1
|
Iqbal R, Asghar A, Habib A, Ali S, Zahra S, Hussain MI, Ahsan AB, Liang Y. Therapeutic Potential of Green Synthesized Silver Nanoparticles for Promoting Wound-Healing Process in Diabetic Mice. Biol Trace Elem Res 2024; 202:5545-5555. [PMID: 38351346 DOI: 10.1007/s12011-024-04094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Diabetes is a serious metabolic disorder characterized by abnormal glucose levels in the body. Delayed wound healing is a severe diabetes complication. Nanotechnology represents the latest advancement in treating diabetic wounds through nanoparticles (NPs). In this study, silver nanoparticles (AgNPs) were synthesized using a green method involving cucumber pulp extract. The synthesis was confirmed using techniques including ultraviolet-visible spectrophotometry (UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). To evaluate wound-healing properties, mouse models were utilized with wounds induced by excision on the dorsal surface. An ointment containing silver nanoparticles was applied to assess its healing potential. Additionally, antibacterial and antioxidant activities were examined using agar well diffusion and DPPH scavenging methods, respectively. The results demonstrated that the ointment prepared with green synthesized AgNPs effectively healed the wounds within 15 days, while also exhibiting antibacterial and antioxidant properties. Therefore, it can be concluded that due to its efficacy in biological activities, silver nanoparticles can be employed in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Riffat Iqbal
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| | - Amna Asghar
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Shaista Ali
- Department of Chemistry, Government College University Lahore, Lahore, Pakistan
| | - Sadaf Zahra
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | | | | | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
2
|
Ding S, Zhang X, Wang G, Shi J, Zhu J, Yan J, Wang J, Wu J. Promoting diabetic oral mucosa wound healing with a light-responsive hydrogel adaptive to the microenvironment. Heliyon 2024; 10:e38599. [PMID: 39435107 PMCID: PMC11492349 DOI: 10.1016/j.heliyon.2024.e38599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
In diabetic patients, compromised angiogenesis due to endothelial dysfunction leads to delayed intraoral wound healing. However, the moist and dynamic environment of the oral cavity impedes the use of normal wound dressings. Sulfated chitosan (SCS) is a promising biomaterial that promoting angiogenesis. Here, a light-responsive hydrogel combined with SCS explored intraoral wound healing. We designed a SCS-modified hydrogel combined with alginate Methacryloyl (AlgMA) and acrylamide (AM) and demonstrated efficient wet adhesion and mechanical properties suitable for the wet and dynamic oral environment. In vitro, the SAA hydrogel improved the tube formation of human umbilical vein endothelial cells (HUVECs) under high-glucose conditions. Further investigations revealed that the SAA hydrogel can regulate HUVEC-macrophage interactions, leading to a shift in macrophage polarization from M1 to M2, thereby fostering an environment conducive to angiogenesis under high-glucose condition. The results demonstrated the substantial therapeutic impact of the SAA hydrogel on diabetic oral defect repair by effectively enhancing the local blood supply and angiogenesis.
Collapse
Affiliation(s)
- Shuwen Ding
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Xiaohui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Gaopeng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiaying Shi
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Jiayu Zhu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Jiayu Yan
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Junhua Wu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, PR China
| |
Collapse
|
3
|
Kong W, Bao Y, Li W, Guan D, Yin Y, Xiao Y, Zhu S, Sun Y, Xia Z. Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. Adv Healthc Mater 2024:e2401012. [PMID: 39388509 DOI: 10.1002/adhm.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Stem cell-based therapies hold significant promise for chronic wound healing and skin appendages regeneration, but challenges such as limited stem cell lifespan and poor biocompatibility of delivery systems hinder clinical application. In this study, an in situ delivery system for human adipose-derived stem cells is developed (hADSCs) to enhance diabetic wound healing. The system utilizes a photo-crosslinking recombinant human type III collagen (rHCIII) hydrogel to encapsulate hADSCs, termed the hADSCs@rHCIII hydrogel. This hydrogel undergoes local crosslinking at the wound site, establishing a sturdy 3D niche suitable for stem cell function. Consequently, the encapsulated hADSCs exhibit strong attachment and spreading within the hydrogels, maintaining their proliferation, metabolic activity, and viability for up to three weeks in vitro. Importantly, in vivo studies demonstrate that the hADSCs@rHCIII hydrogel achieves significant in situ delivery of stem cells, prolonging their retention within the wound. This ultimately enhances their immunomodulatory capabilities, promotes neovascularization and granulation tissue formation, facilitates matrix remodeling, and accelerates healing in a diabetic mouse wound model. Collectively, these findings highlight the potential of the conveniently-prepared and user-friendly hADSCs@rHCIII hydrogel as a promising therapeutic approach for diabetic wound treatment and in situ skin regeneration.
Collapse
Affiliation(s)
- Weishi Kong
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yulu Bao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Wei Li
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Dingding Guan
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Yating Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- Department of Burn and Plastic Surgery, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, P. R. China
| | - Yongqiang Xiao
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Shihui Zhu
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
- Department of Burns and Plastic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yu Sun
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
- Research Unit of key techniques for treatment of burns and combined burns and trauma injury, Chinese Academy of Medical Sciences, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Kim DY, Kang YH, Kang MK. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins. J Mol Med (Berl) 2024:10.1007/s00109-024-02491-z. [PMID: 39363131 DOI: 10.1007/s00109-024-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea.
| |
Collapse
|
5
|
Patel M, Patel V, Shah U, Patel A. Molecular pathology and therapeutics of the diabetic foot ulcer; comprehensive reviews. Arch Physiol Biochem 2024; 130:591-598. [PMID: 37294861 DOI: 10.1080/13813455.2023.2219863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/24/2023] [Accepted: 05/19/2023] [Indexed: 06/11/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition linked to high blood sugar levels. Diabetes causes complications like neuropathy, nephropathy, and retinopathy. Diabetes foot ulcer (DFU) is a significant and serious wound healing issue resulting from uncontrolled DM. The main causes of the development of the DFU are oxidative stress brought on by the NO moiety, release of pro-inflammatory cytokines like tumour necrosis factor (TNF)-α and interleukin (IL-1), cellular dysfunction, and pathogenic microorganisms including staphylococcus and streptococcus species. The two main types of wounds that are prevalent in DFU patients are neuropathic and neuroischemic. If this wound is not properly treated or cared for, a lower limb may have to be amputated. There are several therapy options for DFU, including antibiotics, debridement, dressings, nano formulations, and growth factor preparations like PDGF-BB, to help the wound heal and prevent amputation. Other novel approaches involved the use of nerve taps, microneedle patches, nanotechnology-based formulations and stem cell applications to promote healing. There are possibilities of drug repurposing for the DFU treatment based on targeting specific enzymes. This article summarises the current pathophysiological aspects of DFU and its probable future targets.
Collapse
Affiliation(s)
- Mansi Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Vaibhav Patel
- Vedmultispeciality Hospitals, Khatraj, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Alkeshkumar Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| |
Collapse
|
6
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
7
|
Zhao W, Qiang L, Zhang C, Li S, Liu Y, Wang C, Ma X, Wang J, Bao Y. Near-Infrared Stimuli-Responsive Hydrogel Promotes Cell Migration for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50175-50187. [PMID: 39269914 DOI: 10.1021/acsami.4c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Diabetic wound healing including diabetic foot ulcers is a major clinical challenge, which could bring an increased level of mortality and morbidity. However, conventional wound dressings exhibit limited healing efficacy due to their lack of active modulation for the healing process. Here, a near-infrared (NIR) stimuli-responsive composite hydrogel dressing with the synergistic effect of both mechanical contraction and epithelial-mesenchymal transition (EMT) was developed to facilitate cell migration and vascularization for diabetic wound healing. In the methacrylated gelatin-based composite hydrogel, N-isopropylacrylamide and polydopamine nanoparticles were incorporated to endow the composite hydrogel with thermosensitive and photothermal properties. Linagliptin (LIN) was loaded into the composite hydrogel, and the drug release rate could be controlled by NIR laser irradiation. NIR-triggered on-demand active contraction of wound area and LIN release for biological stimulation were potentially realized in this responsive system due to the thermally induced sol-gel transition of the composite hydrogel. The release of loaded LIN could effectively promote cell migration by activating EMT and enhancing angiogenesis. In the full-thickness skin defect model, the LIN-loaded composite hydrogel with NIR laser irradiation had the highest wound closure rate as compared with the pure hydrogel and LIN-loaded hydrogel groups. Therefore, this composite hydrogel can serve as an excellent platform for promoting wound healing and will find more practical value in clinical treatment.
Collapse
Affiliation(s)
- Weijing Zhao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| | - Lei Qiang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Changru Zhang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuai Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengwei Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China
| |
Collapse
|
8
|
Han Q, Gu Y, Qian Y. Study on the mechanism of activating SIRT1/Nrf2/p62 pathway to mediate autophagy-dependent ferroptosis to promote healing of diabetic foot ulcers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03400-4. [PMID: 39320410 DOI: 10.1007/s00210-024-03400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Diabetic foot (DF), a prevalent and grave diabetes sequela, is considered as a notable clinical concern, with SIRT1 downregulation observed in DF patients' blood specimens. Nonetheless, the regulatory mechanisms of SIRT1 in diabetic foot ulcer (DFU) remain unclear. Thus, in the current study, we investigated the role and mechanisms of SIRT1 in alleviating DFU. Western blotting was used to detect the expression of autophagy and ferroptosis-related proteins, CCK8 assay was used to measure cell proliferation. Plate colony method was used to measure bacterial growth, and the inhibitory effect on intracellular and extracellular Staphylococcus aureus was observed after drug intervention. ELISA was used to detect inflammatory cytokines and oxidative stress markers levels. ROS, total iron, and Fe2+ levels were detected using corresponding assays. Additionally, HE staining detected the thickness of the epidermis and dermis of the rat wound tissue while the collagen deposition in the wound tissue was detected using Masson staining. In addition, Prussian blue staining was used to detect iron deposition, and C11 BODIPY 581/591 lipid peroxidation probe was used to detect lipid ROS. Our results suggested that the activation of SIRT1/Nrf2/p62 signaling affects cell proliferation, colony formation, ferroptosis, and the production of lipid ROS in DFU-infected cell model through autophagy. In vivo experiments indicated that activating SIRT1/Nrf2/p62 signaling affects oxidative stress, inflammation, and autophagy in wound tissue and promotes wound healing in DFU rats through mediating autophagy-dependent ferroptosis. Taken together, the activation of SIRT1/Nrf2/p62 pathway can promote DFU healing, which might be mediated by autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Qinglin Han
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China.
| | - Yuming Gu
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| | - Yongquan Qian
- Department of Orthopaedic, The Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, Jangsu, 226001, China
| |
Collapse
|
9
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Sheikh SF, Kariya G, Dafe T. Tailored Physiotherapy Combined With Exercises for Enhanced Recovery Post-Below-Knee Amputation in a Diabetic Patient With Peripheral Artery Disease (PAD): A Case Report. Cureus 2024; 16:e69781. [PMID: 39429360 PMCID: PMC11491144 DOI: 10.7759/cureus.69781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
This case report summarizes the physiotherapy rehabilitation process for a 59-year-old male patient who had undergone a below-knee amputation due to complications from diabetes mellitus, leading to peripheral artery disease (PAD). In this patient population, early rehabilitation is crucial to achieving maximal outcomes. In the following case report, physiotherapy was started on the second postoperative day following the completion of the below-knee amputation (BKA). A rehabilitation program was designed with consideration of specific challenges presented by his comorbid condition, which emphasized wound care, edema management, and pain relief, followed by early mobilization. His pre-prosthetic training included strengthening and range of motion exercises, exercise training, and techniques to improve posture by using exercises to reduce sensitivity in the residual limb. The phantom pain was well managed, and the patient recovered and experienced effective training in terms of prosthetic fitting. This serves as a testament to the importance of physiotherapy with early and tailored intervention for patients with diabetes and PAD following BKA, which has shown to be efficient in improvising functional and quality of life outcomes through a comprehensive rehabilitation program.
