1
|
Acar SO, Tahta N, Al IO, Erdem M, Gözmen S, Karapınar TH, Kılınç B, Celkan T, Kirkiz S, Koçak Ü, Ören H, Yıldırım AT, Arslantaş E, Ayhan AC, Oymak Y. Sirolimus is effective and safe in childhood relapsed-refractory autoimmune cytopenias: A multicentre study. Scand J Immunol 2024; 100:e13376. [PMID: 38741164 DOI: 10.1111/sji.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/24/2024] [Indexed: 05/16/2024]
Abstract
Autoimmune cytopenias are a heterogeneous group of disorders characterized by immune-mediated destruction of haematopoietic cell lines. Effective and well-tolerated treatment options for relapsed-refractory immune cytopenias are limited. In this study, the aim was to evaluate the efficacy and safety of sirolimus in this disease group within the paediatric age group. The study enrolled patients in the paediatric age group who used sirolimus with a diagnosis of immune cytopenia between December 2010 and December 2020, followed at six centres in Turkey. Of the 17 patients, five (29.4%) were treated for autoimmune haemolytic anaemia (AIHA), six (35.2%) for immune thrombocytopenic purpura (ITP) and six (35.2%) for Evans syndrome (ES). The mean response time was 2.7 months (range, 0-9 months). Complete response (CR) and partial response (PR) were obtained in 13 of 17 patients (76.4%) and nonresponse (NR) in four patients (23.5%). Among the 13 patients who achieved CR, three of them were NR in the follow-up and two of them had remission with low-dose steroid and sirolimus. Thus, overall response rate (ORR) was achieved in 12 of 17 patients (70.5%). In conclusion, sirolimus may be an effective and safe option in paediatric patients with relapsed-refractory immune cytopenia.
Collapse
Affiliation(s)
- Sultan Okur Acar
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Neryal Tahta
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Işık Odaman Al
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Melek Erdem
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Salih Gözmen
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Tuba Hilkay Karapınar
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Burcu Kılınç
- Faculty of Medicine Hospital, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Tiraje Celkan
- Faculty of Medicine Hospital, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Serap Kirkiz
- Faculty of Medicine Hospital, Ankara Gazi University, Ankara, Turkey
| | - Ülker Koçak
- Faculty of Medicine Hospital, Ankara Gazi University, Ankara, Turkey
| | - Hale Ören
- Faculty of Medicine Hospital, Dokuz Eylül University, Izmir, Turkey
| | | | - Esra Arslantaş
- Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | | | - Yeşim Oymak
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| |
Collapse
|
2
|
Tsokos GC, Boulougoura A, Kasinath V, Endo Y, Abdi R, Li H. The immunoregulatory roles of non-haematopoietic cells in the kidney. Nat Rev Nephrol 2024; 20:206-217. [PMID: 37985868 PMCID: PMC11005998 DOI: 10.1038/s41581-023-00786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
The deposition of immune complexes, activation of complement and infiltration of the kidney by cells of the adaptive and innate immune systems have long been considered responsible for the induction of kidney damage in autoimmune, alloimmune and other inflammatory kidney diseases. However, emerging findings have highlighted the contribution of resident immune cells and of immune molecules expressed by kidney-resident parenchymal cells to disease processes. Several types of kidney parenchymal cells seem to express a variety of immune molecules with a distinct topographic distribution, which may reflect the exposure of these cells to different pathogenic threats or microenvironments. A growing body of literature suggests that these cells can stimulate the infiltration of immune cells that provide protection against infections or contribute to inflammation - a process that is also regulated by draining kidney lymph nodes. Moreover, components of the immune system, such as autoantibodies, cytokines and immune cells, can influence the metabolic profile of kidney parenchymal cells in the kidney, highlighting the importance of crosstalk in pathogenic processes. The development of targeted nanomedicine approaches that modulate the immune response or control inflammation and damage directly within the kidney has the potential to eliminate the need for systemically acting drugs.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | - Vivek Kasinath
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Huang N, Winans T, Wyman B, Oaks Z, Faludi T, Choudhary G, Lai ZW, Lewis J, Beckford M, Duarte M, Krakko D, Patel A, Park J, Caza T, Sadeghzadeh M, Morel L, Haas M, Middleton F, Banki K, Perl A. Rab4A-directed endosome traffic shapes pro-inflammatory mitochondrial metabolism in T cells via mitophagy, CD98 expression, and kynurenine-sensitive mTOR activation. Nat Commun 2024; 15:2598. [PMID: 38519468 PMCID: PMC10960037 DOI: 10.1038/s41467-024-46441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Activation of the mechanistic target of rapamycin (mTOR) is a key metabolic checkpoint of pro-inflammatory T-cell development that contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), however, the underlying mechanisms remain poorly understood. Here, we identify a functional role for Rab4A-directed endosome traffic in CD98 receptor recycling, mTOR activation, and accumulation of mitochondria that connect metabolic pathways with immune cell lineage development and lupus pathogenesis. Based on integrated analyses of gene expression, receptor traffic, and stable isotope tracing of metabolic pathways, constitutively active Rab4AQ72L exerts cell type-specific control over metabolic networks, dominantly impacting CD98-dependent kynurenine production, mTOR activation, mitochondrial electron transport and flux through the tricarboxylic acid cycle and thus expands CD4+ and CD3+CD4-CD8- double-negative T cells over CD8+ T cells, enhancing B cell activation, plasma cell development, antinuclear and antiphospholipid autoantibody production, and glomerulonephritis in lupus-prone mice. Rab4A deletion in T cells and pharmacological mTOR blockade restrain CD98 expression, mitochondrial metabolism and lineage skewing and attenuate glomerulonephritis. This study identifies Rab4A-directed endosome traffic as a multilevel regulator of T cell lineage specification during lupus pathogenesis.
Collapse
Affiliation(s)
- Nick Huang
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Thomas Winans
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Brandon Wyman
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zachary Oaks
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tamas Faludi
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Gourav Choudhary
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Zhi-Wei Lai
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joshua Lewis
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Miguel Beckford
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Manuel Duarte
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Daniel Krakko
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Akshay Patel
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Joy Park
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Tiffany Caza
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Mahsa Sadeghzadeh
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Katalin Banki
- Department of Pathology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York, NY, 13210, USA.
| |
Collapse
|
4
|
Zhang B, Chen J, Zhu Z, Zhang X, Wang J. Advances in Immunomodulatory MOFs for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307299. [PMID: 37875731 DOI: 10.1002/smll.202307299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Indexed: 10/26/2023]
Abstract
Given the crucial role of immune system in the occurrence and progression of various diseases such as cancer, wound healing, bone defect, and inflammation-related diseases, immunomodulation is recognized as a potential solution for treatment of these diseases. Immunomodulation includes both immunosuppression in hyperactive immune conditions and immune activation in hypoactive conditions. For these purposes, metal-organic frameworks (MOFs) are investigated to modulate immune responses either by their own bioactivities or by delivering immunomodulatory agents due to their excellent biodegradability and high delivery capacity. This review starts with an overview of the synthesis strategies of immunomodulatory MOFs, followed by a summarization on the latest applications of immunomodulatory MOFs in cancer immunomodulatory, wound healing, inflammatory disease, and bone tissue engineering. A variety of design considerations, in order to optimize immunomodulatory properties and efficacy of MOFs, is also involved. Last, the challenges and perspectives of future research, which are expected to provide researchers with new insight into the design and application of immunomodulatory MOFs, are discussed.
