1
|
Conte G, Bergonti M, Probst V, Morita H, Tfelt-Hansen J, Behr ER, Kengo K, Arbelo E, Crotti L, Sarquella-Brugada G, Wilde AAM, Calò L, Sarkozy A, de Asmundis C, Mellor G, Migliore F, Letsas K, Vicentini A, Levinstein M, Berne P, Chen SA, Veltmann C, Biernacka EK, Carvalho P, Kabawata M, Sojema K, Gonzalez MC, Tse G, Thollet A, Svane J, Caputo ML, Scrocco C, Kamakura T, Pardo LF, Lee S, Juárez CK, Martino A, Lo LW, Monaco C, Reyes-Quintero ÁE, Martini N, Oezkartal T, Klersy C, Brugada J, Schwartz PJ, Brugada P, Belhassen B, Auricchio A. aTrial arrhythmias in inhEriTed aRrhythmIa Syndromes: results from the TETRIS study. Europace 2024; 26:euae288. [PMID: 39527076 PMCID: PMC11630530 DOI: 10.1093/europace/euae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS Little is known about the distribution and clinical course of patients with inherited arrhythmia syndrome (IAS) and concomitant atrial arrhythmias (AAs). The aim of the study is (i) to characterize the distribution of AAs in patients with IAS and (ii) evaluate the long-term clinical course of these patients. METHODS AND RESULTS An international multicentre study was performed and involved 28 centres in 16 countries. Inclusion criteria were (i) IAS and (ii) electrocardiographic documentation of AAs. The primary endpoint was a composite of sudden cardiac death, sustained ventricular arrhythmias (VAs), or appropriate implantable cardioverter defibrillator (ICD) interventions. Strokes, inappropriate ICD shocks due to AAs, and the occurrence of sinus node dysfunction were assessed. A total of 522 patients with IAS and AAs were included. Most patients were diagnosed with Brugada syndrome (n = 355, 68%) and long QT syndrome (n = 93, 18%). The remaining patients (n = 71, 14%) presented with short QT syndrome, early repolarization syndrome, catecholaminergic polymorphic ventricular tachycardia, progressive cardiac conduction diseases, or idiopathic ventricular fibrillation. Atrial fibrillation was the most prevalent AA (82%), followed by atrial flutter (9%) and atrial tachycardia (9%). Atrial arrhythmia was the first clinical manifestation of IAS in 52% of patients. More than one type of AA was documented in 23% of patients. Nine patients (3%) experienced VA before the diagnosis of IAS due the use of anti-arrhythmic medications taken for the AA. The incidence of the primary endpoint was 1.4% per year, with a two-fold increase in patients who experienced their first AA before the age of 20 (odds ratio 2.2, P = 0.043). This was consistent across the different forms of IAS. Inappropriate ICD shock due to AAs was reported in 2.8% of patients, strokes in 4.4%, and sinus node dysfunction in 9.6%. CONCLUSION Among patients with IAS and AAs, AA is the first clinical manifestation in about half of the cases, with more than one form of AAs present in one-fourth of the patients. The occurrence of AA earlier in life may be associated with a higher risk of VAs. The occurrence of stroke and sinus node dysfunction is not infrequently in this cohort.
Collapse
MESH Headings
- Humans
- Female
- Male
- Adult
- Middle Aged
- Atrial Fibrillation/diagnosis
- Atrial Fibrillation/physiopathology
- Atrial Fibrillation/epidemiology
- Atrial Fibrillation/therapy
- Defibrillators, Implantable
- Electrocardiography
- Prevalence
- Death, Sudden, Cardiac/prevention & control
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Arrhythmias, Cardiac/therapy
- Arrhythmias, Cardiac/diagnosis
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/epidemiology
- Brugada Syndrome/physiopathology
- Brugada Syndrome/therapy
- Brugada Syndrome/complications
- Brugada Syndrome/diagnosis
- Long QT Syndrome/diagnosis
- Long QT Syndrome/physiopathology
- Long QT Syndrome/therapy
- Young Adult
- Europe/epidemiology
- Adolescent
- Risk Factors
- Tachycardia, Ventricular/physiopathology
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/therapy
- Atrial Flutter/diagnosis
- Atrial Flutter/physiopathology
- Atrial Flutter/epidemiology
- Atrial Flutter/therapy
- Aged
- Electric Countershock/instrumentation
Collapse
Affiliation(s)
- Giulio Conte
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via la Santa 1, 6900 Lugano, Switzerland
| | - Marco Bergonti
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Vincent Probst
- Cardiology Department, L’institut du thorax CHU de Nantes, Nantes, France
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jacob Tfelt-Hansen
- ERN GUARDHEART
- Cardiology Department, Rigshospitalet—Copenhagen University Hospital, Copenhagen, Denmark
| | - Elijah R Behr
- ERN GUARDHEART
- Cardiovascular and Genomics Research Institute, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Kusano Kengo
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Elena Arbelo
- ERN GUARDHEART
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Lia Crotti
- IRCCS, Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
- Department of Medicine and Surgery, University Milano Bicocca, Milan, Italy
| | - Georgia Sarquella-Brugada
- ERN GUARDHEART
- Pediatric Arrhythmias, Inherited Cardiac Diseases and Sudden Death Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Arthur A M Wilde
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leonardo Calò
- Cardiology Department, Policlinico Casilino, Rome, Italy
| | - Andrea Sarkozy
- Cardiology Department,University Hospital Antwerp, Antwerp, Belgium
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- ERN GUARDHEART
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Greg Mellor
- Cardiology Department, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | | | | | - Moises Levinstein
- Cardiology Department, Nacional de Cardiología ‘Ignacio Chávez’, Mexico City, Mexico
| | - Paola Berne
- Cardiology Department, Ospedale Santissima Annunziata, Azienda Ospedaliera Universitaria, Sassari, Italy
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital and Cardiovascular Center, Taichung Veterans General Hospital, National Yang Ming Chiao Tung University and National Chung Hsing University, Taipei, Taiwan
| | | | | | - Paula Carvalho
- Cardiology Department, University Hospital San Luigi Gonzaga di Orbassano, Orbassano, Italy
| | - Mihoko Kabawata
- Department of Cardiovascular Disease, AOI Universal Hospital, Kanagawa, Japan
| | - Kyoko Sojema
- Department Cardiovascular Medicine, Kyorin University, Kyorin, Japan
| | - Maria Cecilia Gonzalez
- Pediatric Cardiology and Electrophysiology, Sainte Justine—University of Montreal, Montreal, Canada
| | - Gary Tse
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Aurélie Thollet
- Cardiology Department, L’institut du thorax CHU de Nantes, Nantes, France
| | - Jesper Svane
- Cardiology Department, Rigshospitalet—Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Luce Caputo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Chiara Scrocco
- Cardiovascular and Genomics Research Institute, St. George’s, University of London and St. George’s University Hospitals NHS Foundation Trust, London, UK
| | - Tsukasa Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Livia Franchetti Pardo
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Sharen Lee
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Cardiovascular Analytics Department, Hong Kong SAR, China
| | | | | | - Li-Wei Lo
- Heart Rhythm Center, Cardiovascular Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cinzia Monaco
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Álvaro E Reyes-Quintero
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nicolò Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tardu Oezkartal
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
| | - Catherine Klersy
- Biostatistics & Clinical Trial Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Josep Brugada
- Arrhythmia Section, Cardiology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Peter J Schwartz
- IRCCS, Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel—Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Bernard Belhassen
- Heart Institute, Hadassah Medical Center, Jerusalem, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Angelo Auricchio
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Via Tesserete 48, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Via la Santa 1, 6900 Lugano, Switzerland
| |
Collapse
|
2
|
Lampert R, Chung EH, Ackerman MJ, Arroyo AR, Darden D, Deo R, Dolan J, Etheridge SP, Gray BR, Harmon KG, James CA, Kim JH, Krahn AD, La Gerche A, Link MS, MacIntyre C, Mont L, Salerno JC, Shah MJ. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm 2024; 21:e151-e252. [PMID: 38763377 DOI: 10.1016/j.hrthm.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Youth and adult participation in sports continues to increase, and athletes may be diagnosed with potentially arrhythmogenic cardiac conditions. This international multidisciplinary document is intended to guide electrophysiologists, sports cardiologists, and associated health care team members in the diagnosis, treatment, and management of arrhythmic conditions in the athlete with the goal of facilitating return to sport and avoiding the harm caused by restriction. Expert, disease-specific risk assessment in the context of athlete symptoms and diagnoses is emphasized throughout the document. After appropriate risk assessment, management of arrhythmias geared toward return to play when possible is addressed. Other topics include shared decision-making and emergency action planning. The goal of this document is to provide evidence-based recommendations impacting all areas in the care of athletes with arrhythmic conditions. Areas in need of further study are also discussed.
