1
|
Schelemei P, Wagner E, Picard FSR, Winkels H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J 2024; 38:e23424. [PMID: 38275140 DOI: 10.1096/fj.202302001r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
Macrophages are major players in myocardial infarction (MI) and atherosclerosis, two major cardiovascular diseases (CVD). Atherosclerosis is caused by the buildup of cholesterol-rich lipoproteins in blood vessels, causing inflammation, vascular injury, and plaque formation. Plaque rupture or erosion can cause thrombus formation resulting in inadequate blood flow to the heart muscle and MI. Inflammation, particularly driven by macrophages, plays a central role in both atherosclerosis and MI. Recent integrative approaches of single-cell analysis-based classifications in both murine and human atherosclerosis as well as experimental MI showed overlap in origin, diversity, and function of macrophages in the aorta and the heart. We here discuss differences and communalities between macrophages in the heart and aorta at steady state and in atherosclerosis or upon MI. We focus on markers, mediators, and functional states of macrophage subpopulations. Recent trials testing anti-inflammatory agents show a major benefit in reducing the inflammatory burden of CVD patients, but highlight a necessity for a broader understanding of immune cell ontogeny and heterogeneity in CVD. The novel insights into macrophage biology in CVD represent exciting opportunities for the development of novel treatment strategies against CVD.
Collapse
Affiliation(s)
- Patrik Schelemei
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Elena Wagner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Simon Ruben Picard
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Hu L, Wang N, Bryant JD, Liu L, Xie L, West AP, Walsh AJ. Label-free spatially maintained measurements of metabolic phenotypes in cells. Front Bioeng Biotechnol 2023; 11:1293268. [PMID: 38090715 PMCID: PMC10715269 DOI: 10.3389/fbioe.2023.1293268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024] Open
Abstract
Metabolic reprogramming at a cellular level contributes to many diseases including cancer, yet few assays are capable of measuring metabolic pathway usage by individual cells within living samples. Here, autofluorescence lifetime imaging is combined with single-cell segmentation and machine-learning models to predict the metabolic pathway usage of cancer cells. The metabolic activities of MCF7 breast cancer cells and HepG2 liver cancer cells were controlled by growing the cells in culture media with specific substrates and metabolic inhibitors. Fluorescence lifetime images of two endogenous metabolic coenzymes, reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide (FAD), were acquired by a multi-photon fluorescence lifetime microscope and analyzed at the cellular level. Quantitative changes of NADH and FAD lifetime components were observed for cells using glycolysis, oxidative phosphorylation, and glutaminolysis. Conventional machine learning models trained with the autofluorescence features classified cells as dependent on glycolytic or oxidative metabolism with 90%-92% accuracy. Furthermore, adapting convolutional neural networks to predict cancer cell metabolic perturbations from the autofluorescence lifetime images provided improved performance, 95% accuracy, over traditional models trained via extracted features. Additionally, the model trained with the lifetime features of cancer cells could be transferred to autofluorescence lifetime images of T cells, with a prediction that 80% of activated T cells were glycolytic, and 97% of quiescent T cells were oxidative. In summary, autofluorescence lifetime imaging combined with machine learning models can detect metabolic perturbations between glycolysis and oxidative metabolism of living samples at a cellular level, providing a label-free technology to study cellular metabolism and metabolic heterogeneity.
