1
|
Kanel D, Fox NA, Pine DS, Zeanah CH, Nelson CA, McLaughlin KA, Sheridan MA. Altered associations between white matter structure and psychopathology in previously institutionalized adolescents. Dev Cogn Neurosci 2024; 69:101440. [PMID: 39241456 PMCID: PMC11405635 DOI: 10.1016/j.dcn.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024] Open
Abstract
Previously institutionalized adolescents show increased risk for psychopathology, though placement into high-quality foster care can partially mitigate this risk. White matter (WM) structure is associated with early institutional rearing and psychopathology in youth. Here we investigate associations between WM structure and psychopathology in previously institutionalized youth. Adolescent psychopathology data were collected using the MacArthur Health and Behavior Questionnaire. Participants underwent diffusion MRI, and data were processed using fixel-based analyses. General linear models investigated interactions between institutionalization groups and psychopathology on fixel metrics. Supplementary analyses also examined the main effects of psychopathology and institutionalization group on fixel metrics. Ever-Institutionalized children included 41 randomized to foster care (Mage=16.6), and 40 to care-as-usual (Mage=16.7)). In addition, 33 participants without a history of institutionalization were included as a reference group (Mage=16.9). Ever-Institutionalized adolescents displayed altered general psychopathology-fixel associations within the cerebellar peduncles, inferior longitudinal fasciculi, corticospinal tract, and corpus callosum, and altered externalizing-fixel associations within the cingulum and fornix. Our findings indicate brain-behavior associations reported in the literature may not be generalizable to all populations. Previously institutionalized youth may develop differential brain development, which in turn leads to altered neural correlates of psychopathology that are still apparent in adolescence.
Collapse
Affiliation(s)
- Dana Kanel
- Department of Human Development, University of Maryland, United States; Emotion and Development Branch, National Institute of Mental Health, United States.
| | - Nathan A Fox
- Department of Human Development, University of Maryland, United States
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, United States
| | - Charles H Zeanah
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, United States; Department of Pediatrics, Harvard Medical School, United States; Harvard Graduate School of Education, United States
| | | | - Margaret A Sheridan
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
2
|
Guberman GI, Theaud G, Hawes SW, Ptito A, Descoteaux M, Hodgins S. White matter microstructure, traumatic brain injury, and disruptive behavior disorders in girls and boys. Front Neurosci 2024; 18:1391407. [PMID: 39099631 PMCID: PMC11295658 DOI: 10.3389/fnins.2024.1391407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/11/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction Girls and boys presenting disruptive behavior disorders (DBDs) display differences in white matter microstructure (WMM) relative to typically developing (TD) sex-matched peers. Boys with DBDs are at increased risk for traumatic brain injuries (TBIs), which are also known to impact WMM. This study aimed to disentangle associations of WMM with DBDs and TBIs. Methods The sample included 673 children with DBDs and 836 TD children, aged 9-10, from the Adolescent Brain Cognitive Development Study. Thirteen white matter bundles previously associated with DBDs were the focus of study. Analyses were undertaken separately by sex, adjusting for callous-unemotional traits (CU), attention-deficit hyperactivity disorder (ADHD), age, pubertal stage, IQ, ethnicity, and family income. Results Among children without TBIs, those with DBDs showed sex-specific differences in WMM of several tracts relative to TD. Most differences were associated with ADHD, CU, or both. Greater proportions of girls and boys with DBDs than sex-matched TD children had sustained TBIs. Among girls and boys with DBDs, those who had sustained TBIs compared to those not injured, displayed WMM alterations that were robust to adjustment for all covariates. Across most DBD/TD comparisons, axonal density scores were higher among children presenting DBDs. Discussion In conclusion, in this community sample of children, those with DBDs were more likely to have sustained TBIs that were associated with additional, sex-specific, alterations of WMM. These additional alterations further compromise the future development of children with DBDs.