Collapse
Affiliation(s)
- Rachel Lampert
- Yale University School of Medicine, New Haven, Connecticut
| | - Eugene H Chung
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Rajat Deo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joe Dolan
- University of Utah, Salt Lake City, Utah
| | | | - Belinda R Gray
- University of Sydney, Camperdown, New South Wales, Australia
| | | | | | | | - Andrew D Krahn
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Andre La Gerche
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | | | - Lluis Mont
- Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jack C Salerno
- University of Washington School of Medicine, Seattle, Washington
| | - Maully J Shah
- Childrens Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Roberts JD, Chalazan B, Andrade JG, Macle L, Nattel S, Tadros R. Clinical Genetic Testing for Atrial Fibrillation: Are We There Yet? Can J Cardiol 2024; 40:540-553. [PMID: 38551553 DOI: 10.1016/j.cjca.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/19/2023] [Indexed: 04/13/2024] Open
Abstract
Important progress has been made toward unravelling the complex genetics underlying atrial fibrillation (AF). Initial studies were aimed to identify monogenic causes; however, it has become increasingly clear that the most common predisposing genetic substrate for AF is polygenic. Despite intensive investigations, there is robust evidence for rare variants for only a limited number of genes and cases. Although the current yield for genetic testing in early onset AF might be modest, there is an increasing appreciation that genetic culprits for potentially life-threatening ventricular cardiomyopathies and channelopathies might initially present with AF. The potential clinical significance of this recognition is highlighted by evidence that suggests that identification of a pathogenic or likely pathogenic rare variant in a patient with early onset AF is associated with an increased risk of death. These findings suggest that it might be warranted to screen patients with early onset AF for these potentially more sinister cardiac conditions. Beyond facilitating the early identification of genetic culprits associated with potentially malignant phenotypes, insight into underlying AF genetic substrates might improve the selection of patients for existing therapies and guide the development of novel ones. Herein, we review the evidence that links genetic factors to AF, then discuss an approach to using genetic testing for early onset AF patients in the present context, and finally consider the potential value of genetic testing in the foreseeable future. Although further work might be necessary before recommending uniform integration of genetic testing in cases of early onset AF, ongoing research increasingly highlights its potential contributions to clinical care.
Collapse
Affiliation(s)
- Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Brandon Chalazan
- Division of Biochemical Genetics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason G Andrade
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurent Macle
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
4
|
Polak M, Wieczorek J, Botor M, Auguścik-Duma A, Hoffmann A, Wnuk-Wojnar A, Gawron K, Mizia-Stec K. Principles and Limitations of miRNA Purification and Analysis in Whole Blood Collected during Ablation Procedure from Patients with Atrial Fibrillation. J Clin Med 2024; 13:1898. [PMID: 38610663 PMCID: PMC11012484 DOI: 10.3390/jcm13071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: MicroRNA (miRNA) have the potential to be non-invasive and attractive biomarkers for a vast number of diseases and clinical conditions; however, a reliable analysis of miRNA expression in blood samples meets a number of methodological challenges. In this report, we presented and discussed, specifically, the principles and limitations of miRNA purification and analysis in blood plasma samples collected from the left atrium during an ablation procedure on patients with atrial fibrillation (AF). Materials and Methods: Consecutive patients hospitalized in the First Department of Cardiology for pulmonary vein ablation were included in this study (11 with diagnosed paroxysmal AF, 14 with persistent AF, and 5 without AF hospitalized for left-sided WPW ablation-control group). Whole blood samples were collected from the left atrium after transseptal puncture during the ablation procedure of AF patients. Analysis of the set of miRNA molecules was performed in blood plasma samples using the MIHS-113ZF-12 kit and miScript microRNA PCR Array Human Cardiovascular Disease. Results: The miRNS concentrations were in the following ranges: paroxysmal AF: 7-23.1 ng/µL; persistent AF: 4.9-66.8 ng/µL; controls: 6.3-10.6 ng/µL. The low A260/280 ratio indicated the protein contamination and the low A260/A230 absorbance ratio suggested the contamination by hydrocarbons. Spectrophotometric measurements also indicated low concentration of nucleic acids (<10 ng/µL). Further steps of analysis revealed that the concentration of cDNA after the Real-Time PCR (using the PAXgene RNA Blood kit) reaction was higher (148.8 ng/µL vs. 68.4 ng/µL) and the obtained absorbance ratios (A260/A280 = 2.24 and A260/A230 = 2.23) indicated adequate RNA purity. Conclusions: Although developments in miRNA sequencing and isolation technology have improved, detection of plasma-based miRNA, low RNA content, and sequencing bias introduced during library preparation remain challenging in patients with AF. The measurement of the quantity and quality of the RNA obtained is crucial for the interpretation of an efficient RNA isolation.
Collapse
Affiliation(s)
- Mateusz Polak
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Wieczorek
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguścik-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Hoffmann
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Wnuk-Wojnar
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
5
|
Marcoux E, Sosnowski D, Ninni S, Mackasey M, Cadrin-Tourigny J, Roberts JD, Olesen MS, Fatkin D, Nattel S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2023; 16:675-698. [PMID: 38018478 DOI: 10.1161/circep.123.003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Atrial cardiomyopathy is a condition that causes electrical and contractile dysfunction of the atria, often along with structural and functional changes. Atrial cardiomyopathy most commonly occurs in conjunction with ventricular dysfunction, in which case it is difficult to discern the atrial features that are secondary to ventricular dysfunction from those that arise as a result of primary atrial abnormalities. Isolated atrial cardiomyopathy (atrial-selective cardiomyopathy [ASCM], with minimal or no ventricular function disturbance) is relatively uncommon and has most frequently been reported in association with deleterious rare genetic variants. The genes involved can affect proteins responsible for various biological functions, not necessarily limited to the heart but also involving extracardiac tissues. Atrial enlargement and atrial fibrillation are common complications of ASCM and are often the predominant clinical features. Despite progress in identifying disease-causing rare variants, an overarching understanding and approach to the molecular pathogenesis, phenotypic spectrum, and treatment of genetic ASCM is still lacking. In this review, we aim to analyze the literature relevant to genetic ASCM to understand the key features of this rather rare condition, as well as to identify distinct characteristics of ASCM and its arrhythmic complications that are related to specific genotypes. We outline the insights that have been gained using basic research models of genetic ASCM in vitro and in vivo and correlate these with patient outcomes. Finally, we provide suggestions for the future investigation of patients with genetic ASCM and improvements to basic scientific models and systems. Overall, a better understanding of the genetic underpinnings of ASCM will not only provide a better understanding of this condition but also promises to clarify our appreciation of the more commonly occurring forms of atrial cardiomyopathy associated with ventricular dysfunction.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Faculty of Pharmacy, Université de Montréal. (E.M.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, France (S. Ninni)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal. (J.C.-T.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada (J.D.R.)
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (D.F.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington (D.F.)
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal. (S. Nattel.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
- Institute of Pharmacology. West German Heart and Vascular Center, University Duisburg-Essen, Germany (S. Nattel)
- IHU LYRIC & Fondation Bordeaux Université de Bordeaux, France (S. Nattel)
| |
Collapse
|
6
|
Kamkin AG, Kamkina OV, Kazansky VE, Mitrokhin VM, Bilichenko A, Nasedkina EA, Shileiko SA, Rodina AS, Zolotareva AD, Zolotarev VI, Sutyagin PV, Mladenov MI. Identification of RNA reads encoding different channels in isolated rat ventricular myocytes and the effect of cell stretching on L-type Ca 2+current. Biol Direct 2023; 18:70. [PMID: 37899484 PMCID: PMC10614344 DOI: 10.1186/s13062-023-00427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/13/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND The study aimed to identify transcripts of specific ion channels in rat ventricular cardiomyocytes and determine their potential role in the regulation of ionic currents in response to mechanical stimulation. The gene expression levels of various ion channels in freshly isolated rat ventricular cardiomyocytes were investigated using the RNA-seq technique. We also measured changes in current through CaV1.2 channels under cell stretching using the whole-cell patch-clamp method. RESULTS Among channels that showed mechanosensitivity, significant amounts of TRPM7, TRPC1, and TRPM4 transcripts were found. We suppose that the recorded L-type Ca2+ current is probably expressed through CaV1.2. Furthermore, stretching cells by 6, 8, and 10 μm, which increases ISAC through the TRPM7, TRPC1, and TRPM4 channels, also decreased ICa,L through the CaV1.2 channels in K+ in/K+ out, Cs+ in/K+ out, K+ in/Cs+ out, and Cs+ in/Cs+ out solutions. The application of a nonspecific ISAC blocker, Gd3+, during cell stretching eliminated ISAC through nonselective cation channels and ICa,L through CaV1.2 channels. Since the response to Gd3+ was maintained in Cs+ in/Cs+ out solutions, we suggest that voltage-gated CaV1.2 channels in the ventricular myocytes of adult rats also exhibit mechanosensitive properties. CONCLUSIONS Our findings suggest that TRPM7, TRPC1, and TRPM4 channels represent stretch-activated nonselective cation channels in rat ventricular myocytes. Probably the CaV1.2 channels in these cells exhibit mechanosensitive properties. Our results provide insight into the molecular mechanisms underlying stretch-induced responses in rat ventricular myocytes, which may have implications for understanding cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Andre G Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Olga V Kamkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Viktor E Kazansky
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim M Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Andrey Bilichenko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Elizaveta A Nasedkina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Stanislav A Shileiko
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasia S Rodina
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Alexandra D Zolotareva
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Valentin I Zolotarev
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Pavel V Sutyagin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Mitko I Mladenov
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
- Faculty of Natural Sciences and Mathematics, Institute of Biology, "Ss. Cyril and Methodius" University, Skopje, North, Macedonia.
| |
Collapse
|
7
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
8
|
Strege PR, Cowan LM, Alcaino C, Mazzone A, Ahern CA, Milescu LS, Farrugia G, Beyder A. Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel. eLife 2023; 12:e79271. [PMID: 36912788 PMCID: PMC10038658 DOI: 10.7554/elife.79271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Voltage-gated ion channels (VGICs) orchestrate electrical activities that drive mechanical functions in contractile tissues such as the heart and gut. In turn, contractions change membrane tension and impact ion channels. VGICs are mechanosensitive, but the mechanisms of mechanosensitivity remain poorly understood. Here, we leverage the relative simplicity of NaChBac, a prokaryotic voltage-gated sodium channel from Bacillus halodurans, to investigate mechanosensitivity. In whole-cell experiments on heterologously transfected HEK293 cells, shear stress reversibly altered the kinetic properties of NaChBac and increased its maximum current, comparably to the mechanosensitive eukaryotic sodium channel NaV1.5. In single-channel experiments, patch suction reversibly increased the open probability of a NaChBac mutant with inactivation removed. A simple kinetic mechanism featuring a mechanosensitive pore opening transition explained the overall response to force, whereas an alternative model with mechanosensitive voltage sensor activation diverged from the data. Structural analysis of NaChBac identified a large displacement of the hinged intracellular gate, and mutagenesis near the hinge diminished NaChBac mechanosensitivity, further supporting the proposed mechanism. Our results suggest that NaChBac is overall mechanosensitive due to the mechanosensitivity of a voltage-insensitive gating step associated with the pore opening. This mechanism may apply to eukaryotic VGICs, including NaV1.5.