Collapse
Affiliation(s)
- Binjing Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Feng X, Wang C, Ji B, Qiao J, Xu Y, Zhu S, Ji Z, Zhou B, Tong W, Xu W. CD_99 G1 neutrophils modulate osteogenic differentiation of mesenchymal stem cells in the pathological process of ankylosing spondylitis. Ann Rheum Dis 2024; 83:324-334. [PMID: 37977819 PMCID: PMC10894850 DOI: 10.1136/ard-2023-224107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES This study aimed to identify the types and heterogeneity of cells within the spinal enthesis and investigate the underlying mechanisms of osteogenesis. METHODS Single-cell RNA sequencing was used to identify cell populations and their gene signatures in the spinal enthesis of five patients with ankylosing spondylitis (AS) and three healthy individuals. The transcriptomes of 40 065 single cells were profiled and divided into 7 clusters: neutrophils, monocytic cells, granulomonocytic progenitor_erythroblasts, T cells, B cells, plasma cells and stromal cells. Real-time quantitative PCR, immunofluorescence, flow cytometry, osteogenesis induction, alizarin red staining, immunohistochemistry, short hairpin RNA and H&E staining were applied to validate the bioinformatics analysis. RESULTS Pseudo-time analysis showed two differentiation directions of stromal cells from the mesenchymal stem cell subpopulation MSC-C2 to two Cxcl12-abundant-reticular (CAR) cell subsets, Osteo-CAR and Adipo-CAR, within which three transcription factors, C-JUN, C-FOS and CAVIN1, were highly expressed in AS and regulated the osteogenesis of mesenchymal stem cells. A novel subcluster of early-stage neutrophils, CD99_G1, was elevated in AS. The proinflammatory characteristics of monocyte dendritic cell progenitor-recombinant adiponectin receptor 2 monocytic cells were explored. Interactions between Adipo-CAR cells, CD99_G1 neutrophils and other cell types were mapped by identifying ligand-receptor pairs, revealing the recruitment characteristics of CD99_G1 neutrophils by Adipo-CAR cells and the pathogenesis of osteogenesis induced in AS. CONCLUSIONS Our results revealed the dynamics of cell subpopulations, gene expression and intercellular interactions during AS pathogenesis. These findings provide new insights into the cellular and molecular mechanisms of osteogenesis and will benefit the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Wang
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Boyao Ji
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Junjie Qiao
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yihong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shanbang Zhu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Ji
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bole Zhou
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenwen Tong
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Xue L, Wang B, Zhu J, He Q, Huang F, Wang W, Tao L, Wang Y, Xu N, Yang N, Jin L, Zhang H, Gao N, Lei K, Zhang Y, Xiong C, Lei J, Zhang T, Geng Y, Li M. Profiling of differentially expressed circRNAs and functional prediction in peripheral blood mononuclear cells from patients with rheumatoid arthritis. Ann Med 2023; 55:175-189. [PMID: 36661308 PMCID: PMC9870011 DOI: 10.1080/07853890.2022.2156596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with an increased risk of death, but its underlying mechanisms are not fully understood. Circular RNAs (circRNAs) have recently been implicated in various biological processes. The aim of this study was to investigate the key circRNAs related to RA. METHODS A microarray assay was used to identify the differentially expressed circRNAs (DEcircRNAs) in peripheral blood mononuclear cells (PBMCs) from patients with RA compared to patients with osteoarthritis (OA) and healthy controls. Then, quantitative real-time PCR was applied to verify the DEcircRNAs, and correlations between the levels of DEcircRNAs and laboratory indices were analysed. We also performed extensive bioinformatic analyses including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genome (KEGG) pathway and potential circRNA-miRNA-mRNA network analyses to predict the function of these DEcircRNAs. RESULTS A total of 35,342 and 6146 DEcircRNAs were detected in RA patients compared to controls and OA patients, respectively. Nine out of the DEcircRNAs in RA were validated by real-time PCR. There were correlations between the levels of DEcircRNAs and some of the laboratory indices. GO analyses revealed that these DEcircRNAs in RA were closely related to cellular protein metabolic processes, gene expression, the immune system, cell cycle, posttranslational protein modification and collagen formation. Functional annotation of host genes of these DEcircRNAs was implicated in several significantly enriched pathways, including metabolic pathways, ECM-receptor interaction, the PI3K-Akt signalling pathway, the AMPK signalling pathway, leukocyte transendothelial migration, platelet activation and the cAMP signalling pathway, which might be responsible for the pathophysiology of RA. CONCLUSIONS The findings of this study may help to elucidate the role of circRNAs in the specific mechanism underlying RA.Key messagesMicroarray assays showed that a total of 35,342 and 6146 DEcircRNAs were detected in RA patients compared to controls and OA patients, respectively.Nine out of the DEcircRNAs in RA were validated by real-time PCR, and the levels of the DEcircRNAs were related to some of the laboratory indices.GO analyses revealed that the DEcircRNAs in RA were closely related to cellular protein metabolic processes, gene expression, the immune system, etc.Functional annotation of host genes of the DEcircRNAs in RA was implicated in several significantly enriched pathways, including metabolic pathways, ECM-receptor interaction, the PI3K-Akt signalling pathway, etc.
Collapse
Affiliation(s)
- Li Xue
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, China
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jianhong Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Endemic Disease of Shaanxi Province, Xi'an, China
| | - Qian He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fang Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Tao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ni Yang
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hua Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Lei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanping Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chaoliang Xiong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Lei
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol 2023; 14:1232820. [PMID: 37680644 PMCID: PMC10481957 DOI: 10.3389/fimmu.2023.1232820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Autoimmune diseases are heterogeneous disorders believed to stem from the immune system's inability to distinguish between auto- and foreign- antigens. B lymphocytes serve a crucial role in humoral immunity as they generate antibodies and present antigens. Dysregulation of B cell function induce the onset of autoimmune disorders by generating autoantibodies and pro-inflammatory cytokines, resulting in an imbalance in immune regulation. New research in immunometabolism shows that cellular metabolism plays an essential role in controlling B lymphocytes immune reactions by providing the energy and substrates for B lymphocytes activation, differentiation, and function. However, dysregulated immunometabolism lead to autoimmune diseases by disrupting self-tolerance mechanisms. This review summarizes the latest research on metabolic reprogramming of B lymphocytes in autoimmune diseases, identifying crucial pathways and regulatory factors. Moreover, we consider the potential of metabolic interventions as a promising therapeutic strategy. Understanding the metabolic mechanisms of B cells brings us closer to developing novel therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Pappalardo I, Santarsiero A, Radice RP, Martelli G, Grassi G, de Oliveira MR, Infantino V, Todisco S. Effects of Extracts of Two Selected Strains of Haematococcus pluvialis on Adipocyte Function. Life (Basel) 2023; 13:1737. [PMID: 37629594 PMCID: PMC10455862 DOI: 10.3390/life13081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, microalgae are arousing considerable interest as a source of countless molecules with potential impacts in the nutraceutical and pharmaceutical fields. Haematococcus pluvialis, also named Haematococcus lacustris, is the largest producer of astaxanthin, a carotenoid exhibiting powerful health effects, including anti-lipogenic and anti-diabetic activities. This study was carried out to investigate the properties of two selected strains of H. pluvialis (FBR1 and FBR2) on lipid metabolism, lipolysis and adipogenesis using an in vitro obesity model. FBR1 and FBR2 showed no antiproliferative effect at the lowest concentration in 3T3-L1 adipocytes. Treatment with FBR2 extract reduced lipid deposition, detected via Oil Red O staining and the immunocontent of the adipogenic proteins PPARγ, ACLY and AMPK was revealed using Western blot analysis. Extracts from both strains induced lipolysis in vitro and reduced the secretion of interleukin-6 and tumor necrosis factor-α. Moreover, the FBR1 and FBR2 extracts improved mitochondrial function, reducing the levels of mitochondrial superoxide anion radical and increasing mitochondrial mass compared to untreated adipocytes. These findings suggest that FBR2 extract, more so than FBR1, may represent a promising strategy in overweight and obesity prevention and treatment.
Collapse
Affiliation(s)
- Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
- Bioinnova Srls, Via Ponte Nove Luci, 22, 85100 Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Giulia Grassi
- School of Agriculture, University of Basilicata, Forest, Food and Environmental Sciences, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Marcos Roberto de Oliveira
- Departamento de Bioquímica Rua Ramiro Barcelos, Universidade Federal do Rio Grande do Sul (UFRGS), 2600 Anexo Santa Cecília, Porto Alegre 90610-000, RS, Brazil;
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (I.P.); (A.S.); (R.P.R.); (G.M.)
| |
Collapse
|
9
|
Jorgensen SF, Macpherson ME, Skarpengland T, Berge RK, Fevang B, Halvorsen B, Aukrust P. Disturbed lipid profile in common variable immunodeficiency - a pathogenic loop of inflammation and metabolic disturbances. Front Immunol 2023; 14:1199727. [PMID: 37545531 PMCID: PMC10398391 DOI: 10.3389/fimmu.2023.1199727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
The relationship between metabolic and inflammatory pathways play a pathogenic role in various cardiometabolic disorders and is potentially also involved in the pathogenesis of other disorders such as cancer, autoimmunity and infectious diseases. Common variable immunodeficiency (CVID) is the most common primary immunodeficiency in adults, characterized by increased frequency of airway infections with capsulated bacteria. In addition, a large proportion of CVID patients have autoimmune and inflammatory complications associated with systemic inflammation. We summarize the evidence that support a role of a bidirectional pathogenic interaction between inflammation and metabolic disturbances in CVID. This include low levels and function of high-density lipoprotein (HDL), high levels of triglycerides (TG) and its major lipoprotein very low-density lipoprotein (VLDL), and an unfavorable fatty acid (FA) profile. The dysregulation of TG, VLDL and FA were linked to disturbed gut microbiota profile, and TG and VLDL levels were strongly associated with lipopolysaccharides (LPS), a marker of gut leakage in blood. Of note, the disturbed lipid profile in CVID did not include total cholesterol levels or high low-density lipoprotein levels. Furthermore, increased VLDL and TG levels in blood were not associated with diet, high body mass index and liver steatosis, suggesting a different phenotype than in patients with traditional cardiovascular risk such as metabolic syndrome. We hypothesize that these metabolic disturbances are linked to inflammation in a bidirectional manner with disturbed gut microbiota as a potential contributing factor.
