Cytokine Assays for Lead Optimization. ACTA ACUST UNITED AC 2016; 21:548-55. [PMID: 27095819 DOI: 10.1177/1087057116644164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Cytokines serve as a major mechanism of communication between immune cells and are the functional molecules at the end of immune pathways. Abnormalities in cytokines are involved in a wide variety of diseases, including chronic inflammation, autoimmune diseases, and cancer. Cytokines are not only direct targets of therapeutics but also important biomarkers for assessing drug efficacy and safety. Traditionally, enzyme-linked immunosorbent assays (ELISA) were most popular for identifying and quantifying cytokines. However, ELISA is expensive, labor intensive, and low throughput. Here, we report the development of a miniaturized Luminex (Austin, TX) assay platform to establish a panel of high-throughput, multiplexed assays for measuring cytokines in human whole blood. The miniaturized 384-well Luminex assay uses <25% of the assay reagents compared with the 96-well assay. The development and validation of the 384-well Luminex cytokine assays enabled high-throughput screening of compounds in primary cells using cytokines as physiologically relevant readouts. Furthermore, this miniaturized multiplexed technology platform allows for high-throughput biomarker profiling of biofluids from animal studies and patient samples for translational research.
Collapse
Affiliation(s)
| | | | | | - Litao Zhang
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | |
Collapse
|
20
|
Ketelhuth DFJ, Hansson GK. Modulation of autoimmunity and atherosclerosis - common targets and promising translational approaches against disease. Circ J 2015; 79:924-33. [PMID: 25766275 DOI: 10.1253/circj.cj-15-0167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall that is influenced by several risk factors, including hyperlipidemia and hypertension. Autoimmune diseases substantially increase the risk for cardiovascular disease (CVD). Although atherosclerotic CVD, such as myocardial and stroke, is much more prevalent than classical autoimmune conditions such as rheumatoid arthritis, psoriasis, and systemic lupus erythematosus, these types of pathology have many similarities, raising the possibility that therapies against autoimmune disease can have beneficial effects on CVD. Substantial clinical and experimental data support the potential for immunomodulatory approaches to combating both autoimmune and cardiovascular diseases, including classical immunosuppressants, anticytokine therapy, the targeting of T and B cells and their responses, and vaccination. In this review, we discuss experimental and clinical studies that have used immunomodulatory approaches to mitigate autoimmune reactions and examine their potential to prevent and treat atherosclerotic CVD.
Collapse
Affiliation(s)
- Daniel F J Ketelhuth
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital
| | | |
Collapse
|
21
|
Donzis EJ, Tronson NC. Modulation of learning and memory by cytokines: signaling mechanisms and long term consequences. Neurobiol Learn Mem 2014; 115:68-77. [PMID: 25151944 PMCID: PMC4250287 DOI: 10.1016/j.nlm.2014.08.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022]
Abstract
This review describes the role of cytokines and their downstream signaling cascades on the modulation of learning and memory. Immune proteins are required for many key neural processes and dysregulation of these functions by systemic inflammation can result in impairments of memory that persist long after the resolution of inflammation. Recent research has demonstrated that manipulations of individual cytokines can modulate learning, memory, and synaptic plasticity. The many conflicting findings, however, have prevented a clear understanding of the precise role of cytokines in memory. Given the complexity of inflammatory signaling, understanding its modulatory role requires a shift in focus from single cytokines to a network of cytokine interactions and elucidation of the cytokine-dependent intracellular signaling cascades. Finally, we propose that whereas signal transduction and transcription may mediate short-term modulation of memory, long-lasting cellular and molecular mechanisms such as epigenetic modifications and altered neurogenesis may be required for the long lasting impact of inflammation on memory and cognition.
Collapse
Affiliation(s)
- Elissa J Donzis
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Rotenone, a mitochondrial respiratory complex I inhibitor, ameliorates lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Int Immunopharmacol 2014; 21:200-7. [DOI: 10.1016/j.intimp.2014.04.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 04/26/2014] [Accepted: 04/30/2014] [Indexed: 01/15/2023]
|
23
|
Brogden KA, Johnson GK, Vincent SD, Abbasi T, Vali S. Oral inflammation, a role for antimicrobial peptide modulation of cytokine and chemokine responses. Expert Rev Anti Infect Ther 2014; 11:1097-113. [DOI: 10.1586/14787210.2013.836059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|