Collapse
Affiliation(s)
- Peter R Strege
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Luke M Cowan
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Amelia Mazzone
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of IowaIowa CityUnited States
| | - Lorin S Milescu
- Department of Biology, University of Maryland, College ParkCollege ParkUnited States
| | - Gianrico Farrugia
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochesterUnited States
| | - Arthur Beyder
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo ClinicRochesterUnited States
- Department of Physiology and Biomedical Engineering, Mayo ClinicRochesterUnited States
| |
Collapse
|
9
|
La Gerche A, Wasfy MM, Brosnan MJ, Claessen G, Fatkin D, Heidbuchel H, Baggish AL, Kovacic JC. The Athlete's Heart-Challenges and Controversies: JACC Focus Seminar 4/4. J Am Coll Cardiol 2022; 80:1346-1362. [PMID: 36075838 DOI: 10.1016/j.jacc.2022.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022]
Abstract
Regular exercise promotes structural, functional, and electrical remodeling of the heart, often referred to as the "athlete's heart," with intense endurance sports being associated with the greatest degree of cardiac remodeling. However, the extremes of exercise-induced cardiac remodeling are potentially associated with uncommon side effects. Atrial fibrillation is more common among endurance athletes and there is speculation that other arrhythmias may also be more prevalent. It is yet to be determined whether this arrhythmic susceptibility is a result of extreme exercise remodeling, genetic predisposition, or other factors. Gender may have the greatest influence on the cardiac response to exercise, but there has been far too little research directed at understanding differences in the sportsman's vs sportswoman's heart. Here in part 4 of a 4-part seminar series, the controversies and ambiguities regarding the athlete's heart, and in particular, its arrhythmic predisposition, genetic, and gender influences are reviewed in depth.
Collapse
Affiliation(s)
- Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; National Centre for Sports Cardiology, Fitzroy, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.
| | - Meagan M Wasfy
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria J Brosnan
- National Centre for Sports Cardiology, Fitzroy, Victoria, Australia; Cardiology Department, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Guido Claessen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Hein Heidbuchel
- Antwerp University Hospital, Department of Cardiology, Antwerp, Belgium; Cardiovascular Sciences, Antwerp University, Antwerp, Belgium
| | - Aaron L Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia; Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
10
|
Young LJ, Antwi-Boasiako S, Ferrall J, Wold LE, Mohler PJ, El Refaey M. Genetic and non-genetic risk factors associated with atrial fibrillation. Life Sci 2022; 299:120529. [PMID: 35385795 PMCID: PMC9058231 DOI: 10.1016/j.lfs.2022.120529] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmic disorder and its prevalence in the United States is projected to increase to more than twelve million cases in 2030. AF increases the risk of other forms of cardiovascular disease, including stroke. As the incidence of atrial fibrillation increases dramatically with age, it is paramount to elucidate risk factors underlying AF pathogenesis. Here, we review tissue and cellular pathways underlying AF, as well as critical components that impact AF susceptibility including genetic and environmental risk factors. Finally, we provide the latest information on potential links between SARS-CoV-2 and human AF. Improved understanding of mechanistic pathways holds promise in preventative care and early diagnostics, and also introduces novel targeted forms of therapy that might attenuate AF progression and maintenance.
Collapse
Affiliation(s)
- Lindsay J Young
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Steve Antwi-Boasiako
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Joel Ferrall
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Loren E Wold
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Mona El Refaey
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Surgery, Division of Cardiac Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
De Bosscher R, Dausin C, Janssens K, Bogaert J, Elliott A, Ghekiere O, Van De Heyning CM, Sanders P, Kalman J, Fatkin D, Herbots L, Willems R, Heidbuchel H, La Gerche A, Claessen G. Rationale and design of the PROspective ATHletic Heart (Pro@Heart) study: long-term assessment of the determinants of cardiac remodelling and its clinical consequences in endurance athletes. BMJ Open Sport Exerc Med 2022; 8:e001309. [PMID: 35368514 PMCID: PMC8935177 DOI: 10.1136/bmjsem-2022-001309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/25/2022] Open
Abstract
Background Exercise-induced cardiac remodelling (EICR) results from the structural, functional and electrical adaptations to exercise. Despite similar sports participation, EICR varies and some athletes develop phenotypic features that overlap with cardiomyopathies. Training load and genotype may explain some of the variation; however, exercise ‘dose’ has lacked rigorous quantification. Few have investigated the association between EICR and genotype. Objectives (1) To identify the impact of training load and genotype on the variance of EICR in elite endurance athletes and (2) determine how EICR and its determinants are associated with physical performance, health benefits and cardiac pathology. Methods The Pro@Heart study is a multicentre prospective cohort trial. Three hundred elite endurance athletes aged 14–23 years will have comprehensive cardiovascular phenotyping using echocardiography, cardiac MRI, 12-lead ECG, exercise-ECG and 24-hour-Holter monitoring. Genotype will be determined using a custom cardiomyopathy gene panel and high-density single-nucleotide polymorphism arrays. Follow-up will include online tracking of training load. Cardiac phenotyping will be repeated at 2, 5, 10 and 20 years. Results The primary endpoint of the Pro@Heart study is the association of EICR with both training load and genotype. The latter will include rare variants in cardiomyopathy-associated genes and polygenic risk scores for cardiovascular traits. Secondary endpoints are the incidence of atrial and ventricular arrhythmias, physical performance and health benefits and their association with training load and genotype. Conclusion The Pro@Heart study is the first long-term cohort study to assess the impact of training load and genotype on EICR. Trial registration number NCT05164328; ACTRN12618000716268.
Collapse
Affiliation(s)
- Ruben De Bosscher
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | | | - Kristel Janssens
- Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jan Bogaert
- Radiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Adrian Elliott
- Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Centre for Heart Rhythm Disorders, The University of Adelaide, Adelaide, South Australia, Australia
| | - Olivier Ghekiere
- Cardiology, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium.,Cardivacsular Sciences, University Hasselt Biomedical Research Institute Rehabilitation Research Center, Diepenbeek, Belgium
| | - Caroline M Van De Heyning
- Cardiology, University of Antwerp, Antwerpen, Belgium.,Cardiovascular Sciences, University Hospital Antwerp, Edegem, Belgium
| | - Prashanthan Sanders
- Cardiology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Centre for Heart Rhythm Disorders, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jonathan Kalman
- Cardiology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Diane Fatkin
- Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Lieven Herbots
- Cardiology, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium.,Cardivacsular Sciences, University Hasselt Biomedical Research Institute Rehabilitation Research Center, Diepenbeek, Belgium
| | - Rik Willems
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Cardiology, University Hospital Antwerp, Edegem, Belgium.,Cardiovascular Sciences, University of Antwerp, Antwerpen, Belgium
| | - André La Gerche
- Department of Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Guido Claessen
- Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
12
|
Yue D, Jiang Y, Yang Z, Cao L, Huo L, Wang J. Comparison of the effects of left atrial appendage closure and oral anticoagulants in preventing stroke in patients with non-valvular atrial fibrillation: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27251. [PMID: 34664871 PMCID: PMC8447996 DOI: 10.1097/md.0000000000027251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study aims to analyze and evaluate the difference in efficacy between left atrial appendage closure (LAAC) and oral anticoagulants (OA) in preventing stroke in patients with non-valvular atrial fibrillation (NVAF) through the method of meta-analysis. The purpose is to provide for the prevention of stroke in patients with NVAF valuable treatment guidance. METHODS This study is a comprehensive collection of randomized controlled studies of LAAC and OA in the prevention of stroke in patients with NVAF, and searches PubMed, Embase, the Cochrane Library, Web of Science, CNKI, SinoMed, VIP Database, WANFANG Database, and other Chinese and English databases by combining subject words with free words, and the retrieval time is from the establishment of each database to June 1, 2021. At the same time, searching the included literature and literature of related reviews by manual. Two researchers independently conduct literature screening and quality evaluation. Statistical software RevMan 5.3 and Stata 12.0 were used for meta-analysis. RESULTS This study evaluating the difference in efficacy between LAAC and OA in preventing stroke in patients with NVAF will be published in high-quality medical academic journals. CONCLUSION This study will give the best treatment strategy to prevent stroke in patients with NVAF, and provide some reference for clinical medical staff.OSF registration number: DOI 10.17605/OSF.IO/2UXPA (https://osf.io/2uxpa).