Collapse
Affiliation(s)
- Simran F Sheikh
- Department of Community Health Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Gauri Kariya
- Department of Community Health Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswini Dafe
- Department of Community Health Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Klein PA, Wagner GA, Barr RJ, Klein JA, Rogers RS. Empiric intralesional tumescent drug delivery of antimicrobials effectively treated a painful necrotizing skin infection. JAAD Case Rep 2024; 50:40-43. [PMID: 39036615 PMCID: PMC11259981 DOI: 10.1016/j.jdcr.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Affiliation(s)
| | - Gerald A. Wagner
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ronald J. Barr
- Department of Dermatology, University of California Irvine, Irvine, California
| | - Jeffrey A. Klein
- Department of Dermatology, University of California Irvine, Irvine, California
| | - Roy S. Rogers
- Department of Dermatology, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
12
|
Luo Y, Liu C, Li C, Jin M, Pi L, Jin Z. The incidence of lower extremity amputation and its associated risk factors in patients with diabetic foot ulcers: A meta-analysis. Int Wound J 2024; 21:e14931. [PMID: 38972836 PMCID: PMC11227953 DOI: 10.1111/iwj.14931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 07/09/2024] Open
Abstract
This study analysed the incidence of lower extremity amputation and its associated risk factors in patients with diabetic foot ulcers. This study systematically searched both Chinese and English databases, including CNKI, Wanfang, VIP, PubMed, EMBASE and Web of Science, to identify cohort studies related to lower extremity amputation and associated risk factors in patients with diabetic foot ulcers up to October 2023. The patients were stratified based on whether they underwent lower extremity amputation, and relevant data, including basic information, patient characteristics, complications, comorbidities and pertinent laboratory test data, were extracted from the included studies. The literature quality assessment in this study utilized the Newcastle-Ottawa Scale to screen for high-quality literature, resulting in the inclusion of 16 cohort studies, all of which were of at least moderate quality. Meta-analysis of outcome indicators was conducted using the Stata 14.0 software. The results indicate that the overall amputation rate of lower extremities in patients with diabetic foot ulcers is 31% (0.25, 0.38). Among the 16 variables evaluated, gender (male), smoking history, body mass index (BMI), hypertension, cardiovascular disease, kidney disease, white blood cell count, haemoglobin and albumin levels were found to be correlated with the occurrence of lower extremity amputation in patients with diabetic foot ulcers. However, no significant correlation was observed between age, diabetes type, duration of diabetes, stroke, glycosylated haemoglobin, creatinine and total cholesterol levels and lower extremity amputation in patients with diabetic foot ulcers. This meta-analysis indicates that the overall amputation rate in patients with diabetic foot ulcers is 31%. Factors such as gender (male), smoking history, high BMI, hypertension, cardiovascular disease, kidney disease, white blood cell count, haemoglobin and albumin levels are identified as significant risk factors for lower extremity amputation in diabetic foot ulcer patients. These findings suggest that attention should be focused on these risk factors in patients with diabetic foot ulcers to reduce the risk of lower extremity amputation. Therefore, preventive and intervention measures targeting these risk factors are of significant importance in clinical practice. (Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier [CRD42024497538]).
Collapse
Affiliation(s)
- Yinli Luo
- Department of DermatologyYanbian University HospitalJilinChina
- Department of Medical CosmetologyYanbian University HospitalJilinChina
| | - Chang Liu
- Department of Medical CosmetologyYanbian University HospitalJilinChina
| | - Chuying Li
- Department of Medical CosmetologyYanbian University HospitalJilinChina
| | - Meitong Jin
- Department of DermatologyYanbian University HospitalJilinChina
- Department of Medical CosmetologyYanbian University HospitalJilinChina
| | - Longquan Pi
- Department of Medical CosmetologyYanbian University HospitalJilinChina
| | - Zhehu Jin
- Department of DermatologyYanbian University HospitalJilinChina
- Department of Medical CosmetologyYanbian University HospitalJilinChina
| |
Collapse
|
13
|
Wang S, Zhang Y, Zhong Y, Xue Y, Liu Z, Wang C, Kang DD, Li H, Hou X, Tian M, Cao D, Wang L, Guo K, Deng B, McComb DW, Merad M, Brown BD, Dong Y. Accelerating diabetic wound healing by ROS-scavenging lipid nanoparticle-mRNA formulation. Proc Natl Acad Sci U S A 2024; 121:e2322935121. [PMID: 38771877 PMCID: PMC11145207 DOI: 10.1073/pnas.2322935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/23/2024] Open
Abstract
Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.
Collapse
Affiliation(s)
- Siyu Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH43210
| | - Yichen Zhong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yonger Xue
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Zhengwei Liu
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Chang Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Diana D. Kang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH43210
| | - Haoyuan Li
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Xucheng Hou
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Meng Tian
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Dinglingge Cao
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Leiming Wang
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Kaiyuan Guo
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH43210
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH43210
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH43210
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Brian D. Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Yizhou Dong
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
14
|
Li Y, Leng Y, Liu Y, Zhong J, Li J, Zhang S, Li Z, Yang K, Kong X, Lao W, Bi C, Zhai A. Advanced multifunctional hydrogels for diabetic foot ulcer healing: Active substances and biological functions. J Diabetes 2024; 16:e13537. [PMID: 38599855 PMCID: PMC11006623 DOI: 10.1111/1753-0407.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 04/12/2024] Open
Abstract
AIM Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.
Collapse
Affiliation(s)
- Yuetong Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Leng
- Department of Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
15
|
Güven HE, Sensoy E, Citirik M. An Eye for A Foot: Alarming Unawareness of Diabetic Retinopathy Among Diabetic Foot Patients. INT J LOW EXTR WOUND 2024:15347346241238454. [PMID: 38523326 DOI: 10.1177/15347346241238454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
This study aims to determine the awareness of diabetic retinopathy in patients hospitalized for diabetic foot ulcers, examine their clinical and demographic characteristics, and evaluate their treatment needs. In this prospective study, 62 consequent patients with diabetic foot ulcers who were hospitalized for further treatment in Diabetic Foot Department between June and August 2023 were subjected to ophthalmological examinations. Detailed anterior and posterior segment examinations were performed. Clinical and demographic characteristics and HbA1c levels were recorded. Thirty-nine patients (62.9%) were male and 23 (37.1%) were female. The mean age was 61 ± 11.4 years. The patients had diabetes mellitus (DM) for an average of 19.2 ± 9.6 years. The average HbA1c value of the patients was 9 ± 2.3%. Minor amputation was performed in 35 of 62 patients (56.5%) during treatment. Thirty-one patients (50%) were unaware of the risk of diabetic retinopathy. Of those "unaware" 31 patients, 26 (83.9%) had diabetic retinopathy. Diabetic retinopathy was detected in 57 patients (91.9%) and 3-month interval ophthalmological follow-up screening was recommended for 77 eyes. Eighty percent of the patients never had ophthalmological examination. Intravitreal (IV) injection was performed in 44 eyes, panretinal photocoagulation (PRP) in 2 eyes, and intravenous injection + PRP + vitreoretinal surgery in one eye. Diabetic foot ulcers and diabetic retinopathy are often accompanied by each other. Patients should be informed about this and strongly encouraged to undergo routine ophthalmological examinations, especially when they have advanced diabetic foot disease. Diabetic foot surgeons should keep in mind that a poor eye cannot detect diabetic foot problems.
Collapse
Affiliation(s)
- Hikmet Erhan Güven
- Department of General Surgery - Chronic Wounds and Diabetic Foot Department, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey
| | - Eyüpcan Sensoy
- Department of Ophthalmology, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey
| | - Mehmet Citirik
- Department of Ophthalmology, University of Health Sciences, Ankara Etlik City Hospital, Ankara, Turkey
| |
Collapse
|
16
|
Zheng Y, Yang D, Gao B, Huang S, Tang Y, Wa Q, Dong Y, Yu S, Huang J, Huang S. A DNA-inspired injectable adhesive hydrogel with dual nitric oxide donors to promote angiogenesis for enhanced wound healing. Acta Biomater 2024; 176:128-143. [PMID: 38278340 DOI: 10.1016/j.actbio.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Chronic diabetic wounds are a severe complication of diabetes, often leading to high treatment costs and high amputation rates. Numerous studies have revealed that nitric oxide (NO) therapy is a promising option because it favours wound revascularization. Here, base-paired injectable adhesive hydrogels (CAT) were prepared using adenine- and thymine-modified chitosan (CSA and CST). By further introducing S-nitrosoglutathione (GSNO) and binary l-arginine (bArg), we obtained a NO sustained-release hydrogel (CAT/bArg/GSON) that was more suitable for the treatment of chronic wounds. The results showed that the expression of HIF-1α and VEGF was upregulated in the CAT/bArg/GSON group, and improved blood vessel regeneration was observed, indicating an important role of NO. In addition, the research findings revealed that following treatment with the CAT/bArg/GSON hydrogel, the viability of Staphylococcus aureus and Escherichia coli decreased to 14 ± 2 % and 6 ± 1 %, respectively. Moreover, the wound microenvironment was improved, as evidenced by a 60 ± 1 % clearance of DPPH. In particular, histological examination and immunohistochemical staining results showed that wounds treated with CAT/bArg/GSNO exhibited denser neovascularization, faster epithelial tissue regeneration, and thicker collagen deposition. Overall, this study proposes an effective strategy to prepare injectable hydrogel dressings with dual NO donors. The functionality of CAT/bArg/GSON has been thoroughly demonstrated in research on chronic wound vascular regeneration, indicating that CAT/bArg/GSON could be a potential option for promoting chronic wound healing. STATEMENT OF SIGNIFICANCE: This article prepares a chitosan hydrogel utilizing the principle of complementary base pairing, which offers several advantages, including good adhesion, biocompatibility, and flow properties, making it a good material for wound dressings. Loaded GSNO and bArg can steadily release NO and l-arginine through the degradation of the gel. Then, the released l-arginine not only possesses antioxidant properties but can also continue to generate a small amount of NO under the action of NOS. This design achieves a sustained and stable supply of NO at the wound site, maximizing the angiogenesis-promoting and antibacterial effects of NO. More neovascularization and abundant collagen were observed in the regenerated tissues. This study provides an effective repair hydrogel material for diabetic wound.