Collapse
Affiliation(s)
- Guido I. Guberman
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Guillaume Theaud
- Department of Computer Science, Sherbrooke University, Sherbrooke, QC, Canada
| | - Samuel W. Hawes
- Department of Psychology, Center for Children and Families, Florida International University, Miami, FL, United States
| | - Alain Ptito
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maxime Descoteaux
- Department of Computer Science, Sherbrooke University, Sherbrooke, QC, Canada
| | - Sheilagh Hodgins
- Département de Psychiatrie et Addictologie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche Institut National de Psychiatrie Légale Philippe-Pinel, Montreal, QC, Canada
| |
Collapse
|
3
|
Lu F, Guo Y, Luo W, Yu Y, Zhao Y, Chen J, Cai X, Shen C, Wang X, He J, Yang G, Gao Q, He Z, Zhou J. Disrupted functional networks within white-matter served as neural features in adolescent patients with conduct disorder. Behav Brain Res 2023; 447:114422. [PMID: 37030546 DOI: 10.1016/j.bbr.2023.114422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Conduct disorder (CD) has been conceptualized as a psychiatric disorder associated with white-matter (WM) structural abnormalities. Although diffusion tensor imaging could identify WM structural architecture changes, it cannot characterize functional connectivity (FC) within WM. Few studies have focused on disentangling the WM dysfunctions in CD patients by using functional magnetic resonance imaging (fMRI). METHODS The resting-state fMRI data were first obtained from both adolescent CD and typically developing (TD) controls. A voxel-based clustering analysis was utilized to identify the large-scale WM FC networks. Then, we examined the disrupted WM network features in CD, and further investigated whether these features could predict the impulsive symptoms in CD using support vector regression prediction model. RESULTS We identified 11 WM functional networks. Compared with TDs, CD patients showed increased FCs between occipital network (ON) and superior temporal network (STN), between orbitofrontal network (OFN) and corona radiate network (CRN), as well as between deep network and CRN. Further, the disrupted FCs between ON and STN and between OFN and CRN were significantly negatively associated with non-planning impulsivity scores in CD. Moreover, the disrupted WM networks could be served as features to predict the motor impulsivity scores in CD. CONCLUSIONS Our results provided further support on the existence of WM functional networks and could extended our knowledge about the WM functional abnormalities related with emotional and perception processing in CD patients from the view of WM dysfunction.
Collapse
|
4
|
Bu X, Gao Y, Liang K, Bao W, Chen Y, Guo L, Gong Q, Lu H, Caffo B, Mori S, Huang X. Multivariate associations between behavioural dimensions and white matter across children and adolescents with and without attention-deficit/hyperactivity disorder. J Child Psychol Psychiatry 2023; 64:244-253. [PMID: 36000340 PMCID: PMC10087687 DOI: 10.1111/jcpp.13689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a heterogeneous neurodevelopmental disorder. Integrity of white matter microstructure plays a key role in the neural mechanism of ADHD presentations. However, the relationships between specific behavioural dimensions and white matter microstructure are less well known. This study aimed to identify associations between white matter and a broad set of clinical features across children and adolescent with and without ADHD using a data-driven multivariate approach. METHOD We recruited a total of 130 children (62 controls and 68 ADHD) and employed regularized generalized canonical correlation analysis to characterize the associations between white matter and a comprehensive set of clinical measures covering three domains, including symptom, cognition and behaviour. We further applied linear discriminant analysis to integrate these associations to explore potential developmental effects. RESULTS We delineated two brain-behaviour dimensional associations in each domain resulting a total of six multivariate patterns of white matter microstructural alterations linked to hyperactivity-impulsivity and mild affected; executive functions and working memory; externalizing behaviour and social withdrawal, respectively. Apart from executive function and externalizing behaviour sharing similar white matter patterns, all other dimensions linked to a specific pattern of white matter microstructural alterations. The multivariate dimensional association scores showed an overall increase and normalization with age in ADHD group while remained stable in controls. CONCLUSIONS We found multivariate neurobehavioral associations exist across ADHD and controls, which suggested that multiple white matter patterns underlie ADHD heterogeneity and provided neural bases for more precise diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Xuan Bu
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Yingxue Gao
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Kaili Liang
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Weijie Bao
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Ying Chen
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
| | - Lanting Guo
- Department of PsychiatryWest China Hospital of Sichuan UniversityChengduChina
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Brian Caffo
- Department of BiostatisticsJohns Hopkins Bloomberg School of Public HealthBaltimoreMDUSA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research CenterWest China Hospital of Sichuan UniversityChengduChina
- Research Unit of PsychoradiologyChinese Academy of Medical SciencesChengduChina
- Functional and Molecular Imaging Key Laboratory of Sichuan ProvinceChengduChina
| |
Collapse
|
5
|
Tillem S, Conley MI, Baskin-Sommers A. Conduct disorder symptomatology is associated with an altered functional connectome in a large national youth sample. Dev Psychopathol 2022; 34:1573-1584. [PMID: 33851904 PMCID: PMC8753609 DOI: 10.1017/s0954579421000237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conduct disorder (CD), characterized by youth antisocial behavior, is associated with a variety of neurocognitive impairments. However, questions remain regarding the neural underpinnings of these impairments. To investigate novel neural mechanisms that may support these neurocognitive abnormalities, the present study applied a graph analysis to resting-state functional magnetic resonance imaging (fMRI) data collected from a national sample of 4,781 youth, ages 9-10, who participated in the baseline session of the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®). Analyses were then conducted to examine the relationships among levels of CD symptomatology, metrics of global topology, node-level metrics for subcortical structures, and performance on neurocognitive assessments. Youth higher on CD displayed higher global clustering (β = .039, 95% CIcorrected [.0027 .0771]), but lower Degreesubcortical (β = -.052, 95% CIcorrected [-.0916 -.0152]). Youth higher on CD had worse performance on a general neurocognitive assessment (β = -.104, 95% CI [-.1328 -.0763]) and an emotion recognition memory assessment (β = -.061, 95% CI [-.0919 -.0290]). Finally, global clustering mediated the relationship between CD and general neurocognitive functioning (indirect β = -.002, 95% CI [-.0044 -.0002]), and Degreesubcortical mediated the relationship between CD and emotion recognition memory performance (indirect β = -.002, 95% CI [-.0046 -.0005]). CD appears associated with neuro-topological abnormalities and these abnormalities may represent neural mechanisms supporting CD-related neurocognitive disruptions.
