1
|
Kawaji T, Kaneda K, Yaku H, Bao B, Hojo S, Tezuka Y, Matsuda S, Shiomi H, Kato M, Yokomatsu T, Miki S, Ono K. Intracardiac energy inefficiency during decompensated and compensated heart failure. ESC Heart Fail 2025; 12:101-109. [PMID: 39334555 PMCID: PMC11769621 DOI: 10.1002/ehf2.15034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
AIMS The mechanisms underlying the acute decompensation of heart failure (HF) remain unclear. The present study examined intracardiac dynamics during decompensated HF using echo-vector flow mapping. METHODS AND RESULTS Fifty patients admitted for decompensated HF were prospectively enrolled, and intracardiac energy loss (EL) was assessed by echo-vector flow mapping at admission (decompensated HF) and discharge (compensated HF). Outcome measures were average EL in the left ventricle (LV) in decompensated and compensated HF and were compared with those in 40 stable non-HF patients with cardiovascular diseases. The mean age of HF patients was 80.8 ± 12.4 years. The prevalence of both females and atrial fibrillation was 48.0%. The prevalence of HF with a reduced ejection fraction (<40%) (HFrEF) was 34.0%. The prevalence of decompensated HF classified into clinical scenario 1 was 33.3%. Blood pressure and NT-proBNP were significantly higher in decompensated HF than in compensated HF, while the ejection fraction (EF) was significantly lower. Average EL was significantly higher in compensated HF patients than in non-HF patients (40 mW/m·L vs. 26 mW/m·L, P = 0.047). A multivariable analysis identified age, systolic blood pressure, LVEF, and the absence of chronic obstructive pulmonary disease as independent risk factors for high LV-EL regardless of the presence of HF. Furthermore, average EL in HF patients was significantly higher under acute decompensated conditions than under compensated conditions (55 mE/m·L vs. 40 mE/m·L, [+18 mE/m·L, P = 0.03]). Higher EL under decompensated HF conditions was significant in non-HFrEF (+19 mW/m·L, P = 0.009) and clinical scenario 1 (+23 mW/m·L, P = 0.008). The multivariable analysis identified eGFR as an independent risk factor for a decrease in average LV-EL under decompensated conditions. CONCLUSIONS Energy inefficiency in LV was apparent even in stable HF patients and significant under acute decompensated conditions, particularly in HF with preserved EF and clinical scenario 1.
Collapse
Affiliation(s)
- Tetsuma Kawaji
- Department of CardiologyMitsubishi Kyoto HospitalKyotoJapan
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kazuhisa Kaneda
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hidenori Yaku
- Department of Medicine, Division of CardiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bingyuan Bao
- Department of CardiologyMitsubishi Kyoto HospitalKyotoJapan
| | - Shun Hojo
- Department of CardiologyMitsubishi Kyoto HospitalKyotoJapan
| | - Yuji Tezuka
- Department of CardiologyMitsubishi Kyoto HospitalKyotoJapan
| | | | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masashi Kato
- Department of CardiologyMitsubishi Kyoto HospitalKyotoJapan
| | | | - Shinji Miki
- Department of CardiologyMitsubishi Kyoto HospitalKyotoJapan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
2
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2025; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Matsushita K, Harada K, Kohno T, Nakano H, Kitano D, Matsuda J, Yoshino H, Yamamoto T, Nagao K, Takayama M. Comparison of clinical characteristics and prognostic factors in patients with heart failure with preserved ejection fraction with and without renal dysfunction. Minerva Cardiol Angiol 2024; 72:615-624. [PMID: 38783779 DOI: 10.23736/s2724-5683.24.06510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) with renal dysfunction (RD) is considered to be a specific phenotype of HFpEF. This study aimed to compare the clinical characteristics and prognostic factors for in-hospital mortality between HFpEF-diagnosed patients with and without RD. METHODS This multicenter retrospective study included 5867 consecutive patients with acute HFpEF. RD was defined by an estimated glomerular filtration rate (eGFR) of <60 mL/min per 1.73 m2. Kaplan-Meier survival curves and log-rank tests were used to compare the in-hospital mortality between the groups. Univariable and multivariable Cox regression analyses were performed to identify significant prognostic factors. RESULTS Across the study cohort, 68% of patients had RD. In-hospital mortality was significantly higher in HFpEF patients with RD than in those without RD. The comorbidities and laboratory data differed significantly between the groups. Independent prognostic factors for in-hospital mortality in the HFpEF patients with RD were age (hazard ratio [HR], 1.039), systolic blood pressure (HR, 0.991), eGFR (HR, 0.981), C-reactive protein (CRP; HR, 1.028), diuretics (HR, 0.374), angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers (ACE-I/ARBs; HR, 0.680), and beta-blockers (HR, 0.662). In HFpEF patients without RD, age (HR, 1.039), systolic blood pressure (HR, 0.979), and ACE-I/ARBs (HR, 0.373) were independent prognostic factors. CONCLUSIONS Significant differences in the clinical characteristics and prognostic factors, such as CRP and beta-blockers, were observed between the HFpEF patients with and without RD. These results have implications for future research and may help guide individualized patient management strategies.
Collapse
Affiliation(s)
- Kenichi Matsushita
- Tokyo CCU Network Scientific Committee, Tokyo, Japan -
- Department of Cardiology, Saitama Medical University International Medical Center, Saitama, Japan -
| | | | - Takashi Kohno
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | - Hiroki Nakano
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | | | - Junya Matsuda
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | | | | | - Ken Nagao
- Tokyo CCU Network Scientific Committee, Tokyo, Japan
| | | |
Collapse
|
4
|
Zhang S, Xu P, Wei T, Wei C, Zhang Y, Lu H, Zhang C. Novel Adiposity Indices Are Associated With Poor Prognosis in Heart Failure With Preserved Ejection Fraction Without the Obesity Paradox. J Am Heart Assoc 2024; 13:e035430. [PMID: 39494530 DOI: 10.1161/jaha.124.035430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND There is limited study that illuminates the relationship between obesity indices and prognosis in patients with heart failure with preserved ejection fraction, nor has it been examined whether the obesity paradox persists when using these metrics. METHODS AND RESULTS This study is a post hoc analysis of data from the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist) trial. A total of 3114 individuals were included in our final analysis, and a total of 481 (15.4%) all-cause deaths, and 389 (12.5%) heart failure hospitalizations were recorded. In a multivariable Cox regression model, compared with patients with a body mass index (BMI) <24.9 kg/m2, those with a BMI of 25.0-29.9, 30.0-34.9, and 35-39.9 kg/m2 were associated with a decreased risk of all-cause death, with hazard ratio (95% CI) of 0.59 (0.45-0.78), 0.61 (0.46-0.82), and 0.66 (0.47-0.92), respectively. Conversely, patients with a BMI ≥40 kg/m2 showed an increased risk of heart failure hospitalization, compared with BMI <24.9 kg/m2. Furthermore, patients in the highest quintile of obesity indices exhibited a significantly elevated hazard ratio for both all-cause death and heart failure hospitalization, compared with the lowest quintile. CONCLUSIONS An elevated BMI over a certain range was associated with a reduced risk of all-cause death in heart failure with preserved ejection fraction, displaying a U-shaped relationship, with no mortality reduction observed in cases of extreme obesity. In contrast, higher values of novel obesity indices were positively correlated with all-cause death and heart failure hospitalization without the obesity paradox.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Panpan Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Tianhao Wei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Changjiang Wei
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Yanling Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Huixia Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology Qilu Hospital of Shandong University Jinan China
| |
Collapse
|
5
|
Panico C, Felicetta A, Kunderfranco P, Cremonesi M, Salvarani N, Carullo P, Colombo F, Idini A, Passaretti M, Doro R, Rubino M, Villaschi A, Da Rin G, Peano C, Kallikourdis M, Greco CM, Condorelli G. Single-Cell RNA Sequencing Reveals Metabolic Stress-Dependent Activation of Cardiac Macrophages in a Model of Dyslipidemia-Induced Diastolic Dysfunction. Circulation 2024; 150:1517-1532. [PMID: 38126199 DOI: 10.1161/circulationaha.122.062984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known. METHODS We found that ApoE knockout mice fed a Western diet recapitulate many features of HFpEF. Single-cell RNA sequencing was used for expression analysis of CD45+ cardiac cells to evaluate the involvement of inflammation in diastolic dysfunction. We focused bioinformatics analysis on macrophages, obtaining high-resolution identification of subsets of these cells in the heart, enabling us to study the outcomes of metabolic distress on the cardiac macrophage infiltrate and to identify a macrophage-to-cardiomyocyte regulatory axis. To test whether a clinically relevant sodium glucose cotransporter-2 inhibitor could ameliorate the cardiac immune infiltrate profile in our model, mice were randomized to receive the sodium glucose cotransporter-2 inhibitor dapagliflozin or vehicle for 8 weeks. RESULTS ApoE knockout mice fed a Western diet presented with reduced diastolic function, reduced exercise tolerance, and increased pulmonary congestion associated with cardiac lipid overload and reduced polyunsaturated fatty acids. The main immune cell types infiltrating the heart included 4 subpopulations of resident and monocyte-derived macrophages, determining a proinflammatory profile exclusively in ApoE knockout-Western diet mice. Lipid overload had a direct effect on inflammatory gene activation in macrophages, mediated through endoplasmic reticulum stress pathways. Investigation of the macrophage-to-cardiomyocyte regulatory axis revealed the potential effects on cardiomyocytes of multiple inflammatory cytokines secreted by macrophages, affecting pathways such as hypertrophy, fibrosis, and autophagy. Finally, we describe an anti-inflammatory effect of sodium glucose cotransporter-2 inhibition in this model. CONCLUSIONS Using single-cell RNA sequencing in a model of diastolic dysfunction driven by hyperlipidemia, we have determined the effects of metabolic distress on cardiac inflammatory cells, in particular on macrophages, and suggest sodium glucose cotransporter-2 inhibitors as potential therapeutic agents for the targeting of a specific phenotype of HFpEF.
Collapse
Affiliation(s)
- Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Arianna Felicetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Paolo Kunderfranco
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marco Cremonesi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Nicolò Salvarani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Pierluigi Carullo
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Federico Colombo
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandra Idini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Mauro Passaretti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Riccardo Doro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Marcello Rubino
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Alessandro Villaschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Giorgio Da Rin
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Clelia Peano
- Institute of Genetics and Biomedical Research, National Research Council of Italy (Milan Unit), Rozzano (MI), Italy (N.S., P.C., C. Peano)
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Carolina M Greco
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy (C. Panico, A.F., M.C., N.S., A.I., M.P., R,D., A.V., M.K., C.M.G., G.C.)
- IRCCS Humanitas Research Hospital, Rozzano (MI), Italy (C. Panico, A.F., P.K., M.C., F.C., A.I., M.P., R,D., M.R., A.V., G.D.R., M.K., C.M.G., G.C.)
| |
Collapse
|
6
|
Kasai T, Kohno T, Shimizu W, Ando S, Joho S, Osada N, Kato M, Kario K, Shiina K, Tamura A, Yoshihisa A, Fukumoto Y, Takata Y, Yamauchi M, Shiota S, Chiba S, Terada J, Tonogi M, Suzuki K, Adachi T, Iwasaki Y, Naruse Y, Suda S, Misaka T, Tomita Y, Naito R, Goda A, Tokunou T, Sata M, Minamino T, Ide T, Chin K, Hagiwara N, Momomura S. JCS 2023 Guideline on Diagnosis and Treatment of Sleep Disordered Breathing in Cardiovascular Disease. Circ J 2024; 88:1865-1935. [PMID: 39183026 DOI: 10.1253/circj.cj-23-0489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Affiliation(s)
- Takatoshi Kasai
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University
| | - Takashi Kohno
- Department of Cardiovascular Medicine, Kyorin University Faculty of Medicine
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Shinichi Ando
- Sleep Medicine Center, Fukuokaken Saiseikai Futsukaichi Hospital
| | - Shuji Joho
- Second Department of Internal Medicine, University of Toyama
| | - Naohiko Osada
- Department of Cardiology, St. Marianna University School of Medicine
| | - Masahiko Kato
- Division of School of Health Science, Department of Pathobiological Science and Technology, Faculty of Medicine, Tottori University
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine
| | | | | | - Akiomi Yoshihisa
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
- Department of Cardiovascular Medicine, Fukushima Medical University
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | | | - Motoo Yamauchi
- Department of Clinical Pathophysiology of Nursing and Department of Respiratory Medicine, Nara Medical University
| | - Satomi Shiota
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Jiro Terada
- Department of Respiratory Medicine, Japanese Red Cross Narita Hospital
| | - Morio Tonogi
- 1st Depertment of Oral & Maxillofacial Surgery, Nihon Univercity School of Dentistry
| | | | - Taro Adachi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Yuki Iwasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Yoshihisa Naruse
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Shoko Suda
- Department of Cardiovascular Medicine, Juntendo University School of Medicine
| | - Tomofumi Misaka
- Department of Clinical Laboratory Sciences, Fukushima Medical University School of Health Science
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | - Ryo Naito
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Ayumi Goda
- Department of Cardiovascular Medicine, Kyorin University Faculty of Medicine
| | - Tomotake Tokunou
- Division of Cardiology, Department of Medicine, Fukuoka Dental College
| | - Makoto Sata
- Department of Pulmonology and Infectious Diseases, National Cerebral and Cardiovascular Center
| | | | - Tomomi Ide
- Faculty of Medical Sciences, Kyushu University
| | - Kazuo Chin
- Graduate School of Medicine and Faculty of Medicine, Kyoto University
| | - Nobuhisa Hagiwara
- YUMINO Medical Corporation
- Department of Cardiology, Tokyo Women's Medical University
| | | |
Collapse
|
7
|
Sánchez-Marteles M, Garcés-Horna V, Morales-Rull JL, Casado J, Carrera-Izquierdo M, Conde-Martel A, Dávila-Ramos MF, Llácer P, Salamanca-Bautista P, Ruiz R, Aramburu-Bodas O, Formiga F, Manzano L, Trullàs JC. Combining Loop and Thiazide Diuretics Across the Left Ventricular Ejection Fraction Spectrum: The CLOROTIC Trial. JACC. HEART FAILURE 2024; 12:1719-1730. [PMID: 38934966 DOI: 10.1016/j.jchf.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The addition of hydrochlorothiazide (HCTZ) to furosemide in the CLOROTIC (Combining Loop with Thiazide Diuretics for Decompensated Heart Failure) trial improved the diuretic response in patients with acute heart failure (AHF). OBJECTIVES This work aimed to evaluate if these results differ across the spectrum of left ventricular ejection fraction (LVEF). METHODS This post hoc analysis of the randomized, double-blind, placebo-controlled CLOROTIC trial enrolled 230 patients with AHF to receive either HCTZ or a placebo in addition to an intravenous furosemide regimen. The influence of LVEF on primary and secondary outcomes was evaluated. RESULTS The median LVEF was 55%: 166 (72%) patients had LVEF >40%, and 64 (28%) had LVEF ≤40%. Patients with a lower LVEF were younger, more likely to be male, had a higher prevalence of ischemic heart disease, and had higher natriuretic peptide levels. The addition of HCTZ to furosemide was associated with the greatest weight loss at 72 of 96 hours, better metrics of diuretic response, and greater 24-hour diuresis compared with placebo, with no significant differences according to the LVEF category (using 2 LVEF cutoff points: 40% and 50%) or LVEF as a continuous variable (all P values were insignificant). There were no significant differences observed with the addition of HCTZ in terms of mortality, rehospitalizations, or safety endpoints (impaired renal function, hyponatremia, and hypokalemia) among the 2 LVEF groups (all P values were insignificant). CONCLUSIONS Adding HCTZ to intravenous furosemide seems to be effective strategy for improving diuretic response in AHF without treatment effect modification according to baseline LVEF. (Combining Loop with Thiazide Diuretics for Decompensated Heart Failure [CLOROTIC], NCT01647932; Randomized, double blinded, multicenter study, to asses Safety and Efficacy of the Combination of Loop With Thiazide-type Diuretics vs Loop diuretics with placebo in Patients With Decompensated, EudraCT Number 2013-001852-36).