Collapse
Affiliation(s)
- Deyong Yue
- Department of Pharmacy, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 25 Nanmen Road, Chengqiao Town, Chongming District, Shanghai, China
| | - Yunda Jiang
- Department of Pharmacy, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 25 Nanmen Road, Chengqiao Town, Chongming District, Shanghai, China
| | - Zhongying Yang
- Department of Pharmacy, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 25 Nanmen Road, Chengqiao Town, Chongming District, Shanghai, China
| | - Liang Cao
- Department of Information, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 25 Nanmen Road, Chengqiao Town, Chongming District, Shanghai, China
| | - Long Huo
- Department of Spleen and Stomach Diseases, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 725 South Wanping Road, Xuhui District, Shanghai, China
| | - Jing Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 25 Nanmen Road, Chengqiao Town, Chongming District, Shanghai, China
| |
Collapse
|
13
|
Guasch E, Nattel S. Ageing, comorbidities, and the complex determinants of atrial fibrillation in athletes. Eur Heart J 2021; 42:3526-3528. [PMID: 34297811 DOI: 10.1093/eurheartj/ehab473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eduard Guasch
- Institut d'Investigacions Biomédiques August Pi I Sunyer (IDIBAPS), C/Villarroel, 149, Barcelona 08036, Spain.,Cardiovascular Institute, Hospital Clinic de Barcelona, Universitat de Barcelona, 170 Villarroel, Barcelona 08036, Spain.,Centro de Investigació en Red-Cardiovascular (CIBERCV), Spain
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, 5000 Bélanger, Montreal, QC H1T 1C8, Canada.,Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, 55 Hufelandstrasse, 45122 Essen, Germany.,IHU LIRYC and Fondation Bordeaux Université, Avenue du Haut Lévêque, Pessac cedex 33604, France
| |
Collapse
|
14
|
Miguel-Dos-Santos R, Moreira JBN, Loennechen JP, Wisløff U, Mesquita T. Exercising immune cells: The immunomodulatory role of exercise on atrial fibrillation. Prog Cardiovasc Dis 2021; 68:52-59. [PMID: 34274371 DOI: 10.1016/j.pcad.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Exercise training is generally beneficial for cardiovascular health, improving stroke volume, cardiac output, and aerobic capacity. Despite these benefits, some evidence indicates that endurance training may increase the risk of atrial fibrillation (AF), particularly in highly trained individuals. Among multiple mechanisms, autonomic tone changes and atrial remodeling have been proposed as main contributors for exercise-induced AF. However, the contribution of local and systemic immunity is poorly understood in the development of atrial arrhythmogenic substrates. Here we aim to update the field of immunomodulation in the context of exercise and AF by compiling and reconciling the most recent evidence from preclinical and human studies and rationalize the applicability of "lone" AF terminology in athletes.
Collapse
Affiliation(s)
- Rodrigo Miguel-Dos-Santos
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil; Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - José Bianco Nascimento Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Pål Loennechen
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; School of Human Movement and Nutrition Science, University of Queensland, Queensland, Australia.
| | - Thássio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, California, United States..
| |
Collapse
|
15
|
Hong L, Zhang M, Ly OT, Chen H, Sridhar A, Lambers E, Chalazan B, Youn SW, Maienschein-Cline M, Feferman L, Ong SG, Wu JC, Rehman J, Darbar D. Human induced pluripotent stem cell-derived atrial cardiomyocytes carrying an SCN5A mutation identify nitric oxide signaling as a mediator of atrial fibrillation. Stem Cell Reports 2021; 16:1542-1554. [PMID: 34019817 PMCID: PMC8190590 DOI: 10.1016/j.stemcr.2021.04.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in SCN5A, encoding the cardiac sodium channel, are linked with familial atrial fibrillation (AF) but the underlying pathophysiologic mechanisms and implications for therapy remain unclear. To characterize the pathogenesis of AF-linked SCN5A mutations, we generated patient-specific induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) from two kindreds carrying SCN5A mutations (E428K and N470K) and isogenic controls using CRISPR-Cas9 gene editing. We showed that mutant AF iPSC-aCMs exhibited spontaneous arrhythmogenic activity with beat-to-beat irregularity, prolonged action potential duration, and triggered-like beats. Single-cell recording revealed enhanced late sodium currents (INa,L) in AF iPSC-aCMs that were absent in a heterologous expression model. Gene expression profiling of AF iPSC-aCMs showed differential expression of the nitric oxide (NO)-mediated signaling pathway underlying enhanced INa,L. We showed that patient-specific AF iPSC-aCMs exhibited striking in vitro electrophysiological phenotype of AF-linked SCN5A mutations, and transcriptomic analyses supported that the NO signaling pathway modulated the INa,L and triggered AF.
Collapse
Affiliation(s)
- Liang Hong
- Division of Cardiology, Department of Medicine, Chicago, IL, USA.
| | - Meihong Zhang
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Erin Lambers
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Brandon Chalazan
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | - Seock-Won Youn
- Division of Cardiology, Department of Medicine, Chicago, IL, USA
| | | | - Leonid Feferman
- Research Informatics Core, Research Resources Center, Chicago, IL, USA
| | - Sang-Ging Ong
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Administration Medical Center, Chicago, IL, USA.
| |
Collapse
|
16
|
Precision Medicine Approaches to Cardiac Arrhythmias: JACC Focus Seminar 4/5. J Am Coll Cardiol 2021; 77:2573-2591. [PMID: 34016268 DOI: 10.1016/j.jacc.2021.03.325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
In the initial 3 papers in this Focus Seminar series, the fundamentals and key concepts of precision medicine were reviewed, followed by a focus on precision medicine in the context of vascular disease and cardiomyopathy. For the remaining 2 papers, we focus on precision medicine in the context of arrhythmias. Specifically, in this fourth paper we focus on long QT syndrome, Brugada syndrome, and atrial fibrillation. The final (fifth) paper will deal with catecholaminergic polymorphic ventricular tachycardia. These arrhythmias represent a spectrum of disease ranging from common to relatively rare, with very different genetic and environmental causative factors, and with differing clinical manifestations that range from almost no consequences to lethality in childhood or adolescence if untreated. Accordingly, the emerging precision medicine approaches to these arrhythmias vary significantly, but several common themes include increased use of genetic testing, avoidance of triggers, and personalized risk stratification to guide the use of arrhythmia-specific therapies.
Collapse
|
17
|
Liu J, Yao F, Han K, Chai J, Tian D, Zhang J, Wang R, Li W, Shen Y, Ma Y, Geng S, Su X. Relationship between SCN5A gene H558R polymorphism and atrial fibrillation in Tibetan and Han nationalities at high altitude. Medicine (Baltimore) 2021; 100:e25229. [PMID: 33761712 PMCID: PMC9281979 DOI: 10.1097/md.0000000000025229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
This study aimed to explore the relationship between H558R polymorphism of the SCN5A gene and atrial fibrillation (AF) in Tibetan and Han nationalities at high altitude.A total of 50 Tibetan and 50 Han patients with AF at the same altitude (2260 m) were included. Meanwhile, the general clinical data of patients without AF (50 Tibetan and 50 Han) matched with the data of patients with AF were included during the same period. The blood samples of patients were collected to extract DNA. The DNA sequencing was performed by Xi'an Zhenpin Biotechnology Co., Ltd. The mutation loci of the sequence were located and identified by DNA sequencing. The general information, laboratory examination, color Doppler echocardiography, and genotypes and alleles of each group were analyzed. The multivariate logistic regression analysis was used to determine the independent risk factors for AF.The genotype and allele frequencies of the H558R locus of the SCN5A gene in the AF groups of Tibetan and Han nationalities were significantly different from those in the non-AF groups (P < .05). The genotype and allele frequency of the H558R locus of the SCN5A gene in the AF group of Tibetan nationalities were not significantly different from those in the AF group of Han nationalities (P > .05). The logistic regression analysis of the total population revealed that coronary heart disease, age, total cholesterol (TC), left atrial diameter, and G allele were independent risk factors for AF occurrence.The occurrence of AF in Tibetan and Han nationalities at high altitude is associated with the polymorphism of H558R locus of the SCN5A gene. The G allele is an independent risk factor for the occurrence of AF in Tibetan and Han nationalities.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Cardiology, Xi ’an International Medical Center Hospital, Xi ’an, Shaanxi
| | - Fengcai Yao
- Department of Cardiology, Qinghai Provincial People's Hospital
| | - Kaiyue Han
- Department of Cardiology, Shanghai Fifth People's Hospital, Shanghai
| | - Jinping Chai
- Department of Cardiology, Qinghai Provincial People's Hospital
| | | | | | | | - Wei Li
- Department of Cardiology, Qinghai Provincial People's Hospital
| | - Yanmei Shen
- Department of Cardiology, Qinghai Red Cross Hospital
| | - Yuanfeng Ma
- Qinghai Cardiovascular and Cerebrovascular Disease Hospital
| | - Sang Geng
- People's Hospital of Hainan Tibetan Autonomous Prefecture, Xining, Qinghai, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital
| |
Collapse
|
18
|
Huang H, Chamness LM, Vanoye CG, Kuenze G, Meiler J, George AL, Schlebach JP, Sanders CR. Disease-linked supertrafficking of a potassium channel. J Biol Chem 2021; 296:100423. [PMID: 33600800 PMCID: PMC7988323 DOI: 10.1016/j.jbc.2021.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Gain-of-function (GOF) mutations in the voltage-gated potassium channel subfamily Q member 1 (KCNQ1) can induce cardiac arrhythmia. In this study, it was tested whether any of the known human GOF disease mutations in KCNQ1 act by increasing the amount of KCNQ1 that reaches the cell surface-"supertrafficking." Seven of the 15 GOF mutants tested were seen to surface traffic more efficiently than the WT channel. Among these, we found that the levels of R231C KCNQ1 in the plasma membrane were fivefold higher than the WT channel. This was shown to arise from the combined effects of enhanced efficiency of translocon-mediated membrane integration of the S4 voltage-sensor helix and from enhanced post-translational folding/trafficking related to the energetic linkage of C231 with the V129 and F166 side chains. Whole-cell electrophysiology recordings confirmed that R231C KCNQ1 in complex with the voltage-gated potassium channel-regulatory subfamily E member 1 not only exhibited constitutive conductance but also revealed that the single-channel activity of this mutant is only 20% that of WT. The GOF phenotype associated with R231C therefore reflects the effects of supertrafficking and constitutive channel activation, which together offset reduced channel activity. These investigations show that membrane protein supertrafficking can contribute to human disease.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Georg Kuenze
- Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
19
|
Zhang J, Johnsen SP, Guo Y, Lip GYH. Epidemiology of Atrial Fibrillation: Geographic/Ecological Risk Factors, Age, Sex, Genetics. Card Electrophysiol Clin 2021; 13:1-23. [PMID: 33516388 DOI: 10.1016/j.ccep.2020.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation is the most common arrhythmia globally. The global prevalence of atrial fibrillation is positively correlated with the sociodemographic index of different regions. Advancing age, male sex, and Caucasian race are risk factors; female sex is correlated with higher atrial fibrillation mortality worldwide likely owing to thromboembolic risk. African American ethnicity is associated with lower atrial fibrillation risk, same as Asian and Hispanic/Latino ethnicities compared with Caucasians. Atrial fibrillation may be heritable, and more than 100 genetic loci have been identified. A polygenic risk score and clinical risk factors are feasible and effective in risk stratification of incident disease.