Collapse
Affiliation(s)
- Scott Tillem
- Department of Psychology, Yale University, New Haven, CT, USA
| | - May I Conley
- Department of Psychology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
6
|
Teeuw J, Klein M, Mota NR, Brouwer RM, van ‘t Ent D, Al-Hassaan Z, Franke B, Boomsma DI, Hulshoff Pol HE. Multivariate Genetic Structure of Externalizing Behavior and Structural Brain Development in a Longitudinal Adolescent Twin Sample. Int J Mol Sci 2022; 23:ijms23063176. [PMID: 35328598 PMCID: PMC8949114 DOI: 10.3390/ijms23063176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Externalizing behavior in its more extreme form is often considered a problem to the individual, their families, teachers, and society as a whole. Several brain structures have been linked to externalizing behavior and such associations may arise if the (co)development of externalizing behavior and brain structures share the same genetic and/or environmental factor(s). We assessed externalizing behavior with the Child Behavior Checklist and Youth Self Report, and the brain volumes and white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) with magnetic resonance imaging in the BrainSCALE cohort, which consisted of twins and their older siblings from 112 families measured longitudinally at ages 10, 13, and 18 years for the twins. Genetic covariance modeling based on the classical twin design, extended to also include siblings of twins, showed that genes influence externalizing behavior and changes therein (h2 up to 88%). More pronounced externalizing behavior was associated with higher FA (observed correlation rph up to +0.20) and lower MD (rph up to −0.20), with sizeable genetic correlations (FA ra up to +0.42; MD ra up to −0.33). The cortical gray matter (CGM; rph up to −0.20) and cerebral white matter (CWM; rph up to +0.20) volume were phenotypically but not genetically associated with externalizing behavior. These results suggest a potential mediating role for global brain structures in the display of externalizing behavior during adolescence that are both partially explained by the influence of the same genetic factor.
Collapse
Affiliation(s)
- Jalmar Teeuw
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Correspondence: ; Tel.: +31-(088)-75-53-387
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Rachel M. Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dennis van ‘t Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
| | - Zyneb Al-Hassaan
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.R.M.); (B.F.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (D.v.‘t.E.); (D.I.B.)
- Amsterdam Public Health (APH) Research Institute, 1081 BT Amsterdam, The Netherlands
| | - Hilleke E. Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (R.M.B.); (Z.A.-H.); (H.E.H.P.)
- Department of Psychology, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
7
|
Tsai CJ, Lin HY, Tseng IWY, Gau SSF. White matter microstructural integrity correlates of emotion dysregulation in children with ADHD: A diffusion imaging tractography study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110325. [PMID: 33857524 DOI: 10.1016/j.pnpbp.2021.110325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Emotion dysregulation (ED) is prevalent in youths with attention-deficit hyperactivity disorder (ADHD) and causes more social impairment and poor adaptive function. Alterations in the integrity of white matter (WM) tracts might have important implications for affective processing related to ED. However, little is known about the WM correlates underpinning ED in ADHD. METHODS Using diffusion spectrum image tractography, we obtained generalized fractional anisotropy (GFA) values of 76 WM tracts in 77 children with ADHD and 105 typically developing controls (TDC). ED severity was defined by the dysregulation profile from the child behavior checklist. Canonical correlation analysis (CCA) was performed to identify modes that relate WM microstructural property to ED severity and cognitive measures. RESULTS The application of CCA identified one significant mode (r = 0.638, FWE-corrected p = 0.046) of interdependencies between WM property patterns and diagnosis, ADHD total symptom levels, dysregulation by diagnosis interaction, and full-scale intellectual quotient (FIQ). GFA values of 19 WM tracts that were linked to affective-processing, sensory-processing and integration, and cognitive control circuitry were positively correlated with ED severity in TDC but negatively correlated with ED severity in ADHD. ADHD symptom severity and diagnosis were negatively associated with the GFA patterns of this set of tract bundles. In contrast, FIQ was positively correlated with this set of tract bundles. CONCLUSIONS This study used the CCA to show that children with ADHD and TDC had distinct multivariate associations between ED severity (diagnosis by ED interaction) and microstructural property in a set of WM tracts. These tracts interconnect the cortical regions that are principally involved in emotion processing, integration, and cognitive control in multiple brain systems. The WM microstructure integrity impairment might be an essential correlate of emotion dysregulation in ADHD.