Collapse
Affiliation(s)
- Marta Sánchez-Marteles
- Internal Medicine Department, Hospital Clínico Universitario "Lozano Blesa," Calle de San Juan Bosco, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.
| | - Vanesa Garcés-Horna
- Internal Medicine Department, Hospital Clínico Universitario "Lozano Blesa," Calle de San Juan Bosco, Zaragoza, Spain; Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - José Luís Morales-Rull
- Internal Medicine Department, Heart Failure Unit, Hospital Universitari Arnau de Villanova, Institut de Recerca Biomédica (IRBLleida), Avinguda Alcalde Rovira Roure, Lleida, Spain
| | - Jesús Casado
- Internal Medicine Department, Hospital Universitario de Getafe, Carretera de Madrid-Toledo, Madrid, Spain
| | | | - Alicia Conde-Martel
- Internal Medicine Department, Hospital Universitario de Gran Canaria Dr. Negrín, C. Pl. Barranco de la Ballena, Las Palmas de Gran Canaria, Spain
| | - Melitón Francisco Dávila-Ramos
- Internal Medicine Department, Hospital Universitario Nuestra Señora de la Candelaria, Carretera General del Rosario, Santa Cruz de Tenerife, Spain
| | - Pau Llácer
- Internal Medicine Department, Hospital de Manises, Avinguda de la Generalitat Valenciana, Manises, Valencia, Spain
| | - Prado Salamanca-Bautista
- Internal Medicine Department, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Avenida Dr. Fedriani, Sevilla, Spain
| | - Raúl Ruiz
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - Oscar Aramburu-Bodas
- Internal Medicine Department, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Avenida Dr. Fedriani, Sevilla, Spain
| | - Francesc Formiga
- Internal Medicine Department, Hospital Universitari de Bellvitge, IDIBELL, Carrer de la Feixa Llarga, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luís Manzano
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, Universidad de Alcalá, Madrid, Spain
| | - Joan Carles Trullàs
- Internal Medicine Department, Hospital d'Olot i Comarcal de la Garrotxa, Avinguda dels Països Catalans Olot, Girona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IrisCC), Ctra. de Roda, Barcelona, Spain
| |
Collapse
|
8
|
Jin YQ, Geng L, Li Y, Wang KK, Xiao B, Wang MX, Gao XY, Zhang J, Yang XC, Lu JC. Evaluating the Prognostic Value of the Modified H 2FPEF Score in Patients With Heart Failure With Preserved Ejection Fraction. Cardiol Res 2024; 15:358-368. [PMID: 39420974 PMCID: PMC11483114 DOI: 10.14740/cr1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Background The H2FPEF score, a convenient tool developed for diagnosing heart failure with preserved ejection fraction (HFpEF), exhibited useful prognostic utility in HFpEF. However, the applicability and the prognostic value of the H2FPEF score in Chinese HFpEF patients have yet to be fully confirmed. The study aimed to evaluate the effect of modified H2FPEF score on the prognosis of Chinese HFpEF patients. Methods In this retrospective study, we calculated the H2FPEF scores by body mass index (BMI) ≥ 25 kg/m2 and 30 kg/m2 respectively, for 497 consecutive HFpEF patients in China. Subjects were divided into low- (0 - 3 points), intermediate- (4 - 6 points), and high-score (7 - 9 points) groups. The primary and secondary endpoints were heart failure (HF)-related events and acute coronary syndrome (ACS), respectively. Cox proportional hazard models were applied to calculate hazard ratios (HRs). Receiver operating characteristic (ROC) curves and areas under the curve (AUC) were used to evaluate the prediction of the H2FPEF score for adverse outcomes. Results Over a mean follow-up of 40.46 ± 6.52 months, the primary and secondary endpoints occurred in 168 patients (33.8%) and 97 patients (19.5%), respectively. By the definition of obesity as BMI ≥ 25 kg/m2, a higher incidence of HF-related events and ACS was observed among those with a higher modified H2FPEF score. The modified H2FPEF significantly predicted HF-related events (AUC: 0.723; 95% confidence interval (CI): 0.676 - 0.770; P < 0.001) and ACS (AUC: 0.670; 95% CI: 0.608 - 0.731; P < 0.014) with higher power than the H2FPEF score calculated by BMI ≥ 30 kg/m2. The cutoff of the modified H2FPEF score was 6.5 for detecting HF-related events and ACS. Conclusions The modified H2FPEF score, using BMI ≥ 25 kg/m2 to define obesity, could more effectively predict the occurrence of subsequent cardiovascular events in Chinese HFpEF patients. The modified H2FPEF score above 6.5 is a risk factor for adverse cardiovascular events in HFpEF patients.
Collapse
Affiliation(s)
- Ya Qiong Jin
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Lu Geng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Yue Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Ke Ke Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Bing Xiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Meng Xiao Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Xue Ying Gao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Jie Zhang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Xiu Chun Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| | - Jing Chao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei 050000, China
| |
Collapse
|
9
|
Kucsera D, Ruppert M, Sayour NV, Tóth VE, Kovács T, Hegedűs ZI, Onódi Z, Fábián A, Kovács A, Radovits T, Merkely B, Pacher P, Ferdinandy P, Varga ZV. NASH triggers cardiometabolic HFpEF in aging mice. GeroScience 2024; 46:4517-4531. [PMID: 38630423 PMCID: PMC11336017 DOI: 10.1007/s11357-024-01153-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/20/2024] [Indexed: 08/22/2024] Open
Abstract
Both heart failure with preserved ejection fraction (HFpEF) and non-alcoholic fatty liver disease (NAFLD) develop due to metabolic dysregulation, has similar risk factors (e.g., insulin resistance, systemic inflammation) and are unresolved clinical challenges. Therefore, the potential link between the two disease is important to study. We aimed to evaluate whether NASH is an independent factor of cardiac dysfunction and to investigate the age dependent effects of NASH on cardiac function. C57Bl/6 J middle aged (10 months old) and aged mice (24 months old) were fed either control or choline deficient (CDAA) diet for 8 weeks. Before termination, echocardiography was performed. Upon termination, organ samples were isolated for histological and molecular analysis. CDAA diet led to the development of NASH in both age groups, without inducing weight gain, allowing to study the direct effect of NASH on cardiac function. Mice with NASH developed hepatomegaly, fibrosis, and inflammation. Aged animals had increased heart weight. Conventional echocardiography revealed normal systolic function in all cohorts, while increased left ventricular volumes in aged mice. Two-dimensional speckle tracking echocardiography showed subtle systolic and diastolic deterioration in aged mice with NASH. Histologic analyses of cardiac samples showed increased cross-sectional area, pronounced fibrosis and Col1a1 gene expression, and elevated intracardiac CD68+ macrophage count with increased Il1b expression. Conventional echocardiography failed to reveal subtle change in myocardial function; however, 2D speckle tracking echocardiography was able to identify diastolic deterioration. NASH had greater impact on aged animals resulting in cardiac hypertrophy, fibrosis, and inflammation.
Collapse
Affiliation(s)
- Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Tamás Kovács
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsombor I Hegedűs
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Alexandra Fábián
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute On Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary.
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary.
| |
Collapse
|
10
|
Gao C, Xiong Z, Liu Y, Wang M, Wang M, Liu T, Liu J, Ren S, Cao N, Yan H, Drucker DJ, Rau CD, Yokota T, Huang J, Wang Y. Glucagon Receptor Antagonist for Heart Failure With Preserved Ejection Fraction. Circ Res 2024; 135:614-628. [PMID: 39011638 PMCID: PMC11325917 DOI: 10.1161/circresaha.124.324706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.
Collapse
MESH Headings
- Animals
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/drug therapy
- Heart Failure/etiology
- Stroke Volume/drug effects
- Mice, Inbred C57BL
- Mice
- Male
- Receptors, Glucagon/antagonists & inhibitors
- Receptors, Glucagon/metabolism
- Receptors, Glucagon/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Obese
- Ventricular Function, Left/drug effects
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/complications
- Disease Models, Animal
- Signal Transduction
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China (Z.X.)
| | - Yunxia Liu
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Meng Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Tian Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati, OH (C.G., T.L.)
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, China (Menglong Wang, J.L.)
| | - Shuxun Ren
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
| | - Nancy Cao
- School of Medicine and Public Health, University of Wisconsin, Madison (N.C.)
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA (Y.H.)
| | - Daniel J. Drucker
- Department of Medicine, Lunenfeld Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada (D.J.D.)
| | - Christoph Daniel Rau
- Computational Medicine Program and Department of Human Genetics, University of North Carolina at Chapel Hill (C.D.R.)
| | - Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, and the VA Greater Los Angeles Healthcare System (T.Y.)
| | - Jijun Huang
- Division of Endocrinology, Department of medicine, David Geffen School of Medicine, University of California, Los Angeles (J.H.)
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, DukeNUS School of Medicine and National Heart Center of Singapore, Singapore (Y.L., Meng Wang, S.R., Y.W.)
- Department of Medicine, Duke University School of Medicine, Durham, NC (Y.W.)
| |
Collapse
|
11
|
Kurgansky KE, Parker R, Djousse L, Gagnon DR, Joseph J. Spironolactone Reduces the Risk of Death in Veterans With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e032231. [PMID: 38979805 PMCID: PMC11292773 DOI: 10.1161/jaha.123.032231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome increasing in prevalence and affecting millions worldwide but with limited evidence-based therapies. Results from explanatory clinical trials suggest that spironolactone may help to improve outcomes in patients with HFpEF. We sought to investigate the effectiveness of spironolactone in reducing death and hospitalization outcomes for patients with HFpEF in a real-world setting. METHODS AND RESULTS We used electronic health records from the US Veterans Affairs (VA) health care system between 2002 and 2012 to identify patients with HFpEF who were followed longitudinally through 2014 using a validated algorithm. Among our HFpEF cohort that is 96% men, 85% White individuals, and aged 74±11 years, 3690 spironolactone users and 49 191 nonusers were identified and followed for a median of 2.9 (interquartile range [IQR], 1.5-2.4) and 3.3 (IQR, 1.6-5.9) years, respectively. We evaluated the effect of spironolactone use on all-cause death and number of days hospitalized per year for heart failure or for any cause by fitting generalized estimating equation-based Poisson and negative binomial models. Crude rates of 10.3 versus 13.5 deaths and 394.0 versus 485.9 days hospitalized were observed per 100 person-years for spironolactone users versus nonusers, respectively. After multivariable adjustment, there was a 21% reduction (95% CI, 13-29; P<0.0001) in rate of all-cause death among spironolactone users compared with nonusers and no statistically significant difference in days hospitalized for all causes or heart failure. CONCLUSIONS In a real-world national cohort of patients with HFpEF, spironolactone use reduced all-cause death and demonstrated a favorable trend in reducing the burden of hospitalizations.