Collapse
Affiliation(s)
- Yongsheng Zheng
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Dong Yang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shuai Huang
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingde Wa
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yong Dong
- Department of Oncology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523106, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China.
| | - Sheng Huang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
17
|
Shen H, Zhang C, Meng Y, Qiao Y, Ma Y, Chen J, Wang X, Pan L. Biomimetic Hydrogel Containing Copper Sulfide Nanoparticles and Deferoxamine for Photothermal Therapy of Infected Diabetic Wounds. Adv Healthc Mater 2024; 13:e2303000. [PMID: 38063809 DOI: 10.1002/adhm.202303000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Indexed: 03/28/2024]
Abstract
Inducing cell migration from the edges to the center of a wound, promoting angiogenesis, and controlling bacterial infection are very important for diabetic wound healing. Incorporating growth factors and antibiotics into hydrogels for wound dressing is considered a potential strategy to meet these requirements. However, some present drawbacks greatly slow down their development toward application, such as the short half-life and high price of growth factors, low antibiotic efficiency against drug-resistant bacteria, insufficient ability of hydrogels to promote cell migration, etc. Deferoxamine (DFO) can upregulate the expression of HIF-1α, thus stimulating the secretion of angiogenesis-related endogenous growth factors. Copper sulfide (CuS) nanoparticles possess excellent antibacterial performance combined with photothermal therapy (PTT). Herein, DFO and CuS nanoparticles are incorporated into a biomimetic hydrogel, which mimics the structure and function of the extracellular matrix (ECM), abbreviated as DFO/CuS-ECMgel. This biomimetic hydrogel is expected to be able to promote cell adhesion and migration, be degraded by cell-secreted matrix metalloproteinases (MMPs), and then release DFO and CuS nanoparticles at the wound site to exert their therapeutic effects. As a result, the three crucial requirements for diabetic wound healing, "beneficial for cell adhesion and migration, promoting angiogenesis, effectively killing drug-resistant bacteria," can be achieved simultaneously.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ye Meng
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaona Wang
- Department of Internal Medicine of Jiangsu University Hospital Workers, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lei Pan
- Department of Breast Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| |
Collapse
|
18
|
Lu Y, Zhao D, Cao G, Yin S, Liu C, Song R, Ma J, Sun R, Wu Z, Liu J, Wu P, Wang Y. Research progress on and molecular mechanism of vacuum sealing drainage in the treatment of diabetic foot ulcers. Front Surg 2024; 11:1265360. [PMID: 38464666 PMCID: PMC10920358 DOI: 10.3389/fsurg.2024.1265360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are common chronic wounds and a common complication of diabetes. The foot is the main site of diabetic ulcers, which involve small and medium-sized arteries, peripheral nerves, and microcirculation, among others. DFUs are prone to coinfections and affect many diabetic patients. In recent years, interdisciplinary research combining medicine and material science has been increasing and has achieved significant clinical therapeutic effects, and the application of vacuum sealing drainage (VSD) in the treatment of DFUs is a typical representative of this progress, but the mechanism of action remains unclear. In this review, we integrated bioinformatics and literature and found that ferroptosis is an important signaling pathway through which VSD promotes the healing of DFUs and that System Xc-GSH-GPX4 and NAD(P)H-CoQ10-FSP1 are important axes in this signaling pathway, and we speculate that VSD is most likely to inhibit ferroptosis to promote DFU healing through the above axes. In addition, we found that some classical pathways, such as the TNF, NF-κB, and Wnt/β-catenin pathways, are also involved in the VSD-mediated promotion of DFU healing. We also compiled and reviewed the progress from clinical studies on VSD, and this information provides a reference for the study of VSD in the treatment of DFUs.
Collapse
Affiliation(s)
- Yongpan Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dejie Zhao
- Department of Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqi Cao
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ru Song
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiaxu Ma
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rui Sun
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhenjie Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Peng Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yibing Wang
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
19
|
Xiao Y, Dong X, Chen C, Cui Y, Chu T, Li X, Wang A. An integrated method for IgG N-glycans enrichment and analysis: Understanding the role of IgG glycosylation in diabetic foot ulcer. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123983. [PMID: 38163392 DOI: 10.1016/j.jchromb.2023.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Diabetic foot ulcer (DFU) is the most common and serious complication of diabetes, and its incidence, disability, and mortality rates are increasing worldwide. The pathogenesis of DFU is associated with dysregulated inflammation mediated by abnormal immunoglobulin G (IgG) glycosylation. In this study, we developed a comprehensive method for IgG N-linked glycosylation in the serum of DFU patients. Through analysis, we identified 31 IgG1 glycans, 32 IgG2 glycans, and 30 IgG4 glycans in the DFU serum. Furthermore, 13 IgG1 glycans, 12 IgG2 glycans, and 5 IgG4 glycans in the DFU groups were found to be significantly different from those of the control groups (p < 0.05). Of these, compared with the control group, one glycan was unique to DFU patients, and seven glycans were not detected in the DFU group. In terms of glycan characteristics, we observed a substantial decrease in galactosylation, sialylation and bisecting GlcNAcylation, and a significant increase in agalactosylation. Abnormal IgG N-glycosylation modifications were significantly associated with the chronic inflammation that is characteristic of DFU. Further, this is the first comprehensive analysis of subclass-specific IgG N-glycosylation in DFU patients, which not only fills the gap of DFU in terms of the pathological mechanisms related to IgG glycosylation but also may provide valuable clues for the immunotherapeutic pathway of DFU.
Collapse
Affiliation(s)
- Yanwei Xiao
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Xuefang Dong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Cui
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China
| | - Tongbin Chu
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Ganjiang Chinese Medicine Innovation Center, Nanchang 330100, China.
| | - Aoxue Wang
- The Second Hospital of Dalian Medical University, Dalian 116023, China.
| |
Collapse
|
20
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
21
|
Untari EK, Andayani TM, Yasin NM, Asdie RH. A Review of Patient's Knowledge and Practice of Diabetic Foot Self-Care. Malays J Med Sci 2024; 31:33-50. [PMID: 38456109 PMCID: PMC10917598 DOI: 10.21315/mjms2024.31.1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/04/2023] [Indexed: 03/09/2024] Open
Abstract
Since diabetic foot ulcers (DFUs) are common among diabetes patients, it is essential to increase patients' knowledge and self-care practices to ensure early recognition and management and reduce amputation risk. Therefore, the goal of this review was to identify the range and level of knowledge of people with DFUs and the type of self-care they undertake. A literature review was conducted using the electronic databases PubMed and Google scholar with 'diabetic foot', 'self-care', 'practice' and 'behaviour' as searching keywords. The identification and selection process were conducted to sort the eligible papers through the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The criteria are the original papers describing knowledge and practice in DFU; reporting knowledge and practice in their non-intervention studies; writing in English language; and publishing between years 2016 and 2022. The eligible papers were assessed using the strength of reporting observational studies in epidemiology (STROBE) checklist for appraising their quality. Twenty-two papers of 2,073 titles met the inclusion criteria and included in the review. The lowest and the highest quality score of included papers based on STROBE checklist are 11 and 26, respectively. The included papers showed various levels of knowledge from good to poor, which prominent the highest percentage are 88% (good knowledge) and 84.8% (poor knowledge). The majority of the foot-care activities found in the reviewed papers involved the following steps: washing, drying, applying moisturiser and trimming nails routinely. Those activity should be followed by checking the feet with a mirror for ulcers, looking for ingrown nails, choosing appropriate footwear, not walking barefoot and routinely consulting a healthcare provider. The knowledge levels were found variable and acceptable. Daily foot care, choosing the right footwear, foot activity and regular health checks should all be used to manage diabetes.
Collapse
Affiliation(s)
- Eka Kartika Untari
- Doctoral Graduate Program, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Pharmacy Department, Medical Faculty of Tanjungpura University, Pontianak, Indonesia
| | - Tri Murti Andayani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Rizka Humardewayanti Asdie
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada - Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
22
|
Ming A, Alhajjar A, Walter I, Piehler C, Hoetzsch J, Leuckert M, Clemens V, Petrow A, Siddiquee IM, Scurt FG, Isermann B, Mertens PR. Telemedical Monitoring of Plantar Temperature in Diabetic Patients at Risk of Foot Ulcers. DEUTSCHES ARZTEBLATT INTERNATIONAL 2024; 121:9-16. [PMID: 38015655 PMCID: PMC10916763 DOI: 10.3238/arztebl.m2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND The worldwide prevalence of diabetic foot ulcers (DFUs) among persons with diabetes is estimated at 6.3%, with an annual incidence of 9.1 to 26.1 million persons. The early detection of asymmetrical plantar temperature elevation, followed by reduction of weight-bearing on the affected foot, may be an effective mode of prevention. METHODS Patients with diabetes and peripheral neuropathy (DFU risk groups 2/3) were monitored for plantar abnormalities with a telemedical system consisting of sole inserts with temperature sensors and photographic documentation. An open, prospective, randomized controlled trial was performed to determine whether this system prevented DFUs. The intervention and control groups were also trained in ulcer prevention and observed in follow-up at 6-month intervals for 24 months. RESULTS 283 patients were recruited. In 85 137 observation days, DFUs arose in five patients in the control group (n = 143) and in no patient in the intervention group (n = 140). The primary outcome measure was the hazard ratio, which was calculated to be 0.015 (95% confidence interval [0; 19,717]; p = 0.25) after adjustment for age, sex, severity of neuropathy, and risk class. There were 239 alarms and 75 instructions to reduce weight-bearing on the foot. The subjects carried out the telemedical application on about 70% of the days of observation. Quality of life improved in both groups. CONCLUSION The tele-health system used in this trial is practical and enables the early detection of morbidity. Likely explanations for the unexpectedly low ulceration rate in this trial (and, in turn, for the lack of statistical significance) include the availability of a training program and regular follow-up examinations to patients in both arms of the trial, along with lower mobility levels due to the COVID pandemic.