Collapse
Affiliation(s)
- Chia-Jui Tsai
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Isaac Wen-Yih Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Susan Shur-Fen Gau
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences and Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Menks WM, Fehlbaum LV, Borbás R, Sterzer P, Stadler C, Raschle NM. Eye gaze patterns and functional brain responses during emotional face processing in adolescents with conduct disorder. Neuroimage Clin 2020; 29:102519. [PMID: 33316763 PMCID: PMC7735971 DOI: 10.1016/j.nicl.2020.102519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conduct disorder (CD) is characterized by severe aggressive and antisocial behavior. Initial evidence suggests neural deficits and aberrant eye gaze pattern during emotion processing in CD; both concepts, however, have not yet been studied simultaneously. The present study assessed the functional brain correlates of emotional face processing with and without consideration of concurrent eye gaze behavior in adolescents with CD compared to typically developing (TD) adolescents. METHODS 58 adolescents (23CD/35TD; average age = 16 years/range = 14-19 years) underwent an implicit emotional face processing task. Neuroimaging analyses were conducted for a priori-defined regions of interest (insula, amygdala, and medial orbitofrontal cortex) and using a full-factorial design assessing the main effects of emotion (neutral, anger, fear), group and the interaction thereof (cluster-level, p < .05 FWE-corrected) with and without consideration of concurrent eye gaze behavior (i.e., time spent on the eye region). RESULTS Adolescents with CD showed significant hypo-activations during emotional face processing in right anterior insula compared to TD adolescents, independent of the emotion presented. In-scanner eye-tracking data revealed that adolescents with CD spent significantly less time on the eye, but not mouth region. Correcting for eye gaze behavior during emotional face processing reduced group differences previously observed for right insula. CONCLUSIONS Atypical insula activation during emotional face processing in adolescents with CD may partly be explained by attentional mechanisms (i.e., reduced gaze allocation to the eyes, independent of the emotion presented). An increased understanding of the mechanism causal for emotion processing deficits observed in CD may ultimately aid the development of personalized intervention programs.
Collapse
Affiliation(s)
- Willeke Martine Menks
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Lynn Valérie Fehlbaum
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland; Department of Psychology, Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Réka Borbás
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland; Department of Psychology, Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland
| | - Philipp Sterzer
- Department of Psychiatry, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland
| | - Nora Maria Raschle
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics Basel, Basel, Switzerland; Department of Psychology, Jacobs Center for Productive Youth Development at the University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Grazioplene R, Tseng WL, Cimino K, Kalvin C, Ibrahim K, Pelphrey KA, Sukhodolsky DG. Fixel-Based Diffusion Magnetic Resonance Imaging Reveals Novel Associations Between White Matter Microstructure and Childhood Aggressive Behavior. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:490-498. [PMID: 32144044 DOI: 10.1016/j.bpsc.2019.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Childhood aggression has been linked to white matter abnormalities, but research has been inconsistent with regard to both regions of alterations and directionality of the associations. We examined white matter microstructure correlates of aggression using a novel diffusion imaging analysis technique, fixel-based analysis, which leverages connectivity and crossing-fiber information to assess fiber bundle density. METHODS The sample included 70 children with aggressive behavior and 25 healthy control children without aggressive behavior. Aggression was measured by the parent-rated Aggressive Behavior scale of the Child Behavior Checklist. Fixel-based analysis was conducted at the whole-brain and region-of-interest levels, including the uncinate fasciculus, inferior longitudinal fasciculus, fornix, cingulum bundle, and genu, body, isthmus, and splenium of the corpus callosum. RESULTS Whole-brain analysis of covariance revealed that children with aggressive behavior, relative to control children, had lower fiber density in a cluster of limbic and cortical pathways, including the inferior fronto-occipital fasciculus, fornix, middle cerebellar peduncle, and superior thalamic radiations (familywise error-corrected p < .01), and had higher fiber density in the corpus callosum (body and splenium) (familywise error-corrected p < .05). Region-of-interest analyses showed decreased fiber density in cingulum bundles associated with aggression. These effects were independent of age, sex, IQ, symptoms of attention-deficit/hyperactivity disorder, medications, and head motion. In children with aggressive behavior, co-occurring callous-unemotional traits and anxiety did not moderate the association between aggression and white matter density. CONCLUSIONS Diminished white matter density in pathways connecting limbic and cortical regions is associated with childhood aggression. Abnormal interhemispheric connectivity via corpus callosum may also reflect a potential neural mechanism involved in aggression.