Collapse
Affiliation(s)
- Katherine E. Kurgansky
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC)Veterans Affairs Boston Healthcare SystemBostonMA
| | - Rachel Parker
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC)Veterans Affairs Boston Healthcare SystemBostonMA
| | - Luc Djousse
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC)Veterans Affairs Boston Healthcare SystemBostonMA
- Department of Medicine, Division of Aging, Brigham and Women’s HospitalHarvard Medical SchoolBostonMA
| | - David R. Gagnon
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC)Veterans Affairs Boston Healthcare SystemBostonMA
- Department of BiostatisticsBoston University School of Public HealthBostonMA
| | - Jacob Joseph
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC)Veterans Affairs Boston Healthcare SystemBostonMA
- Cardiology SectionVA Providence Healthcare SystemProvidenceRI
- Brown UniversityWarren Alpert Medical SchoolProvidenceRI
| |
Collapse
|
12
|
Soltani F, Jenkins DA, Kaura A, Bradley J, Black N, Farrant JP, Williams SG, Mulla A, Glampson B, Davies J, Papadimitriou D, Woods K, Shah AD, Thursz MR, Williams B, Asselbergs FW, Mayer EK, Herbert C, Grant S, Curzen N, Squire I, Johnson T, O'Gallagher K, Shah AM, Perera D, Kharbanda R, Patel RS, Channon KM, Lee R, Peek N, Mayet J, Miller CA. Phenogrouping heart failure with preserved or mildly reduced ejection fraction using electronic health record data. BMC Cardiovasc Disord 2024; 24:343. [PMID: 38969974 PMCID: PMC11229019 DOI: 10.1186/s12872-024-03987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Heart failure (HF) with preserved or mildly reduced ejection fraction includes a heterogenous group of patients. Reclassification into distinct phenogroups to enable targeted interventions is a priority. This study aimed to identify distinct phenogroups, and compare phenogroup characteristics and outcomes, from electronic health record data. METHODS 2,187 patients admitted to five UK hospitals with a diagnosis of HF and a left ventricular ejection fraction ≥ 40% were identified from the NIHR Health Informatics Collaborative database. Partition-based, model-based, and density-based machine learning clustering techniques were applied. Cox Proportional Hazards and Fine-Gray competing risks models were used to compare outcomes (all-cause mortality and hospitalisation for HF) across phenogroups. RESULTS Three phenogroups were identified: (1) Younger, predominantly female patients with high prevalence of cardiometabolic and coronary disease; (2) More frail patients, with higher rates of lung disease and atrial fibrillation; (3) Patients characterised by systemic inflammation and high rates of diabetes and renal dysfunction. Survival profiles were distinct, with an increasing risk of all-cause mortality from phenogroups 1 to 3 (p < 0.001). Phenogroup membership significantly improved survival prediction compared to conventional factors. Phenogroups were not predictive of hospitalisation for HF. CONCLUSIONS Applying unsupervised machine learning to routinely collected electronic health record data identified phenogroups with distinct clinical characteristics and unique survival profiles.
Collapse
Affiliation(s)
- Fardad Soltani
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
| | - David A Jenkins
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amit Kaura
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
| | - Joshua Bradley
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
| | - Nicholas Black
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
| | - John P Farrant
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
| | - Simon G Williams
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
| | - Abdulrahim Mulla
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
- Imperial Clinical Analytics, Research and Evaluation, Digital Collaboration Space, Faculty of Medicine, Imperial College London and Paddington Life Sciences, London, UK
| | - Benjamin Glampson
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
- Imperial Clinical Analytics, Research and Evaluation, Digital Collaboration Space, Faculty of Medicine, Imperial College London and Paddington Life Sciences, London, UK
| | - Jim Davies
- NIHR Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Dimitri Papadimitriou
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
- Imperial Clinical Analytics, Research and Evaluation, Digital Collaboration Space, Faculty of Medicine, Imperial College London and Paddington Life Sciences, London, UK
| | - Kerrie Woods
- NIHR Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anoop D Shah
- London Biomedical Research Centre, NIHR University College, University College London and University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark R Thursz
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
| | - Bryan Williams
- London Biomedical Research Centre, NIHR University College, University College London and University College London Hospitals NHS Foundation Trust, London, UK
| | - Folkert W Asselbergs
- London Biomedical Research Centre, NIHR University College, University College London and University College London Hospitals NHS Foundation Trust, London, UK
| | - Erik K Mayer
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
- Imperial Clinical Analytics, Research and Evaluation, Digital Collaboration Space, Faculty of Medicine, Imperial College London and Paddington Life Sciences, London, UK
| | - Christopher Herbert
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Stuart Grant
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Nick Curzen
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Iain Squire
- NIHR Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Thomas Johnson
- NIHR Bristol Biomedical Research Centre, University of Bristol and University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre of Excellence and King's College Hospital NHS Foundation Trust, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence and King's College Hospital NHS Foundation Trust, London, UK
| | - Divaka Perera
- British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Rajesh Kharbanda
- NIHR Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Riyaz S Patel
- London Biomedical Research Centre, NIHR University College, University College London and University College London Hospitals NHS Foundation Trust, London, UK
| | - Keith M Channon
- NIHR Oxford Biomedical Research Centre, University of Oxford and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Richard Lee
- NIHR Biomedical Research Centre, The Royal Marsden and Institute of Cancer Research, London, UK
| | - Niels Peek
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
- The Healthcare Improvement Studies Institute (THIS Institute), Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jamil Mayet
- NIHR Imperial Biomedical Research Centre, Imperial College London and Imperial College Healthcare NHS Trust, St Mary's Hospital, London, W2 1NY, UK
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK.
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
13
|
Hulot JS, Janiak P, Boutinaud P, Boutouyrie P, Chézalviel-Guilbert F, Christophe JJ, Cohen A, Damy T, Djadi-Prat J, Firat H, Hervé PY, Isnard R, Jondeau G, Mousseaux E, Pernot M, Prot P, Tyl B, Soulat G, Logeart D. Rationale and design of the PACIFIC-PRESERVED (PhenomApping, ClassIFication and Innovation for Cardiac dysfunction in patients with heart failure and PRESERVED left ventricular ejection fraction) study. Arch Cardiovasc Dis 2024; 117:332-342. [PMID: 38644067 DOI: 10.1016/j.acvd.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome that is poorly defined, reflecting an incomplete understanding of its pathophysiology. AIM To redefine the phenotypic spectrum of HFpEF. METHODS The PACIFIC-PRESERVED study is a prospective multicentre cohort study designed to perform multidimensional deep phenotyping of patients diagnosed with HFpEF (left ventricular ejection fraction≥50%), patients with heart failure with reduced ejection fraction (left ventricular ejection fraction≤40%) and subjects without overt heart failure (3:2:1 ratio). The study proposes prospective investigations in patients during a 1-day hospital stay: physical examination; electrocardiogram; performance-based tests; blood samples; cardiac magnetic resonance imaging; transthoracic echocardiography (rest and low-level exercise); myocardial shear wave elastography; chest computed tomography; and non-invasive measurement of arterial stiffness. Dyspnoea, depression, general health and quality of life will be assessed by dedicated questionnaires. A biobank will be established. After the hospital stay, patients are asked to wear a connected garment (with digital sensors) to collect electrocardiography, pulmonary and activity variables in real-life conditions (for up to 14 days). Data will be centralized for machine-learning-based analyses, with the aim of reclassifying HFpEF into more distinct subgroups, improving understanding of the disease mechanisms and identifying new biological pathways and molecular targets. The study will also serve as a platform to enable the development of innovative technologies and strategies for the diagnosis and stratification of patients with HFpEF. CONCLUSIONS PACIFIC-PRESERVED is a prospective multicentre phenomapping study, using novel analytical techniques, which will provide a unique data resource to better define HFpEF and identify new clinically meaningful subgroups of patients.
Collapse
Affiliation(s)
- Jean-Sébastien Hulot
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France; CIC1418 and DMU CARTE, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France.
| | | | | | - Pierre Boutouyrie
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France; Pharmacology and DMU CARTE, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | | | | | - Ariel Cohen
- Cardiology, Hôpital Saint-Antoine, AP-HP, ICAN 1166, Sorbonne Université, 75012 Paris, France
| | - Thibaud Damy
- Cardiology, Hôpital Henri-Mondor, AP-HP, 94000 Créteil, France
| | - Juliette Djadi-Prat
- Clinical Research Unit, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | | | | | - Richard Isnard
- Cardiology, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | | | - Elie Mousseaux
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France; Cardiac Imaging Radiology, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS FRE 2031, 75015 Paris, France
| | | | | | - Gilles Soulat
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France; Cardiac Imaging Radiology, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France
| | - Damien Logeart
- Cardiology, Hôpital Lariboisière, AP-HP, 75018 Paris, France
| |
Collapse
|
14
|
Marketou M, Kontaraki J, Zacharis E, Maragkoudakis S, Fragkiadakis K, Kampanieris E, Plevritaki A, Savva E, Malikides O, Chlouverakis G, Kochiadakis G. Peripheral Blood MicroRNA-21 as a Predictive Biomarker for Heart Failure With Preserved Ejection Fraction in Old Hypertensives. Am J Hypertens 2024; 37:298-305. [PMID: 37976292 DOI: 10.1093/ajh/hpad109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a major health issue with high morbidity and mortality. The epidemiology and the factors that cause HFpEF have not been fully clarified, while accurate predictive biomarkers are lacking. Our aim was to determine whether levels of microRNA-21 (miR-21) in peripheral blood monocytes, which play a critical role in many pathophysiological pathways of hypertensive heart disease, can predict the occurrence of HFpEF in older hypertensives, as well as the associated mortality and morbidity. METHODS We enrolled 151 elderly patients >60 years old with essential hypertension but without HF at baseline. miRs expression levels in peripheral blood mononuclear cells had been quantified by real-time reverse transcription polymerase chain reaction. RESULTS During a median follow-up of 8.2 years, 56 patients (37%) had an event. Levels of miR-21 in peripheral mononuclear blood cells proved to be significantly associated with the occurrence of HFpEF. More specifically, the median HFpEF-free period was 110 months for those with miR-21 >2.1 and 114 months for those with miR-21 <2.1. In addition, multivariate analysis showed that miR-21 (hazard ratio 11.14), followed by hemoglobin (Hg) (hazard ratio 0.56 for Hg >13.6 g/dl, a 45% risk reduction), were independent and the most significant predictors of HFpEF events. CONCLUSIONS miR-21 levels in peripheral blood monocytes are associated with the development of future HFpEF. Our findings may alter the risk models of HFpEF and support the rationale for further research into the modulation of miRs as biomarkers and treatment targets for HFpEF.
Collapse
Affiliation(s)
- Maria Marketou
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| | - Joanna Kontaraki
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| | - Evangelos Zacharis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | | | | | | | - Eirini Savva
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
| | | | - Gregory Chlouverakis
- Division of Biostatistics, School of Medicine, University of Crete, Crete, Greece
| | - George Kochiadakis
- Cardiology Department, Heraklion University General Hospital, Crete, Greece
- Cardiology Department, School of Medicine, University of Crete, Crete, Greece
| |
Collapse
|
15
|
Rationale and design of the United Kingdom Heart Failure with Preserved Ejection Fraction Registry. Heart 2024; 110:359-365. [PMID: 37827557 DOI: 10.1136/heartjnl-2023-323049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/26/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Heart failure with preserved ejection fraction (HFpEF) is a common heterogeneous syndrome that remains imprecisely defined and consequently has limited treatment options and poor outcomes. METHODS The UK Heart Failure with Preserved Ejection Fraction Registry (UK HFpEF) is a prospective data-enabled cohort and platform study. The study will develop a large, highly characterised cohort of patients with HFpEF. A biobank will be established. Deep clinical phenotyping, imaging, multiomics and centrally held national electronic health record data will be integrated at scale, in order to reclassify HFpEF into distinct subgroups, improve understanding of disease mechanisms and identify new biological pathways and molecular targets. Together, these will form the basis for developing diagnostics and targeted therapeutics specific to subgroups. It will be a platform for more effective and efficient trials, focusing on subgroups in whom targeted interventions are expected to be effective, with consent in place to facilitate rapid recruitment, and linkage for follow-up. Patients with a diagnosis of HFpEF made by a heart failure specialist, who have had natriuretic peptide levels measured and a left ventricular ejection fraction >40% are eligible. Patients with an ejection fraction between 40% and 49% will be limited to no more than 25% of the cohort. CONCLUSIONS UK HFpEF will develop a rich, multimodal data resource to enable the identification of disease endotypes and develop more effective diagnostic strategies, precise risk stratification and targeted therapeutics. TRIAL REGISTRATION NUMBER NCT05441839.
Collapse
|
16
|
Stoicescu L, Crişan D, Morgovan C, Avram L, Ghibu S. Heart Failure with Preserved Ejection Fraction: The Pathophysiological Mechanisms behind the Clinical Phenotypes and the Therapeutic Approach. Int J Mol Sci 2024; 25:794. [PMID: 38255869 PMCID: PMC10815792 DOI: 10.3390/ijms25020794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is an increasingly frequent form and is estimated to be the dominant form of HF. On the other hand, HFpEF is a syndrome with systemic involvement, and it is characterized by multiple cardiac and extracardiac pathophysiological alterations. The increasing prevalence is currently reaching epidemic levels, thereby making HFpEF one of the greatest challenges facing cardiovascular medicine today. Compared to HF with reduced ejection fraction (HFrEF), the medical attitude in the case of HFpEF was a relaxed one towards the disease, despite the fact that it is much more complex, with many problems related to the identification of physiopathogenetic mechanisms and optimal methods of treatment. The current medical challenge is to develop effective therapeutic strategies, because patients suffering from HFpEF have symptoms and quality of life comparable to those with reduced ejection fraction, but the specific medication for HFrEF is ineffective in this situation; for this, we must first understand the pathological mechanisms in detail and correlate them with the clinical presentation. Another important aspect of HFpEF is the diversity of patients that can be identified under the umbrella of this syndrome. Thus, before being able to test and develop effective therapies, we must succeed in grouping patients into several categories, called phenotypes, depending on the pathological pathways and clinical features. This narrative review critiques issues related to the definition, etiology, clinical features, and pathophysiology of HFpEF. We tried to describe in as much detail as possible the clinical and biological phenotypes recognized in the literature in order to better understand the current therapeutic approach and the reason for the limited effectiveness. We have also highlighted possible pathological pathways that can be targeted by the latest research in this field.