Collapse
Affiliation(s)
- Antao Ming
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Ahmad Alhajjar
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Isabell Walter
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Claudia Piehler
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Jacqueline Hoetzsch
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Martin Leuckert
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Vera Clemens
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Andreas Petrow
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Istiyak M. Siddiquee
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Florian G. Scurt
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| | - Berend Isermann
- Institute for Laboratory Medicine, Clinical Chemistry, and Molecular Diagnosis, University Hospital Leipzig, University of Leipzig
| | - Peter R. Mertens
- Department of Nephrology and Hypertension, Diabetes, and Endocrinology, University Hospital, Otto-von-Guericke University, Magdeburg
| |
Collapse
|
23
|
Kaur A, Kumar R, Sharma A. Diabetic Retinopathy Leading to Blindness- A Review. Curr Diabetes Rev 2024; 20:e240124225997. [PMID: 38275038 DOI: 10.2174/0115733998274599231109034741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 01/27/2024]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes that damages the retina, leading to blindness. People with type 1 diabetes are at greater risk of developing DR than people with type 2 diabetes. Diabetic retinopathy may be divided into two primary categories: Proliferative diabetic retinopathy (PDR) and non-proliferative diabetic retinopathy (NPDR). There are multiple risk factors for the onset and progression of diabetic retinopathy, such as hypertension, obesity, smoking, duration of diabetes, and genetics. Numerous investigations have evaluated the levels of a wide range of inflammatory chemokines within DR patients' serum, vitreous, and aqueous fluids. In diabetic retinopathy, the vitreous fluid exhibited rises in angiogenic factors like platelet-derived growth factor (PDGF) or vascular endothelial growth factor (VEGF) or declines in antiangiogenic factors like pigment epithelium-derived factor (PEDF). For prevention of diabetic retinopathy, more physical activity as well as less sedentary behavior were linked to a reduced likelihood of DR. Supplementing with nutraceuticals containing vitamins (B1, B2, B6, B12, C, D, E, and l-methyl folate) and mineral (zinc) can help decrease or avoid an outbreak of DR. Only laser photocoagulation and Anti-vascular endothelial growth factor (Anti-VEGF) injections are advised as favorable therapies in severe retinopathy. When it comes to treating DR's VEGF levels, inflammation, oxidative stress, apoptosis, and angiogenesis, Traditional Chinese medicine (TCM) has an excellent future.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Amit Sharma
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
24
|
Lin WY, Ma CY, Fang WC, Wang TH, Shih YC, Lin CH, Wu SH, Perng CK, Chen CE. Dilute Povidone-Iodine Solution Soaking Is Ineffective in Improving Outcomes of Necrotizing Fasciitis Caused by Diabetic Foot. Ann Plast Surg 2024; 92:S37-S40. [PMID: 38285994 DOI: 10.1097/sap.0000000000003773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ABSTRACT Wound soaking is a physical debridement method that helps reduce bacterial colonization and consequently promotes wound healing. Although soaking in povidone-iodine solution was ineffective in reducing bacterial colonization in acute trauma wounds, there is still a lack of evidence supporting the efficacy of this method in treating severe soft tissue infection. This study aimed to explore the effects of wound soaking in 1% dilute povidone-iodine solution on necrotizing fasciitis caused by diabetic foot ulcers. We retrospectively reviewed and finally included 153 patients who were admitted because of diabetic foot ulcers after undergoing fasciotomy for necrotizing infection from January 2018 to December 2021. Results showed no statistical difference in the outcomes between patients in the soaking and nonsoaking groups. End-stage renal disease (P = 0.029) and high serum C-reactive protein level (P = 0.007) were the only independent factors for below-knee amputation in the univariate and multivariate logistic regression analyses. Therefore, soaking diabetic wounds with severe infection in 1% dilute povidone-iodine solution may not reduce the hospital length of stay, risk of below-knee amputation, and readmission rate.
Collapse
Affiliation(s)
- Wen-Yu Lin
- From the Department of Family Medicine, Taipei Medical University Hospital
| | - Chun-Yu Ma
- Division of Plastic and Reconstructive Surgery, Department of Surgery
| | - Wei-Chieh Fang
- Department of Medical Education, Taipei Veterans General Hospital
| | | | | | | | | | | | | |
Collapse
|
25
|
Soria B, Escacena N, Gonzaga A, Soria-Juan B, Andreu E, Hmadcha A, Gutierrez-Vilchez AM, Cahuana G, Tejedo JR, De la Cuesta A, Miralles M, García-Gómez S, Hernández-Blasco L. Cell Therapy of Vascular and Neuropathic Complications of Diabetes: Can We Avoid Limb Amputation? Int J Mol Sci 2023; 24:17512. [PMID: 38139339 PMCID: PMC10743405 DOI: 10.3390/ijms242417512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.
Collapse
Affiliation(s)
- Bernat Soria
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
| | - Natalia Escacena
- Fresci Consultants, Human Health Innovation, 08025 Barcelona, Spain
| | - Aitor Gonzaga
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
| | - Barbara Soria-Juan
- Reseaux Hôpitalieres Neuchatelois et du Jura, 2000 Neuchâtel, Switzerland
| | - Etelvina Andreu
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
- Department of Applied Physics, University Miguel Hernández Elche, 03202 Elche, Spain
| | - Abdelkrim Hmadcha
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), 46002 Valencia, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Ana Maria Gutierrez-Vilchez
- Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández, 03202 Elche, Spain
| | - Gladys Cahuana
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan R. Tejedo
- CIBERDEM Network Research Center for Diabetes and Associated Metabolic Diseases, Carlos III Health Institute, 28029 Madrid, Spain
- Department of Molecular Biology, University Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Manuel Miralles
- University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | | | - Luis Hernández-Blasco
- Institute of Biomedical Research ISABIAL of the University Miguel Hernández, Dr. Balmis General and University Hospital, 03010 Alicante, Spain
| |
Collapse
|
26
|
Viadé J, Nicolás M, Bundó M, Sirvent M, Riera C, Sabriá M. A novel assessment, diagnostic and treatment system for diabetic foot. J Foot Ankle Res 2023; 16:84. [PMID: 38001471 PMCID: PMC10675945 DOI: 10.1186/s13047-023-00687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND This report aims to present a novel system for the management of foot lesions in patients with diabetes. It was developed in the diabetic foot unit (DFU) of the Mutua de Terrassa University Hospital (HUMT) by primary care professionals, the Diabetic Foot Clinic (DFC), and during emergency cases treated by our group based on daily activities in patients with neuropathy or neuroischemia. BODY: This system considers five degrees of action based on two fixed variables: presence of infection and lesion depth. These two variables allowed the user to investigate aspects of the system until the overall action required by the pathology is made clear. These variables establish pathology stages of various severities that require different actions in aspects of care, management and treatment. CONCLUSION This tool facilitates diagnosis, treatment, and coordination among different members of a multidisciplinary team working in specialized hospital units, primary care centers, and emergency settings.
Collapse
Affiliation(s)
- Jordi Viadé
- Department of Endocrinology & Nutrition, Hospital Germans Trias I Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Maria Nicolás
- Private Practice Diabetic Foot Clinic, Autonomous University of Barcelona, Sabadell, Barcelona, Spain.
| | - Magdalena Bundó
- Primary Health Care Center Ronda Prim, Gerència d'Àmbit d'Atenció Primària Metropolitana Nord de Barcelona, Institut Català de La Salut, Mataró, Spain
| | - Marc Sirvent
- Department General, University Hospital of Granollers, CIBERCV, ISCIII, Granollers, Spain
| | - Clàudia Riera
- Department of Angiology and Vascular Surgery, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
| | - Miquel Sabriá
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
OuYang H, Tang Y, Yang F, Ren X, Yang J, Cao H, Yin Y. Platelet-rich plasma for the treatment of diabetic foot ulcer: a systematic review. Front Endocrinol (Lausanne) 2023; 14:1256081. [PMID: 38169990 PMCID: PMC10760804 DOI: 10.3389/fendo.2023.1256081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Background With the increasing incidence of diabetes, diabetic foot ulcer(DFU) has become one of the most common and serious complications in people with diabetes. DFU is associated with significant morbidity and mortality, and can also result in significant economic, social and public health burdens. Due to peripheral neuropathy, peripheral vascular disease, hyperglycemic environment, inflammatory disorders and other factors, the healing of DFU is impaired or delayed, resulting in the formation of diabetic chronic refractory ulcer. Because of these pathological abnormalities in DFU, it may be difficult to promote wound healing with conventional therapies or antibiotics, whereas platelet-rich plasma(PRP) can promote wound healing by releasing various bioactive molecules stored in platelets, making it more promising than traditional antibiotics. Therefore, the purpose of this systematic review is to summarize and analyze the efficacy of PRP in the treatment of DFU. Methods A literature search was undertaken in PubMed, CNKI, EMB-ASE, the Cochrane Library, the WanFang Database and the WeiPu Database by computer. Included controlled studies evaluating the efficacy of PRP in the treatment of diabetic foot ulcers. The data extraction and assessment are on the basis of PRISMA. Results Twenty studies were evaluated, and nineteen measures for the evaluation of the efficacy of PRP in DFU treatment were introduced by eliminating relevant duplicate measures. The efficacy measures that were repeated in various studies mainly included the rate of complete ulcer healing, the percentage of ulcer area reduction, the time required for ulcer healing, wound complications (including infection rate, amputation rate, and degree of amputation), the rate of ulcer recurrence, and the cost and duration of hospitalization for DFU, as well as subsequent survival and quality of life scores. One of the most important indicators were healing rate, ulcer area reduction and healing time. The meta-analysis found that PRP was significantly improve the healing rate(OR = 4.37, 95% CI 3.02-6.33, P < 0.001) and shorten the healing time(MD = -3.21, 95% CI -3.83 to -2.59,P < 0.001)of patients with DFU when compared to the conventional treatment, but there was no significant difference in reducing the of ulcer area(MD = 5.67, 95% CI -0.77 to 12.11,P =0.08>0.05 ). Conclusion The application of PRP to DFU can improve ulcer healing rate and shorten ulcer healing time, but more clinical data are needed to clarify some efficacy measures. At the same time, a standardized preparation process for PRP is essential.
Collapse
Affiliation(s)
- Hong OuYang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yi Tang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Fan Yang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xin Ren
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Jing Yang
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Hongyi Cao
- Geriatric Diseases Institute of Chengdu, Department of Endocrine and Metabolism, Chengdu Fifth People’s Hospital (The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Yifan Yin
- Department of Nephrology, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
28
|
Guan S, Hu T, Chen L, Li Z, Lin Z, Lei J, Shen J. A novel PPARβ/FFA1 dual agonist Y8 promotes diabetic wound healing. Eur J Pharmacol 2023; 958:175934. [PMID: 37562666 DOI: 10.1016/j.ejphar.2023.175934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Diabetes ulcer is one of the leading causes of disability and death in diabetics. Y8 [(2-(2-fluoro-4-((4-methyl-2-(4-(trifluoromethyl)phenyl)thiazol-5-yl)methoxy) phenoxy)acetic acid)], a dual agonist of peroxisome proliferation activated receptorβ (PPARβ) and free fatty acid receptor 1 (FFA1/FFAR1/GPR40), a new compound molecule with the potential for diabetes ulcer treatment. OBJECTIVE To research the effect of the dual target agonist Y8 and its mechanism of action in the treatment of diabetic ulcers. METHODS We have established a wound model in diabetic mice. After treatment with Y8, wound healing was evaluated by tissue pathology, reactive oxygen species (ROS) levels, and gene expression testing. Under high sugar conditions, the mechanism of Y8 affecting fibroblasts' proliferation and keratinocytes' migration is further studied. RESULTS We found that Y8 accelerated wound healing and shortened healing time in diabetic mice. Granulation tissue generation and extracellular matrix (ECM) deposition were significantly increased in Y8-treated mice. Mechanistically, Y8 promotes keratinocyte proliferation by activating PPARβ and migration of keratinocytes by triggering FFA1 in vitro. In addition, Y8 also decreased ROS levels in fibroblasts in vitro and in vivo by activating PPARβ, reducing their release of superoxide anions. CONCLUSION Our results suggest that PPARβ/FFA1 dual agonist Y8 has the effect of promoting the healing of diabetic ulcer wounds in vivo and in vitro, and its therapeutic effect is better than that of single-target agonists.