Collapse
Affiliation(s)
| | - Wan-Ling Tseng
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kimberly Cimino
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Carla Kalvin
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Karim Ibrahim
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Denis G Sukhodolsky
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
10
|
González-Madruga K, Rogers J, Toschi N, Riccelli R, Smaragdi A, Puzzo I, Clanton R, Andersson J, Baumann S, Kohls G, Raschle N, Fehlbaum L, Menks W, Stadler C, Konrad K, Freitag CM, De Brito SA, Sonuga-Barke E, Fairchild G. White matter microstructure of the extended limbic system in male and female youth with conduct disorder. Psychol Med 2020; 50:58-67. [PMID: 30696514 DOI: 10.1017/s0033291718003951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies of conduct disorder (CD) have reported structural and functional alterations in the limbic system. However, the white matter tracts that connect limbic regions have not been comprehensively studied. The uncinate fasciculus (UF), a tract connecting limbic to prefrontal regions, has been implicated in CD. However, CD-related alterations in other limbic tracts, such as the cingulum and the fornix, have not been investigated. Furthermore, few studies have examined the influence of sex and none have been adequately powered to test whether the relationship between CD and structural connectivity differs by sex. We examined whether adolescent males and females with CD exhibit differences in structural connectivity compared with typically developing controls. METHODS We acquired diffusion-weighted magnetic resonance imaging data from 101 adolescents with CD (52 females) and 99 controls (50 females). Data were processed for deterministic spherical deconvolution tractography. Virtual dissections of the UF, the three subdivisions of the cingulum [retrosplenial cingulum (RSC), parahippocampal and subgenual cingulum], and the fornix were performed and measures of fractional anisotropy (FA) and hindrance-modulated orientational anisotropy (HMOA) were analysed. RESULTS The CD group had lower FA and HMOA in the right RSC tract relative to controls. Importantly, these effects were moderated by sex - males with CD significantly lower FA compared to male controls, whereas CD and control females did not differ. CONCLUSIONS Our results highlight the importance of considering sex when studying the neurobiological basis of CD. Sex differences in RSC connectivity may contribute to sex differences in the clinical presentation of CD.
Collapse
Affiliation(s)
| | - Jack Rogers
- School of Psychology and Birmingham University Imaging Centre, University of Birmingham, Birmingham, UK
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Roberta Riccelli
- Department of Psychology, University of Southampton, Southampton, UK
| | | | - Ignazio Puzzo
- West London Mental Health Trust, Broadmoor High Secure Hospital, London, UK
| | - Roberta Clanton
- School of Psychology and Birmingham University Imaging Centre, University of Birmingham, Birmingham, UK
| | - Jesper Andersson
- FMRIB, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Sarah Baumann
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Gregor Kohls
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Nora Raschle
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics and University of Basel, Basel, Switzerland
| | - Lynn Fehlbaum
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics and University of Basel, Basel, Switzerland
| | - Willeke Menks
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics and University of Basel, Basel, Switzerland
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Clinics and University of Basel, Basel, Switzerland
| | - Kerstin Konrad
- Department of Child and Adolescent Psychiatry, Child Neuropsychology Section, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Aachen, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephane A De Brito
- School of Psychology and Birmingham University Imaging Centre, University of Birmingham, Birmingham, UK
| | - Edmund Sonuga-Barke
- Child and Adolescent Psychiatry Department, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | | |
Collapse
|
11
|