Collapse
Affiliation(s)
- Laurențiu Stoicescu
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Cardiology Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Dana Crişan
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Lucreţia Avram
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Cai D, Chen Q, Mu X, Xiao T, Gu Q, Wang Y, Ji Y, Sun L, Wei J, Wang Q. Development and validation of a novel combinatorial nomogram model to predict in-hospital deaths in heart failure patients. BMC Cardiovasc Disord 2024; 24:16. [PMID: 38172656 PMCID: PMC10765573 DOI: 10.1186/s12872-023-03683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The purpose of this study was to develop a Nomogram model to identify the risk of all-cause mortality during hospitalization in patients with heart failure (HF). METHODS HF patients who had been registered in the Medical Information Mart for Intensive Care (MIMIC) III and IV databases were included. The primary outcome was the occurrence of all-cause mortality during hospitalization. Two Logistic Regression models (LR1 and LR2) were developed to predict in-hospital death for HF patients from the MIMIC-IV database. The MIMIC-III database were used for model validation. The area under the receiver operating characteristic curve (AUC) was used to compare the discrimination of each model. Calibration curve was used to assess the fit of each developed models. Decision curve analysis (DCA) was used to estimate the net benefit of the predictive model. RESULTS A total of 16,908 HF patients were finally enrolled through screening, of whom 2,283 (13.5%) presented with in-hospital death. Totally, 48 variables were included and analyzed in the univariate and multifactorial regression analysis. The AUCs for the LR1 and LR2 models in the test cohort were 0.751 (95% CI: 0.735∼0.767) and 0.766 (95% CI: 0.751-0.781), respectively. Both LR models performed well in the calibration curve and DCA process. Nomogram and online risk assessment system were used as visualization of predictive models. CONCLUSION A new risk prediction tool and an online risk assessment system were developed to predict mortality in HF patients, which performed well and might be used to guide clinical practice.
Collapse
Affiliation(s)
- Dabei Cai
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Qianwen Chen
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China
| | - Xiaobo Mu
- Department of Anesthesiology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Tingting Xiao
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China
| | - Qingqing Gu
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China
| | - Yu Wang
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China
| | - Yuan Ji
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China
| | - Ling Sun
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China.
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Jun Wei
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241000, China.
| | - Qingjie Wang
- Department of Cardiology, the Affiliated Changzhou Second People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, Jiangsu, 213000, China.
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, 116000, China.
| |
Collapse
|
18
|
Gehris J, Ervin C, Hawkins C, Womack S, Churillo AM, Doyle J, Sinusas AJ, Spinale FG. Fibroblast activation protein: Pivoting cancer/chemotherapeutic insight towards heart failure. Biochem Pharmacol 2024; 219:115914. [PMID: 37956895 PMCID: PMC10824141 DOI: 10.1016/j.bcp.2023.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) which is accompanied by the emergence and proliferation of an activated fibroblast, termed the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be amplified with local cancer progression and proliferation of the CAF, is fibroblast activation protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology is associated with left ventricular (LV) remodeling and changes in ECM structure and function. As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic targets in HF.
Collapse
Affiliation(s)
- John Gehris
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlie Ervin
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Charlotte Hawkins
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Sydney Womack
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Amelia M Churillo
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Jonathan Doyle
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States
| | - Albert J Sinusas
- Yale University Cardiovascular Imaging Center, New Haven CT, United States
| | - Francis G Spinale
- Cell Biology and Anatomy and Cardiovascular Research Center, University of South Carolina School of Medicine and the Columbia VA Health Care System, Columbia, SC, United States.
| |
Collapse
|
19
|
Seferović PM, Polovina M, Rosano G, Bozkurt B, Metra M, Heymans S, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Olivotto I, Rapezzi C, Linhart A, Corrado D, Tschöpe C, Milinković I, Bayes Genis A, Filippatos G, Keren A, Ašanin M, Krljanac G, Maksimović R, Skouri H, Ben Gal T, Moura B, Volterrani M, Abdelhamid M, Lopatin Y, Chioncel O, Coats AJS. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur J Heart Fail 2023; 25:1899-1922. [PMID: 37470300 DOI: 10.1002/ejhf.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Cardiomyopathies represent significant contributors to cardiovascular morbidity and mortality. Over the past decades, a progress has occurred in characterization of the genetic background and major pathophysiological mechanisms, which has been incorporated into a more nuanced diagnostic approach and risk stratification. Furthermore, medications targeting core disease processes and/or their downstream adverse effects have been introduced for several cardiomyopathies. Combined with standard care and prevention of sudden cardiac death, these novel and emerging targeted therapies offer a possibility of improving the outcomes in several cardiomyopathies. Therefore, the aim of this document is to summarize practical approaches to the treatment of cardiomyopathies, which includes the evidence-based novel therapeutic concepts and established principles of care, tailored to the individual patient aetiology and clinical presentation of the cardiomyopathy. The scope of the document encompasses contemporary treatment of dilated, hypertrophic, restrictive and arrhythmogenic cardiomyopathy. It was based on an expert consensus reached at the Heart Failure Association online Workshop, held on 18 March 2021.
Collapse
Affiliation(s)
- Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Biykem Bozkurt
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute, Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children's Hospital and Careggi University Hospital, Florence, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Aleš Linhart
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Milinković
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antoni Bayes Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ružica Maksimović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Center for Radiology and Magnetic Resonance, University Clinical Center of Serbia, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu' Bucharest; University for Medicine and Pharmacy 'Carol Davila' Bucharest, Bucharest, Romania
| | | |
Collapse
|
20
|
Bonanni A, Vinci R, d’Aiello A, Grimaldi MC, Di Sario M, Tarquini D, Proto L, Severino A, Pedicino D, Liuzzo G. Targeting Collagen Pathways as an HFpEF Therapeutic Strategy. J Clin Med 2023; 12:5862. [PMID: 37762803 PMCID: PMC10531642 DOI: 10.3390/jcm12185862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. The prevalence is expected to increase in the coming years, resulting in heart failure with reduced ejection fraction (HFrEF). This condition poses a burden to the global health care system as the number of patients affected by this condition is constantly increasing due to a rising average lifespan. The absence of validated drugs effective in reducing hospitalization rates and mortality may reflect the impossibility of applying a one size fits all approach as in HFrEF, heading for a personalized approach. Available evidence demonstrated the link between collagen quantity and quality alterations, and cardiac remodeling. In the context of fibrosis, collagen cross-linking is strictly involved, displaying two types of mechanisms: enzymatic and non-enzymatic. In the murine model, enzymatic inhibition of fibrosis-inducing protease-activated receptor-1 (PAR1) and transforming growth factor (TGF)-β signaling appeared to reduce cardiac fibrosis. On the other hand, in the case of non-enzymatic cross-linking, sodium glucose co-transporter type 2 inhibitors (SGLT2is), appeared to counteract the deposition of advanced glycation end-products (AGEs), which in turn contributed to ventricular remodeling. In this review, we address the mechanisms associated with collagen alterations to identify potential targets of cardiac fibrosis in HFpEF patients.
Collapse
Affiliation(s)
- Alice Bonanni
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
| | - Ramona Vinci
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Alessia d’Aiello
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Maria Chiara Grimaldi
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Marianna Di Sario
- Department of Anaesthesia and Intensive Care, IRCCS Istituto Clinico Humanitas, Humanitas University, 20089 Milan, Italy;
| | - Dalila Tarquini
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
| | - Luca Proto
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
| | - Anna Severino
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (D.T.); (L.P.); (D.P.); (G.L.)
- Department of Cardiovascular and Pneumological Sciences, Catholic University of Sacred Heart, 00168 Rome, Italy; (R.V.); (M.C.G.); (A.S.)
| |
Collapse
|
21
|
Bennett J, van Dinther M, Voorter P, Backes W, Barnes J, Barkhof F, Captur G, Hughes AD, Sudre C, Treibel TA. Assessment of Microvascular Disease in Heart and Brain by MRI: Application in Heart Failure with Preserved Ejection Fraction and Cerebral Small Vessel Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1596. [PMID: 37763715 PMCID: PMC10534635 DOI: 10.3390/medicina59091596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
The objective of this review is to investigate the commonalities of microvascular (small vessel) disease in heart failure with preserved ejection fraction (HFpEF) and cerebral small vessel disease (CSVD). Furthermore, the review aims to evaluate the current magnetic resonance imaging (MRI) diagnostic techniques for both conditions. By comparing the two conditions, this review seeks to identify potential opportunities to improve the understanding of both HFpEF and CSVD.
Collapse
Affiliation(s)
- Jonathan Bennett
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, Barts Heart Centre, London EC1A 7BE, UK
| | - Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LX Maastricht, The Netherlands
| | - Paulien Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Walter Backes
- School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LX Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health & Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Josephine Barnes
- Dementia Research Centre, UCL Queens Square Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Frederick Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije University, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
- Queen Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
- Centre for Inherited Heart Muscle Conditions, Cardiology Department, The Royal Free Hospital, London NW3 2QG, UK
| | - Alun D. Hughes
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
| | - Carole Sudre
- Dementia Research Centre, UCL Queens Square Institute of Neurology, University College London, London WC1E 6BT, UK
- Centre for Medical Image Computing, University College London, London WC1E 6BT, UK
- Medical Research Council Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, University College London, London WC1E 6BT, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK
| | - Thomas A. Treibel
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Department of Cardiology, Barts Heart Centre, London EC1A 7BE, UK
| |
Collapse
|
22
|
Tah S, Valderrama M, Afzal M, Iqbal J, Farooq A, Lak MA, Gostomczyk K, Jami E, Kumar M, Sundaram A, Sharifa M, Arain M. Heart Failure With Preserved Ejection Fraction: An Evolving Understanding. Cureus 2023; 15:e46152. [PMID: 37900404 PMCID: PMC10613100 DOI: 10.7759/cureus.46152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a clinical syndrome in which patients have signs and symptoms of HF due to high left ventricular (LV) filling pressure despite normal or near normal LV ejection fraction. It is more common than HF with reduced ejection fraction (HFrEF), and its diagnosis and treatment are more challenging than HFrEF. Although hypertension is the primary risk factor, coronary artery disease and other comorbidities, such as atrial fibrillation (AF), diabetes, chronic kidney disease (CKD), and obesity, also play an essential role in its formation. This review summarizes current knowledge about HFpEF, its pathophysiology, clinical presentation, diagnostic challenges, current treatments, and promising novel treatments. It is essential to continue to be updated on the latest treatments for HFpEF so that patients always receive the most therapeutic treatments. The use of GnRH agonists in the management of HFpEF, infusion of Apo a-I nanoparticle, low-level transcutaneous vagal stimulation (LLTS), and estrogen only in post-menopausal women are promising strategies to prevent diastolic dysfunction and HFpEF; however, there is still no proven curative treatment for HFpEF yet.
Collapse
Affiliation(s)
- Sunanda Tah
- Surgery, Beckley Appalachian Regional Healthcare (ARH) Hospital, Beckley, USA
- Surgery, Saint James School of Medicine, Arnos Vale, VCT
| | | | - Maham Afzal
- Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | | | - Aisha Farooq
- Internal Medicine, Dr. Ruth Pfau Hospital, Karachi, PAK
| | | | - Karol Gostomczyk
- Medicine, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, POL
| | - Elhama Jami
- Internal Medicine, Herat Regional Hospital, Herat, AFG
| | | | | | | | - Mustafa Arain
- Internal Medicine, Civil Hospital Karachi, Karachi, PAK
| |
Collapse
|
23
|
Zhazykbayeva S, Hassoun R, Herwig M, Budde H, Kovács Á, Mannherz HG, El-Battrawy I, Tóth A, Schmidt WE, Mügge A, Hamdani N. Oxidative stress and inflammation distinctly drive molecular mechanisms of diastolic dysfunction and remodeling in female and male heart failure with preserved ejection fraction rats. Front Cardiovasc Med 2023; 10:1157398. [PMID: 37363100 PMCID: PMC10285478 DOI: 10.3389/fcvm.2023.1157398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex cardiovascular insufficiency syndrome presenting with an ejection fraction (EF) of greater than 50% along with different proinflammatory and metabolic co-morbidities. Despite previous work provided key insights into our understanding of HFpEF, effective treatments are still limited. In the current study we attempted to unravel the molecular basis of sex-dependent differences in HFpEF pathology. We analyzed left ventricular samples from 1-year-old female and male transgenic (TG) rats homozygous for the rat Ren-2 renin gene (mRen2) characterized with hypertension and diastolic dysfunction and compared it to age-matched female and male wild type rats (WT) served as control. Cardiomyocytes from female and male TG rats exhibited an elevated titin-based stiffness (Fpassive), which was corrected to control level upon treatment with reduced glutathione indicating titin oxidation. This was accompanied with high levels of oxidative stress in TG rats with more prominent effects in female group. In vitro supplementation with heat shock proteins (HSPs) reversed the elevated Fpassive indicating restoration of their cytoprotective function. Furthermore, the TG group exhibited high levels of proinflammatory cytokines with significant alterations in apoptotic and autophagy pathways in both sexes. Distinct alterations in the expression of several proteins between both sexes suggest their differential impact on disease development and necessitate distinct treatment options. Hence, our data suggested that oxidative stress and inflammation distinctly drive diastolic dysfunction and remodeling in female and male rats with HFpEF and that the sex-dependent mechanisms contribute to HF pathology.