Collapse
Affiliation(s)
- Sujuan Guan
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Tingting Hu
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Liushan Chen
- Department of Breast, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zhenming Lin
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Juan Shen
- School of Bioscience and Biopharmaceutics, Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
29
|
Song L, Chang X, Hu L, Liu L, Wang G, Huang Y, Xu L, Jin B, Song J, Hu L, Zhang T, Wang Y, Xiao Y, Zhang F, Shi M, Liu L, Chen Q, Guo B, Zhou Y. Accelerating Wound Closure With Metrnl in Normal and Diabetic Mouse Skin. Diabetes 2023; 72:1692-1706. [PMID: 37683051 DOI: 10.2337/db23-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Impaired wound healing and ulcer complications are major causes of morbidity in patients with diabetes. Impaired wound healing is associated with increased inflammation and poor angiogenesis in diabetes patients. Here, we demonstrate that topical administration of a secreted recombinant protein (Meteorin-like [Metrnl]) accelerates wound epithelialization and angiogenesis in mice. We observed a significant increase in Metrnl expression during physiological wound healing; however, its expression remained low during diabetic wound healing. Functionally, the recombinant protein Metrnl significantly accelerated wound closure in normal and diabetic mice models including db/db, high-fat diet/streptozotocin (HFD/STZ), and STZ mice. Mechanistically, keratinocytes secrete quantities of Metrnl to promote angiogenesis; increase endothelial cell proliferation, migration, and tube formation; and enhance macrophage polarization to the M2 type. Meanwhile, M2 macrophages secrete Metrnl to further stimulate angiogenesis. Moreover, the keratinocyte- and macrophage-produced cytokine Metrnl drives postinjury angiogenesis and reepithelialization through activation of AKT phosphorylation (S473) in a KIT receptor tyrosine kinase (c-Kit)-dependent manner. In conclusion, our study suggests that Metrnl has a biological effect in accelerating wound closure through c-Kit-dependent angiogenesis and epithelialization. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xuebing Chang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Laying Hu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guifang Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yali Huang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bangming Jin
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianying Song
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Lixin Hu
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
30
|
Fratini C, Weaver E, Moroni S, Irwin R, Dallal Bashi YH, Uddin S, Casettari L, Wylie MP, Lamprou DA. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. BIOMATERIALS ADVANCES 2023; 153:213557. [PMID: 37441958 DOI: 10.1016/j.bioadv.2023.213557] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Costanza Fratini
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Sofia Moroni
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Shahid Uddin
- Immunocore Ltd., 92 Park Dr, Milton Park, Abingdon OX14 4RY, United Kingdom
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
31
|
Cai F, Chen W, Zhao R, Liu Y. The capacity of exosomes derived from adipose-derived stem cells to enhance wound healing in diabetes. Front Pharmacol 2023; 14:1063458. [PMID: 37808198 PMCID: PMC10551633 DOI: 10.3389/fphar.2023.1063458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The slow healing and nonhealing of diabetic wounds have long posed challenges for clinical practitioners. In the presence of elevated glucose levels, the body's regulatory mechanisms undergo alterations that impede normal wound healing processes, including cell proliferation, cytokine release, and growth factor activity. Consequently, the advancement of stem cell technology has sparked growing interest in utilizing stem cells and their derivatives as potential therapeutic agents to enhance diabetic wound healing. This paper aims to provide an academic review of the therapeutic effects of adipose-derived stem cell-EXOs (ADSC-EXOs) in diabetic wound healing. As a cell-free therapy, exosomes (EXOs) possess a multitude of proteins and growth factors that have been shown to be advantageous in promoting wound healing and mitigating the potential risks associated with stem cell therapy. By examining the current knowledge on ADSC-EXOs, this review seeks to offer insights and guidance for the potential application of EXOs in the treatment of diabetic wounds.
Collapse
Affiliation(s)
| | | | | | - Yi Liu
- Department of Burns and Plastic Surgery, and Wound Repair Surgery, The Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Liu JP, Yao XC, Xu ZY, Du XR, Zhao H. Learning curve of tibial cortex transverse transport: a cumulative sum analysis. J Orthop Surg Res 2023; 18:650. [PMID: 37658426 PMCID: PMC10474655 DOI: 10.1186/s13018-023-04149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVE This study aimed to describe the learning curve of surgeons performing tibial cortex transverse transport (TTT) and explore its safety and effectiveness during the initial stages of surgeon's learning. METHODS The clinical data of patients with diabetic foot ulcers classified as Wagner grade ≥ 2, who underwent TTT at our hospital from January 2020 to July 2021, were included in this retrospective analysis. The same physician performed all procedures. Patients were numbered according to the chronological order of their surgery dates. The cumulative sum and piecewise linear regression were used to evaluate the surgeon's learning curve, identify the cut-off point, and divide the patients into learning and mastery groups. A minimum follow-up period of 3 months was ensured for all patients. Baseline data, perioperative parameters, complications, and efficacy evaluation indicators were recorded and compared between the two groups. RESULTS Sixty patients were included in this study based on the inclusion and exclusion criteria. After completing 20 TTT surgeries, the surgeon reached the cut-off point of the learning curve. Compared to the learning group, the mastery group demonstrated a significant reduction in the average duration of the surgical procedure (34.88 min vs. 54.20 min, P < 0.05) along with a notable decrease in intraoperative fluoroscopy (9.75 times vs. 16.9 times, P < 0.05) frequency, while no significant difference was found regarding intraoperative blood loss (P = 0.318). Of the patients, seven (11.7%) experienced complications, with three (15%) and four cases (10%) occurring during the learning phase and the mastery phase, respectively. The postoperative ulcer area was significantly reduced, and the overall healing rate was 94.8%. Significant improvements were observed in postoperative VAS, ABI, and WIFI classification (P < 0.05). There were no significant differences in the occurrence of complications or efficacy indicators between the learning and mastery groups (P > 0.05). CONCLUSION Surgeons can master TTT after completing approximately 20 procedures. TTT is easy, secure, and highly efficient for treating foot ulcers. Furthermore, TTT's application by surgeons can achieve almost consistent clinical outcomes in the initial implementation stages, comparable to the mastery phase.
Collapse
Affiliation(s)
- Jun-Peng Liu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xing-Chen Yao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zi-Yu Xu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Ru Du
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Hui Zhao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
33
|
Nakhate VP, Akojwar NS, Sinha SK, Lomte AD, Dhobi M, Itankar PR, Prasad SK. Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach. J Tradit Complement Med 2023; 13:489-499. [PMID: 37693096 PMCID: PMC10492149 DOI: 10.1016/j.jtcme.2023.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/14/2023] [Accepted: 05/30/2023] [Indexed: 09/12/2023] Open
Abstract
Background and aim Acacia catechu Wild. (Fabaceae) barks are traditionally used in the treatment of diabetes and wounds. Therefore, the objective of the present study was to evaluate the wound healing potential of the alcoholic extract of A. catechu (EAC) in streptozotocin-induced diabetic mice. Experimental procedures EAC was first subjected to phytochemical estimations and standardization using (-) epicatechin as marker with the help of HPLC. Diabetes was induced in mice using streptozotocin and the wound healing potential of EAC was evaluated using excision and incision wound models on topical and oral treatment. Various biochemical parameters, in vivo antioxidants, cytokine profiling, VEGF, and histopathological examination were also performed. Further, molecular docking studies were performed using ligand (-) epicatechin on human inducible nitric oxide synthase. Results and conclusion Phytochemically, EAC showed the presence of tannins, flavonoids, phenolic compounds, and saponins, while the content of (-) epicatechin was reported to be 7.81% w/w. The maximum healing of wounds (91.84 ± 1.10%) was observed in mice treated with a combination of both topical (10% gel) and oral (extract at 200 mg/kg) followed by topically and orally treated groups respectively after 14 days of treatment. These groups also showed significant restoration of altered biochemical parameters, antioxidant enzymes and cytokines. The molecular docking studies confirmed the role of (-) epicatechin in stabilizing the human inducible nitric oxide synthase with inhibitor showing binding energy of -8.31 kcal/mol. The present study confirmed the role of (-) epicatechin as a major marker in diabetic wound healing potential of A. catechu.
Collapse
Affiliation(s)
- Vinayak P. Nakhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Natasha S. Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Saurabh K. Sinha
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Amarsinh D. Lomte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Prakash R. Itankar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
34
|
Sawaya AP, Vecin NM, Burgess JL, Ojeh N, DiBartolomeo G, Stone RC, Pastar I, Tomic-Canic M. Calreticulin: a multifunctional protein with potential therapeutic applications for chronic wounds. Front Med (Lausanne) 2023; 10:1207538. [PMID: 37692787 PMCID: PMC10484228 DOI: 10.3389/fmed.2023.1207538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Calreticulin is recognized as a multifunctional protein that serves an essential role in diverse biological processes that include wound healing, modification and folding of proteins, regulation of the secretory pathway, cell motility, cellular metabolism, protein synthesis, regulation of gene expression, cell cycle regulation and apoptosis. Although the role of calreticulin as an endoplasmic reticulum-chaperone protein has been well described, several studies have demonstrated calreticulin to be a highly versatile protein with an essential role during wound healing. These features make it an ideal molecule for treating a complex, multifactorial diseases that require fine tuning, such as chronic wounds. Indeed, topical application of recombinant calreticulin to wounds in multiple models of wound healing has demonstrated remarkable pro-healing effects. Among them include enhanced keratinocyte and fibroblast migration and proliferation, induction of extracellular matrix proteins, recruitment of macrophages along with increased granulation tissue formation, all of which are important functions in promoting wound healing that are deregulated in chronic wounds. Given the high degree of diverse functions and pro-healing effects, application of exogenous calreticulin warrants further investigation as a potential novel therapeutic option for chronic wound patients. Here, we review and highlight the significant effects of topical application of calreticulin on enhancing wound healing and its potential as a novel therapeutic option to shift chronic wounds into healing, acute-like wounds.