Rogers JC, Gonzalez-Madruga K, Kohls G, Baker RH, Clanton RL, Pauli R, Birch P, Chowdhury AI, Kirchner M, Andersson JLR, Smaragdi A, Puzzo I, Baumann S, Raschle NM, Fehlbaum LV, Menks WM, Steppan M, Stadler C, Konrad K, Freitag CM, Fairchild G, De Brito SA. White Matter Microstructure in Youths With Conduct Disorder: Effects of Sex and Variation in Callous Traits. J Am Acad Child Adolesc Psychiatry 2019; 58:1184-1196. [PMID: 31028899 DOI: 10.1016/j.jaac.2019.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Studies using diffusion tensor imaging (DTI) to investigate white matter (WM) microstructure in youths with conduct disorder (CD) have reported disparate findings. We investigated WM alterations in a large sample of youths with CD, and examined the influence of sex and callous-unemotional (CU) traits. METHOD DTI data were acquired from 124 youths with CD (59 female) and 174 typically developing (TD) youths (103 female) 9 to 18 years of age. Tract-based spatial statistics tested for effects of diagnosis and sex-by-diagnosis interactions. Associations with CD symptoms, CU traits, a task measuring impulsivity, and the impact of comorbidity, and age- and puberty-related effects were examined. RESULTS Youths with CD exhibited higher axial diffusivity in the corpus callosum and lower radial diffusivity and mean diffusivity in the anterior thalamic radiation relative to TD youths. Female and male youths with CD exhibited opposite changes in the left hemisphere within the internal capsule, fornix, posterior thalamic radiation, and uncinate fasciculus. Within the CD group, CD symptoms and callous traits exerted opposing influences on corpus callosum axial diffusivity, with callous traits identified as the unique clinical feature predicting higher axial diffusivity and lower radial diffusivity within the corpus callosum and anterior thalamic radiation, respectively. In an exploratory analysis, corpus callosum axial diffusivity partially mediated the association between callous traits and impulsive responses to emotional faces. Results were not influenced by symptoms of comorbid disorders, and no age- or puberty-related interactions were observed. CONCLUSION WM alterations within the corpus callosum represent a reliable neuroimaging marker of CD. Sex and callous traits are important factors to consider when examining WM in CD.
Collapse
Affiliation(s)
| | | | - Gregor Kohls
- Child Neuropsychology Section, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Germany
| | | | | | - Ruth Pauli
- School of Psychology, University of Birmingham, UK
| | | | - Alimul I Chowdhury
- School of Psychology, University of Birmingham, UK; Medical Physics Department, University Hospitals Birmingham, NHS Foundation Trust, UK
| | - Marietta Kirchner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Germany
| | | | | | | | - Sarah Baumann
- Child Neuropsychology Section, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Germany
| | | | | | | | | | | | - Kerstin Konrad
- Child Neuropsychology Section, Psychosomatics and Psychotherapy, University Hospital RWTH Aachen, Germany
| | - Christine M Freitag
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
12
|
Fairchild G, Hawes DJ, Frick PJ, Copeland WE, Odgers CL, Franke B, Freitag CM, De Brito SA. Conduct disorder. Nat Rev Dis Primers 2019; 5:43. [PMID: 31249310 DOI: 10.1038/s41572-019-0095-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
Conduct disorder (CD) is a common and highly impairing psychiatric disorder that usually emerges in childhood or adolescence and is characterized by severe antisocial and aggressive behaviour. It frequently co-occurs with attention-deficit/hyperactivity disorder (ADHD) and often leads to antisocial personality disorder in adulthood. CD affects ~3% of school-aged children and is twice as prevalent in males than in females. This disorder can be subtyped according to age at onset (childhood-onset versus adolescent-onset) and the presence or absence of callous-unemotional traits (deficits in empathy and guilt). The aetiology of CD is complex, with contributions of both genetic and environmental risk factors and different forms of interplay among the two (gene-environment interaction and correlation). In addition, CD is associated with neurocognitive impairments; smaller grey matter volume in limbic regions such as the amygdala, insula and orbitofrontal cortex, and functional abnormalities in overlapping brain circuits responsible for emotion processing, emotion regulation and reinforcement-based decision-making have been reported. Lower hypothalamic-pituitary-adrenal axis and autonomic reactivity to stress has also been reported. Management of CD primarily involves parent-based or family-based psychosocial interventions, although stimulants and atypical antipsychotics are sometimes used, especially in individuals with comorbid ADHD.