Collapse
Affiliation(s)
- Silje F. Jorgensen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Magnhild E. Macpherson
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tonje Skarpengland
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Saadh MJ, Kazemi K, Khorramdelazad H, Mousavi MJ, Noroozi N, Masoumi M, Karami J. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions. Int Immunopharmacol 2023; 119:110246. [PMID: 37148769 DOI: 10.1016/j.intimp.2023.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
Evidence demonstrates that T cells are implicated in developing SLE, and each of them dominantly uses distinct metabolic pathways. Indeed, intracellular enzymes and availability of specific nutrients orchestrate fate of T cells and lead to differentiation of regulatory T cells (Treg), memory T cells, helper T cells, and effector T cells. The function of T cells in inflammatory and autoimmune responses is determined by metabolic processes and activity of their enzymes. Several studies were conducted to determine metabolic abnormalities in SLE patients and clarify how these modifications could control the functions of the involved T cells. Metabolic pathways such as glycolysis, mitochondrial pathways, oxidative stress, mTOR pathway, fatty acid and amino acid metabolisms are dysregulated in SLE T cells. Moreover, immunosuppressive drugs used in treating autoimmune diseases, including SLE, could affect immunometabolism. Developing drugs to regulate autoreactive T cell metabolism could be a promising therapeutic approach for SLE treatment. Accordingly, increased knowledge about metabolic processes paves the way to understanding SLE pathogenesis better and introduces novel therapeutic options for SLE treatment. Although monotherapy with metabolic pathways modulators might not be sufficient to prevent autoimmune disease, they may be an ideal adjuvant to reduce administration doses of immunosuppressive drugs, thus reducing drug-associated adverse effects. This review summarized emerging data about T cells that are involved in SLE pathogenesis, focusing on immunometabolism dysregulation and how these modifications could affect the disease development.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan; Applied Science Private University, Amman, Jordan
| | | | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Negar Noroozi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran.
| | - Jafar Karami
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
11
|
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases. Front Immunol 2023; 14:1160035. [PMID: 37122709 PMCID: PMC10130412 DOI: 10.3389/fimmu.2023.1160035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Autoimmune diseases are characterized by vast alterations in immune responses, but the pathogenesis remains sophisticated and yet to be fully elucidated. Multiple mechanisms regulating cell differentiation, maturation, and death are critical, among which mitochondria-related cellular organelle functions have recently gained accumulating attention. Mitochondria, as a highly preserved organelle in eukaryotes, have crucial roles in the cellular response to both exogenous and endogenous stress beyond their fundamental functions in chemical energy conversion. In this review, we aim to summarize recent findings on the function of mitochondria in the innate immune response and its aberrancy in autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, etc., mainly focusing on its direct impact on cellular metabolism and its machinery on regulating immune response signaling pathways. More importantly, we summarize the status quo of potential therapeutic targets found in the mitochondrial regulation in the setting of autoimmune diseases and wish to shed light on future studies.
Collapse
Affiliation(s)
- Yuhao Jiao
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiyu Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- 4+4 Medical Doctor Program, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Rideout EJ, Tennessen JM. Editorial. Semin Cell Dev Biol 2023; 138:81-82. [PMID: 35970667 DOI: 10.1016/j.semcdb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47404, USA.
| |
Collapse
|
13
|
Yennemadi AS, Keane J, Leisching G. Mitochondrial bioenergetic changes in systemic lupus erythematosus immune cell subsets: Contributions to pathogenesis and clinical applications. Lupus 2023; 32:603-611. [PMID: 36914582 PMCID: PMC10155285 DOI: 10.1177/09612033231164635] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The association of dysregulated metabolism in systemic lupus erythematosus (SLE) pathogenesis has prompted investigations into metabolic rewiring and the involvement of mitochondrial metabolism as a driver of disease through NLRP3 inflammasome activation, disruption of mitochondrial DNA maintenance, and pro-inflammatory cytokine release. The use of Agilent Seahorse Technology to gain functional in situ metabolic insights of selected cell types from SLE patients has identified key parameters that are dysregulated during disease. Mitochondrial functional assessments specifically can detect dysfunction through oxygen consumption rate (OCR), spare respiratory capacity, and maximal respiration measurements, which, when coupled with disease activity scores could show potential as markers of disease activity. CD4+ and CD8 + T cells have been assessed in this way and show that oxygen consumption rate, spare respiratory capacity, and maximal respiration are blunted in CD8 + T cells, with results not being as clear cut in CD4 + T cells. Additionally, glutamine, processed by mitochondrial substrate level phosphorylation is emerging as a key role player in the expansion and differentiation of Th1, Th17, ϒδ T cells, and plasmablasts. The role that circulating leukocytes play in acting as bioenergetic biomarkers of diseases such as diabetes suggests that this may also be a tool to detect preclinical SLE. Therefore, the metabolic characterization of immune cell subsets and the collection of metabolic data during interventions is also essential. The delineation of the metabolic tuning of immune cells in this way could lead to novel strategies in treating metabolically demanding processes characteristic of autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Anjali S Yennemadi
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gina Leisching
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
15
|
Wang Q, Xu Z, Wang Y, Huo G, Zhang X, Li J, Hua C, Li S, Zhou F. Transcriptomics Analysis of the Toxicological Impact of Enrofloxacin in an Aquatic Environment on the Chinese Mitten Crab ( Eriocheir sinensis). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1836. [PMID: 36767205 PMCID: PMC9915228 DOI: 10.3390/ijerph20031836] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Enrofloxacin is an important antimicrobial drug that is widely used in aquaculture. Enrofloxacin residues can have negative effects on aquatic environments and animals. The toxicological effects of different concentrations of enrofloxacin residues in cultured water on Chinese mitten crabs (Eriocheir sinensis) were compared. A histological analysis of the E. sinensis hepatopancreas demonstrated that the hepatopancreas was damaged by the different enrofloxacin residue concentrations. The hepatopancreas transcriptome results revealed that 1245 genes were upregulated and that 1298 genes were downregulated in the low-concentration enrofloxacin residue group. In the high-concentration enrofloxacin residue group, 380 genes were upregulated, and 529 genes were downregulated. The enrofloxacin residues led to differentially expressed genes related to the immune system and metabolic processes in the hepatopancreas of the Chinese mitten crab, such as the genes for alkaline phosphatase, NF-kappa B inhibitor alpha, alpha-amylase, and beta-galactosidase-like. The gene ontology terms "biological process" and "molecular function" were enriched in the carboxylic acid metabolic process, DNA replication, the synthesis of RNA primers, the transmembrane transporter activity, the hydrolase activity, and the oxidoreductase activity. A Kyoto Encyclopedia of Genes and Genomes pathway analysis determined that the immune and metabolic signal transduction pathways were significantly enriched. Furthermore, the nonspecific immune enzyme (alkaline phosphatase) and the metabolic enzyme system played a role in the enrofloxacin metabolism in the E. sinensis hepatopancreas. These findings helped us to further understand the basis of the toxicological effects of enrofloxacin residues on river crabs and provided valuable information for the better utilization of enrofloxacin in aquatic water environments.
Collapse
Affiliation(s)
- Qiaona Wang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ziling Xu
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ying Wang
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Guangming Huo
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chun Hua
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Shengjie Li
- School of Life Science, Nanjing Normal University, Nanjing 210023, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
16
|
Li M, Lai Y, Chen B, Guo C, Zhou M, Zhao S, Wang S, Li J, Yang N, Zhang H. NAMPT is a metabolic checkpoint of IFNγ-producing CD4 + T cells in lupus nephritis. Mol Ther 2023; 31:193-210. [PMID: 36146932 PMCID: PMC9840150 DOI: 10.1016/j.ymthe.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 01/26/2023] Open
Abstract
Interferon γ (IFNγ) produced by T cells represents the featured cytokine and is central to the pathogenesis of lupus nephritis (LN). Here, we identified nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the salvage NAD+ biosynthetic pathway, as playing a key role in controlling IFNγ production by CD4+ T cells in LN. Our data revealed that CD4+ T cells from LN showed an enhanced NAMPT-mediated NAD+ biosynthetic process, which was positively correlated with IFNγ production in CD4+ T cells. NAMPT promoted aerobic glycolysis and mitochondrial respiration in CD4+ T cells from patients with LN or MRL/lpr mice through the production of NAD+. By orchestrating metabolic fitness, NAMPT promoted translational efficiency of Ifng in CD4+ T cells. In vivo, knockdown of NAMPT by small interfering RNA (siRNA) or pharmacological inhibition of NAMPT by FK866 suppressed IFNγ production in CD4+ T cells, leading to reduced inflammatory infiltrates and ameliorated kidney damage in lupus mice. Taken together, this study uncovers a metabolic checkpoint of IFNγ-producing CD4+ T cells in LN in which therapeutically targeting NAMPT has the potential to normalize metabolic competence and blunt pathogenicity of CD4+ T cells in LN.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yimei Lai
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Binfeng Chen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaohuan Guo
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mianjing Zhou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyuan Zhao
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuyi Wang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Li
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Kono M, Sharabi A, Tsokos GC. Immunometabolism. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Zhu L, Luo M, Zhang Y, Fang F, Li M, An F, Zhao D, Zhang J. Free radical as a double-edged sword in disease: Deriving strategic opportunities for nanotherapeutics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Zhao X, Wang S, Wang S, Xie J, Cui D. mTOR signaling: A pivotal player in Treg cell dysfunction in systemic lupus erythematosus. Clin Immunol 2022; 245:109153. [DOI: 10.1016/j.clim.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
20
|
Huang J, Chen M, Liang Y, Hu Y, Xia W, Zhang Y, Zhao C, Wu L. Integrative metabolic analysis of orbital adipose/connective tissue in patients with thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:1001349. [PMID: 36465658 PMCID: PMC9718489 DOI: 10.3389/fendo.2022.1001349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Thyroid-associated ophthalmopathy (TAO) is a disfiguring autoimmune disease, which destroys the structure of orbital tissues and even threatens vision. Metabolic reprograming is critical in autoimmune diseases; however, the metabolic basis of TAO remains to be clarified. Our study aimed to reveal the metabolic profile of TAO. Methods Orbital adipose/connective tissues from eleven TAO patients and twelve control subjects were collected during surgeries and analyzed with liquid chromatograph-mass spectrometer. Orthogonal partial least-squares discrimination analysis (OPLS-DA), variable importance in projection (VIP), heat map, and volcano plot were used to reveal metabolic profile in TAO. Pathway analysis and metabolites-gene analysis were utilized to explore potential metabolic metabolism in TAO. Results 3038 metabolites were detected in samples from the TAO patients and the controls. OPLS-DA analysis of the metabolomics results showed two distinguished groups, demonstrating that TAO has a unique metabolome. Univariate tests identified 593 dysregulated metabolites (P < 0.05), including 367 increased metabolites and 226 decreased metabolites. Pathway analysis showed that changed metabolites were enriched in cholesterol metabolism, choline metabolism in cancer, fat digestion and absorption, regulation of lipolysis in adipocytes, and insulin resistance. In addition, metabolites-gene analysis illustrated that cholesterol metabolism was involved in the pathogenesis of TAO. Endoplasmic reticulum stress-related genes (ATF6, PERK, and IRE1α) expressions were higher in TAO orbital tissues than in control orbital tissues verified by western blot. Additionally, the expression level of diacylglycerol acyltransferase 1 (DGAT1), a key metabolic protein for triacylglycerol synthesis, was increased in orbital tissues of TAO detected by qRT-PCR, indicating disrupted cholesterol metabolism in TAO. Conclusion The present study demonstrated different metabolite profiles and potential metabolic mechanisms in TAO.