Collapse
Affiliation(s)
- Andrew P. Sawaya
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Faculty of Medical Sciences, The University of the West Indies, Bridgetown, Barbados
| | - Gabrielle DiBartolomeo
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
35
|
Adikusuma W, Zakaria ZA, Irham LM, Nopitasari BL, Pradiningsih A, Firdayani F, Septama AW, Chong R. Transcriptomics-driven drug repositioning for the treatment of diabetic foot ulcer. Sci Rep 2023; 13:10032. [PMID: 37340026 DOI: 10.1038/s41598-023-37120-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are a common complication of diabetes and can lead to severe disability and even amputation. Despite advances in treatment, there is currently no cure for DFUs and available drugs for treatment are limited. This study aimed to identify new candidate drugs and repurpose existing drugs to treat DFUs based on transcriptomics analysis. A total of 31 differentially expressed genes (DEGs) were identified and used to prioritize the biological risk genes for DFUs. Further investigation using the database DGIdb revealed 12 druggable target genes among 50 biological DFU risk genes, corresponding to 31 drugs. Interestingly, we highlighted that two drugs (urokinase and lidocaine) are under clinical investigation for DFU and 29 drugs are potential candidates to be repurposed for DFU therapy. The top 5 potential biomarkers for DFU from our findings are IL6ST, CXCL9, IL1R1, CXCR2, and IL10. This study highlights IL1R1 as a highly promising biomarker for DFU due to its high systemic score in functional annotations, that can be targeted with an existing drug, Anakinra. Our study proposed that the integration of transcriptomic and bioinformatic-based approaches has the potential to drive drug repurposing for DFUs. Further research will further examine the mechanisms by which targeting IL1R1 can be used to treat DFU.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Borneo Research on Algesia, Inflammation, and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicines and Health Sciences, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia.
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia.
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation, and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicines and Health Sciences, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Lalu Muhammad Irham
- Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | | | - Anna Pradiningsih
- Departement of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
| | - Firdayani Firdayani
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| |
Collapse
|
36
|
Zhao X, Fu L, Zou H, He Y, Pan Y, Ye L, Huang Y, Fan W, Zhang J, Ma Y, Chen J, Zhu M, Zhang C, Cai Y, Mou X. Optogenetic engineered umbilical cord MSC-derived exosomes for remodeling of the immune microenvironment in diabetic wounds and the promotion of tissue repair. J Nanobiotechnology 2023; 21:176. [PMID: 37269014 DOI: 10.1186/s12951-023-01886-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Angiogenesis and tissue repair in chronic non-healing diabetic wounds remain critical clinical problems. Engineered MSC-derived exosomes have significant potential for the promotion of wound healing. Here, we discuss the effects and mechanisms of eNOS-rich umbilical cord MSC exosomes (UCMSC-exo/eNOS) modified by genetic engineering and optogenetic techniques on diabetic chronic wound repair. METHODS Umbilical cord mesenchymal stem cells were engineered to express two recombinant proteins. Large amounts of eNOS were loaded into UCMSC-exo using the EXPLOR system under blue light irradiation. The effects of UCMSC-exo/eNOS on the biological functions of fibroblasts and vascular endothelial cells in vitro were evaluated. Full-thickness skin wounds were constructed on the backs of diabetic mice to assess the role of UCMSC-exo/eNOS in vascular neogenesis and the immune microenvironment, and to explore the related molecular mechanisms. RESULTS eNOS was substantially enriched in UCMSCs-exo by endogenous cellular activities under blue light irradiation. UCMSC-exo/eNOS significantly improved the biological functions of cells after high-glucose treatment and reduced the expression of inflammatory factors and apoptosis induced by oxidative stress. In vivo, UCMSC-exo/eNOS significantly improved the rate of wound closure and enhanced vascular neogenesis and matrix remodeling in diabetic mice. UCMSC-exo/eNOS also improved the inflammatory profile at the wound site and modulated the associated immune microenvironment, thus significantly promoting tissue repair. CONCLUSION This study provides a novel therapeutic strategy based on engineered stem cell-derived exosomes for the promotion of angiogenesis and tissue repair in chronic diabetic wounds.
Collapse
Affiliation(s)
- Xin Zhao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China
| | - Luoqin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Hai Zou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yichen He
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yi Pan
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luyi Ye
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Yilin Huang
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Weijiao Fan
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yingyu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Jinyang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, 310052, China
| | - Mingang Zhu
- Department of Dermatology, the First People's Hospital of Jiashan, Jiaxing, 314100, Zhejiang, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
37
|
Nouira S, Ach T, Bellazreg F, Ben Abdelkrim A. Predictive Factors for Lower Limb Amputation in Type 2 Diabetics. Cureus 2023; 15:e39987. [PMID: 37416023 PMCID: PMC10321308 DOI: 10.7759/cureus.39987] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a major public health problem. Foot-related complications are common in diabetic patients. The aim of this study is to identify predictive factors for lower limb amputation (LLA) in order to better identify this at-risk population. METHODS This was a cross-sectional study involving 134 patients who were hospitalised for the management of T2DM complicated by diabetic foot, in the department of endocrinology and diabetology. We included patients with T2DM whose diabetes was diagnosed 10 years ago or more, and who had a diabetic foot problem. Statistical differences between predictors of amputations were tested using: t-tests for numerical variables and chi-square tests for categorical variables. Significant variables were analysed by logistic regression to determine significant predictors. RESULTS The mean duration of diabetes was 17±7 years. We found that 70% of patients with LLA were older than 50 years (p<10-3). The prevalence of LLA was higher (p=0.015) in patients with diabetes for more than 20 years. We noted that 58% of patients who underwent LLA were hypertensive (p<10-3). The majority of patients with LLA (58%) had abnormal micro-albuminuria (p<10-3). We found that 70% (n=12) of patients with LLA had low-density protein cholesterol levels above the target value (p<10-3). Diabetic foot grade ≥4 (4 or 5) according to Wagner's classification, was present in 24% of amputee patients. Based on a 95% confidence interval level, the independent significant predictive factors for LLA in our patients were: T2DM for more than 20 years, hypertension and diabetic foot grade ≥4. CONCLUSIONS After multivariate analysis, the significant independent predictive factors associated with LLA were: T2DM for more than 20 years, hypertension, and diabetic foot grade ≥4. Early management of diabetic foot problems is therefore recommended to avoid amputations.
Collapse
Affiliation(s)
- Sawsen Nouira
- Department of Endocrinology, University Hospital of Farhat Hached, Sousse, TUN
| | - Taïeb Ach
- Department of Endocrinology, University Hospital of Farhat Hached, Sousse, TUN
| | - Foued Bellazreg
- Department of Infectious Diseases, University Hospital of Farhat Hached, Sousse, TUN
| | - Asma Ben Abdelkrim
- Department of Endocrinology, University Hospital of Farhat Hached, Sousse, TUN
| |
Collapse
|
38
|
Priyadarsini SL, Suresh M, Nikhila G. Assessment framework for the selection of a potential interactive dressing material for diabetic foot ulcer. Heliyon 2023; 9:e16476. [PMID: 37292346 PMCID: PMC10245162 DOI: 10.1016/j.heliyon.2023.e16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetic foot ulcer is a chronic health issue leading to lower leg amputations in approximately 15% of patients with diabetics. There are many factors directly or indirectly involved in the physiology of wound healing but being a multisystem disorder, wound healing in diabetic patients retard or worsen with heavy exudates and severe microbial infections. Wound management is of prime importance and is an emerging area to incorporate wound regenerative materials in natural or synthetic dressing materials along with proper microbial control. The article aim to identify suitable dressing materials which exhibit inherent wound healing properties at the same time flexible to be used as drug carriers for slow, consistent and effective delivery of 'functional drugs' to the wound environment. The authors selected nine materials from the popular and well accepted dressings of patient choice, analyzed them using graph theoretic approach and ranked them on the basis of graph index values obtained. A critical review has also been done on the basis of their ranking, providing insights to the advantages, disadvantage and potential of top 5 ranked candidate materials. Alginate, Honey, Medifoam, Saline, and Hydrogel dressings were the top five candidate materials ranked respectively, even then, the authors suggests that 'modified hydrogels' can have the potential to be used as a future candidate in DFU treatment as it is the only material (among the top ranked ones) which can effectively used as regenerative drug carrier, while providing all other wound healing properties in relative proportions. The proposed framework can be modified and applied in the selection and ranking of materials for any kind of applications both in industry and medical fields by identifying factors influencing the final outcome of study and by listing the characteristics of the materials selected.