Collapse
Affiliation(s)
- Juqian Zhang
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK
| | - Søren Paaske Johnsen
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark
| | - Yutao Guo
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK; Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK; Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark; Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
20
|
Tidbury N, Preston J, Ding WY, Rivera-Caravaca JM, Marín F, Lip GYH. Utilizing biomarkers associated with cardiovascular events in atrial fibrillation: informing a precision medicine response. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nicola Tidbury
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Joshua Preston
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - José Miguel Rivera-Caravaca
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen De La Arrixaca, University of Murcia, Instituto Murciano De Investigación Biosanitaria (Imib-arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen De La Arrixaca, University of Murcia, Instituto Murciano De Investigación Biosanitaria (Imib-arrixaca), CIBERCV, Murcia, Spain
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
21
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
22
|
Franklin BA, Thompson PD, Al-Zaiti SS, Albert CM, Hivert MF, Levine BD, Lobelo F, Madan K, Sharrief AZ, Eijsvogels TMH. Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective-An Update: A Scientific Statement From the American Heart Association. Circulation 2020; 141:e705-e736. [PMID: 32100573 DOI: 10.1161/cir.0000000000000749] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological and biological plausibility studies support a cause-and-effect relationship between increased levels of physical activity or cardiorespiratory fitness and reduced coronary heart disease events. These data, plus the well-documented anti-aging effects of exercise, have likely contributed to the escalating numbers of adults who have embraced the notion that "more exercise is better." As a result, worldwide participation in endurance training, competitive long distance endurance events, and high-intensity interval training has increased markedly since the previous American Heart Association statement on exercise risk. On the other hand, vigorous physical activity, particularly when performed by unfit individuals, can acutely increase the risk of sudden cardiac death and acute myocardial infarction in susceptible people. Recent studies have also shown that large exercise volumes and vigorous intensities are both associated with potential cardiac maladaptations, including accelerated coronary artery calcification, exercise-induced cardiac biomarker release, myocardial fibrosis, and atrial fibrillation. The relationship between these maladaptive responses and physical activity often forms a U- or reverse J-shaped dose-response curve. This scientific statement discusses the cardiovascular and health implications for moderate to vigorous physical activity, as well as high-volume, high-intensity exercise regimens, based on current understanding of the associated risks and benefits. The goal is to provide healthcare professionals with updated information to advise patients on appropriate preparticipation screening and the benefits and risks of physical activity or physical exertion in varied environments and during competitive events.
Collapse
|
23
|
Ragab AAY, Sitorus GDS, Brundel BBJJM, de Groot NMS. The Genetic Puzzle of Familial Atrial Fibrillation. Front Cardiovasc Med 2020; 7:14. [PMID: 32118049 PMCID: PMC7033574 DOI: 10.3389/fcvm.2020.00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical tachyarrhythmia. In Europe, AF is expected to reach a prevalence of 18 million by 2060. This estimate will increase hospitalization for AF to 4 million and 120 million outpatient visits. Besides being an independent risk factor for mortality, AF is also associated with an increased risk of morbidities. Although there are many well-defined risk factors for developing AF, no identifiable risk factors or cardiac pathology is seen in up to 30% of the cases. The heritability of AF has been investigated in depth since the first report of familial atrial fibrillation (FAF) in 1936. Despite the limited value of animal models, the advances in molecular genetics enabled identification of many common and rare variants related to FAF. The importance of AF heritability originates from the high prevalence of lone AF and the lack of clear understanding of the underlying pathophysiology. A better understanding of FAF will facilitate early identification of people at high risk of developing FAF and subsequent development of more effective management options. In this review, we reviewed FAF epidemiological studies, identified common and rare variants, and discussed their clinical implications and contributions to developing new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed A Y Ragab
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gustaf D S Sitorus
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bianca B J J M Brundel
- Department of Physiology, Institute for Cardiovascular Research, VU Medical Center, Amsterdam, Netherlands
| | - Natasja M S de Groot
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
24
|
Losartan inhibits hyposmotic-induced increase of IKs current and shortening of action potential duration in guinea pig atrial myocytes. Anatol J Cardiol 2020; 23:35-40. [PMID: 31911569 PMCID: PMC7141430 DOI: 10.14744/anatoljcardiol.2019.75332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: The present study aims to investigate the effect of losartan, an selective angiotensin II type 1 receptor (AT1R) blocker, on both the increase of IKs current and shortening of action potential duration (APD) induced by stretch of atrial myocytes, and to uncover the mechanism underlying the treatment of fibrillation (AF) by AT1R blockers. Methods: Hyposmotic solution (Hypo-S) was applied in the guinea pig atrial myocytes to simulate cell stretch, then patch-clamp technique was applied to record the IKs and APD in atrial myocytes. Results: Hypo-S increased the IKs by 105.6%, while Hypo-S+1-20 µM of losartan only increased the IKs by 70.3-75.5% (p<0.05 vs. Hypo-S). Meanwhile, Hypo-S shortened APD90 by 20.2%, while Hypo-S+1-20 µM of losartan shortened APD90 by 13.03-14.56% (p<0.05 vs. Hypo-S). Conclusion: The above data indicate that the effect of losartan on the electrophysiological changes induced by stretch of atrial myocytes is associated with blocking of AT1 receptor, and is beneficial for the treatment of AF that is often accompanied by the expansion of atrial myocytes and the increase of effective refractory period.
Collapse
|
25
|
Abstract
Background Atrial fibrillation (AF) is a common arrhythmia seen in clinical practice. Occasionally, no common risk factors are present in patients with this arrhythmia. This suggests the potential underlying role of genetic factors associated with predisposition to developing AF. Methods and Results We conducted a comprehensive review of the literature through large online libraries, including PubMed. Many different potassium and sodium channel mutations have been discussed in their relation to AF. There have also been non–ion channel mutations that have been linked to AF. Genome‐wide association studies have helped in identifying potential links between single‐nucleotide polymorphisms and AF. Ancestry studies have also highlighted a role of genetics in AF. Blacks with a higher percentage of European ancestry are at higher risk of developing AF. The emerging field of ablatogenomics involves the use of genetic profiles in their relation to recurrence of AF after catheter ablation. Conclusions The evidence for the underlying role of genetics in AF continues to expand. Ultimately, the role of genetics in risk stratification of AF and its recurrence is of significant interest. No established risk scores that are useful in clinical practice are present to date.
Collapse
Affiliation(s)
- Julien Feghaly
- 1 Department of Internal Medicine St Louis University Hospital St Louis MO
| | - Patrick Zakka
- 2 Department of Internal Medicine Emory University Hospital Atlanta GA
| | - Barry London
- 3 Department of Cardiovascular Medicine University of Iowa Carver College of Medicine Iowa City IA
| | - Calum A MacRae
- 4 Department of Cardiovascular Medicine Brigham and Women's Hospital Boston MA
| | - Marwan M Refaat
- 5 Department of Cardiovascular Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
26
|
Balleza D, Rosas ME, Romero-Romero S. Voltage vs. Ligand I: Structural basis of the intrinsic flexibility of S3 segment and its significance in ion channel activation. Channels (Austin) 2019; 13:455-476. [PMID: 31647368 PMCID: PMC6833973 DOI: 10.1080/19336950.2019.1674242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We systematically predict the internal flexibility of the S3 segment, one of the most mobile elements in the voltage-sensor domain. By analyzing the primary amino acid sequences of V-sensor containing proteins, including Hv1, TPC channels and the voltage-sensing phosphatases, we established correlations between the local flexibility and modes of activation for different members of the VGIC superfamily. Taking advantage of the structural information available, we also assessed structural aspects to understand the role played by the flexibility of S3 during the gating of the pore. We found that S3 flexibility is mainly determined by two specific regions: (1) a short NxxD motif in the N-half portion of the helix (S3a), and (2) a short sequence at the beginning of the so-called paddle motif where the segment has a kink that, in some cases, divide S3 into two distinct helices (S3a and S3b). A good correlation between the flexibility of S3 and the reported sensitivity to temperature and mechanical stretch was found. Thus, if the channel exhibits high sensitivity to heat or membrane stretch, local S3 flexibility is low. On the other hand, high flexibility of S3 is preferentially associated to channels showing poor heat and mechanical sensitivities. In contrast, we did not find any apparent correlation between S3 flexibility and voltage or ligand dependence. Overall, our results provide valuable insights into the dynamics of channel-gating and its modulation.