Collapse
Affiliation(s)
- Jiancheng Huang
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Meng Chen
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yu Liang
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yuxiang Hu
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Weiyi Xia
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Yihan Zhang
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lianqun Wu
- Eye Institute, Eye and Ear, Nose & Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Healthcare (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Molecular Mimicry Analyses Unveiled the Human Herpes Simplex and Poxvirus Epitopes as Possible Candidates to Incite Autoimmunity. Pathogens 2022; 11:pathogens11111362. [PMID: 36422613 PMCID: PMC9696880 DOI: 10.3390/pathogens11111362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical epidemiological studies have reported that viral infections cause autoimmune pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry cause autoreactive T cells to cross-activate. The aim of the current study was to implement immunoinformatics approaches to infer sequence- and structure-based molecular mimicry between viral and human proteomic datasets. The protein sequences of all the so far known human-infecting viruses were obtained from the VIPR database, and complete human proteome data were retrieved from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence analyses, 24 viral proteins were identified with significant sequence similarity to human proteins. PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and 3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and poxvirus infection-mediated autoimmune disorders in humans.
Collapse
|
22
|
Wang LY, Wang RX, Wang C, Chen SF, Sun XJ, Li ZY, Chen M, Little MA, Zhao MH. IAPs antagonist SM164 ameliorates experimental MPO-ANCA-associated vasculitis via enhancing fatty acid oxidation in neutrophils. Rheumatology (Oxford) 2022:6779969. [PMID: 36308438 DOI: 10.1093/rheumatology/keac621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of life-threatening autoimmune diseases. Inhibitors of apoptosis proteins (IAPs) are a class of molecules engaged in cell death and inflammation, interventions of which are proven effective in a number of inflammatory diseases. Here we tested whether targeting IAPs could ameliorate AAV and explored the potential mechanism. METHODS We collected 19 kidney specimens from patients with myeloperoxidase (MPO)-AAV to investigate the expression of IAPs. The IAPs pan-inhibitor SM164 was used to treat the experimental autoimmune vasculitis (EAV) rat model of AAV. RNA sequencing of renal cortex and enrichment analysis were developed to interpret gene expression. Functional experiments were performed to investigate the role of SM164 on neutrophils and endothelial cells. RESULTS The expressions of three IAPs (cIAP1, cIAP2 and XIAP) were upregulated in kidneys of AAV patients compared with normal controls. SM164 dramatically reduced renal injury in EAV rats. Transcriptomic analysis revealed prominent alterations in fatty acid oxidation and respiratory burst following SM164 treatment. Functional studies demonstrated that SM164 inhibited neutrophil activation induced by MPO-ANCA positive IgG or serum from MPO-AAV patients, and such inhibitory effect was abolished by gene silencing or pharmacological inhibition of fatty acid oxidation. SM164 also inhibited the adhesion of neutrophils to endothelial cells with little effect on the endothelial injury induced by serum from MPO-AAV patients. CONCLUSION Inhibition of IAPs with SM164 played a protective role in AAV through enhancing intracellular fatty acid oxidation in neutrophils.
Collapse
Affiliation(s)
- Luo-Yi Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Rui-Xue Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Chen Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Fang Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Zhi-Ying Li
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Mark A Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus; Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
23
|
Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:metabo12111034. [DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
|
24
|
Dei Zotti F, Moriconi C, Qiu A, Miller A, Hudson KE. Distinct CD4+ T cell signature in ANA-positive young adult patients. Front Immunol 2022; 13:972127. [PMCID: PMC9608560 DOI: 10.3389/fimmu.2022.972127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Failure of immune tolerance can lead to autoantibody production resulting in autoimmune diseases, a broad spectrum of organ-specific or systemic disorders. Immune tolerance mechanisms regulate autoreactive T and B cells, yet some lymphocytes escape and promote autoantibody production. CD4+ T cell dysregulation, characterized by decreased or impaired regulatory cells (Tregs) and/or accumulation of memory and effector T cells such as TH17, plays a crucial role in the pathogenesis of these diseases. Antinuclear antibody (ANAs) testing is used as a first step for the diagnosis of autoimmune disorders, although most ANA-positive individuals do not have nor will develop an autoimmune disease. Studying the differences of T cell compartment among healthy blood donors, ANA-negative patients and ANA-positive patients, in which loss of tolerance have not led to autoimmunity, may improve our understanding on how tolerance mechanisms fail. Herein, we report that ANA-positive patients exhibit a distinct distribution of T cell subsets: significantly reduced frequencies of recent thymic emigrants (RTE) and naïve T cells, and significantly increased frequencies of central memory T cells, TH2 and TH17 cells; modulations within the T cell compartment are most profound within the 18-40 year age range. Moreover, CD4+ T cells in ANA-positive patients are metabolically active, as determined by a significant increase in mTORC1 and mTORC2 signals, compared to ANA-negative patients and healthy blood donors. No significant impairment of Treg numbers or pro-inflammatory cytokine production was observed. These results identify a unique T cell signature associated with autoantibody production in the absence of autoimmune disease.
Collapse
|
25
|
Rapamycin-encapsulated costimulatory ICOS/CD40L-bispecific nanoparticles restrict pathogenic helper T-B-cell interactions while in situ suppressing mTOR for lupus treatment. Biomaterials 2022; 289:121766. [DOI: 10.1016/j.biomaterials.2022.121766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
|
26
|
Lai Y, Zhao S, Chen B, Huang Y, Guo C, Li M, Ye B, Wang S, Zhang H, Yang N. Iron controls T helper cell pathogenicity by promoting glucose metabolism in autoimmune myopathy. Clin Transl Med 2022; 12:e999. [PMID: 35917405 PMCID: PMC9345506 DOI: 10.1002/ctm2.999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND T helper cells in patients with autoimmune disease of idiopathic inflammatory myopathies (IIM) are characterized with the proinflammatory phenotypes. The underlying mechanisms remain unknown. METHODS RNA sequencing was performed for differential expression genes. Gene expression in CD4+ T-cells was confirmed by quantitative real-time PCR. CD4+ T-cells from IIM patients or healthy controls were evaluated for metabolic activities by Seahorse assay. Glucose uptake, T-cell proliferation and differentiation were evaluated and measured by flow cytometry. Human CD4+ T-cells treated with iron chelators or Pfkfb4 siRNA were measured for glucose metabolism, proliferation and differentiation. Signalling pathway activation was evaluated by western blot and flow cytometry. Mouse model of experimental autoimmune myositis (EAM) were induced and treated with iron chelator or rapamycin. CD4+ T-cell differentiation and muscle inflammation in the EAM mice were evaluated. RESULTS RNA-sequencing analysis revealed that iron was involved with glucose metabolism and CD4+ T-cell differentiation. IIM patient-derived CD4+ T-cells showed enhanced glycolysis and mitochondrial respiration, which was inhibited by iron chelation. CD4+ T-cells from patients with IIM was proinflammatory and iron chelation suppressed the differentiation of interferon gamma (IFNγ)- and interleukin (IL)-17A-producing CD4+ T-cells, which resulted in an increased percentage of regulatory T (Treg) cells. Mechanistically, iron promoted glucose metabolism by an upregulation of PFKFB4 through AKT-mTOR signalling pathway. Notably, the knockdown of Pfkfb4 decreased glucose influx and thus suppressed the differentiation of IFNγ- and IL-17A-producing CD4+ T-cells. In vivo, iron chelation inhibited mTOR signalling pathway and reduced PFKFB4 expression in CD4+ T-cells, resulting in reduced proinflammatory IFNγ- and IL-17A-producing CD4+ T-cells and increased Foxp3+ Treg cells, leading to ameliorated muscle inflammation. CONCLUSIONS Iron directs CD4+ T-cells into a proinflammatory phenotype by enhancing glucose metabolism. Therapeutic targeting of iron metabolism should have the potential to normalize glucose metabolism in CD4+ T-cells and reverse their proinflammatory phenotype in IIM.