Collapse
Affiliation(s)
| | - M. Suresh
- Amrita School of Business, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | - G. Nikhila
- Government Victoria College, University of Calicut, Palakkad, 678001, Kerala, India
| |
Collapse
|
39
|
Garcia-Diez AI, Tomas Batlle X, Perissinotti A, Isern-Kebschull J, Del Amo M, Soler JC, Bartolome A, Bencardino JT. Imaging of the Diabetic Foot. Semin Musculoskelet Radiol 2023; 27:314-326. [PMID: 37230131 DOI: 10.1055/s-0043-1764386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Diabetic foot complications are increasingly prevalent in the world, leading to significant morbidity and driving up associated health care costs. Complex pathophysiology and suboptimal specificity of current imaging modalities have made diagnosis challenging, mainly in the evaluation of superimposed foot infection to underlying arthropathy or other marrow lesions. Recent advances in radiology and nuclear medicine have the potential to streamline the assessment of diabetic foot complications. But we must be aware of the specific strengths and weaknesses of each modality, and their applications. This review offers a comprehensive approach to the spectrum of diabetic foot complications and their imaging appearances in conventional and advanced imaging studies, including optimal technical considerations for each technique. Advanced magnetic resonance imaging (MRI) techniques are highlighted, illustrating their complementary role to conventional MRI, in particular their potential impact in avoiding additional studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jenny Teresa Bencardino
- Division of Musculoskeletal Radiology, Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Yu X, Liu P, Li Z, Zhang Z. Function and mechanism of mesenchymal stem cells in the healing of diabetic foot wounds. Front Endocrinol (Lausanne) 2023; 14:1099310. [PMID: 37008908 PMCID: PMC10061144 DOI: 10.3389/fendo.2023.1099310] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Diabetes has become a global public health problem. Diabetic foot is one of the most severe complications of diabetes, which often places a heavy economic burden on patients and seriously affects their quality of life. The current conventional treatment for the diabetic foot can only relieve the symptoms or delay the progression of the disease but cannot repair damaged blood vessels and nerves. An increasing number of studies have shown that mesenchymal stem cells (MSCs) can promote angiogenesis and re-epithelialization, participate in immune regulation, reduce inflammation, and finally repair diabetic foot ulcer (DFU), rendering it an effective means of treating diabetic foot disease. Currently, stem cells used in the treatment of diabetic foot are divided into two categories: autologous and allogeneic. They are mainly derived from the bone marrow, umbilical cord, adipose tissue, and placenta. MSCs from different sources have similar characteristics and subtle differences. Mastering their features to better select and use MSCs is the premise of improving the therapeutic effect of DFU. This article reviews the types and characteristics of MSCs and their molecular mechanisms and functions in treating DFU to provide innovative ideas for using MSCs to treat diabetic foot and promote wound healing.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, Sichuan, China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zheng Li
- People’s Hospital of Jiulongpo District, Chongqing, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Girgis B, Carvalho D, Duarte JA. The effect of high-voltage monophasic pulsed current on diabetic ulcers and their potential pathophysiologic factors: A systematic review and meta-analysis. Wound Repair Regen 2023; 31:171-186. [PMID: 36507861 DOI: 10.1111/wrr.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/04/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
The present review was conducted to determine the efficacy of high-voltage monophasic pulsed current (HVMPC) in treating diabetic ulcers, assess its effect on skin lesions with each of the pathophysiologic factors potentially contributing to diabetic ulcers, evaluate its safety, and identify treatment parameters. Electronic search of PubMed, Scopus, PEDro and Google Scholar databases was conducted. The revised tool for assessing risk of bias in randomised trials (RoB 2), the risk of bias in non-randomised studies-of interventions (ROBINS-I) and the Joanna Briggs Institute (JBI) critical appraisal tool were used to assess risk of bias and methodological quality. Overall quality of evidence was determined using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) principles. Thirty-two studies matched the eligibility criteria, and included 1061 patients with 1103 skin lesions of selected aetiologies; 12 randomised controlled trials were included in quantitative synthesis. HVMPC plus standard wound care (SWC) likely increased the probability of complete wound healing of pressure ulcers (PrUs) compared with sham/no stimulation plus SWC; relative risk (RR) 2.08; 95% CI: [1.42, 3.04], p = 0.0002; I2 = 0%, p = 0.61; eight studies, 358 ulcers. Although conclusive evidence regarding the effect of HVMPC on diabetic ulcers was not found, collateral evidence might suggest a potential benefit. Direct evidence, with moderate certainty, may support its efficacy in treating PrUs, albeit few adverse reactions were reported. Other observations, moreover, might indicate that this efficacy may not be limited to PrUs. Nonetheless, several aspects remain to be clarified for safe and effective application of electrical stimulation for wound healing.
Collapse
Affiliation(s)
- Beshoy Girgis
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal
| | - Davide Carvalho
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar S. João, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | | |
Collapse
|
42
|
Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo TTKS, de Clerck E, Polivka J, Potuznik P, Polivka J, Stetkarova I, Kubatka P, Thumann G. Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications-risks and mitigation. EPMA J 2023; 14:21-42. [PMID: 36866156 PMCID: PMC9971534 DOI: 10.1007/s13167-023-00314-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
Proliferative diabetic retinopathy (PDR) the sequel of diabetic retinopathy (DR), a frequent complication of diabetes mellitus (DM), is the leading cause of blindness in the working-age population. The current screening process for the DR risk is not sufficiently effective such that often the disease is undetected until irreversible damage occurs. Diabetes-associated small vessel disease and neuroretinal changes create a vicious cycle resulting in the conversion of DR into PDR with characteristic ocular attributes including excessive mitochondrial and retinal cell damage, chronic inflammation, neovascularisation, and reduced visual field. PDR is considered an independent predictor of other severe diabetic complications such as ischemic stroke. A "domino effect" is highly characteristic for the cascading DM complications in which DR is an early indicator of impaired molecular and visual signaling. Mitochondrial health control is clinically relevant in DR management, and multi-omic tear fluid analysis can be instrumental for DR prognosis and PDR prediction. Altered metabolic pathways and bioenergetics, microvascular deficits and small vessel disease, chronic inflammation, and excessive tissue remodelling are in focus of this article as evidence-based targets for a predictive approach to develop diagnosis and treatment algorithms tailored to the individual for a cost-effective early prevention by implementing the paradigm shift from reactive medicine to predictive, preventive, and personalized medicine (PPPM) in primary and secondary DR care management.
Collapse
Affiliation(s)
- Martina Kropp
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Trong-Tin Kevin Steve Vo
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Eline de Clerck
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Jiri Polivka
- Department of Histology and Embryology, and Biomedical Centre, Faculty of Medicine in Plzen, Charles University, Prague, Czech Republic
| | - Pavel Potuznik
- Department of Neurology, University Hospital Plzen, and Faculty of Medicine in Plzen, Charles University, 100 34 Prague, Czech Republic
| | - Jiri Polivka
- Department of Neurology, University Hospital Plzen, and Faculty of Medicine in Plzen, Charles University, 100 34 Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, University Hospital Kralovske Vinohrady, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Gabriele Thumann
- Division of Experimental Ophthalmology, Department of Clinical Neurosciences, University of Geneva University Hospitals, 1205 Geneva, Switzerland ,Ophthalmology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
43
|
Blong J, Sharpe A, Cairney-Hill J, Gorman A, Allen M, Haycocks S, Stedman M, Robinson A, Heald AH, Gee E. Saving the foot: Simple orthopaedic surgical intervention demonstrates improved outcomes and reduced costs. Foot Ankle Surg 2023; 29:218-222. [PMID: 36646595 DOI: 10.1016/j.fas.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/08/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Forefoot ulceration in diabetes requires significant resources, with high cost and low rates of success. The authors present the results of tendon procedures (percutaneous toe tenotomy and percutaneous tendo-achilles lengthening) under local anaesthetic to adjust mechanics in patients with diabetic neuropathic forefoot ulceration. METHODS Retrospective review of electronic patient record of 19 patients (22 feet) undergoing local anaesthetic tendon procedures between April 2019 and April 2021 with a 12 month follow up period. Size of ulcer, rate of ulcer healing, complication rates and ulcer recurrence were recorded and compared to a population of conservatively-managed patients (14 patients, 15 feet) treated prior to the introduction of tendon procedures. All clinical information obtained from electronic patient records. RESULTS All patients undergoing tendon procedures achieved complete ulcer healing at a mean time of 3.3 weeks for toe tip ulcers (after toe tenotomy) and 4.5 weeks for metatarsal head ulcers (after Achilles lengthening). There were no admissions for diabetic foot sepsis, reduced recurrence, reduced amputation rates and no mortality. Of the conservatively managed cohort, only 3 of the 15 achieved ulcer resolution without recurrence within the 12 month study period. The cohort managed conservatively had an average cost of £ 9902 per patient, per annum. The intervention cost was £ 1211 per patient, saving an average of £ 8691 per patient, per annum with ulcer resolution (88 % reduction in costs). CONCLUSION Significant patient benefit, reduction in resource use and cost saving was seen with this simple intervention, which merits full evaluation in a clinical trial. LEVEL OF EVIDENCE Level-IV.
Collapse
Affiliation(s)
- Jessica Blong
- Department of Trauma and Orthopaedic Surgery, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Andrew Sharpe
- Department of Podiatry, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Jess Cairney-Hill
- Department of Trauma and Orthopaedic Surgery, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Andy Gorman
- Department of Podiatry, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Matthew Allen
- Department of Podiatry, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Samantha Haycocks
- Department of Podiatry, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Mike Stedman
- Res Consortium, Fosse House, East Anton Court, Icknield Way, Andover SP10 5RG, UK.
| | - Adam Robinson
- Endocrine Medicine, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Adrian H Heald
- Endocrine Medicine, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| | - Edward Gee
- Department of Trauma and Orthopaedic Surgery, Salford Royal Hospital, Stott Ln, Salford M6 8HD, UK.
| |
Collapse
|
44
|
John JV, Sharma NS, Tang G, Luo Z, Su Y, Weihs S, Shahriar SMS, Wang G, McCarthy A, Dyke J, Zhang YS, Khademhosseini A, Xie J. Nanofiber Aerogels with Precision Macrochannels and LL-37-Mimic Peptides Synergistically Promote Diabetic Wound Healing. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2206936. [PMID: 36714167 PMCID: PMC9881731 DOI: 10.1002/adfm.202206936] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 05/16/2023]
Abstract
Fast healing of diabetic wounds remains a major clinical challenge. Herein, this work reports a strategy to combine nanofiber aerogels containing precision macrochannels and the LL-37-mimic peptide W379 for rapid diabetic wound healing. Nanofiber aerogels consisting of poly(glycolide-co-lactide) (PGLA 90:10)/gelatin and poly-p-dioxanone (PDO)/gelatin short electrospun fiber segments were prepared by partially anisotropic freeze-drying, crosslinking, and sacrificial templating with three-dimensional (3D)-printed meshes, exhibiting nanofibrous architecture and precision micro-/macrochannels. Like human cathelicidin LL-37, W379 peptide at a concentration of 3 μg/mL enhanced the migration and proliferation of keratinocytes and dermal fibroblasts in a cell scratch assay and a proliferation assay. In vivo studies show that nanofiber aerogels with precision macrochannels can greatly promote cell penetration compared to aerogels without macrochannels. Relative to control and aerogels with and without macrochannels, adding W379 peptides to aerogels with precision macrochannels shows the best efficacy in healing diabetic wounds in mice in terms of cell infiltration, neovascularization, and re-epithelialization. The fast re-epithelization could be due to upregulation of phospho-extracellular signal-regulated kinase (p38 MAPK) after treatment with W379. Together, the approach developed in this work could be promising for the treatment of diabetic wounds and other chronic wounds.