Collapse
Affiliation(s)
- Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Mario E Rosas
- Departamento de Química ICET, Universidad Autónoma de Guadalajara , Zapopan Jalisco , Mexico
| | - Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth , Bayreuth , Germany
| |
Collapse
|
27
|
Tirapu L, San Antonio R, Tolosana JM, Roca-Luque I, Mont L, Guasch E. Exercise and atrial fibrillation: how health turns harm, and how to turn it back. Minerva Cardioangiol 2019; 67:411-424. [DOI: 10.23736/s0026-4725.19.04998-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Sapelnikov OV, Kulikov AA, Favorova OO, Matveeva NA, Cherkashin DI, Nikolaeva OA, Akchurin RS. Genetic, Epigenetic and Transcription Factors in Atrial Fibrillation. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-3-407-415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmia that occurs in patients with cardiovascular diseases. Congenital forms of AF are quite rare. Many studies have shown that genetic, epigenetic and transcription factors may play an important role in the development and the progression of AF. In our review, studies have been conducted on the identification of mutations in ionic and non-ionic channels, possibly associated with AF. These mutations were found only in isolated groups of patients with AF, and in general, monogenic forms of AF are a rare subtype of the disease. Genomic association studies have helped to identify potential links between single nucleotide polymorphisms and AF. The risk of AF in the general population is likely to be determined by the interaction between environmental factors and many alleles. In recent years, the emergence of a genome-wide associative studies has significantly expanded the understanding of the genetic basis for the inheritance of AF and has led to the emergence of new evidence of the important role of genetic factors in the development of AF, in the risk stratification of AF and the recurrence of AF. Epigenetic factors are also important in AF. Epigenetic therapy aimed at treating a disease through exposure to epigenome is currently under development. A newly emerged area of ablatogenomics includes the use of genetic profiles that allow assessing the likelihood of recurrence of AF after catheter ablation. The results of genetic studies in AF show that, in addition to their role in the appearance of congenital heart pathologies, transcription factors play an important role in the pathogenesis of AF.
Collapse
Affiliation(s)
| | | | - O. O. Favorova
- National Medical Research Center of Cardiology
Pirogov Russian National Research Medical University
| | - N. A. Matveeva
- National Medical Research Center of Cardiology
Pirogov Russian National Research Medical University
| | | | | | | |
Collapse
|
29
|
|
30
|
Policarová M, Novotný T, Bébarová M. Impaired Adrenergic/Protein Kinase A Response of Slow Delayed Rectifier Potassium Channels as a Long QT Syndrome Motif: Importance and Unknowns. Can J Cardiol 2019; 35:511-522. [DOI: 10.1016/j.cjca.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
|
31
|
Podzolkov VI, Tarzimanova AI. Personalized Medicine in the Treatment of Atrial Fibrillation: Myth or Reality? RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-1-90-94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Due to the spectacular progress made in human genomic studies, molecular biology and genetics have become an essential part of modern medicine making it possible to early detect the risk factors and select the personalized treatment. The genetic studies have been widely used in the diagnosis and treatment of arrhythmias. Significant advances in the study of electrophysiological and genetic mechanisms of life-threatening arrhythmias have been achieved through studies of familial conditions with high risk of sudden cardiac death. However, the area of special interest for a practitioner is the identification of mutations associated with atrial fibrillation (AF). The novel methods enable us to study histological, structural, cellular and molecular causes of this arrhythmia. The two main directions of molecular genetic studies of AF are the identification of genetic mutations causing familial atrial fibrillation and the study of different genes polymorphism predisposing to arrhythmia in general population. Gene polymorphism screening helps both identify AF risk factors and predict its evolution from paroxysmal to chronic type. Emerging genetic studies provided explanation for the variable efficacy of antiarrhythmic drugs. It can be assumed that the clinical use of genetic methods will allow accurate and personalized selection of antiarrhythmics. Currently, therapeutic drug monitoring is widely recommended for a number of medications including cytostatics, aminoglycosides, anticonvulsants, and, by some researchers, antiarrhythmic and anticoagulant drugs. Medicine from the very beginning was intended to be personalized, but until recently it was a little more than a myth. The discovery of the human genome makes it possible to choose the most effective treatment with minimal adverse drug reactions for a particular patient.
Collapse
Affiliation(s)
- V. I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
32
|
San Antonio R, Guasch E, Tolosana JM, Mont L. Determining the best approach to reduce the impact of exercise-induced atrial fibrillation: prevention, screening, or symptom-based treatment? Expert Rev Cardiovasc Ther 2018; 17:19-29. [DOI: 10.1080/14779072.2019.1550720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rodolfo San Antonio
- Arrhythmia Unit, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Eduard Guasch
- Arrhythmia Unit, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- IDIBAPS, Barcelona, Catalonia, Spain
- CIBERCV, Madrid, Spain
| | - José María Tolosana
- Arrhythmia Unit, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- IDIBAPS, Barcelona, Catalonia, Spain
- CIBERCV, Madrid, Spain
| | - Lluís Mont
- Arrhythmia Unit, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- IDIBAPS, Barcelona, Catalonia, Spain
- CIBERCV, Madrid, Spain
| |
Collapse
|
33
|
Lazzerini PE, Capecchi PL, El‐Sherif N, Laghi‐Pasini F, Boutjdir M. Emerging Arrhythmic Risk of Autoimmune and Inflammatory Cardiac Channelopathies. J Am Heart Assoc 2018; 7:e010595. [PMID: 30571503 PMCID: PMC6404431 DOI: 10.1161/jaha.118.010595] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Nabil El‐Sherif
- Veterans Affairs New York Harbor Healthcare SystemState University of New York Downstate Medical CenterNew YorkNY
| | - Franco Laghi‐Pasini
- Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaItaly
| | - Mohamed Boutjdir
- Veterans Affairs New York Harbor Healthcare SystemState University of New York Downstate Medical CenterNew YorkNY
- New York University School of MedicineNew YorkNY
| |
Collapse
|
34
|
Alzahrani Z, Ornelas-Loredo A, Darbar SD, Farooqui A, Mol D, Chalazan B, Villagrana NE, McCauley M, Lazar S, Wissner E, Bhan A, Konda S, Darbar D. Association Between Family History and Early-Onset Atrial Fibrillation Across Racial and Ethnic Groups. JAMA Netw Open 2018; 1:e182497. [PMID: 30646169 PMCID: PMC6324458 DOI: 10.1001/jamanetworkopen.2018.2497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/08/2018] [Indexed: 12/19/2022] Open
Abstract
Importance There is a genetic predisposition to early-onset atrial fibrillation (EOAF) in European American individuals. However, the role of family history in the pathogenesis of EOAF in racial and ethnic minorities remains unclear. Objective To determine whether probands with EOAF across racial and ethnic groups have a higher rate of AF in first-degree family members than racially and ethnically matched control patients with non-early-onset AF (non-EOAF). Design, Setting, and Participants In this cohort study, patients prospectively enrolled in a clinical and genetic biorepository were administered baseline questionnaires that included questions about family history of AF. Early-onset AF was defined as AF occurring in probands aged 60 years or younger in the absence of structural heart disease. All other forms were categorized as non-EOAF. Recruitment took place from July 2015 to December 2017. Analysis was performed in January 2018. Main Outcomes and Measures Primary analysis of reported family history of AF in first-degree relatives with sensitivity analysis restricted to those in whom a family history was confirmed by medical record review and electrocardiogram. Results Of 664 patients enrolled (mean [SD] age, 62 [12] years; 407 [61%] male), 267 (40%) were European American; 258 (39%), African American; and 139 (21%), Hispanic/Latino. There was a family history of AF in 36 probands with EOAF (49%) compared with 128 patients with non-EOAF (22%) (difference, 27%; 95% CI, 14%-40%; P < .001). On multivariable analysis, the adjusted odds of a proband with EOAF who was of African descent (odds ratio [OR], 2.69; 95% CI, 1.06-6.91; P < .001) or Hispanic descent (OR, 9.25; 95% CI, 2.37-36.23; P = .002) having a first-degree relative with AF were greater than those of European descent (OR, 2.51; 95% CI, 1.29-4.87; P = .006). Overall, probands with EOAF were more likely to have a first-degree relative with AF compared with patients with non-EOAF (adjusted OR, 3.02; 95% CI, 1.82-4.95; P < .001) across the 3 racial and ethnic groups. Atrial fibrillation in a first-degree family member was confirmed in 32% of probands with EOAF vs 11% of those with non-EOAF (difference, 21%; 95% CI, 11%-33%; P < .001). Furthermore, African American (28% vs 5%; difference, 23%; 95% CI, 4%-43%; P = .001), European American (35% vs 20%; difference, 15%; 95% CI, 1%-30%; P = .03), and Hispanic/Latino (30% vs 5%; difference, 25%; 95% CI, 4%-54%; P = .02) probands with EOAF were more likely to have a first-degree relative with confirmed AF vs racially and ethnically matched control patients with non-EOAF. The positive and negative predictive values for a family history of confirmed AF were both 89%. Conclusions and Relevance Probands of African or Hispanic/Latino descent with EOAF were more likely to have a first-degree relative with AF when compared with European American individuals. These findings support genetic predisposition to EOAF across all 3 races.
Collapse
Affiliation(s)
- Zain Alzahrani
- Department of Medicine, University of Illinois at Chicago
| | | | - Sara D. Darbar
- Department of Medicine, University of Illinois at Chicago
| | | | - Denise Mol
- Department of Medicine, University of Illinois at Chicago
| | | | | | - Mark McCauley
- Department of Medicine, University of Illinois at Chicago
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Sorin Lazar
- Department of Medicine, University of Illinois at Chicago
| | - Erik Wissner
- Department of Medicine, University of Illinois at Chicago
| | - Adarsh Bhan
- Department of Medicine, University of Illinois at Chicago
| | - Sreenivas Konda
- Department of Epidemiology and Biostatistics, University of Illinois at Chicago
| | - Dawood Darbar
- Department of Medicine, University of Illinois at Chicago
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
35
|
Raju H, Kalman JM. Management of Atrial Fibrillation in the Athlete. Heart Lung Circ 2018; 27:1086-1092. [DOI: 10.1016/j.hlc.2018.04.295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/18/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
|
36
|
Fatkin D, Cox CD, Huttner IG, Martinac B. Is There a Role for Genes in Exercise-Induced Atrial Cardiomyopathy? Heart Lung Circ 2018; 27:1093-1098. [PMID: 29706494 DOI: 10.1016/j.hlc.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
In endurance athletes, prolonged high intensity exercise participation can have deleterious effects on the myocardium with subsequent structural and electrical remodelling. In a subset of athletes, there is a predilection for atrial involvement and the risk of atrial fibrillation (AF) is increased. The mechanisms underpinning exercise-induced atrial cardiomyopathy have yet to be fully elucidated and the contribution of an individual's genetic makeup is unknown. Some athletes may have rare genetic variants that are sufficient to cause AF irrespective of exercise exposure. In AF-causing variant carriers, the additional haemodynamic stress of exercise on atrial structure and function might accelerate or increase the severity of disease. Variants in genes that lack known links to AF may indirectly promote an arrhythmogenic substrate by affecting threshold levels for exercise-induced myocardial damage and remodelling responses, or by effects on AF-associated co-morbidities, sinus node function, and autonomic nervous system tone. Given the exquisite stress-sensitivity of the atria, mechanosensitive ion channels could plausibly have a key role in mediating exercise effects on atrial structure and function. Knowing an athlete's profile of genetic variants may be useful for AF risk stratification and have implications for clinical management. Pre-participation genetic testing may influence sports choices and facilitate AF prevention.