Collapse
Affiliation(s)
| | - David J Hawes
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Paul J Frick
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA and Institute for Learning Science and Teacher Education, Australian Catholic University, Brisbane, Queensland, Australia
| | | | - Candice L Odgers
- Department of Psychological Science, School of Social Ecology, University of California, Irvine, CA, USA
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Stephane A De Brito
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Bolhuis K, Muetzel RL, Stringaris A, Hudziak JJ, Jaddoe VWV, Hillegers MHJ, White T, Kushner SA, Tiemeier H. Structural Brain Connectivity in Childhood Disruptive Behavior Problems: A Multidimensional Approach. Biol Psychiatry 2019; 85:336-344. [PMID: 30119874 DOI: 10.1016/j.biopsych.2018.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies of white matter connectivity in children with disruptive behavior have yielded inconsistent results, possibly owing to the trait's heterogeneity, which comprises diverse symptoms like physical aggression, irritability, and delinquency. This study examined associations of global and specific white matter connectivity with childhood disruptive behavior problems, while accounting for their complex multidimensionality. METHODS In a large cross-sectional population-based study of 10-year-old preadolescents (n = 2567), we assessed four previously described empirically derived dimensions of disruptive behavior problems using the Child Behavior Checklist: physical aggression, irritability, disobedient behavior, and delinquent behavior. Global and specific white matter microstructure was assessed by diffusion tensor imaging. RESULTS Global fractional anisotropy and mean diffusivity were not associated with broad measures of disruptive behavior, e.g., Child Behavior Checklist externalizing problems scale. Global fractional anisotropy was negatively associated with delinquent behavior (β = -.123, pfalse discovery rate adjusted = .028) and global mean diffusivity was positively associated with delinquent behavior (β = .205, pfalse discovery rate adjusted < 0.001), suggesting reduced white matter microstructure in preadolescents with higher levels of delinquent behavior. Lower white matter microstructure in the inferior longitudinal fasciculus, superior longitudinal fasciculus, cingulum, and uncinate underlie these associations. Global white matter microstructure was not associated with physical aggression, irritability, or disobedient behavior. CONCLUSIONS Delinquent behavior, a severe manifestation of childhood disruptive behavior, was associated with lower white matter microstructure in tracts connecting frontal and temporal lobes. These brain regions are involved in decision making, reward processing, and emotion regulation. This study demonstrated that incorporating the multidimensional nature of childhood disruptive behavior traits shows promise in advancing the search for elucidating neurobiological correlates of disruptive behavior.
Collapse
Affiliation(s)
- Koen Bolhuis
- Department of Child and Adolescent Psychiatry; Generation R Study Group, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ryan L Muetzel
- Department of Child and Adolescent Psychiatry; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Argyris Stringaris
- Mood Brain & Development Unit, Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland
| | - James J Hudziak
- Department of Psychiatry, Vermont Center for Children, Youth and Families, University of Vermont, Burlington, Vermont
| | - Vincent W V Jaddoe
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tonya White
- Department of Child and Adolescent Psychiatry; Department of Radiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
14
|
Hinton KE, Lahey BB, Villalta-Gil V, Meyer FAC, Burgess LL, Chodes LK, Applegate B, Van Hulle CA, Landman BA, Zald DH. White matter microstructure correlates of general and specific second-order factors of psychopathology. Neuroimage Clin 2019; 22:101705. [PMID: 30753960 PMCID: PMC6369105 DOI: 10.1016/j.nicl.2019.101705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Increasing data indicate that prevalent forms of psychopathology can be organized into second-order dimensions based on their correlations, including a general factor of psychopathology that explains the common variance among all disorders and specific second-order externalizing and internalizing factors. Nevertheless, most existing studies on the neural correlates of psychopathology employ case-control designs that treat diagnoses as independent categories, ignoring the highly correlated nature of psychopathology. Thus, for instance, although perturbations in white matter microstructure have been identified across a range of mental disorders, nearly all such studies used case-control designs, leaving it unclear whether observed relations reflect disorder-specific characteristics or transdiagnostic associations. Using a representative sample of 410 young adult twins oversampled for psychopathology risk, we tested the hypothesis that some previously observed relations between white matter microstructure properties in major tracts and specific disorders are related to second-order factors of psychopathology. We examined fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). White matter correlates of all second-order factors were identified after controlling for multiple statistical tests, including the general factor (FA in the body of the corpus callosum), specific internalizing (AD in the fornix), and specific externalizing (AD in the splenium of the corpus callosum, sagittal stratum, anterior corona radiata, and internal capsule). These findings suggest that some features of white matter within specific tracts may be transdiagnostically associated multiple forms of psychopathology through second-order factors of psychopathology rather with than individual mental disorders.