Collapse
Affiliation(s)
- Yimei Lai
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Siyuan Zhao
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Binfeng Chen
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuefang Huang
- Department of PediatricsThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Chaohuan Guo
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengyuan Li
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Baokui Ye
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shuyi Wang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hui Zhang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Niansheng Yang
- Department of RheumatologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
27
|
Zhao L, Hu X, Xiao F, Zhang X, Zhao L, Wang M. Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13:929520. [PMID: 35958572 PMCID: PMC9358979 DOI: 10.3389/fimmu.2022.929520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid autoantibodies, increase type I interferon (IFN-α) levels, and immune cell hyperactivation are hallmarks of systemic lupus erythematosus (SLE). Notably, immune cell activation requires high level of cellular energy that is predominately generated by the mitochondria. Mitochondrial reactive oxygen species (mROS), the byproduct of mitochondrial energy generation, serves as an essential mediator to control the activation and differentiation of cells and regulate the antigenicity of oxidized nucleoids within the mitochondria. Recently, clinical trials on normalization of mitochondrial redox imbalance by mROS scavengers and those investigating the recovery of defective mitophagy have provided novel insights into SLE prophylaxis and therapy. However, the precise mechanism underlying the role of oxidative stress-related mitochondrial molecules in skewing the cell fate at the molecular level remains unclear. This review outlines distinctive mitochondrial functions and pathways that are involved in immune responses and systematically delineates how mitochondrial dysfunction contributes to SLE pathogenesis. In addition, we provide a comprehensive overview of damaged mitochondrial function and impaired metabolic pathways in adaptive and innate immune cells and lupus-induced organ tissues. Furthermore, we summarize the potential of current mitochondria-targeting drugs for SLE treatment. Developing novel therapeutic approaches to regulate mitochondrial oxidative stress is a promising endeavor in the search for effective treatments for systemic autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Like Zhao
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianda Hu
- Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Min Wang, ; Lidan Zhao,
| |
Collapse
|
28
|
Rahman N, Begum S, Khan A, Afridi SG, Khayam Sahibzada MU, Atwah B, Alhindi Z, Khan H. An insight in Salmonella typhi associated autoimmunity candidates' prediction by molecular mimicry. Comput Biol Med 2022; 148:105865. [PMID: 35843194 DOI: 10.1016/j.compbiomed.2022.105865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases develop when the immune system targets healthy cells and tissues of an individual. In developing countries, S. typhi (a gram-negative pathogenic bacteria) remains a major public health issue. This study aimed to employ bioinformatics analyses to determine the 3D structural-based molecular mimicry and sequence of S. typhi and human host proteins. In addition, to classify possible antigenic microbial peptides homologous to human peptides and comprehend the molecular basis of S. typhi-related autoimmune disorders. Protein sequences were obtained from the NCBI database, and redundancy was removed using the CD-HIT tool. The BLASTp comparative sequence analysis was followed for molecular mimicry identification of human and S. typhi protein sequences. The PathDIP database was utilized to simulate essential physical relationships between proteins and curated pathways for metabolic processes. Subsequently, the IEDB database was used to find cross-reactive MHC class-II binding epitopes that could trigger an autoimmune reaction. SPARKS-X computational biology resource was also used to determine the structural homology between human and S. typhi peptides. The BLASTp study showed that S. typhi and the human host have several proteins holding considerable sequence similarities based on a set threshold of e ≤ 10-6 and bit score ≥100. The PathDIP putatively identified that these proteins enriched in a total of 68 metabolic pathways by a significant P-value (P < 0.005). The PSORTb analysis predicted that 26 out of these proteins are cytosolic, 1 predicted to be periplasmic protein, and 1 predicted to be localized in the cytoplasmic membrane. IEDB data analysis predicted many S.typhi and human homologs epitopes as a good binder of human HLA, i.e. DRB1*01:01, DPA1*03:01/DPB1*04:02, and DQA1*01:02/DQB1*06:02 with IC50 < 50 nM. Finally, the docking data demonstrated that homolog lead epitopes promisingly interact with HLA and immune TLR4 receptors by exhibiting the best docking scores and molecular interactions. The analyses ultimately identified several potential candidate proteins and peptides that could cause S.typhi infection-mediated autoimmune diseases in humans.
Collapse
Affiliation(s)
- Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Sara Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | | | - Banan Atwah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zain Alhindi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
29
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
30
|
Liu Y, Tao X, Tao J. Strategies of Targeting Inflammasome in the Treatment of Systemic Lupus Erythematosus. Front Immunol 2022; 13:894847. [PMID: 35664004 PMCID: PMC9157639 DOI: 10.3389/fimmu.2022.894847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ dysfunction resulting from the production of multiple autoantibodies and adaptive immune system abnormalities involving T and B lymphocytes. In recent years, inflammasomes have been recognized as an important component of innate immunity and have attracted increasing attention because of their pathogenic role in SLE. In short, inflammasomes regulate the abnormal differentiation of immune cells, modulate pathogenic autoantibodies, and participate in organ damage. However, due to the clinical heterogeneity of SLE, the pathogenic roles of inflammasomes are variable, and thus, the efficacy of inflammasome-targeting therapies is uncertain. To provide a foundation for the development of such therapeutic strategies, in this paper, we review the role of different inflammasomes in the pathogenesis of SLE and their correlation with clinical phenotypes and propose some corresponding treatment strategies.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinyu Tao
- Department of Clinical Medicine "5 + 3" Integration, The First Clinical College, Anhui Medical University, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
Qin J, Liu Q, Liu A, Leng S, Wang S, Li C, Ma J, Peng J, Xu M. Empagliflozin modulates CD4 + T-cell differentiation via metabolic reprogramming in immune thrombocytopenia. Br J Haematol 2022; 198:765-775. [PMID: 35675486 DOI: 10.1111/bjh.18293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disease, in which the imbalance of CD4+ T cell subsets play a key role in the pathogenesis. Since T cells highly depend on metabolism for their function, we hypothesized that T cell dysfunction may be due to intracellular metabolic reprogramming. We found that in ITP, T cell metabolism shifts from oxidative phosphorylation to glycolysis. Empagliflozin, a sodium-glucose cotransporter 2 inhibitor, has shown regulatory metabolic effects on proximal tubular epithelial cells and cardiac cells beyond glucose lowering. However, the effects of empagliflozin on T cells remain unknown. To further investigate the metabolic dysfunction of CD4+ T cells in ITP, we explored the effect of empagliflozin on CD4+ T-cell differentiation in ITP. Our results are the first to show that increased glycolysis in CD4+ T cells resulted in an unbalanced CD4+ T-cell population. Furthermore, empagliflozin can affect the differentiation of CD4+ T-cell subsets by inhibiting Th1 and Th17 cell populations while increasing Tregs. Empagliflozin appears to regulate CD4+ T cells through inhibiting the mTOR signal pathway. Considering these results, we propose that empagliflozin could be used as a potential therapeutic option for ITP by modulating metabolic reprogramming in CD4+ T cells.