Collapse
Affiliation(s)
- Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| | - Hans Georg Mannherz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University of Bochum, Bochum, Germany
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Research Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Wolfgang E. Schmidt
- Department of Medicine I, St. Josef Hospital, UK RUB, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University of Bochum, Bochum, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Tumor Necrosis Factor-α Mediates Inflammation-induced Early-Stage Left Ventricular Systolic Dysfunction. J Cardiovasc Pharmacol 2023; 81:411-422. [PMID: 37078863 DOI: 10.1097/fjc.0000000000001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
ABSTRACT Elevated systemic inflammation contributes to pathogenesis of heart failure with preserved ejection fraction (HFpEF), but molecular mechanisms are poorly understood. Although left ventricular (LV) diastolic dysfunction is the main cause of HFpEF, subclinical systolic dysfunction also contributes. We have previously shown that rats with collagen-induced arthritis (CIA) have systemic inflammation, LV diastolic dysfunction, and that increased circulating TNF-α contributes to inflammation-induced HFpEF pathogenesis, but does not mediate LV diastolic dysfunction in CIA rats. Contribution of systemic inflammation to dysfunction of the active process of LV diastolic and systolic function are unknown. In the present study, we used the CIA rat model to investigate the effects of systemic inflammation and TNF-α blockade on systolic function, and mRNA expression of genes involved in active diastolic relaxation and of myosin heavy chain (MyHC) isoforms. Collagen inoculation and TNF-α blockade did not affect LV mRNA expression of genes that mediate active LV diastolic function. Collagen-induced inflammation impaired LV global longitudinal strain ( P = 0.03) and velocity ( P = 0.04). This impairment of systolic function was prevented by TNF-α blockade. Collagen inoculation decreased mRNA expression of α-MyHC ( Myh6, P = 0.03) and increased expression of β-MyHC ( Myh7, P = 0.0002), a marker, which is upregulated in failing hearts. TNF-α blockade prevented this MyHC isoform-switch. These results show that increased circulating TNF-α changes the relative expression of MyHC isoforms, favoring β-MyHC, which may underlie changes in contractile function that impair systolic function. Our results indicate that TNF-α initiates early-stage LV systolic, rather than LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhang X, Lv X, Wang N, Yu S, Si J, Zhang Y, Cai M, Liu Y. WATCH-DM risk score predicts the prognosis of diabetic phenotype patients with heart failure and preserved ejection fraction. Int J Cardiol 2023:S0167-5273(23)00738-6. [PMID: 37257517 DOI: 10.1016/j.ijcard.2023.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. Diabetes may identify an essential phenotype that significantly affects the prognosis of these patients. The WATCH-DM risk score has been validated for predicting the risk of heart failure in outpatients with type 2 diabetes mellitus (T2DM), but its ability to predict clinical outcomes in HFpEF patients with T2DM is unknown. We aimed to assess whether this risk score could predict the prognosis of diabetic phenotype patients with heart failure and preserved ejection fraction. METHODS We enrolled retrospectively 414 patients with HFpEF (70.03 ± 8.654 years, 58.70% female), including 203 (49.03%) type 2 diabetics. Diabetic HFpEF patients were stratified by baseline WATCH-DM risk score. RESULTS Diabetic HFpEF patients exhibited a trend toward more concentric remodeling/hypertrophy than nondiabetic HFpEF patients. When analyzed as a continuous variable, per 1-point increase in the WATCH-DM risk score was associated with increased risks of all-cause death (HR 1.181), cardiovascular death (HR 1.239), any hospitalization (HR 1.082), and HF hospitalization (HR 1.097). The AUC for the WATCH-DM risk score in predicting incident cardiovascular death (0.7061, 95% CI 0.6329-0.7792) was higher than that of all-cause death, any hospitalization, or HF hospitalization. CONCLUSIONS As a high-risk phenotype for heart failure, diabetic HFpEF necessitates early risk stratification and specific treatment. To the best of our knowledge, the current study is the first to demonstrate that the WATCH-DM score predicts poor outcomes in diabetic HFpEF patients. Its convenience may allow for quick risk assessments in busy clinical settings.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Xin Lv
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Ning Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Songqi Yu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Jinping Si
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Yanli Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Mingxu Cai
- Health Management Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China
| | - Ying Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116021, China.
| |
Collapse
|
26
|
Zhang X, Sun Y, Li Y, Wang C, Wang Y, Dong M, Xiao J, Lin Z, Lu H, Ji X. Association between visceral adiposity index and heart failure: A cross-sectional study. Clin Cardiol 2023; 46:310-319. [PMID: 36651220 PMCID: PMC10018101 DOI: 10.1002/clc.23976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Obesity is an important risk factor for heart failure (HF). HYPOTHESIS Visceral adiposity index (VAI) is a simple metric for assessing obesity; however, the association between VAI and risk for HF has not been studied. METHODS A cross-sectional study involving 28 764 participants ≥18 years of age from the National Health and Nutrition Examination Survey (NHANES), 2009-2018, in the United States was performed. VAI was calculated using body mass index (BMI), waist circumference (WC), triglycerides (TG), and high-density lipoprotein cholesterol. VAI was analyzed as a continuous and categorical variable to examine its association with HF. Subgroup analysis was also performed. RESULTS The highest VAI (fourth quartile [Q4]) was found among males, BMI, systolic and diastolic blood pressure, WC, hypertension, diabetes, liver disease, coronary heart disease, smoking, total cholesterol, and TG. More participants in Q4 took β-receptor blockers, angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers/angiotensin receptor-neprilysin inhibitor, calcium channel blockers, and antidiabetic and antihyperlipidemic medications. Participants with HF exhibited greater VAI. A per-unit increase in VAI resulted in a 4% increased risk for HF (odds ratio [OR] 1.04 [95% confidence interval (CI) 1.02-1.05]). After multivariable adjustment, compared with the lowest quartile, the OR for Q3 was 1.55 (95% CI 1.24-1.94). Subgroup analysis revealed no significant interactions between VAI and specific subgroups. CONCLUSION VAI was independently associated with the risk for HF. As a noninvasive index of visceral adiposity, VAI could be used for a "one shot" assessment of HF risk and may serve as a novel marker.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yijun Sun
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengwei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mei Dong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Xiao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zongwei Lin
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huixia Lu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
27
|
Peters AE, Tromp J, Shah SJ, Lam CSP, Lewis GD, Borlaug BA, Sharma K, Pandey A, Sweitzer NK, Kitzman DW, Mentz RJ. Phenomapping in heart failure with preserved ejection fraction: insights, limitations, and future directions. Cardiovasc Res 2023; 118:3403-3415. [PMID: 36448685 PMCID: PMC10144733 DOI: 10.1093/cvr/cvac179] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous entity with complex pathophysiology and manifestations. Phenomapping is the process of applying statistical learning techniques to patient data to identify distinct subgroups based on patterns in the data. Phenomapping has emerged as a technique with potential to improve the understanding of different HFpEF phenotypes. Phenomapping efforts have been increasing in HFpEF over the past several years using a variety of data sources, clinical variables, and statistical techniques. This review summarizes methodologies and key takeaways from these studies, including consistent discriminating factors and conserved HFpEF phenotypes. We argue that phenomapping results to date have had limited implications for clinical care and clinical trials, given that the phenotypes, as currently described, are not reliably identified in each study population and may have significant overlap. We review the inherent limitations of aggregating and utilizing phenomapping results. Lastly, we discuss potential future directions, including using phenomapping to optimize the likelihood of clinical trial success or to drive discovery in mechanisms of the disease process of HFpEF.
Collapse
Affiliation(s)
- Anthony E Peters
- Division of Cardiology, Duke University School of Medicine,
Durham, North Carolina 27708, USA
- Duke Clinical Research Institute, Durham, North
Carolina 27701, USA
| | - Jasper Tromp
- Saw Swee Hock School of Public Health, National University of Singapore
& the National University Health System, Singapore
- Department of Cardiology, University Medical Center
Groningen, Groningen, The
Netherlands
- Duke-National University of Singapore Medical School,
Singapore
| | - Sanjiv J Shah
- Division of Cardiology, Northwestern University Feinberg School of
Medicine, Chicago, IL, USA
| | - Carolyn S P Lam
- Department of Cardiology, University Medical Center
Groningen, Groningen, The
Netherlands
- Duke-National University of Singapore Medical School,
Singapore
- National Heart Centre Singapore, Singapore
| | - Gregory D Lewis
- Division of Cardiology, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic,
Rochester, Minnesota, USA
| | - Kavita Sharma
- Division of Cardiology, Johns Hopkins University School of
Medicine, Baltimore, Maryland, USA
| | - Ambarish Pandey
- Division of Cardiology, University of Texas Southwestern Medical
Center, Dallas, Texas, USA
| | - Nancy K Sweitzer
- Cardiovascular Medicine, Sarver Heart Center, University of
Arizona, Tucson, Arizona, USA
| | - Dalane W Kitzman
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake
Forest School of Medicine, Winston-Salem, North
Carolina, USA
- Sections on Geriatrics, Department of Internal Medicine, Wake Forest School
of Medicine, Winston-Salem, North Carolina,
USA
| | - Robert J Mentz
- Division of Cardiology, Duke University School of Medicine,
Durham, North Carolina 27708, USA
- Duke Clinical Research Institute, Durham, North
Carolina 27701, USA
| |
Collapse
|
28
|
Dulce RA, Kanashiro-Takeuchi RM, Takeuchi LM, Salerno AG, Wanschel ACBA, Kulandavelu S, Balkan W, Zuttion MSSR, Cai R, Schally AV, Hare JM. Synthetic growth hormone-releasing hormone agonist ameliorates the myocardial pathophysiology characteristic of heart failure with preserved ejection fraction. Cardiovasc Res 2023; 118:3586-3601. [PMID: 35704032 DOI: 10.1093/cvr/cvac098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
AIMS To test the hypothesis that the activation of the growth hormone-releasing hormone (GHRH) receptor signalling pathway within the myocardium both prevents and reverses diastolic dysfunction and pathophysiologic features consistent with heart failure with preserved ejection fraction (HFpEF). Impaired myocardial relaxation, fibrosis, and ventricular stiffness, among other multi-organ morbidities, characterize the phenotype underlying the HFpEF syndrome. Despite the rapidly increasing prevalence of HFpEF, few effective therapies have emerged. Synthetic agonists of the GHRH receptors reduce myocardial fibrosis, cardiomyocyte hypertrophy, and improve performance in animal models of ischaemic cardiomyopathy, independently of the growth hormone axis. METHODS AND RESULTS CD1 mice received 4- or 8-week continuous infusion of angiotensin-II (Ang-II) to generate a phenotype with several features consistent with HFpEF. Mice were administered either vehicle or a potent synthetic agonist of GHRH, MR-356 for 4-weeks beginning concurrently or 4-weeks following the initiation of Ang-II infusion. Ang-II-treated animals exhibited diastolic dysfunction, ventricular hypertrophy, interstitial fibrosis, and normal ejection fraction. Cardiomyocytes isolated from these animals exhibited incomplete relaxation, depressed contractile responses, altered myofibrillar protein phosphorylation, and disturbed calcium handling mechanisms (ex vivo). MR-356 both prevented and reversed the development of the pathological phenotype in vivo and ex vivo. Activation of the GHRH receptors increased cAMP and cGMP in cardiomyocytes isolated from control animals but only cAMP in cardiac fibroblasts, suggesting that GHRH-A exert differential effects on cardiomyocytes and fibroblasts. CONCLUSION These findings indicate that the GHRH receptor signalling pathway(s) represents a new molecular target to counteract dysfunctional cardiomyocyte relaxation by targeting myofilament phosphorylation and fibrosis. Accordingly, activation of GHRH receptors with potent, synthetic GHRH agonists may provide a novel therapeutic approach to management of the myocardial alterations associated with the HFpEF syndrome.
Collapse
Affiliation(s)
- Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA
| | - Alessandro G Salerno
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA
| | - Amarylis C B A Wanschel
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA
| | - Shathiyah Kulandavelu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marilia S S R Zuttion
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA
| | - Renzhi Cai
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, FL 33125, USA
| | - Andrew V Schally
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, FL 33125, USA.,Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 N.W. 10th Avenue, Room 908, Miami, FL 33136, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
29
|
Tini G, Tocci G, Battistoni A, Sarocchi M, Pietrantoni C, Russo D, Musumeci B, Savoia C, Volpe M, Spallarossa P. Role of Arterial Hypertension and Hypertension-Mediated Organ Damage in Cardiotoxicity of Anticancer Therapies. Curr Heart Fail Rep 2023; 20:56-62. [PMID: 36696001 PMCID: PMC9977700 DOI: 10.1007/s11897-023-00590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE OF THE REVIEW Arterial hypertension (AH) is the most common cardiovascular (CV) risk factor in the community and in oncologic patients. It also represents the most important CV condition predisposing to anticancer treatment-related cardiotoxicity. This risk is heightened in the presence of cardiac AH-mediated organ damage (HMOD). Influence of AH and HMOD on the development of cardiotoxicity will be reviewed, with a focus on specific scenarios and implications for management of oncologic patients. RECENT FINDINGS Not adequately controlled AH before or during anticancer treatments and/or development of AH during or after completion of such therapies have detrimental effects on the clinical course of oncologic patients, particularly if HMOD is present. As overlooking CV health can jeopardize the success of anticancer treatments, the goal for clinicians caring for the oncologic patient should include the treatment of AH and HMOD.