Collapse
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Cardiology Department, St. Vincent's Hospital, Sydney, NSW, Australia.
| | - Charles D Cox
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Boris Martinac
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Claessen G, Schnell F, Bogaert J, Claeys M, Pattyn N, De Buck F, Dymarkowski S, Claus P, Carré F, Van Cleemput J, La Gerche A, Heidbuchel H. Exercise cardiac magnetic resonance to differentiate athlete’s heart from structural heart disease. Eur Heart J Cardiovasc Imaging 2018; 19:1062-1070. [DOI: 10.1093/ehjci/jey050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/11/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guido Claessen
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
- University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Schnell
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Department of Physiology, Rennes 1 University, Rennes, France
| | - Jan Bogaert
- University Hospitals Leuven, Leuven, Belgium
- Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Mathias Claeys
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
- University Hospitals Leuven, Leuven, Belgium
| | - Nele Pattyn
- Department of Rehabilitation Sciences, KU Leuven, Belgium
| | - Frederik De Buck
- University Hospitals Leuven, Leuven, Belgium
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Steven Dymarkowski
- University Hospitals Leuven, Leuven, Belgium
- Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Carré
- Department of Physiology, Rennes 1 University, Rennes, France
| | - Johan Van Cleemput
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
- University Hospitals Leuven, Leuven, Belgium
| | - Andre La Gerche
- Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
38
|
Guasch E, Mont L, Sitges M. Mechanisms of atrial fibrillation in athletes: what we know and what we do not know. Neth Heart J 2018; 26:133-145. [PMID: 29411287 PMCID: PMC5818379 DOI: 10.1007/s12471-018-1080-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise is an emerging cause of atrial fibrillation (AF) in young individuals without coexisting cardiovascular risk factors. The causes of exercise-induced atrial fibrillation remain largely unknown, and conclusions are jeopardised by apparently conflicting data. Some components of the athlete's heart are known to be arrhythmogenic in other settings. Bradycardia, atrial dilatation and, possibly, atrial premature beats are therefore biologically plausible contributors to exercise-induced AF. Challenging findings in an animal model suggest that exercise might also prompt the development of atrial fibrosis, possibly due to cumulative minor structural damage after each exercise bout. However, there is very limited, indirect data supporting this hypothesis in athletes. Age, sex, the presence of comorbidities and cardiovascular risk factors, and genetic individual variability might serve to flag those athletes who are at the higher risk of exercise-induced AF. In this review, we will critically address current knowledge on the mechanisms of exercise-induced AF.
Collapse
Affiliation(s)
- E Guasch
- Institut Clinic Cardiovascular, Hospital Clínic de Barcelona; IDIBAPS; Universitat de Barcelona; CIBERCV., 08036, Barcelona, Catalonia, Spain.
| | - L Mont
- Institut Clinic Cardiovascular, Hospital Clínic de Barcelona; IDIBAPS; Universitat de Barcelona; CIBERCV., 08036, Barcelona, Catalonia, Spain
| | - M Sitges
- Institut Clinic Cardiovascular, Hospital Clínic de Barcelona; IDIBAPS; Universitat de Barcelona; CIBERCV., 08036, Barcelona, Catalonia, Spain
| |
Collapse
|
39
|
Abstract
Atrial fibrillation (AF) is a common clinical arrhythmia that appears to be highly heritable, despite representing a complex interplay of several disease processes that generally do not manifest until later in life. In this manuscript, we will review the genetic basis of this complex trait established through studies of familial AF, linkage and candidate gene studies of common AF, genome wide association studies (GWAS) of common AF, and transcriptomic studies of AF. Since AF is associated with a five-fold increase in the risk of stroke, we also review the intersection of common genetic factors associated with both of these conditions. Similarly, we highlight the intersection of common genetic markers associated with some risk factors for AF, such as hypertension and obesity, and AF. Lastly, we describe a paradigm where genetic factors predispose to the risk of AF, but which may require additional stress and trigger factors in older age to allow for the clinical manifestation of AF.
Collapse
Affiliation(s)
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, Cleveland, OH, 44195, USA.
| |
Collapse
|
40
|
Flannery MD, Kalman JM, Sanders P, La Gerche A. State of the Art Review: Atrial Fibrillation in Athletes. Heart Lung Circ 2017; 26:983-989. [DOI: 10.1016/j.hlc.2017.05.132] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/27/2023]
|
41
|
Fatkin D, Santiago CF, Huttner IG, Lubitz SA, Ellinor PT. Genetics of Atrial Fibrillation: State of the Art in 2017. Heart Lung Circ 2017; 26:894-901. [DOI: 10.1016/j.hlc.2017.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
|
42
|
Dhawan I, Choudhury M, Hote MP, Gupta A, Malhotra P, Mani KV. Is endothelin gene polymorphism associated with postoperative atrial fibrillation in patients undergoing coronary artery bypass grafting? Ann Card Anaesth 2017; 20:341-347. [PMID: 28701603 PMCID: PMC5535579 DOI: 10.4103/aca.aca_264_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The mechanism of development of atrial fibrillation (AF) in patients undergoing coronary artery bypass grafting (CABG) has not been clearly defined, and the involvement of multiple factors such as advanced age, withdrawal of β-blockers, inadequate atrial protection, and electrolyte imbalance, particularly hypomagnesemia has been documented by several authors. Despite all the available pharmacologic prophylaxis, incidence of AF still remains high in this group of patients. This unexplained cause could be genetic inheritance of endothelin-1 (ET-1) gene which is thought to have a pro-arrhythmogenic effect. AIM This study aims to investigate the relationship between plasma ET-1 concentrations, ET-1 gene polymorphisms in loci -1370 T/G, -134 (3A/4A) Ins/del, Lys198Asn (G/T), and occurrence of AF in patients undergoing CABG. METHODOLOGY Ninety-eight nonrelated, nondiabetic patients over a period of 4 years undergoing routine CABG were selected for the present study. All patients were genotyped for three single nucleotide polymorphisms (SNPs) in loci -1370 T/G, -134 (3A/4A) Ins/del, and Lys198Asn (G/T) in the ET-1 gene by gene sequencing. The plasma ET-1 concentrations were measured using an ET immunoassay. RESULTS Plasma ET-1 concentrations were higher in AF+ group (P = 0.001) as compared to AF- group. The allele frequencies between AF+ and AF- group were significantly different only with respect to the Lys198Asn (G/T) SNP of the ET-1 gene. CONCLUSION The study described the possible correlation of polymorphism of ET gene in CABG population from India. The ET-1 gene might play a disease-modifying role in atrial fibrillation.
Collapse
Affiliation(s)
- Ira Dhawan
- Department of Cardiac Anaesthesia, Cardiothoracic Sciences Centre, New Delhi, India
| | - Minati Choudhury
- Department of Cardiac Anaesthesia, Cardiothoracic Sciences Centre, New Delhi, India
| | - Milind P Hote
- Department of Cardiothoracic Vascular Surgery, Cardiothoracic Sciences Centre, New Delhi, India
| | - Anushree Gupta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Poonam Malhotra
- Department of Cardiac Anaesthesia, Cardiothoracic Sciences Centre, New Delhi, India
| | - Kalaivani V Mani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
43
|
Jiang YF, Chen M, Zhang NN, Yang HJ, Xu LB, Rui Q, Sun SJ, Yao JL, Zhou YF. Association between KCNE1 G38S gene polymorphism and risk of atrial fibrillation: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2017; 96:e7253. [PMID: 28640127 PMCID: PMC5484235 DOI: 10.1097/md.0000000000007253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Previous case-control studies on association between KCNE1 G38S polymorphism and risk of atrial fibrillation (AF) have been published but because of the conflicting results and small sample size of individual studies, the consolidated result is still controversial. OBJECTIVES The aim of this study was to explore the relationship between KCNE1 G38S polymorphism and risk of AF. METHODS We performed a comprehensive literature search on PubMed, Embase, OVID, Web of Science, Wan Fang, and CNKI databases up to March 10, 2017 in English and Chinese languages. Two of the authors individually extracted study data and assessed the study quality using Newcastle-Ottawa scale. Odds ratios (ORs) and 95% confidence intervals (CIs) were combined in different genetic models for evaluation using a random-effect model or fixed-effect model according to interstudy heterogeneity. RESULTS There were totally 14 independent case-control studies of 2810 patients and 3080 healthy controls included. Significant associations were found between KCNE1 G38S polymorphism and AF in overall population under all genetic models: allelic (OR: 1.34, 95% CI: 1.24-1.45, P < .001), homozygous (OR: 1.90, 95% CI: 1.61-2.24, P < .001), heterozygous (OR: 1.43, 95% CI: 1.21-1.68, P < .001), recessive (OR: 1.42, 95% CI: 1.20-1.69, P < .001), dominant genetic model (OR: 1.62, 95% CI: 1.39-1.89, P < .001). Subgroup analyses indicated similar association in Chinese and white. CONCLUSIONS The G38S polymorphism in the KCNE1 gene can significantly increase the risk of AF in both Chinese and white.