Collapse
Affiliation(s)
- Jing Qin
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anli Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaoyang Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ji Ma
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
32
|
Akama-Garren EH, Carroll MC. Lupus Susceptibility Loci Predispose Mice to Clonal Lymphocytic Responses and Myeloid Expansion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2403-2424. [PMID: 35477687 PMCID: PMC9254690 DOI: 10.4049/jimmunol.2200098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 05/17/2023]
Abstract
Lupus susceptibility results from the combined effects of numerous genetic loci, but the contribution of these loci to disease pathogenesis has been difficult to study due to the large cellular heterogeneity of the autoimmune immune response. We performed single-cell RNA, BCR, and TCR sequencing of splenocytes from mice with multiple polymorphic lupus susceptibility loci. We not only observed lymphocyte and myeloid expansion, but we also characterized changes in subset frequencies and gene expression, such as decreased CD8 and marginal zone B cells and increased Fcrl5- and Cd5l-expressing macrophages. Clonotypic analyses revealed expansion of B and CD4 clones, and TCR repertoires from lupus-prone mice were distinguishable by algorithmic specificity prediction and unsupervised machine learning classification. Myeloid differential gene expression, metabolism, and altered ligand-receptor interaction were associated with decreased Ag presentation. This dataset provides novel mechanistic insight into the pathophysiology of a spontaneous model of lupus, highlighting potential therapeutic targets for autoantibody-mediated disease.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; and
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA; and
| |
Collapse
|
33
|
Fearon U, Hanlon MM, Floudas A, Veale DJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 2022; 18:398-414. [PMID: 35440762 DOI: 10.1038/s41584-022-00771-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland. .,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland.
| | - Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
34
|
Li C, Sun M, Li R, Wang S, Shao L, Xu M, Yao M, Wang L, Hou M, Feng Q, Peng J. Association of metformin treatment and outcome in adult patients with ITP and pre-existing T2DM. Br J Haematol 2022; 197:367-372. [PMID: 35288929 DOI: 10.1111/bjh.18121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease that could manifest with comorbid type 2 diabetes mellitus (T2DM). However, the exact impact of T2DM in patients with ITP remains uncertain. In this study, we performed a retrospective cohort study of 458 participants with ITP. The prevalence of T2DM was 7.6% in this population (35 patients), which was slightly lower than the Chinese nationwide prevalence of T2DM, calculated to be approximately 10.9%. The participants with pre-existing T2DM displayed a significantly higher response to therapy than those without T2DM (71% vs. 53%). Furthermore, in the T2DM cohort, the response rate reached 88% when metformin was included in the treatment regimen. This clinical evidence suggests that metformin therapy might improve the clinical outcomes of ITP.
Collapse
Affiliation(s)
- Chaoyang Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ranran Li
- Department of Radiology, Ningjin County People's Hospital, Dezhou, China
| | - Shuwen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Xu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medcine, Shandong University, Jinan, China
| | - Meiyue Yao
- Medical College, Qilu Institute of Technology, Jinan, China
| | - Lin Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medcine, Shandong University, Jinan, China
| | - Qi Feng
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medcine, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Wake R, Araki T, Fukushima M, Matsuda H, Inagaki T, Hayashida M, Hashioka S, Horiguchi J, Inagaki M, Miyaoka T, Oh-Nishi A. Urinary biopyrrins and free immunoglobin light chains are biomarker candidates for screening at-risk mental state in adolescents. Early Interv Psychiatry 2022; 16:272-280. [PMID: 33966347 DOI: 10.1111/eip.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Early diagnosis of individuals' at-risk mental state (ARMS) is important for preventing their pathogenesis or, at least, delaying onset of overt psychosis. Traditional diagnosis of ARMS subjects is mainly based on structured interviews, but future diagnosis would be carried out together with biomarkers. AIM In this study, we report urinary biopyrrins and free immunoglobin light chains κ and λ (κFLC and λFLC) as novel diagnostic biomarker candidates for screening ARMS subjects. METHODS Nineteen ARMS subjects and 21 age- and sex-matched healthy controls were enrolled in this study. Inclusion criteria of the ARMS subjects were based on a comprehensive assessment of Structured Interview for Prodromal Syndromes. We compared oxidative stress and immunological markers in the urine of ARMS subjects with those of healthy controls by ELISA protocol. RESULTS Augmentation of biopyrrins and reduction of κFLC and λFLC were found in the ARMS samples, and their diagnostic performance was evaluated by receiver operating characteristic analysis, of which area under the curve was as large as 0.915 in combination. CONCLUSION Our findings suggest that the ARMS subjects were under higher oxidative stress but lower in B cell activation, and that the combined assay of urinary biopyrrins and free immunoglobulin light chains would be useful for the early detection and screening of ARMS subjects among adolescents.
Collapse
Affiliation(s)
- Rei Wake
- Department of Human Science, Shimane University Faculty of Human Science, Matsue, Shimane, Japan.,Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Tomoko Araki
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Michiyo Fukushima
- Department of Immune-Neuropsychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Hiroyuki Matsuda
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Takuji Inagaki
- Department of Psychology and Special Support Education, Shimane University Faculty of Education, Matsue, Shimane, Japan
| | - Maiko Hayashida
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Jun Horiguchi
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Tsuyoshi Miyaoka
- Department of Psychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Arata Oh-Nishi
- Department of Immune-Neuropsychiatry, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.,Department of Neuroscience Research, RESVO Inc., Kawasaki, Kanagawa, Japan
| |
Collapse
|
36
|
Lu P, Wang G, Lu X, Qiao P, Jin Y, Yu J, Chen Q, Wang H. Elevated matrix metalloproteinase 9 supports peripheral nerve regeneration via promoting Schwann cell migration. Exp Neurol 2022; 352:114020. [DOI: 10.1016/j.expneurol.2022.114020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022]
|
37
|
Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med 2022; 28:10. [PMID: 35093033 PMCID: PMC8800364 DOI: 10.1186/s10020-022-00435-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biofilm is a community of bacteria embedded in an extracellular matrix, which can colonize different human cells and tissues and subvert the host immune reactions by preventing immune detection and polarizing the immune reactions towards an anti-inflammatory state, promoting the persistence of biofilm-embedded bacteria in the host. MAIN BODY OF THE MANUSCRIPT It is now well established that the function of immune cells is ultimately mediated by cellular metabolism. The immune cells are stimulated to regulate their immune functions upon sensing danger signals. Recent studies have determined that immune cells often display distinct metabolic alterations that impair their immune responses when triggered. Such metabolic reprogramming and its physiological implications are well established in cancer situations. In bacterial infections, immuno-metabolic evaluations have primarily focused on macrophages and neutrophils in the planktonic growth mode. CONCLUSION Based on differences in inflammatory reactions of macrophages and neutrophils in planktonic- versus biofilm-associated bacterial infections, studies must also consider the metabolic functions of immune cells against biofilm infections. The profound characterization of the metabolic and immune cell reactions could offer exciting novel targets for antibiofilm therapy.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Niloofar Sabokroo
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Motamedi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Zhang Y, Gui M, Wang Y, Mani N, Chaudhuri S, Gao B, Li H, Kanwar YS, Lewis SA, Dumas SN, Ntambi. JM, Zhang K, Fang D. Inositol-Requiring Enzyme 1α-Mediated Synthesis of Monounsaturated Fatty Acids as a Driver of B Cell Differentiation and Lupus-like Autoimmune Disease. Arthritis Rheumatol 2021; 73:2314-2326. [PMID: 34105254 PMCID: PMC8651829 DOI: 10.1002/art.41883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the molecular mechanisms underlying dysregulation of lipid metabolism in the pathogenesis of systemic lupus erythematosus (SLE). METHODS B cells in peripheral blood from patients with SLE and healthy controls were stained with BODIPY dye for detection of lipids. Mice with targeted knockout of genes for B cell-specific inositol-requiring enzyme 1α (IRE-1α) and stearoyl-coenzyme A desaturase 1 (SCD-1) were used for studying the influence of the IRE-1α/SCD-1/SCD-2 pathway on B cell differentiation and autoantibody production. The preclinical efficacy of IRE-1α suppression as a treatment for lupus was tested in MRL.Faslpr mice. RESULTS In cultures with mouse IRE-1α-null B cells, supplementation with monounsaturated fatty acids largely rescued differentiation of plasma cells from B cells, indicating that the compromised capacity of B cell differentiation in the absence of IRE-1α may be attributable to a defect in monounsaturated fatty acid synthesis. Moreover, activation with IRE-1α/X-box binding protein 1 (XBP-1) was required to facilitate B cell expression of SCD-1 and SCD-2, which are 2 critical enzymes that catalyze monounsaturated fatty acid synthesis. Mice with targeted Scd1 gene deletion displayed a phenotype that was similar to that of IRE-1α-deficient mice, with diminished B cell differentiation into plasma cells. Importantly, in B cells from patients with lupus, both IRE-1α expression and Xbp1 messenger RNA splicing were significantly increased, and this was positively correlated with the expression of both Scd1 and Scd2 as well as with the amount of B cell lipid deposition. In MRL.Faslpr mice, both genetic and pharmacologic suppression of IRE-1α protected against the pathologic development and progression of lupus-like autoimmune disease. CONCLUSION The results of this study reveal a molecular link in the dysregulation of lipid metabolism in the pathogenesis of lupus, demonstrating that the IRE-1α/XBP-1 pathway controls plasma cell differentiation through SCD-1/SCD-2-mediated monounsaturated fatty acid synthesis. These findings provide a rationale for targeting IRE-1α and monounsaturated fatty acid synthesis in the treatment of patients with SLE.
Collapse
Affiliation(s)
- Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Ming Gui
- Department of Rheumatology and Immunology, Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, China
| | - Yajun Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Sarah A. Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Sabrina N. Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - James M. Ntambi.