Collapse
Affiliation(s)
- Linghao Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Nianchao Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| | - Joshua D. Bryant
- Microbial Pathogenesis and Immunology, Health Science Center, Texas A&M University, College Station, TX, United States
| | - Lin Liu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - A. Phillip West
- Microbial Pathogenesis and Immunology, Health Science Center, Texas A&M University, College Station, TX, United States
| | - Alex J. Walsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Dai N, Tang X, Weng X, Cai H, Zhuang J, Yang G, Zhou F, Wu P, Liu B, Duan S, Yu Y, Guo W, Ju Z, Zhang L, Wang Z, Wang Y, Lu B, Shi H, Qian J, Ge J. Stress-Related Neural Activity Associates With Coronary Plaque Vulnerability and Subsequent Cardiovascular Events. JACC Cardiovasc Imaging 2023; 16:1404-1415. [PMID: 37269269 DOI: 10.1016/j.jcmg.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Stress-related neural activity (SNA) assessed by amygdalar activity can predict cardiovascular events. However, its mechanistic linkage with plaque vulnerability is not fully elucidated. OBJECTIVES The authors aimed to investigate the association of SNA with coronary plaque morphologic and inflammatory features as well as their ability in predicting major adverse cardiovascular events (MACE). METHODS A total of 299 patients with coronary artery disease (CAD) and without cancer underwent 18F-fluorodexoyglucose positron emission tomography/computed tomography (PET/CT) and available coronary computed tomographic angiography (CCTA) between January 1, 2013, and December 31, 2020. SNA and bone-marrow activity (BMA) were assessed with validated methods. Coronary inflammation (fat attenuation index [FAI]) and high-risk plaque (HRP) characteristics were assessed by CCTA. Relations between these features were analyzed. Relations between SNA and MACE were assessed with Cox models, log-rank tests, and mediation (path) analyses. RESULTS SNA was significant correlated with BMA (r = 0.39; P < 0.001) and FAI (r = 0.49; P < 0.001). Patients with heightened SNA are more likely to have HRP (40.7% vs 23.5%; P = 0.002) and increase risk of MACE (17.2% vs 5.1%, adjusted HR 3.22; 95% CI: 1.31-7.93; P = 0.011). Mediation analysis suggested that higher SNA associates with MACE via a serial mechanism involving BMA, FAI, and HRP. CONCLUSIONS SNA is significantly correlated with FAI and HRP in patients with CAD. Furthermore, such neural activity was associated with MACE, which was mediated in part by leukopoietic activity in the bone marrow, coronary inflammation, and plaque vulnerability.
Collapse
Affiliation(s)
- Neng Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xianglin Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Guangjie Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Fan Zhou
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Bao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, Jiangsu Province, China
| | | | - Yongfu Yu
- School of Public Health and The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Weifeng Guo
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhiguo Ju
- College of Medical Imaging, Shanghai University of Medicine and Health Science, Shanghai, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhenguang Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, Shandong, China
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China; The Nuclear Medicine and Molecular Imaging Clinical Translation Institute of Soochow University, Changzhou, Jiangsu Province, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Lab and National Center for Cardiovascular Diseases, Beijing, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
4
|
Silzle T, Blum S, Kasprzak A, Nachtkamp K, Rudelius M, Hildebrandt B, Götze KS, Gattermann N, Lauseker M, Germing U. The Absolute Monocyte Count at Diagnosis Affects Prognosis in Myelodysplastic Syndromes Independently of the IPSS-R Risk Score. Cancers (Basel) 2023; 15:3572. [PMID: 37509235 PMCID: PMC10377210 DOI: 10.3390/cancers15143572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The absolute monocyte count (AMC) is associated with mortality in a variety of medical conditions. Its prognostic impact in myelodysplastic syndromes (MDSs) is less well studied. Therefore, we investigated its potential prognostic value in a cohort from the Düsseldorf MDS registry in relationship to the revised international prognostic scoring system (IPSS-R). An AMC below the population's median (<0.2 × 109/L) was associated with several adverse disease features such as lower haemoglobin levels, lower count of neutrophils and platelets, and a higher percentage of blasts in the bone marrow. MDS patients with an AMC < 0.2 × 109/L had a significantly higher risk of progression into acute myeloid leukemia (AML). In a univariate, proportional hazards model the effect of the AMC as a continuous variable was modelled via p-splines. We found a U-shaped effect with the lowest hazard around 0.3 × 109/L. Accordingly, an AMC within the last quartile of the population (0.4 × 109/L) was associated with a reduced overall survival independently of IPSS-R, but not with the risk of secondary AML. Considering monocytopenia as a risk factor for AML progression in MDS may provide an additional argument for allogeneic transplantation or the use of hypomethylating agents in patients who are not clear candidates for those treatments according to current prognostic scoring systems and/or recommendations. Further studies are needed to assess the prognostic impact of the AMC in the context of prognostic scoring systems, considering the molecular risk profile, and to identify the mechanisms responsible for the higher mortality in MDS patients with a subtle monocytosis.
Collapse
Affiliation(s)
- Tobias Silzle
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland
| | - Sabine Blum
- Service and Central Laboratory of Hematology, University Hospital of Lausanne and Lausanne University, 1011 Lausanne, Switzerland
| | - Annika Kasprzak
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kathrin Nachtkamp
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Barbara Hildebrandt
- Department of Human Genetics, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharina S. Götze
- Department of Internal Medicine III, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Norbert Gattermann
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Lauseker
- Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Maier A, Toner YC, Munitz J, Sullivan NA, Sakurai K, Meerwaldt AE, Brechbühl EE, Prévot G, van Elsas Y, Maas RJ, Ranzenigo A, Soultanidis G, Rashidian M, Pérez-Medina C, Heo GS, Gropler RJ, Liu Y, Reiner T, Nahrendorf M, Swirski FK, Strijkers GJ, Teunissen AJ, Calcagno C, Fayad ZA, Mulder WJ, van Leent MM. Multiparametric Immunoimaging Maps Inflammatory Signatures in Murine Myocardial Infarction Models. JACC Basic Transl Sci 2023; 8:801-816. [PMID: 37547068 PMCID: PMC10401290 DOI: 10.1016/j.jacbts.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 08/08/2023]
Abstract
In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.