Collapse
Affiliation(s)
- Kendra E Hinton
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States.
| | - Benjamin B Lahey
- Department of Public Health Sciences, University of Chicago, Chicago, IL, United States
| | - Victoria Villalta-Gil
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Francisco A C Meyer
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Leah L Burgess
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Laura K Chodes
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Brooks Applegate
- Department of Educational Leadership, Research and Technology, Western Michigan University, Kalamazoo, MI, United States
| | - Carol A Van Hulle
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Bennett A Landman
- School of Engineering, Vanderbilt University, Nashville, TN, United States
| | - David H Zald
- Department of Psychological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Oliveira VEDM, Neumann ID, de Jong TR. Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. Neuropharmacology 2019; 156:107504. [PMID: 30664846 DOI: 10.1016/j.neuropharm.2019.01.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/22/2022]
Abstract
Post-weaning social isolation (PWSI) is known to induce exaggerated and abnormal aggression in male rats. Here we aimed to assess the effects of PWSI on aggressiveness and social behavior in both male and female rats. Furthermore, we evaluated how PWSI affects the central oxytocin (OXT) and vasopressin (AVP) systems in both sexes. Wistar rats were isolated (IS) or group housed (GH) in same-sex groups immediately after weaning. After seven weeks, rats underwent an intruder test to assess aggression. In one group, brains were immediately dissected afterwards for in situ hybridization and receptor autoradiography. The other group underwent additional anxiety-like and social behavior tests. PWSI induced increased (abnormal) aggression and impaired social memory in both sexes. Especially IS females exhibited abnormal aggression towards juveniles. Furthermore, PWSI increased OXT mRNA expression in the paraventricular nucleus of the hypothalamus (PVN) and decreased OXTR binding in the anterior portion of the nucleus accumbens (NAcc), independent of the sex. V1a receptor binding was decreased in the lateral hypothalamus (LH) and dentate gyrus (DG) in IS rats, regardless of sex. However, V1a receptor binding in the anterior portion of the bed nucleus of stria terminalis (BNSTa) was decreased in IS females but increased in IS males. Taken together, our data support PWSI as a reliable model to exacerbate aggression not only in male but also in female rats. In addition, OXT receptors in the NAcca and V1a receptors in the LH, DG, and BNSTa may play a role in the link between PWSI and aggression. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.
Collapse
Affiliation(s)
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Germany
| | - Trynke R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Germany; Lifelines Biobank Noord-Nederland B.V. Groningen, Netherlands
| |
Collapse
|
16
|
Sidlauskaite J, González-Madruga K, Smaragdi A, Riccelli R, Puzzo I, Batchelor M, Cornwell H, Clark L, Sonuga-Barke EJS, Fairchild G. Sex differences in risk-based decision making in adolescents with conduct disorder. Eur Child Adolesc Psychiatry 2018; 27:1133-1142. [PMID: 28688012 PMCID: PMC6133105 DOI: 10.1007/s00787-017-1024-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
Altered decision making processes and excessive risk-seeking behaviours are key features of conduct disorder (CD). Previous studies have provided compelling evidence of abnormally increased preference for risky options, higher sensitivity to rewards, as well as blunted responsiveness to aversive outcomes in adolescents with CD. However, most studies published to date have focused on males only; thus, it is not known whether females with CD show similar alterations in decision making. The current study investigated potential sex differences in decision making and risk-seeking behaviours in adolescents with CD. Forty-nine adolescents with CD (23 females) and 51 control subjects (27 females), aged 11-18 years, performed a computerised task assessing decision making under risk-the Risky Choice Task. Participants made a series of decisions between two gamble options that varied in terms of their expected values and probability of gains and losses. This enabled the participants' risk preferences to be determined. Taking the sample as a whole, adolescents with CD exhibited increased risk-seeking behaviours compared to healthy controls. However, we found a trend towards a sex-by-group interaction, suggesting that these effects may vary by sex. Follow-up analyses showed that males with CD made significantly more risky choices than their typically developing counterparts, while females with CD did not differ from typically developing females in their risk-seeking behaviours. Our results provide preliminary evidence that sex may moderate the relationship between CD and alterations in risk attitudes and reward processing, indicating that there may be sex differences in the developmental pathways and neuropsychological deficits that lead to CD.
Collapse
Affiliation(s)
- Justina Sidlauskaite
- Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK.
| | - Karen González-Madruga
- 0000 0004 1936 9297grid.5491.9Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK
| | - Areti Smaragdi
- 0000 0004 1936 9297grid.5491.9Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK
| | - Roberta Riccelli
- 0000 0004 1936 9297grid.5491.9Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK
| | - Ignazio Puzzo
- 0000 0004 1936 9297grid.5491.9Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK
| | - Molly Batchelor
- 0000 0004 1936 9297grid.5491.9Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK
| | - Harriet Cornwell
- 0000 0004 1936 9297grid.5491.9Academic Unit of Psychology, University of Southampton, Building 44, Southampton, UK
| | - Luke Clark
- 0000 0001 2288 9830grid.17091.3eDepartment of Psychology, University of British Columbia, Vancouver, Canada
| | - Edmund J. S. Sonuga-Barke
- 0000 0001 2322 6764grid.13097.3cDepartment of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Graeme Fairchild
- 0000 0001 2162 1699grid.7340.0Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|