Collapse
Affiliation(s)
- Giacomo Tini
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy.
- IRCCS San Raffaele Pisana, Rome, Italy.
| | - Giuliano Tocci
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Allegra Battistoni
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Matteo Sarocchi
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino-IRCCS Italian Cardiology Network, Genoa, Italy
| | - Camilla Pietrantoni
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Domitilla Russo
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Beatrice Musumeci
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Carmine Savoia
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Massimo Volpe
- Division of Cardiology, Department of Clinical and Molecular Medicine, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino-IRCCS Italian Cardiology Network, Genoa, Italy
| |
Collapse
|
30
|
Chowdhury S, Chen Y, Wen A, Ma X, Dai Q, Yu Y, Fu S, Jiang X, Zong N. Predicting Physiological Response in Heart Failure Management: A Graph Representation Learning Approach using Electronic Health Records. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.27.23285129. [PMID: 36747787 PMCID: PMC9901060 DOI: 10.1101/2023.01.27.23285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heart failure management is challenging due to the complex and heterogenous nature of its pathophysiology which makes the conventional treatments based on the "one size fits all" ideology not suitable. Coupling the longitudinal medical data with novel deep learning and network-based analytics will enable identifying the distinct patient phenotypic characteristics to help individualize the treatment regimen through the accurate prediction of the physiological response. In this study, we develop a graph representation learning framework that integrates the heterogeneous clinical events in the electronic health records (EHR) as graph format data, in which the patient-specific patterns and features are naturally infused for personalized predictions of lab test response. The framework includes a novel Graph Transformer Network that is equipped with a self-attention mechanism to model the underlying spatial interdependencies among the clinical events characterizing the cardiac physiological interactions in the heart failure treatment and a graph neural network (GNN) layer to incorporate the explicit temporality of each clinical event, that would help summarize the therapeutic effects induced on the physiological variables, and subsequently on the patient's health status as the heart failure condition progresses over time. We introduce a global attention mask that is computed based on event co-occurrences and is aggregated across all patient records to enhance the guidance of neighbor selection in graph representation learning. We test the feasibility of our model through detailed quantitative and qualitative evaluations on observational EHR data.
Collapse
Affiliation(s)
- Shaika Chowdhury
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA
| | - Yongbin Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andrew Wen
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA
| | - Xiao Ma
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Qiying Dai
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sunyang Fu
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA
| | - Xiaoqian Jiang
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX, USA
| | - Nansu Zong
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Kopeva KV, Mochula AV, Maltseva AN, Grakova EV, Shipulin VV, Gusakova AM, Zavadovsky KV. Heart failure with preserved ejection fraction: the role of microvascular dysfunction. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-88-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. To evaluate the relationship between coronary microvascular dysfunction (CMD), biomarkers of cardiac fibrosis and cardiac remodeling (soluble ST2 (sST2), fibroblast growth factor-23 (FGF-23), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and NT-proBNP), parameters of diastolic dysfunction (DD), and the presence of heart failure with preserved ejection fraction (HFpEF) in symptomatic patients.Materials and methods. Study participants were 59 patients with non-obstructive coronary artery disease (CAD) and preserved left ventricular ejection fraction (LVEF) of 62 (56; 67) %. Non-obstructive CAD was verified by coronary computed tomography angiography. Stress-and rest-myocardial blood flow (MBF) and coronary flow reserve (CFR) parameters were evaluated by CZT SPECT. Serum levels of cardiac biomarkers were measured by the enzyme immunoassay. Two-dimensional transthoracic echocardiography was used to assess DD parameters.Results. Decreased CFR was defined as CFR ≤ 2. Therefore, CMD was defined as the presence of decreased CFR in the absence of flow-limiting CAD. Distribution of patients was performed by CFR values: group 1 included patients with preserved CFR (>2, n = 35), and group 2 encompassed patients with decreased CFR (≤2, n = 24). In 87.5% of cases, patients with CMD were diagnosed with HFpEF, whereas in patients with preserved CFR, heart failure was diagnosed only in 51.4% of cases (p < 0.0001). CFR values were correlated with the left atrial volume (r = –0.527; p = 0.001), E / A ratio (r = –0.321, p = 0.012), and E / e’ (r = –0.307; p = 0.021). Following the ROC analysis, the levels of sST2 ≥ 31.304 ng / ml (AUС = 0.730; р = 0.004) and NT-proBNP ≥ 0.034 pg / ml (AUС = 0.815; р = 0.034) were identified as cut-off values for the presence of CMD in patients with non-obstructive CAD.Conclusion. The obtained data suggest that CMD may play an essential role in HFpEF. The values of CFR were correlated with DD parameters, and decreased CFR was associated with overexpression of biomarkers of cardiac fibrosis and cardiac remodeling. Serum levels of sST2 and NT-proBNP were identified as cut-off values for the presence of CMD in patients with non-obstructive CAD.
Collapse
Affiliation(s)
- K. V. Kopeva
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - A. V. Mochula
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - A. N. Maltseva
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - E. V. Grakova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - V. V. Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - A. M. Gusakova
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - K. V. Zavadovsky
- Cardiology Research Institute, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
32
|
Karsenty C, Guilbeau-Frugier C, Genet G, Seguelas MH, Alzieu P, Cazorla O, Montagner A, Blum Y, Dubroca C, Maupoint J, Tramunt B, Cauquil M, Sulpice T, Richard S, Arcucci S, Flores-Flores R, Pataluch N, Montoriol R, Sicard P, Deney A, Couffinhal T, Senard JM, Galés C. Ephrin-B1 regulates the adult diastolic function through a late postnatal maturation of cardiomyocyte surface crests. eLife 2023; 12:e80904. [PMID: 36649053 PMCID: PMC9844986 DOI: 10.7554/elife.80904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
The rod-shaped adult cardiomyocyte (CM) harbors a unique architecture of its lateral surface with periodic crests, relying on the presence of subsarcolemmal mitochondria (SSM) with unknown role. Here, we investigated the development and functional role of CM crests during the postnatal period. We found in rodents that CM crest maturation occurs late between postnatal day 20 (P20) and P60 through both SSM biogenesis, swelling and crest-crest lateral interactions between adjacent CM, promoting tissue compaction. At the functional level, we showed that the P20-P60 period is dedicated to the improvement of relaxation. Interestingly, crest maturation specifically contributes to an atypical CM hypertrophy of its short axis, without myofibril addition, but relying on CM lateral stretching. Mechanistically, using constitutive and conditional CM-specific knock-out mice, we identified ephrin-B1, a lateral membrane stabilizer, as a molecular determinant of P20-P60 crest maturation, governing both the CM lateral stretch and the diastolic function, thus highly suggesting a link between crest maturity and diastole. Remarkably, while young adult CM-specific Efnb1 KO mice essentially exhibit an impairment of the ventricular diastole with preserved ejection fraction and exercise intolerance, they progressively switch toward systolic heart failure with 100% KO mice dying after 13 months, indicative of a critical role of CM-ephrin-B1 in the adult heart function. This study highlights the molecular determinants and the biological implication of a new late P20-P60 postnatal developmental stage of the heart in rodents during which, in part, ephrin-B1 specifically regulates the maturation of the CM surface crests and of the diastolic function.
Collapse
Affiliation(s)
- Clement Karsenty
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Pediatric Cardiology, Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Celine Guilbeau-Frugier
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Forensic Medicine, Centre Hospitalier Universitaire de Toulouse, Université de ToulouseToulouseFrance
| | - Gaël Genet
- Department of Cell Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Marie-Helene Seguelas
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Philippe Alzieu
- Université de Bordeaux, INSERM, Biologie des maladies cardiovasculairesPessacFrance
| | - Olivier Cazorla
- Université de Montpellier, INSERM, CNRS, PhyMedExpMontpellierFrance
| | - Alexandra Montagner
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Yuna Blum
- IGDR UMR 6290, CNRS, Université de Rennes 1RennesFrance
| | | | | | - Blandine Tramunt
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Diabetology, Metabolic Diseases & Nutrition, Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Marie Cauquil
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | | | - Sylvain Richard
- Université de Montpellier, INSERM, CNRS, PhyMedExpMontpellierFrance
| | - Silvia Arcucci
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Remy Flores-Flores
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Nicolas Pataluch
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Romain Montoriol
- Department of Forensic Medicine, Centre Hospitalier Universitaire de Toulouse, Université de ToulouseToulouseFrance
| | - Pierre Sicard
- Université de Montpellier, INSERM, CNRS, PhyMedExpMontpellierFrance
| | - Antoine Deney
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| | - Thierry Couffinhal
- Université de Bordeaux, INSERM, Biologie des maladies cardiovasculairesPessacFrance
- Service des Maladies Cardiaques et Vasculaires, CHU de BordeauxBordeauxFrance
| | - Jean-Michel Senard
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
- Department of Clinical Pharmacology, Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Celine Galés
- INSERM, UMR 1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de ToulouseToulouseFrance
| |
Collapse
|
33
|
Palazzuoli A, Tramonte F, Beltrami M. Laboratory and Metabolomic Fingerprint in Heart Failure with Preserved Ejection Fraction: From Clinical Classification to Biomarker Signature. Biomolecules 2023; 13:173. [PMID: 36671558 PMCID: PMC9855377 DOI: 10.3390/biom13010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a poorly characterized syndrome with many unknown aspects related to different patient profiles, various associated risk factors and a wide range of aetiologies. It comprises several pathophysiological pathways, such as endothelial dysfunction, myocardial fibrosis, extracellular matrix deposition and intense inflammatory system activation. Until now, HFpEF has only been described with regard to clinical features and its most commonly associated risk factors, disregarding all biological mechanisms responsible for cardiovascular deteriorations. Recently, innovations in laboratory and metabolomic findings have shown that HFpEF appears to be strictly related to specific cells and molecular mechanisms' dysregulation. Indeed, some biomarkers are efficient in early identification of these processes, adding new insights into diagnosis and risk stratification. Moreover, recent advances in intermediate metabolites provide relevant information on intrinsic cellular and energetic substrate alterations. Therefore, a systematic combination of clinical imaging and laboratory findings may lead to a 'precision medicine' approach providing prognostic and therapeutic advantages. The current review reports traditional and emerging biomarkers in HFpEF and it purposes a new diagnostic approach based on integrative information achieved from risk factor burden, hemodynamic dysfunction and biomarkers' signature partnership.
Collapse
Affiliation(s)
- Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | - Francesco Tramonte
- Cardiovascular Diseases Unit, Cardio Thoracic and Vascular Department, Le Scotte Hospital, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
34
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Increased protein phosphatase 5 expression in inflammation-induced left ventricular dysfunction in rats. BMC Cardiovasc Disord 2022; 22:539. [PMID: 36494772 PMCID: PMC9732989 DOI: 10.1186/s12872-022-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Titin phosphorylation contributes to left ventricular (LV) diastolic dysfunction. The independent effects of inflammation on the molecular pathways that regulate titin phosphorylation are unclear. METHODS We investigated the effects of collagen-induced inflammation and subsequent tumor necrosis factor-α (TNF-α) inhibition on mRNA expression of genes involved in regulating titin phosphorylation in 70 Sprague-Dawley rats. LV diastolic function was assessed with echocardiography. Circulating inflammatory markers were quantified by enzyme-linked immunosorbent assay and relative LV gene expression was assessed by Taqman® polymerase chain reaction. Differences in normally distributed variables between the groups were determined by two-way analysis of variance (ANOVA), followed by Tukey post-hoc tests. For non-normally distributed variables, group differences were determined by Kruskal-Wallis tests. RESULTS Collagen inoculation increased LV relative mRNA expression of vascular cell adhesion molecule 1 (VCAM1), pentraxin 3 (PTX3), and inducible nitric oxide synthase (iNOS) compared to controls, indicating local microvascular inflammation. Collagen inoculation decreased soluble guanylate cyclase alpha-2 (sGCα2) and soluble guanylate cyclase beta-2 (sGCβ2) expression, suggesting downregulation of nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling. Inhibiting TNF-α prevented collagen-induced changes in VCAM1, iNOS, sGCα2 and sGCβ2 expression. Collagen inoculation increased protein phosphatase 5 (PP5) expression. Like LV diastolic dysfunction, increased PP5 expression was not prevented by TNF-α inhibition. CONCLUSION Inflammation-induced LV diastolic dysfunction may be mediated by a TNF-α-independent increase in PP5 expression and dephosphorylation of the N2-Bus stretch element of titin, rather than by TNF-α-induced downregulation of NO-sGC-cGMP pathway-dependent titin phosphorylation. The steady rise in number of patients with inflammation-induced diastolic dysfunction, coupled with low success rates of current therapies warrants a better understanding of the systemic signals and molecular pathways responsible for decreased titin phosphorylation in development of LV diastolic dysfunction. The therapeutic potential of inhibiting PP5 upregulation in LV diastolic dysfunction requires investigation.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Lebogang Mokotedi
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Sulè Gunter
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Regina Le Roux
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Serena Fourie
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Colleen A. Flanagan
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Aletta M. E. Millen
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| |
Collapse
|
35
|
Lorente-Ros M, Aguilar-Gallardo JS, Shah A, Narasimhan B, Aronow WS. An overview of mineralocorticoid receptor antagonists as a treatment option for patients with heart failure: the current state-of-the-art and future outlook. Expert Opin Pharmacother 2022; 23:1737-1751. [PMID: 36262014 DOI: 10.1080/14656566.2022.2138744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Mineralocorticoid receptor antagonists (MRAs) improve cardiovascular outcomes in patients with heart failure. These benefits of MRAs vary in different heart failure populations based on left ventricular ejection fraction and associated comorbidities. AREAS COVERED We define the pharmacologic properties of MRAs and the pathophysiological rationale for their utility in heart failure. We outline the current literature on the use of MRAs in different heart failure populations, including reduced and preserved ejection fraction (HFrEF/ HFpEF), and acute heart failure decompensation. Finally, we describe the limitations of currently available data and propose future directions of study. EXPERT OPINION While there is strong evidence supporting the use of MRAs in HFrEF, evidence in patients with HFpEF or acute heart failure is less definitive. Comorbidities such as obesity or atrial fibrillation could be clinical modifiers of the response to MRAs and potentially alter the risk/benefit ratio in these subpopulations. Emerging evidence for new non-steroidal MRAs reveal promising preliminary results that, if confirmed in large randomized clinical trials, could favor a change in clinical practice.