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Kezhong Zhang
- Department of Biochemistry, Microbiology, and Immunology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| |
Collapse
|
39
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Xu C, Yong MY, Koh ET, Dalan R, Leong KP. The impact of diabetes mellitus on treatment and outcomes of rheumatoid arthritis at 5-year follow-up: results from a multi-ethnic Asian cohort. Rheumatol Adv Pract 2021; 5:rkab077. [PMID: 34778702 PMCID: PMC8578689 DOI: 10.1093/rap/rkab077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/11/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives We evaluated the impact of type 2 diabetes mellitus (T2DM) on RA treatment and outcomes in a longitudinal RA cohort. Methods We analysed data collected in the period 2001-2013 involving 583 RA patients, including demographics, diabetes diagnosis, clinical features, treatment, ACR functional class, HAQ, and quality-of-life measurement using the Short-Form 36. Results Seventy-seven (13.2%) of the RA patients had T2DM. DAS28 was not different in patients with T2DM at 5 years post-RA diagnosis. Fewer T2DM patients received MTX than those without T2DM (51% vs 80%, P < 0.001). Using univariate analysis, T2DM patients were more likely to experience poorer outcomes in terms of ACR functional status (P = 0.009), joint surgery (P = 0.007), knee arthroplasty (P < 0.001) and hospital admissions (P = 0.006). Multivariate regression analyses showed more knee arthroplasty (P = 0.047) in patients with T2DM. Conclusion Fewer patients with T2DM received MTX compared with those without T2DM. Patients with RA and T2DM were at higher risk of knee arthroplasty than RA patients without T2DM.
Collapse
Affiliation(s)
- Chuanhui Xu
- Department of Rheumatology, Allergy and Immunology
| | - Mei Yun Yong
- Department of Rheumatology, Allergy and Immunology
| | - Ee Tzun Koh
- Department of Rheumatology, Allergy and Immunology
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| | | | | |
Collapse
|
41
|
Zhang M, Iwata S, Sonomoto K, Ueno M, Fujita Y, Anan J, Miyazaki Y, Ohkubo N, Sumikawa MH, Todoroki Y, Miyata H, Nagayasu A, Kanda R, Trimova G, Lee S, Nakayamada S, Sakata K, Tanaka Y. mTOR activation in CD8+ cells contributes to disease activity of rheumatoid arthritis and increases therapeutic response to TNF inhibitors. Rheumatology (Oxford) 2021; 61:3010-3022. [PMID: 34791054 DOI: 10.1093/rheumatology/keab834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE This study aimed to understand the role of mTOR in CD8+ cells in the pathogenicity of rheumatoid arthritis (RA) and the changes after treatment with biologic drugs. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 17 healthy controls and 86 patients with RA. Phosphorylation of mTOR (p-mTOR) and its clinical relevance were evaluated. The role of mTOR in CD8+ cells was also examined in vitro. RESULTS Patients with RA who had a moderate or high disease activity, were biologic-naïve, and were refractory to MTX were enrolled in this study. The p-mTOR levels in CD8+ cells were higher in patients with RA than in healthy controls, and they positively correlated with the disease activity in such patients. However, after one year of treatment with TNF inhibitors, the p-mTOR levels in CD8+ cells were suppressed and showed a positive correlation with the treatment response, which was not observed in the abatacept-treatment group. In vitro stimulation of CD8+ cells with anti-CD3 and anti-CD28 antibodies induced mTOR phosphorylation and increased the production of granzyme B, GNLY, TNF-α, and IFN-γ but decreased the production of granzyme K. However, on treatment with TNF inhibitors, p-mTOR levels in CD8+ cells and granzyme B production decreased, while granzyme K production increased. The production of GNLY and IFN-γ was not affected by the TNF inhibitors. CONCLUSION These results suggested that mTOR activation in CD8+ cells may be a novel evaluation marker for RA disease activity and a predictive marker of therapeutic response to TNF inhibitors.
Collapse
Affiliation(s)
- Mingzeng Zhang
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Hematology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shigeru Iwata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koshiro Sonomoto
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masanobu Ueno
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuya Fujita
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Junpei Anan
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Mitsubishi Tanabe Pharma, Yokohama, Kanagawa, Japan
| | - Yusuke Miyazaki
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naoaki Ohkubo
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Maiko Hajime Sumikawa
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuyuki Todoroki
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroko Miyata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Atsushi Nagayasu
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryuichiro Kanda
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Gulzhan Trimova
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Department of Clinical Subjects, High School of Medicine, Faculty of Medicine and Health care, Al-Farabi Kazakh National University
| | - Seunghyun Lee
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kei Sakata
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.,Mitsubishi Tanabe Pharma, Yokohama, Kanagawa, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
42
|
Iperi C, Bordron A, Dueymes M, Pers JO, Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front Immunol 2021; 12:735463. [PMID: 34650560 PMCID: PMC8505885 DOI: 10.3389/fimmu.2021.735463] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic pathways have been studied for a while in eukaryotic cells. During glycolysis, glucose enters into the cells through the Glut1 transporter to be phosphorylated and metabolized generating ATP molecules. Immune cells can use additional pathways to adapt their energetic needs. The pentose phosphate pathway, the glutaminolysis, the fatty acid oxidation and the oxidative phosphorylation generate additional metabolites to respond to the physiological requirements. Specifically, in B lymphocytes, these pathways are activated to meet energetic demands in relation to their maturation status and their functional orientation (tolerance, effector or regulatory activities). These metabolic programs are differentially involved depending on the receptors and the co-activation molecules stimulated. Their induction may also vary according to the influence of the microenvironment, i.e. the presence of T cells, cytokines … promoting the expression of particular transcription factors that direct the energetic program and modulate the number of ATP molecule produced. The current review provides recent advances showing the underestimated influence of the metabolic pathways in the control of the B cell physiology, with a particular focus on the regulatory B cells, but also in the oncogenic and autoimmune evolution of the B cells.
Collapse
Affiliation(s)
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Maryvonne Dueymes
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| |
Collapse
|
43
|
Lu L, Wang H, Liu X, Tan L, Qiao X, Ni J, Sun Y, Liang J, Hou Y, Dou H. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. J Neuroinflammation 2021; 18:229. [PMID: 34645459 PMCID: PMC8513209 DOI: 10.1186/s12974-021-02279-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) is a severe complication, which involves pathological damage to the brain and cognitive function. However, its exact mechanism of action still remains unclear. In this study, we explored the role of microglia in the cognitive dysfunction of NPSLE mice. We also analyzed and compared the metabolites in the hippocampal tissues of the lupus model and control mice. METHODS MRL/MpJ-Faslpr (MRL/lpr) female mice were used as the NPSLE mouse model. Metabolomics was used to assess hippocampal glycolysis levels. Glucose, lactic acid, IL-6, and IL-1β of the hippocampus were detected by ELISA. Based on the glycolysis pathway, we found that pyruvate kinase isoform M2 (PKM2) in the hippocampus was significantly increased. Thus, the expression of PKM2 was detected by qRT-PCR and Western blotting, and the localization of PKM2 in microglia (IBA-1+) or neurons (NeuN+) was assessed by immunofluorescence staining. Flow cytometry was used to detect the number and phenotype of microglia; the changes in microglial phagocytosis and the β-catenin signaling pathway were detected in BV2 cells overexpressing PKM2. For in vivo experiments, MRL/lpr mice were treated with AAV9-shPKM2. After 2 months, Morris water maze and conditional fear tests were applied to investigate the cognitive ability of mice; H&E and immunofluorescence staining were used to evaluate brain damage; flow cytometry was used to detect the phenotype and function of microglia; neuronal synapse damage was monitored by qRT-PCR, Western blotting, and immunofluorescence staining. RESULTS Glycolysis was elevated in the hippocampus of MRL/lpr lupus mice, accompanied by increased glucose consumption and lactate production. Furthermore, the activation of PKM2 in hippocampal microglia was observed in lupus mice. Cell experiments showed that PKM2 facilitated microglial activation and over-activated microglial phagocytosis via the β-catenin signaling pathway. In vivo, AAV9-shPKM2-treated mice showed decreased microglial activation and reduced neuronal synapses loss by blocking the β-catenin signaling pathway. Furthermore, the cognitive impairment and brain damage of MRL/lpr mice were significantly relieved after microglial PKM2 inhibition. CONCLUSION These data indicate that microglial PKM2 have potential to become a novel therapeutic target for treating lupus encephalopathy.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Hailin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Yang Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
44
|
Schilf P, Schmitz M, Derenda-Hell A, Thieme M, Bremer T, Vaeth M, Zillikens D, Sadik CD. Inhibition of Glucose Metabolism Abrogates the Effector Phase of Bullous Pemphigoid-Like Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 141:1646-1655.e3. [DOI: 10.1016/j.jid.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
|
45
|
Scherlinger M, Tsokos GC. Reactive oxygen species: The Yin and Yang in (auto-)immunity. Autoimmun Rev 2021; 20:102869. [PMID: 34118461 DOI: 10.1016/j.autrev.2021.102869] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are produced by immune cells in response to antigens. They are produced mostly in the mitochondria and their levels are tightly controlled by a series of metabolic processes. ROS are necessary for the development of the immune response but the role of ROS in the development of autoimmune disease needs further clarification. Early clinical information points to the beneficial role of supplementation of antioxidant agents or the reduction of ROS production. We review recent information in the field in an effort to identify areas more studies are needed.
Collapse
Affiliation(s)
- Marc Scherlinger
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), France; Service de rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 1 avenue Molière, 67098 Strasbourg, France.