Collapse
Affiliation(s)
- Alexander Maier
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Cardiology and Angiology I, Heart Center of Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yohana C. Toner
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jazz Munitz
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathaniel A.T. Sullivan
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ken Sakurai
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anu E. Meerwaldt
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Biomedical Magnetic Resonance Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht/Utrecht University, Utrecht, the Netherlands
| | - Eliane E.S. Brechbühl
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yuri van Elsas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne J.F. Maas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anna Ranzenigo
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Georgios Soultanidis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Pérez-Medina
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Gyu Seong Heo
- Department of Radiology, Washington University, St Louis, Missouri, USA
| | - Robert J. Gropler
- Department of Radiology, Washington University, St Louis, Missouri, USA
| | - Yongjian Liu
- Department of Radiology, Washington University, St Louis, Missouri, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Filip K. Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gustav J. Strijkers
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham J.P. Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zahi A. Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J.M. Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M.T. van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Abate E, Degef M, Melkie A, Gnanasekeran N, Mehdi M, Tolcha Y, Chala D. Haematological Parameters in People with Atherosclerotic Cardiovascular Disease versus Those Who are Only at Risk for Cardiovascular Disease: A Comparative Cross-Sectional Study. Diabetes Metab Syndr Obes 2023; 16:1869-1883. [PMID: 37384132 PMCID: PMC10296606 DOI: 10.2147/dmso.s407480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Cardiovascular disease (CVD) is the foremost killer disease worldwide. ASCVD is one of the most common types of CVD. It is mainly associated with a condition called atherosclerosis. Its occurrence is linked to several risk factors. Hypertension, diabetes, dyslipidemia, smoking, genetic factors, and so on are examples. The presence of ASCVD, as well as its risk factors, causes a variety of disruptions in the body's physiological and biological functions. The presence of abnormal physiological and biological functions, for example, tends to disrupt hematological parameters. Purpose The study's aim was to assess and compare the pattern of hematological parameters in people with established atherosclerotic cardiovascular disease (ASVD) versus people with ASCVD risks alone who attended TASH Addis Ababa, Ethiopia, as well as to correlate hematological parameters with the novel inflammatory marker hs-CRP. Methods A prospective cross-sectional comparative study with 100 study participants was conducted during where October 2019-March 2020 proposal development, sample collection, and lab analysis period, and from March 2020-June to 2021 data entry, analysis, and writing period. A serum sample was collected from each study participant for the lipid and hsCRP analyses and whole blood for hematological parameter determination. The socio-demographic characteristics of the study participants were obtained through a well-structured questionnaire. Results The ASCVD-risk group had significantly higher mean platelet volume (MPV), which was associated with the presence of the risk. Furthermore, hs-CRPs show a significant correlation with MPV in a correlation analysis of highly sensitive C-reactive protein (hs-CRP) with hematological parameters. Thus, using these affordable, routinely tested, and easily available tests may help to infer future ASCVD risk as well as the presence of ASCVD morbidity while hsCRP level in comparison group vs cases requires further study.