Collapse
Affiliation(s)
- Johnson V. John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Zeyu Luo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Shelbie Weihs
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S. M. Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Alec McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Justin Dyke
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
45
|
Margolis DJ, Mitra N, Hoffstad O, Malay DS, Mirza ZK, Lantis JC, Lev-Tov HA, Kirsner RS, Ruhela D, Bhopale VM, Thom SR. Circulating endothelial precursor cells are associated with a healed diabetic foot ulcer evaluated in a prospective cohort study. Wound Repair Regen 2023; 31:128-134. [PMID: 36177665 PMCID: PMC10319405 DOI: 10.1111/wrr.13055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/24/2022] [Indexed: 02/01/2023]
Abstract
The goal of this multicentre study was to evaluate whether circulating endothelial precursor cells and microparticles can predict diabetic foot ulcer healing by the 16th week of care. We enrolled 207 subjects, and 40.0% (28.4, 41.5) healed by the 16th week of care. Using flow cytometry analysis, several circulating endothelial precursor cells measured at the first week of care were associated with healing after adjustment for wound area and wound duration. For example, CD34+ CD45dim , the univariate odds ratio was 1.19 (95% confidence interval: 0.88, 1.61) and after adjustment for wound area and wound duration, the odds ratio was (1.67 (1.16, 2.42) p = 0.006). A prognostic model using CD34+ CD45dim , wound area, and wound duration had an area under the curve of 0.75 (0.67, 0.82) and CD34+ CD45dim per initial wound area, an area under the curve of 0.72 (0.64, 0.79). Microparticles were not associated with a healed wound. Previous studies have indicated that circulating endothelial precursor cells measured at the first office visit are associated with a healed diabetic foot ulcer. In this multicentred prospective study, we confirm this finding, show the importance of adjusting circulating endothelial precursor cells measurements by wound area, and show circulating endothelial precursor cells per wound area is highly predictive of a healed diabetic foot ulcer by 16th week of care.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ole Hoffstad
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - D. Scot Malay
- Department of Surgery, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| | | | - John C. Lantis
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Hadar A. Lev-Tov
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida
| | - Robert S. Kirsner
- Department of Dermatology and Cutaneous Surgery, University of Miami School of Medicine, Miami, Florida
| | - Deepa Ruhela
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Veena M. Bhopale
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephan R. Thom
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
46
|
Bhardwaj H, Khute S, Sahu R, Jangde RK. Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing. Curr Drug Targets 2023; 24:1239-1259. [PMID: 37957907 DOI: 10.2174/0113894501260002231101080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Sulekha Khute
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Ram Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Rajendra Kumar Jangde
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| |
Collapse
|
47
|
Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: Mechanistic insights and therapeutic targets. World J Diabetes 2022; 13:696-716. [PMID: 36188143 PMCID: PMC9521443 DOI: 10.4239/wjd.v13.i9.696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/12/2022] [Accepted: 08/18/2022] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder resulting in an increased blood glucose level and prolonged hyperglycemia, causes long term health conse-quences. Chronic wound is frequently occurring in diabetes patients due to compromised wound healing capability. Management of wounds in diabetic patients remains a clinical challenge despite many advancements in the field of science and technology. Increasing evidence indicates that alteration of the biochemical milieu resulting from alteration in inflammatory cytokines and matrix metalloproteinase, decrease in fibroblast and keratinocyte functioning, neuropathy, altered leukocyte functioning, infection, etc., plays a significant role in impaired wound healing in diabetic people. Apart from the current pharmacotherapy, different other approaches like the use of conventional drugs, antidiabetic medication, antibiotics, debridement, offloading, platelet-rich plasma, growth factor, oxygen therapy, negative pressure wound therapy, low-level laser, extracorporeal shock wave bioengineered substitute can be considered in the management of diabetic wounds. Drugs/therapeutic strategy that induce angiogenesis and collagen synthesis, inhibition of MMPs, reduction of oxidative stress, controlling hyperglycemia, increase growth factors, regulate inflammatory cytokines, cause NO induction, induce fibroblast and keratinocyte proliferation, control microbial infections are considered important in controlling diabetic wound. Further, medicinal plants and/or phytoconstituents also offer a viable alternative in the treatment of diabetic wound. The focus of the present review is to highlight the molecular and cellular mechanisms, and discuss the drug targets and treatment strategies involved in the diabetic wound.
Collapse
Affiliation(s)
- Raja Chakraborty
- Institute of Pharmacy, Assam Don Bosco University, Kamrup 782402, Assam, India
| | - Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati 781026, Assam, India
| |
Collapse
|
48
|
Kim HJ, Kim WJ, Lee HS, Koh YY, Shin YB, Yeo ED. Clinical utility of skin perfusion pressure measurement in diabetic foot wounds: An observational study. Medicine (Baltimore) 2022; 101:e30454. [PMID: 36086746 PMCID: PMC10980428 DOI: 10.1097/md.0000000000030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
The degree of blood vessel stenosis significantly influences diabetic foot treatment. This study aimed to investigate the association between computed tomography angiography (CTA) stenosis and skin perfusion pressure (SPP), which are noninvasive vascular assessments used to evaluate diabetic foot wounds. Forty patients who reported diabetic foot wounds between November 2016 and December 2017 were included in the study. SPPand CTA were performed to evaluate the blood flow, and the rate of decrease in wound size was measured for the wounds corresponding to Meggitt-Wagner grade 1 at the first evaluation and 4-week intervals. The P value of the association between the degree of CTA stenosis and the SPP value was 0.915, and the P value of the association between CTA stenosis and decreasing rate of wound size was .235. There was no statistically significant association between SPP and the decreasing rate of wound size according to the degree of CTA stenosis. The association between SPP value and the decreasing rate of wound size was statistically significant (P < .05). The decreasing rate in diabetic foot wound size was significantly associated with SPP but not with CTA stenosis.
Collapse
Affiliation(s)
- Hak Jun Kim
- Department of Orthopaedic Surgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Woo Jong Kim
- Department of Orthopaedic Surgery, Soonchunhyang University, Cheonan Hospital, CheonanRepublic of Korea
| | - Hong Seop Lee
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Yeong Yoon Koh
- Department of Orthopedic Surgery, VHS Medical Center, Seoul, Republic of Korea
| | - Young Bin Shin
- Department of Orthopedic Surgery, VHS Medical Center, Seoul, Republic of Korea
| | - Eui Dong Yeo
- Department of Orthopedic Surgery, VHS Medical Center, Seoul, Republic of Korea
| |
Collapse
|
49
|
Zhang C, Huang L, Wang X, Zhou X, Zhang X, Li L, Wu J, Kou M, Cai C, Lian Q, Zhou X. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: a phase I pilot study with a 3-year follow-up. Stem Cell Res Ther 2022; 13:451. [PMID: 36064461 PMCID: PMC9446755 DOI: 10.1186/s13287-022-03143-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic foot ulcer (DFU) is a serious chronic complication of diabetes mellitus that contributes to 85% of nontraumatic lower extremity amputations in diabetic patients. Preliminary clinical benefits have been shown in treatments based on mesenchymal stem cells for patients with DFU or peripheral arterial disease (PAD). However, the long-term safety and benefits are unclear for patients with both DFU and PAD who are not amenable to surgical revascularization. Methods In this phase I pilot study, 14 patients with PAD and incurable DFU were enrolled to assess the safety and efficacy of human umbilical cord mesenchymal stem cell (hUC-MSC) administration based on conservative treatments. All patients received topical and intravenous administrations of hUC-MSCs at a dosage of 2 × 105 cells/kg with an upper limit of 1 × 107 cells for each dose. The adverse events during treatment and follow-up were documented for safety assessments. The therapeutic efficacy was assessed by ulcer healing status, recurrence rate, and 3-year amputation-free rate in the follow-up phase. Results The safety profiles were favorable. Only 2 cases of transient fever were observed within 3 days after transfusion and considered possibly related to hUC-MSC administration intravenously. Ulcer disclosure was achieved for more than 95% of the lesion area for all patients within 1.5 months after treatment. The symptoms of chronic limb ischaemia were alleviated along with a decrease in Wagner scores, Rutherford grades, and visual analogue scale scores. No direct evidence was observed to indicate the alleviation of the obstruction in the main vessels of target limbs based on computed tomography angiography. The duration of rehospitalization for DFU was 2.0 ± 0.6 years. All of the patients survived without amputation due to the recurrence of DFU within 3 years after treatments. Conclusions Based on the current pilot study, the preliminary clinical benefits of hUC-MSCs on DFU healing were shown, including good tolerance, a shortened healing time to 1.5 months and a favorable 3-year amputation-free survival rate. The clinical evidence in the current study suggested a further phase I/II study with a larger patient population and a more rigorous design to explore the efficacy and mechanism of hUC-MSCs on DFU healing. Trial registration: The current study was registered retrospectively on 22 Jan 2022 with the Chinese Clinical Trial Registry (ChiCTR2200055885), http://www.chictr.org.cn/showproj.aspx?proj=135888 Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03143-0.
Collapse
Affiliation(s)
- Che Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.,Clinical Research Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Li Huang
- Clinical Research Centre, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China.,Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaofen Wang
- Department of Endocrinology, Affiliated Taihe Hospital of Hubei University of Medicine, Shiyan, China
| | - Xiaoya Zhou
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoxian Zhang
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ling Li
- Clinical Data Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jieying Wu
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Meng Kou
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Qizhou Lian
- Guangzhou Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China. .,Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Xihui Zhou
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
50
|
Liu H, Wu B, Shi X, Cao Y, Zhao X, Liang D, Qin Q, Liang X, Lu W, Wang D, Liu J. Aerobic exercise-induced circulating extracellular vesicle combined decellularized dermal matrix hydrogel facilitates diabetic wound healing by promoting angiogenesis. Front Bioeng Biotechnol 2022; 10:903779. [PMID: 36082169 PMCID: PMC9445842 DOI: 10.3389/fbioe.2022.903779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Insufficient blood supply results in unsatisfactory wound healing, especially for challenging wound repair such as diabetic wound defects. Regular exercise training brings a lot of benefits to cardiovascular fitness and metabolic health including attenuation of T2DM progression. Circulating extracellular vesicles (EVs) are postulated to carry a variety of signals involved in tissue crosstalk by their modified cargoes, representing novel mechanisms for the effects of exercise. Prominently, both acute and chronic aerobic exercise training can promote the release of exercise-induced cytokines and enhance the angiogenic function of circulating angiogenic cell–derived EVs.Methods: We investigated the possible angiogenesis potential of aerobic exercise-induced circulating EVs (EXE-EVs) on diabetic wound healing. Circulating EVs were isolated from the plasma of rats subjected to 4 weeks of moderate aerobic exercise or sedentariness 24 h after the last training session. The therapeutic effect of circulating EVs was evaluated in vitro by proliferation, migration, and tube formation assays of human umbilical vein endothelial cells (HUVECs), as well as in vivo by quantification of angiogenesis and cutaneous wound healing in diabetic rats.Results: The number of circulating EVs did not change significantly in exercised rats 24 h post-exercise in comparison with the sedentary rats. Nevertheless, EXE-EVs showed remarkable pro-angiogenic effect by augmenting proliferation, migration, and tube formation of HUVECs. Furthermore, the findings of animal experiments revealed that the EXE-EVs delivered by decellularized dermal matrix hydrogel (DDMH) could significantly promote the repair of skin defects through stimulating the regeneration of vascularized skin.Discussion: The present study is the first attempt to demonstrate that aerobic exercise-induced circulating EVs could be utilized as a cell-free therapy to activate angiogenesis and promote diabetic wound healing. Our findings suggest that EXE-EVs may stand for a potential strategy for diabetic soft tissue wound repair.
Collapse
Affiliation(s)
- Haifeng Liu
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Bing Wu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xin Shi
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yanpeng Cao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xin Zhao
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
| | - Daqiang Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qihuang Qin
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xinzhi Liang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Daping Wang
- Guangzhou Medical University, Guangzhou, China
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Daping Wang, ; Jun Liu,
| | - Jun Liu
- Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou Hospital, Hengyang Medical School, University of South China, Chenzhou, China
- *Correspondence: Daping Wang, ; Jun Liu,
| |
Collapse
|