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:673916. [PMID: 33995417 PMCID: PMC8118696 DOI: 10.3389/fimmu.2021.673916] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are major energy-producing organelles that have central roles in cellular metabolism. They also act as important signalling hubs, and their dynamic regulation in response to stress signals helps to dictate the stress response of the cell. Rheumatoid arthritis is an inflammatory and autoimmune disease with high prevalence and complex aetiology. Mitochondrial activity affects differentiation, activation and survival of immune and non-immune cells that contribute to the pathogenesis of this disease. This review outlines what is known about the role of mitochondria in rheumatoid arthritis pathogenesis, and how current and future therapeutic strategies can function through modulation of mitochondrial activity. We also highlight areas of this topic that warrant further study. As producers of energy and of metabolites such as succinate and citrate, mitochondria help to shape the inflammatory phenotype of leukocytes during disease. Mitochondrial components can directly stimulate immune receptors by acting as damage-associated molecular patterns, which could represent an initiating factor for the development of sterile inflammation. Mitochondria are also an important source of intracellular reactive oxygen species, and facilitate the activation of the NLRP3 inflammasome, which produces cytokines linked to disease symptoms in rheumatoid arthritis. The fact that mitochondria contain their own genetic material renders them susceptible to mutation, which can propagate their dysfunction and immunostimulatory potential. Several drugs currently used for the treatment of rheumatoid arthritis regulate mitochondrial function either directly or indirectly. These actions contribute to their immunomodulatory functions, but can also lead to adverse effects. Metabolic and mitochondrial pathways are attractive targets for future anti-rheumatic drugs, however many questions still remain about the precise role of mitochondrial activity in different cell types in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sally A Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom.,Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Birmingham, United Kingdom
| |
Collapse
|
47
|
Leucine Reconstitutes Phagocytosis-Induced Cell Death in E. coli-Infected Neonatal Monocytes-Effects on Energy Metabolism and mTOR Signaling. Int J Mol Sci 2021; 22:ijms22084271. [PMID: 33924101 PMCID: PMC8074332 DOI: 10.3390/ijms22084271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
MΦ differentiate from circulating monocytes (Mo). The reduced ability of neonatal Mo to undergo apoptosis after E. coli infection (phagocytosis-induced cell death (PICD)) could contribute to sustained inflammatory processes. The objective of our study was to investigate whether immune metabolism in Mo can be modified to gain access to pro-apoptotic signaling. To this end, we supplemented Mo from neonates and from adults with the branched amino acid leucine. In neonatal Mo, we observed increased energy production via oxidative phosphorylation (Oxphos) after E. coli infection via Seahorse assay. Leucine did not change phagocytic properties. In neonatal Mo, we detected temporal activation of the AKT and mTOR pathways, accompanied with subsequent activation of downstream targets S6 Kinase (S6K) and S6. FACS analyses showed that once mTOR activation was terminated, the level of anti-apoptotic BCL-2 family proteins (BCL-2; BCL-XL) decreased. Release of cytochrome C and cleavage of caspase-3 indicated involvement of the intrinsic apoptotic pathway. Concomitantly, the PICD of neonatal Mo was initiated, as detected by hypodiploid DNA. This process was sensitive to rapamycin and metformin, suggesting a functional link between AKT, mTOR and the control of intrinsic apoptotic signaling. These features were unique to neonatal Mo and could not be observed in adult Mo. Supplementation with leucine therefore could be beneficial to reduce sustained inflammation in septic neonates.
Collapse
|
48
|
Immunometabolism in systemic lupus erythematosus: Relevant pathogenetic mechanisms and potential clinical applications. J Formos Med Assoc 2021; 120:1667-1675. [PMID: 33836940 DOI: 10.1016/j.jfma.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex, heterogeneous, systemic autoimmune disease involving a wide array of aberrant innate and adaptive immune responses. The immune microenvironment of SLE promotes the metabolic reprogramming of immune cells, leading to immune dyshomeostasis and triggering autoimmune inflammation. Different immune subsets switch from a resting state to a highly metabolic active state by alternating the redox-sensitive signaling pathway and the involved metabolic intermediates to amplify the inflammatory response, which is critical in SLE pathogenesis. In this review, we discuss abnormal metabolic changes in glucose metabolism, tricarboxylic acid cycle, and lipid and amino acid metabolism as well as mitochondrial dysfunction in immune cells in SLE. We also review studies focused on the potential targets for key molecules of metabolic pathways in SLE, such as hypoxia-inducible factor-1α, mammalian target of rapamycin, and AMP-activated protein kinase. We highlight the therapeutic rationale for targeting these pathways in treating SLE and summarize their recent clinical applications in SLE.
Collapse
|
49
|
Genome-wide DNA methylation patterns in monocytes derived from patients with primary Sjogren syndrome. Chin Med J (Engl) 2021; 134:1310-1316. [PMID: 33769968 PMCID: PMC8183694 DOI: 10.1097/cm9.0000000000001451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Epigenetics, especially DNA methylation, plays an important role in the pathogenesis of primary Sjogren syndrome (pSS). Our study aimed to reveal the role of DNA methylation in peripheral monocytes of pSS patients. Methods: A total of 11 pSS patients and five age-matched healthy controls (HCs) were included in this study. Monocytes were isolated from peripheral blood mononuclear cells using magnetic microbeads. DNA methylation profiles were generated using Human Methylation 850K BeadChips. Results: In monocytes from pSS patients, we identified 2819 differentially methylated positions (DMPs), comprising 1977 hypomethylated- and 842 hypermethylated-DMPs, corresponding to 1313 unique genes when compared with HCs. IFI44L, MX1, PAARP9, and IFITM1, which influence the interferon (IFN) signaling pathway, were among the genes hypomethylated in pSS. Functional analysis of genes with a minimum of two DMPs showed involvement in antigen binding, transcriptional regulation, cell adhesion, IFN-γ pathway, type I IFN pathway, antigen presentation, Epstein-Barr virus infection, human T-lymphotropic virus type 1 virus infection, and metabolic disease-related pathways. In addition, patients with higher serum IgG levels exhibited enrichment in Notch signaling and metabolic-related pathways. Upon comparing monocytes with salivary gland epithelial cells, an important overlap was observed in the cell cycle, cell senescence, and interleukin-17 signaling pathways. The differentially methylated genes were more enriched in the ribosome- and AMP-activated protein kinase signaling pathway in anti-Ro/SSA and anti-La/SSB autoantibodies double-positive patients. Conclusion: Genome-wide DNA methylation profiling revealed significant differences in DNA methylation in monocytes isolated from patients with pSS.
Collapse
|
50
|
Iwata S, Zhang M, Hajime M, Ohkubo N, Sonomoto K, Torimoto K, Kitanaga Y, Trimova G, Todoroki Y, Miyata H, Ueno M, Nagayasu A, Kanda R, Nakano K, Nakayamada S, Sakata K, Tanaka Y. Pathological role of activated mTOR in CXCR3+ memory B cells of rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:5452-5462. [PMID: 33693564 DOI: 10.1093/rheumatology/keab229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES B cells play an important pathological role in rheumatoid arthritis (RA). In this study, we investigated the role of metabolic regulator mTOR in B cells and its relevance to the pathology of RA. METHODS Peripheral blood mononuclear cells were isolated from 31 normal subjects and 86 RA patients and the gated B cells were assessed for mTOR phosphorylation and chemokine receptor expression. In vitro studies on peripheral blood B cells isolated from the control and RA patients investigated the molecular mechanisms. RESULTS Higher concentrations of CXCL10 (CXCR3 ligands) and lower percentages of CXCR3+ memory B cells were present in the peripheral blood of RA patients relative to the control. RA patients with high CXCL10 concentrations had smaller percentage of CXCR3+ memory B cells and high disease activity. One-year treatment with TNF inhibitors increased the percentage of CXCR3+ memory B cells and reduced serum CXCL10 concentrations. mTOR phosphorylation in B cells was further enhanced in RA patients, compared to the control, and was selectively enhanced in CXCR3+ memory B cells. mTOR phosphorylation in CXCR3+ memory B cells correlated with disease activity. In vitro, mTOR phosphorylation in B cells enhanced IL-6 production and increased RANKL expression. CONCLUSION mTOR activation in CXCR3+ memory B cells of RA patients is associated with disease activity, mediated through IL-6 production and RANKL expression. The obtained results also suggest that TNF inhibitors mediate an impact on the association between CXCL10 and mTOR activated CXCR3+ memory B cells.
Collapse
Affiliation(s)
- Shigeru Iwata
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Mingzeng Zhang
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
- Department of Hematology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Maiko Hajime
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Naoaki Ohkubo
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Koshiro Sonomoto
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Keiichi Torimoto
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Yukihiro Kitanaga
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
- Astellas Pharma, Inc., Tsukuba, Japan
| | - Gulzhan Trimova
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Yasuyuki Todoroki
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Hiroko Miyata
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Masanobu Ueno
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Atsushi Nagayasu
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Ryuichiro Kanda
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kazuhisa Nakano
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Shingo Nakayamada
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kei Sakata
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
- Mitsubishi Tanabe Pharma Corp, Yokohama, Kanagawa, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|