Collapse
Affiliation(s)
- Marta Lorente-Ros
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside-West, 1111 Amsterdam Avenue, New York, NY 10019, USA
| | - Jose S Aguilar-Gallardo
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, Mount Sinai Morningside-West, 1111 Amsterdam Avenue, New York, NY 10019, USA
| | - Aayush Shah
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, 6565 Fannin St, Houston, TX 77030, USA
| | - Bharat Narasimhan
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, 6565 Fannin St, Houston, TX 77030, USA
| | - Wilbert S Aronow
- Department of Cardiology, New York Medical College, Westchester Medical Center, 100 Woods Rd, Valhalla, NY 10901, USA
| |
Collapse
|
36
|
Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol 2022; 13:946832. [PMID: 36275654 PMCID: PMC9583253 DOI: 10.3389/fimmu.2022.946832] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
As the essential regulators of organ fibrosis, macrophages undergo marked phenotypic and functional changes after organ injury. These changes in macrophage phenotype and function can result in maladaptive repair, causing chronic inflammation and the development of pathological fibrosis. Autophagy, a highly conserved lysosomal degradation pathway, is one of the major players to maintain the homeostasis of macrophages through clearing protein aggregates, damaged organelles, and invading pathogens. Emerging evidence has shown that macrophage autophagy plays an essential role in macrophage polarization, chronic inflammation, and organ fibrosis. Because of the high heterogeneity of macrophages in different organs, different macrophage types may play different roles in organ fibrosis. Here, we review the current understanding of the function of macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis in different organs, highlight the potential role of macrophage autophagy in the treatment of fibrosis. Finally, the important unresolved issues in this field are briefly discussed. A better understanding of the mechanisms that macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis may contribute to developing novel therapies for chronic inflammatory diseases and organ fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Xin Tang
- *Correspondence: Ji-Xin Tang, ; Hua-Feng Liu,
| | | |
Collapse
|
37
|
Eaton DM, Berretta RM, Lynch JE, Travers JG, Pfeiffer RD, Hulke ML, Zhao H, Hobby ARH, Schena G, Johnson JP, Wallner M, Lau E, Lam MPY, Woulfe KC, Tucker NR, McKinsey TA, Wolfson MR, Houser SR. Sex-specific responses to slow progressive pressure overload in a large animal model of HFpEF. Am J Physiol Heart Circ Physiol 2022; 323:H797-H817. [PMID: 36053749 PMCID: PMC9550571 DOI: 10.1152/ajpheart.00374.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]
Abstract
Approximately 50% of all heart failure (HF) diagnoses can be classified as HF with preserved ejection fraction (HFpEF). HFpEF is more prevalent in females compared with males, but the underlying mechanisms are unknown. We previously showed that pressure overload (PO) in male felines induces a cardiopulmonary phenotype with essential features of human HFpEF. The goal of this study was to determine if slow progressive PO induces distinct cardiopulmonary phenotypes in females and males in the absence of other pathological stressors. Female and male felines underwent aortic constriction (banding) or sham surgery after baseline echocardiography, pulmonary function testing, and blood sampling. These assessments were repeated at 2 and 4 mo postsurgery to document the effects of slow progressive pressure overload. At 4 mo, invasive hemodynamic studies were also performed. Left ventricle (LV) tissue was collected for histology, myofibril mechanics, extracellular matrix (ECM) mass spectrometry, and single-nucleus RNA sequencing (snRNAseq). The induced pressure overload (PO) was not different between sexes. PO also induced comparable changes in LV wall thickness and myocyte cross-sectional area in both sexes. Both sexes had preserved ejection fraction, but males had a slightly more robust phenotype in hemodynamic and pulmonary parameters. There was no difference in LV fibrosis and ECM composition between banded male and female animals. LV snRNAseq revealed changes in gene programs of individual cell types unique to males and females after PO. Based on these results, both sexes develop cardiopulmonary dysfunction but the phenotype is somewhat less advanced in females.NEW & NOTEWORTHY We performed a comprehensive assessment to evaluate the effects of slow progressive pressure overload on cardiopulmonary function in a large animal model of heart failure with preserved ejection fraction (HFpEF) in males and females. Functional and structural assessments were performed at the organ, tissue, cellular, protein, and transcriptional levels. This is the first study to compare snRNAseq and ECM mass spectrometry of HFpEF myocardium from males and females. The results broaden our understanding of the pathophysiological response of both sexes to pressure overload. Both sexes developed a robust cardiopulmonary phenotype, but the phenotype was equal or a bit less robust in females.
Collapse
Affiliation(s)
- Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jacqueline E Lynch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pediatrics, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Joshua G Travers
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Alexander R H Hobby
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giana Schena
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jaslyn P Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Edward Lau
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Maggie P Y Lam
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Nathan R Tucker
- Masonic Medical Research Institute, Utica, New York
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Boston, Massachusetts
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Marla R Wolfson
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Pediatrics, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Palazzuoli A, Buono MGD, Ruocco G, Caravita S, Abbate A, Lavie CJ. The Conundrum of HFpEF Definition: Non-Invasive Assessment Uncertainties and Alternative Diagnostic Strategies. Curr Probl Cardiol 2022; 48:101433. [PMID: 36170908 DOI: 10.1016/j.cpcardiol.2022.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a heterogeneous syndrome including several morphological phenotypes and varying pathophysiological mechanisms. The conventional classification of HF based on left ventricular ejection fraction (LVEF) has created an oversimplification in diagnostic criteria. Although LVEF is a standardized parameter easy to calculate and broadly applied in the large clinical trials, but it is erroneously considered an index of left ventricular (LV) systolic function. Indeed, it is affected by preload and afterload and it has limitations related to reproducibility, reduced sensitivity and scarce prognostic values especially when above 50%. Notably, additional diagnostic parameters have been recently proposed in order to improve diagnostic accuracy and to homogenise the different HFpEF populations. Unfortunately, these algorithms comprise sophisticated measurements that are difficult to apply in the daily clinical practice. Additionally, the scarce diffusion of these diagnostic criteria may have led to neutral or negative results in interventional phase 3 trials . We propose changes to the current HFpEF diagnostic approach mainly based on LVEF stratification measurement aiming towards a more inclusive model taking into consideration an integrative approach starting from the main diseases responsible for cardiac dysfunction through to cardiac structural and functional alterations. Accordingly, with recent universal HF definitions, a stepwise model could be helpful in recognizing patients with early vs. overt HFpEF by the appraisal of specific Doppler echocardiographic variables. Thus, we would encourage the application of new criteria in order to better identify the different phenotypes and to move towards more personalized medicine.
Collapse
Affiliation(s)
- Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio thoracic and vascular Department, Le Scotte Hospital University of Siena, Italy.
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, Rome, Italy
| | - Gaetano Ruocco
- Cardiovascular Diseases Unit, Cardio thoracic and vascular Department, Le Scotte Hospital University of Siena, Italy
| | - Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milan, Italy
| | - Antonio Abbate
- Berne Cardiovascular Research Centerand Division of Cardiology and Heart and Vascular Center University of Virginia - School of Medicine Charlottesville, VA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute Ochsner Clinical School-The University of Queensland School of Medicine New Orleans, Louisiana, US
| |
Collapse
|
39
|
Gouda P, Alemayehu W, Rathwell S, Ian Paterson D, Anderson T, Dyck JRB, Howlett JG, Oudit GY, McAlister FA, Thompson RB, Ezekowitz J. Clinical Phenotypes of Heart Failure across the spectrum of Ejection Fraction: A Cluster Analysis. Curr Probl Cardiol 2022; 47:101337. [PMID: 35878816 DOI: 10.1016/j.cpcardiol.2022.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Heart failure (HF), and especially HF with preserved ejection fraction (HFpEF), remains a challenging condition to define. The heterogenous nature of this population may be related to a variety of underlying etiologies interacting myocardial dysfunction. METHOD Alberta HEART study was a prospective, observational cohort that enrolled participants along the spectrum of heart failure including: healthy controls, people at risk of HF, and patients with HF and preserved (HFpEF) or reduced ejection fraction (HFrEF). We aimed to explore phenotypes of patients with HF and at-risk of developing HF. Utilising 27 detailed clinical, echocardiographic and biomarker variables, latent class analysis with and without multiple imputation was undertaken to identify distinct clinical phenotypes. RESULTS Of 621 participants, 191 (30.8%) and 169 (27.2%) were adjudicated by cardiologists to have HFpEF and HFrEF respectively. In the overall cohort, latent class analysis identified four distinct phenotypes. Phenotype A (n=152, 24.5%) was a healthy and low risk group. Phenotype B (n=129, 20.8%) demonstrated increased left ventricular mass and end-diastolic volumes, with elevated natriuretic peptides and clinical features of congestion. Phenotype C (n=128, 20.6%) was primarily characterised by obesity (80%) and normal indexed cardiac chamber sizes, low natriuretic peptide levels and minimal features of congestion. Phenotype D (n=212, 34.1%) consisted of elderly patients with clinical features of congestions. Phenotypes B and D demonstrated the highest risk of mortality and hospitalization over a median follow-up of 3.7 years. CONCLUSION Phenotypes with congestive features demonstrated increased risk profiles. Heart failure is a heterogenous classification which requires further work to appropriately categorise patients based on the underlying etiology or mechanism of impairment.
Collapse
Affiliation(s)
- Pishoy Gouda
- University of Alberta, Canadian VIGOUR Centre, Edmonton, Alberta, Canada; University of Alberta, Division of Cardiology, Edmonton, Alberta, Canada
| | | | - Sarah Rathwell
- University of Alberta, Canadian VIGOUR Centre, Edmonton, Alberta, Canada
| | - D Ian Paterson
- University of Alberta, Division of Cardiology, Edmonton, Alberta, Canada
| | - Todd Anderson
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan G Howlett
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gavin Y Oudit
- University of Alberta, Division of Cardiology, Edmonton, Alberta, Canada
| | - Finlay A McAlister
- University of Alberta, Canadian VIGOUR Centre, Edmonton, Alberta, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Ezekowitz
- University of Alberta, Canadian VIGOUR Centre, Edmonton, Alberta, Canada; University of Alberta, Division of Cardiology, Edmonton, Alberta, Canada.
| | | |
Collapse
|
40
|
Lewis GA, Rosala‐Hallas A, Dodd S, Schelbert EB, Williams SG, Cunnington C, McDonagh T, Miller CA. Characteristics Associated With Growth Differentiation Factor 15 in Heart Failure With Preserved Ejection Fraction and the Impact of Pirfenidone. J Am Heart Assoc 2022; 11:e024668. [PMID: 35861823 PMCID: PMC9707842 DOI: 10.1161/jaha.121.024668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Growth differentiation factor 15 (GDF-15) is elevated in heart failure with preserved ejection fraction and is associated with adverse outcome, but its relationship with myocardial fibrosis and other characteristics remains unclear. We sought to evaluate the effect of pirfenidone, a novel antifibrotic agent, on GDF-15 in heart failure with preserved ejection fraction and identify characteristics that associate with GDF-15 and with change in GDF-15 over 1 year. Methods and Results Among patients enrolled (n=107) in the PIROUETTE (Pirfenidone in Patients With Heart Failure and Preserved Left Ventricular Ejection Fraction) trial, GDF-15 was measured at baseline and at prespecified time points in patients randomized (n=94) to pirfenidone or placebo. The response of GDF-15 to pirfenidone and the association with baseline patient characteristics were evaluated. Pirfenidone had no impact on circulating GDF-15 at any time point during the 52-week trial period. In multivariable analysis, male sex, diabetes, higher circulating levels of N-terminal pro-B-type natriuretic peptide, lower renal function, and shorter 6-minute walk test distance at baseline were associated with baseline log-GDF-15. Impaired global longitudinal strain at baseline was the strongest predictor of increased GDF-15 over 52 weeks. Conclusions In patients with heart failure with preserved ejection fraction, circulating levels of GDF-15 were unaffected by treatment with pirfenidone and do not appear to be determined by myocardial fibrosis. Circulating GDF-15 was associated with a spectrum of important heart failure characteristics and it may represent a marker of overall physiological disruption. Registration URL: https://clinicaltrials.gov/ct2/show/NCT02932566; Unique identifier: NCT02932566.