Collapse
Affiliation(s)
- Yu-Feng Jiang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Min Chen
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Nan-Nan Zhang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Hua-Jia Yang
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Lang-Biao Xu
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Qing Rui
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Si-Jia Sun
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| | - Jia-Lu Yao
- Department of Cardiology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Jiangsu Province, P. R. China
| | - Ya-Feng Zhou
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou City
| |
Collapse
|
44
|
Gundlund A, Olesen JB, Peterson ED, Gislason GH, Fosbøl EL. Familial clustering of atrial fibrillation and comparative longitudinal outcomes of familial and non-familial atrial fibrillation. J Comp Eff Res 2017; 6:257-263. [PMID: 28485191 DOI: 10.2217/cer-2016-0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several studies have suggested that family history of atrial fibrillation (AF) is an important risk factor for AF, with several specific genetic regions now implicated through Genome Wide Association Studies. In addition, familial AF is associated with earlier age of onset and affects patients with fewer comorbid conditions than their non-familial counterparts. While those with familial AF have worse symptoms, all-cause mortality and risk of thromboembolic complications are similar among familial and non-familial AF patients.
Collapse
Affiliation(s)
- Anna Gundlund
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | - Jonas B Olesen
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
| | | | - Gunnar H Gislason
- Department of Cardiology, Copenhagen University Hospital Herlev-Gentofte, Hellerup, Denmark
- The National Institute of Public Health, University of Southern Denmark, Denmark
- The Danish Heart Foundation, Copenhagen, Denmark
| | - Emil L Fosbøl
- The Danish Heart Foundation, Copenhagen, Denmark
- Department of Cardiology, University Hospital of Copenhagen, Rigshospitalet, Denmark
| |
Collapse
|
45
|
Zakeri R, Van Wagoner DR, Calkins H, Wong T, Ross HM, Heist EK, Meyer TE, Kowey PR, Mentz RJ, Cleland JG, Pitt B, Zannad F, Linde C. The burden of proof: The current state of atrial fibrillation prevention and treatment trials. Heart Rhythm 2017; 14:763-782. [PMID: 28161513 PMCID: PMC5403606 DOI: 10.1016/j.hrthm.2017.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is an age-related arrhythmia of enormous socioeconomic significance. In recent years, our understanding of the basic mechanisms that initiate and perpetuate AF has evolved rapidly, catheter ablation of AF has progressed from concept to reality, and recent studies suggest lifestyle modification may help prevent AF recurrence. Emerging developments in genetics, imaging, and informatics also present new opportunities for personalized care. However, considerable challenges remain. These include a paucity of studies examining AF prevention, modest efficacy of existing antiarrhythmic therapies, diverse ablation technologies and practice, and limited evidence to guide management of high-risk patients with multiple comorbidities. Studies examining the long-term effects of AF catheter ablation on morbidity and mortality outcomes are not yet completed. In many ways, further progress in the field is heavily contingent on the feasibility, capacity, and efficiency of clinical trials to incorporate the rapidly evolving knowledge base and to provide substantive evidence for novel AF therapeutic strategies. This review outlines the current state of AF prevention and treatment trials, including the foreseeable challenges, as discussed by a unique forum of clinical trialists, scientists, and regulatory representatives in a session endorsed by the Heart Rhythm Society at the 12th Global CardioVascular Clinical Trialists Forum in Washington, DC, December 3-5, 2015.
Collapse
Affiliation(s)
- Rosita Zakeri
- Royal Brompton & Harefield NHS Trust, London, United Kingdom.
| | | | | | - Tom Wong
- Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | | | - E Kevin Heist
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Peter R Kowey
- Lankenau Heart Institute and Jefferson Medical College, Wynnewood, Pennsylvania
| | - Robert J Mentz
- Duke Clinical Research Institute, Durham, North Carolina
| | - John G Cleland
- Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | | | - Faiez Zannad
- INSERM, Centre d'Investigations Cliniques Plurithématique 1433, INSERM U1116, Université de Lorraine, CHRU de Nancy, F-CRIN INI-CRCT, France
| | | |
Collapse
|
46
|
Huang KC, Li TM, Liu X, Chen JH, Chien WK, Shiao YT, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin CW, Lin JC, Lin CC, Lai CH, Cheng CF, Liang WM, Hung CH, Chen CC, Lin YJ, Tsai FJ. KCNQ1 variants associate with hypertension in type 2 diabetes and affect smooth muscle contractility in vitro. J Cell Physiol 2017; 232:3309-3316. [PMID: 28059450 DOI: 10.1002/jcp.25775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
KCNQ1 encodes a potassium voltage-gated channel and represents a susceptibility locus for type 2 diabetes mellitus (T2DM). Here, we explored the association between KCNQ1 polymorphisms and hypertension risk in individuals with T2DM, as well as the role of KCNQ1 in vascular smooth muscle cell contraction in vitro. To investigate the relationship between KCNQ1 and the risk of developing hypertension in patients with T2DM, we divided the T2DM cohort into hypertension (n = 452) and non-hypertension (n = 541) groups. The Mann-Whitney U test, chi-square test, and multivariate regression analyses were used to assess the clinical characteristics and genotypic frequencies. In vitro studies utilized the rat aortic smooth muscle A10 cell line. Patients in the hypertension group were significantly older at the time of enrollment and had higher levels of body mass index, waist-to-hip ratio, and triglyceride than those in the non-hypertension group. The KCNQ1 rs3864884 and rs12576239 genetic variants were associated with hypertension in T2DM. KCNQ1 expression was lower in the individuals with the CC versus the CT and TT genotypes. Smooth muscle cell contractility was inhibited by treatment with a KCNQ1 inhibitor. These results suggest that KCNQ1 might be associated with hypertension in individuals with T2DM.
Collapse
Affiliation(s)
- Kuo-Chin Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Integration of Traditional Chinese and Western Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jin-Hua Chen
- Biostatistics Center and School of Public Health, China Medical University, Taichung, Taiwan.,Biostatistics Center and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Kuei Chien
- National Applied Research Laboratories, National Center for High-Performance Computing, Hsinchu, Taiwan
| | - Yi-Tzone Shiao
- Heart Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Taipei, Taiwan
| | - Ching-Chu Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Asia University, Taichung, Taiwan
| |
Collapse
|
47
|
Huang HD, Darbar D. Genetic Risk Scores for Atrial Fibrillation: Do They Improve Risk Estimation? Can J Cardiol 2016; 33:422-424. [PMID: 28129965 DOI: 10.1016/j.cjca.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 01/10/2023] Open
Affiliation(s)
- Henry D Huang
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
48
|
The Role of Pharmacogenetics in Atrial Fibrillation Therapeutics: Is Personalized Therapy in Sight? J Cardiovasc Pharmacol 2016; 67:9-18. [PMID: 25970841 DOI: 10.1097/fjc.0000000000000280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide requiring therapy. Despite recent advances in catheter-based and surgical therapy, antiarrhythmic drugs (AADs) remain the mainstay of treatment for symptomatic AF. However, response in individual patients is highly variable with over half the patients treated with rhythm control therapy experiencing recurrence of AF within a year. Contemporary AADs used to suppress AF are incompletely and unpredictably effective and associated with significant risks of proarrhythmia and noncardiac toxicities. Furthermore, this "one-size" fits all strategy for selecting antiarrhythmics is based largely on minimizing risk of adverse effects rather than on the likelihood of suppressing AF. The limited success of rhythm control therapy is in part due to heterogeneity of the underlying substrate, interindividual differences in disease mechanisms, and our inability to predict response to AADs in individual patients. Genetic studies of AF over the past decade have revealed that susceptibility to and response to therapy for AF is modulated by the underlying genetic substrate. However, the bedside application of these new discoveries to the management of AF patients has thus far been disappointing. This may in part be related to our limited understanding about genetic predictors of drug response in general, the challenges associated with determining efficacy of response to AADs, and lack of randomized genotype-directed clinical trials. Nonetheless, recent studies have shown that common AF susceptibility risk alleles at the chromosome 4q25 locus modulated response to AADs, electrical cardioversion, and ablation therapy. This monograph discusses how genetic approaches to AF have not only provided important insights into underlying mechanisms but also identified AF subtypes that can be better targeted with more mechanism-based "personalized" therapy.
Collapse
|
49
|
Abstract
INTRODUCTION Over the last decade, tremendous progress has been made in defining the genetic architecture of atrial fibrillation (AF). This has in part been driven by poor understanding of the pathophysiology of AF, limitations of current therapies and failure to target therapies to the underlying mechanisms. AREAS COVERED Genetic approaches to AF have identified mutations encoding cardiac ion channels, and signaling proteins linked with AF and genome-wide association studies have uncovered common genetic variants modulating AF risk. These studies have provided important insights into the underlying mechanisms of AF and defined responses to therapies. Common AF-risk alleles at the chromosome 4q25 locus modulate response to antiarrhythmic drugs, electrical cardioversion and catheter ablation. While the translation of these discoveries to the bedside care of individual patients has been limited, emerging evidence supports the hypothesis that genotype-directed approaches that target the underlying mechanisms of AF may not only improve therapeutic efficacy but also minimize adverse effects. Expert commentary: There is an urgent need for randomized controlled trials that are genotype-based for the treatment of AF. Nonetheless, emerging data suggest that selecting therapies for AF that are genotype-directed may soon be upon us.
Collapse
Affiliation(s)
- Henry Huang
- a Division of Cardiology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| | - Dawood Darbar
- a Division of Cardiology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
50
|
Zhao J, Ding WH, Chu SY, Jiang J, Zhou J, Xia YL, Wu L. Role ofUTS2gene in the genetic susceptibility to atrial fibrillation in the Chinese population. Postgrad Med J 2016; 92:201-7. [DOI: 10.1136/postgradmedj-2015-133699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022]
|