Collapse
Affiliation(s)
- Gavin A. Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUnited Kingdom
- Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Anna Rosala‐Hallas
- Liverpool Clinical Trials Centre, Clinical Directorate, Faculty of Health and Life Sciences, University of Liverpool (a member of Liverpool Health Partners)Alder Hey Children’s NHS Foundation TrustLiverpoolUnited Kingdom
| | - Susanna Dodd
- Department of Health Data Science, Institute of Population Health, Faculty of Health and Life SciencesUniversity of Liverpool (a member of Liverpool Health Partners)LiverpoolUnited Kingdom
| | - Erik B. Schelbert
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPA
- UPMC Cardiovascular Magnetic Resonance CenterHeart and Vascular InstitutePittsburghPA
- Clinical and Translational Science InstituteUniversity of PittsburghPittsburghPA
| | | | - Colin Cunnington
- Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | | | - Christopher A. Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUnited Kingdom
- Manchester University NHS Foundation TrustManchesterUnited Kingdom
- Wellcome Centre for Cell‐Matrix Research, Division of Cell‐Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUnited Kingdom
| |
Collapse
|
41
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
42
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
43
|
Chen X, Lin H, Xiong W, Pan J, Huang S, Xu S, He S, Lei M, Chang ACY, Zhang H. p53-Dependent Mitochondrial Compensation in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2022; 11:e024582. [PMID: 35656994 PMCID: PMC9238719 DOI: 10.1161/jaha.121.024582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of patients with heart failure. Clinically, HFpEF prevalence shows age and gender biases. Although the majority of patients with HFpEF are elderly, there is an emergence of young patients with HFpEF. A better understanding of the underlying pathogenic mechanism is urgently needed. Here, we aimed to determine the role of aging in the pathogenesis of HFpEF. Methods and Results HFpEF dietary regimen (high‐fat diet + Nω‐Nitro‐L‐arginine methyl ester hydrochloride) was used to induce HFpEF in wild type and telomerase RNA knockout mice (second‐generation and third‐generation telomerase RNA component knockout), an aging murine model. First, both male and female animals develop HFpEF equally. Second, cardiac wall thickening preceded diastolic dysfunction in all HFpEF animals. Third, accelerated HFpEF onset was observed in second‐generation telomerase RNA component knockout (at 6 weeks) and third‐generation telomerase RNA component knockout (at 4 weeks) compared with wild type (8 weeks). Fourth, we demonstrate that mitochondrial respiration transitioned from compensatory state (normal basal yet loss of maximal respiratory capacity) to dysfunction (loss of both basal and maximal respiratory capacity) in a p53 dosage dependent manner. Last, using myocardial‐specific p53 knockout animals, we demonstrate that loss of p53 activation delays the development of HFpEF. Conclusions Here we demonstrate that p53 activation plays a role in the pathogenesis of HFpEF. We show that short telomere animals exhibit a basal level of p53 activation, mitochondria upregulate mtDNA encoded genes as a mean to compensate for blocked mitochondrial biogenesis, and loss of myocardial p53 delays HFpEF onset in high fat diet + Nω‐Nitro‐L‐arginine methyl ester hydrochloride challenged murine model.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Hao Lin
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Weiyao Xiong
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jianan Pan
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shuying Huang
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shan Xu
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shufang He
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Ming Lei
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Alex Chia Yu Chang
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China.,Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Huili Zhang
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
44
|
Kwan ML, Cheng RK, Iribarren C, Shen H, Laurent CA, Roh JM, Hershman DL, Kushi LH, Greenlee H, Rana JS. Risk of heart failure with preserved versus reduced ejection fraction in women with breast cancer. Breast Cancer Res Treat 2022; 193:669-675. [PMID: 35429322 PMCID: PMC10461432 DOI: 10.1007/s10549-022-06586-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE While clinical heart failure (HF) is recognized as an adverse effect from breast cancer (BC) treatment, sparse data exist on specific HF phenotypes in affected BC survivors. We examined risk of HF by left ventricular ejection fraction (LVEF) status in women with a history of BC. METHODS 14,804 women diagnosed with all stages of invasive BC from 2005 to 2013 and with no history of HF were matched 1:5 to 74,034 women without BC on birth year, race, and ethnicity. LVEF values were extracted from echocardiography studies within 30 days before through 90 days after the HF clinical encounter. HF was stratified into HF with preserved ejection fraction (HFpEF, LVEF ≥ 45%) and HF with reduced ejection fraction (HFrEF, LVEF < 45%). Cumulative incidence rates (CIRs) were estimated with competing risk of overall death. Hazard ratios (HR) were calculated by multivariable Cox proportional hazards regression. RESULTS Mean time to HF diagnosis was 5.31 years (range 0.03-13.03) in cases and 5.25 years (range 0.01-12.94) in controls. 10-year CIRs were 1.2% and 0.9% for overall HF, 0.8% and 0.7% for HFpEF, and 0.4% and 0.2% for HFrEF in cases and controls, respectively. In fully adjusted models, an overall significant increased risk of HF in cases versus controls was observed (HR: 1.31, 95% CI 1.14, 1.51). The increased risk was seen for both HFrEF (HR: 1.59, 95% CI 1.22, 2.08) and HFpEF (HR: 1.22; 95% CI 1.03, 1.45). CONCLUSION BC survivors experienced higher risk of HF compared with women without BC, and the risk persisted across LVEF phenotypes. Systematic cardio-oncology surveillance should be considered to mitigate this risk in BC patients.
Collapse
Affiliation(s)
- Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA.
| | - Richard K Cheng
- University of Washington School of Medicine, Seattle, WA, USA
- Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Hanjie Shen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cecile A Laurent
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Janise M Roh
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Dawn L Hershman
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
| | - Heather Greenlee
- University of Washington School of Medicine, Seattle, WA, USA
- Seattle Cancer Care Alliance, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jamal S Rana
- Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA, 94612, USA
- Department of Cardiology, Oakland Medical Center, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
45
|
Prevalence and Prognostic Significance of Microvascular Dysfunction in Heart Failure With Preserved Ejection Fraction. JACC. CARDIOVASCULAR IMAGING 2022; 15:1001-1011. [PMID: 35033490 DOI: 10.1016/j.jcmg.2021.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND The pathophysiological and clinical significance of microvascular dysfunction (MVD) in patients with heart failure with preserved ejection fraction (HFpEF) remains uncertain. OBJECTIVES The aim of this study was to use cardiovascular magnetic resonance to: 1) quantify coronary microvascular function; 2) examine the relationship between perfusion and fibrosis; and 3) evaluate the impact of MVD and fibrosis on long-term clinical outcomes. METHODS In a prospective, observational study, patients with HFpEF and control subjects underwent multiparametric cardiovascular magnetic resonance (comprising assessment of left ventricular volumetry, perfusion, and fibrosis [focal by late gadolinium enhancement and diffuse by extracellular volume]). The primary endpoint was the composite of death or hospitalization with heart failure. RESULTS One hundred and one patients with HFpEF (mean age 73 ± 9 years, mean ejection fraction 56% ± 5%) and 43 control subjects (mean age 73 ± 5 years, mean ejection fraction 58% ± 5%) were studied. Myocardial perfusion reserve (MPR) was lower in patients with HFpEF versus control subjects (1.74 ± 0.76 vs 2.22 ± 0.76; P = 0.001). MVD (defined as MPR <2.0) was present in 70% of patients with HFpEF (vs 48% of control subjects; P = 0.014). There was no significant linear correlation between MPR and diffuse fibrosis (r = -0.10; P = 0.473) and no difference in MPR between those with and without focal fibrosis (mean difference -0.03; 95% CI: -0.37 to 0.30). In the HFpEF group, during median follow-up of 3.1 years, there were 45 composite events. MPR was independently predictive of clinical outcome following adjustment for clinical, blood, and imaging parameters (1 SD increase: HR: 0.673 [95% CI: 0.463 to 0.978; P = 0.038]; HR: 0.694 [95% CI: 0.491 to 0.982; P = 0.039]; and HR: 0.690 [95% CI: 0.489 to 0.973; P = 0.034], respectively). CONCLUSIONS MVD is highly prevalent among patients with HFpEF and is an independent predictor of prognosis. The lack of correlation between MVD and fibrosis may challenge the assertion of a direct causal link between these entities. (Developing Imaging and Plasma Biomarkers in Describing Heart Failure With Preserved Ejection Fraction [DIAMONDHFpEF]; NCT03050593).
Collapse
|
46
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
47
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
48
|
Özbay Karakuş M, Er O. A comparative study on prediction of survival event of heart failure patients using machine learning algorithms. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Shi Y, Dong G, Liu J, Shuang X, Liu C, Yang C, Qing W, Qiao W. Clinical Implications of Plasma Galectin-3 in Heart Failure With Preserved Ejection Fraction: A Meta-Analysis. Front Cardiovasc Med 2022; 9:854501. [PMID: 35498052 PMCID: PMC9046693 DOI: 10.3389/fcvm.2022.854501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) is an increasing public health concern. Currently, data regarding the clinical application value of plasma Galectin-3 (Gal-3) in HFpEF are contradictory. Therefore, we performed the following meta-analysis to appraise the clinical implications of serum Gal-3 in HFpEF, including its capacity to predict new-onset disease, long-term unfavorable endpoints, and the degree of cardiac structural abnormality and left ventricular diastolic dysfunction (LVDD). Methods PubMed, Embase, Scopus, and Web of Science were retrieved exhaustively from their inception until November 30, 2021, to obtain studies assessing the correlation between plasma Gal-3 and the clinical features of HFpEF (new-onset HFpEF, adverse outcomes, and echocardiographic parameters related to abnormal cardiac structure and LVDD). Results A total of 24 papers containing 27 studies were ultimately included in the present research. The results of the meta-analysis revealed that high plasma Gal-3 levels are strongly associated with the following clinical characteristics of HFpEF: (i) the increased risk of new-onset HFpEF (HR: 1.11; 95% CI: 1.04-1.19; p = 0.910, I2 = 0%; P = 0.002); (ii) the high risk of adverse outcomes of HFpEF patients [all-cause death (HR: 1.55; 95% CI: 1.27-1.87; p = 0.138, I2 = 42%; P = 0.000) and the composite events [all-cause death and HF hospitalization (HR: 1.50; 95% CI: 1.30-1.74; p = 0.001, I2 = 61%; P = 0.000) or cardiovascular (CV) death and HF hospitalization (HR: 1.71; 95% CI: 1.51-1.94; p = 0.036, I2 = 58%; P = 0.000)]; (iii) echocardiographic indices [E/e ratio (r: 0.425, 95% CI: 0.184-0.617; p = 0.000, I2 = 93%; P = 0.001) and DT (r: 0.502, 95% CI: 0.061-0.779; p = 0.001 I2 = 91%; P = 0.027)]. Conclusions Plasma Gal-3 might be employed as an additional predictor for new-onset HFpEF, the adverse prognosis in HFpEF patients (all-cause death, the composite endpoints of all-cause death and HF hospitalization or CV death and HF hospitalization), and the severity of LVDD in HFpEF populations.
Collapse
Affiliation(s)
- Yujiao Shi
- Department of Post-graduate Institute, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Guoju Dong
- Department of Cardiovascular Internal Medicine, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jiangang Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Xiong Shuang
- Department of Post-graduate Institute, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunqiu Liu
- Department of Post-graduate Institute, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Chenguang Yang
- Department of Post-graduate Institute, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wang Qing
- Department of Post-graduate Institute, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenbo Qiao
- Department of Post-graduate Institute, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
50
|
Ke B, Tan X, Ren L, Fan Y, Zhang Y, Li F, Sun Q, Liu T, Jia L, Wang Y, Du J. Aldosterone dysregulation predicts the risk of mortality and rehospitalization in heart failure with a preserved ejection fraction. SCIENCE CHINA. LIFE SCIENCES 2022; 65:631-642. [PMID: 34258711 DOI: 10.1007/s11427-021-1945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/14/2021] [Indexed: 10/20/2022]
Abstract
Serum aldosterone is associated with cardiac remodeling, which contributes to morbidity and mortality in heart failure (HF); however, the prognostic value of aldosterone in HF with a preserved ejection fraction (HFpEF) is unclear. We used liquid chromatography-tandem mass spectrometry to quantify serum aldosterone in 873 patients with HFpEF in a Registry Study of Biomarkers for HF. The retrospective study was conducted at Beijing Anzhen Hospital from May 2017 to October 2019. The primary endpoint was a composite of all-cause mortality and rehospitalization for HF. Aldosterone concentrations in patients with and without events were 124.22 pmol L-1 (interquartile range (IQR): 48.62-256.20) and 96.33 pmol L-1 (IQR: 37.33-215.76), respectively (P=0.023). Aldosterone independently predicted all-cause mortality (adjusted hazard ratio (aHR), 1.55; 95% confidence interval (95%CI), 1.06-2.27; P=0.024) and the primary endpoint (aHR, 1.43; 95%CI, 1.11-1.85; P=0.006). Patients with high aldosterone concentrations were at higher risk of concentric remodeling (adjusted odds ratio (aOR), 1.45; 95% CI, 1.03-2.04; P=0.034). Patients with high aldosterone and B-type natriuretic peptide concentrations were at a higher risk of the primary endpoint (hazard ratio (HR), 1.85; 95%CI, 1.29-2.66; P=0.001). We conclude that elevated aldosterone is associated with a risk of rehospitalization with HF and all-cause mortality in patients with HFpEF.
Collapse
Affiliation(s)
- Bingbing Ke
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Xin Tan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Lu Ren
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yangkai Fan
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Yixin Zhang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Fengjuan Li
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Qiqi Sun
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
| | - Tong Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Lixin Jia
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.,Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China. .,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China.
| |
Collapse
|