Collapse
Affiliation(s)
- Ebsitu Abate
- Department of Medical Biochemistry Addis Ababa University, Addis Ababa, Ethiopia
| | - Maria Degef
- Department of Medical Biochemistry Addis Ababa University, Addis Ababa, Ethiopia
| | - Addisu Melkie
- Department of Internal Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Natesan Gnanasekeran
- Department of Medical Biochemistry Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Medical Biochemistry Addis Ababa University, Addis Ababa, Ethiopia
| | - Yosef Tolcha
- Department of Diagnostic Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Dawit Chala
- Department of Diagnostic Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Fernández-García V, González-Ramos S, Avendaño-Ortiz J, Martín-Sanz P, Gómez-Coronado D, Delgado C, Castrillo A, Boscá L. High-fat diet activates splenic NOD1 and enhances neutrophil recruitment and neutrophil extracellular traps release in the spleen of ApoE-deficient mice. Cell Mol Life Sci 2022; 79:396. [PMID: 35789437 PMCID: PMC9256580 DOI: 10.1007/s00018-022-04415-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
In the course of atherogenesis, the spleen plays an important role in the regulation of extramedullary hematopoiesis, and in the control of circulating immune cells, which contributes to plaque progression. Here, we have investigated the role of splenic nucleotide-binding oligomerization domain 1 (NOD1) in the recruitment of circulating immune cells, as well as the involvement of this immune organ in extramedullary hematopoiesis in mice fed on a high-fat high-cholesterol diet (HFD). Under HFD conditions, the absence of NOD1 enhances the mobilization of immune cells, mainly neutrophils, from the bone marrow to the blood. To determine the effect of NOD1-dependent mobilization of immune cells under pro-atherogenic conditions, Apoe−/− and Apoe−/−Nod1−/− mice fed on HFD for 4 weeks were used. Splenic NOD1 from Apoe−/− mice was activated after feeding HFD as inferred by the phosphorylation of the NOD1 downstream targets RIPK2 and TAK1. Moreover, this activation was accompanied by the release of neutrophil extracellular traps (NETs), as determined by the increase in the expression of peptidyl arginine deiminase 4, and the identification of citrullinated histone H3 in this organ. This formation of NETs was significantly reduced in Apoe−/−Nod1−/− mice. Indeed, the presence of Ly6G+ cells and the lipidic content in the spleen of mice deficient in Apoe and Nod1 was reduced when compared to the Apoe−/− counterparts, which suggests that the mobilization and activation of circulating immune cells are altered in the absence of NOD1. Furthermore, confirming previous studies, Apoe−/−Nod1−/− mice showed a reduced atherogenic disease, and diminished recruitment of neutrophils in the spleen, compared to Apoe−/− mice. However, splenic artery ligation reduced the atherogenic burden in Apoe−/− mice an effect that, unexpectedly was lost in Apoe−/−Nod1−/− mice. Together, these results suggest that neutrophil accumulation and activity in the spleen are driven in part by NOD1 activation in mice fed on HFD, contributing in this way to regulating atherogenic progression.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - José Avendaño-Ortiz
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ., C. de Pedro Rico, 6, 28029, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Ctra. M-607 9,100, 28034, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada Al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Monforte de Lemos 3-5, 28029, Madrid, Spain. .,Unidad de Biomedicina (Unidad Asociada Al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
8
|
Huang C, Huang W, Zhang L, Zhang C, Zhou C, Wei W, Li Y, Zhou Q, Chen W, Tang Y. Targeting Peptide, Fluorescent Reagent Modified Magnetic Liposomes Coated with Rapamycin Target Early Atherosclerotic Plaque and Therapy. Pharmaceutics 2022; 14:pharmaceutics14051083. [PMID: 35631669 PMCID: PMC9146689 DOI: 10.3390/pharmaceutics14051083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Atherosclerosis is the leading cause of global morbidity and mortality. Its therapy requires research in several areas, such as diagnosis of early arteriosclerosis, improvement of the pharmacokinetics and bioavailability of rapamycin as its therapeutic agents. Here, we used the targeting peptide VHPKQHR (VHP) (or fluorescent reagent) to modify the phospholipid molecules to target vascular cell adhesion molecule-1 (VCAM-1) and loaded ultrasmall paramagnetic iron oxide (USPIO/Fe3O4) plus rapamycin (Rap) to Rap/Fe3O4@VHP-Lipo (VHPKQHR-modified magnetic liposomes coated with Rap). This nanoparticle can be used for both the diagnosis and therapy of early atherosclerosis. We designed both an ex vivo system with mouse aortic endothelial cells (MAECs) and an in vivo system with ApoE knockout mice to test the labeling and delivering potential of Rap/Fe3O4@VHP-Lipo with fluorescent microscopy, flow cytometry and MRI. Our results of MRI imaging and fluorescence imaging showed that the T2 relaxation time of the Rap/Fe3O4@VHP-Lipo group was reduced by 2.7 times and 1.5 times, and the fluorescence intensity increased by 3.4 times and 2.5 times, respectively, compared with the normal saline group and the control liposome treatment group. It showed that Rap/Fe3O4@VHP-Lipo realized the diagnosis of early AS. Additionally, our results showed that, compared with the normal saline and control liposomes treatment group, the aortic fluorescence intensity of the Rap/Fe3O4@VHP-Lipo treatment group was significantly weaker, and the T2 relaxation time was prolonged by 8.9 times and 2.0 times, indicating that the targeted diagnostic agent detected the least plaques in the Rap/Fe3O4@VHP-Lipo treatment group. Based on our results, the synthesized theragnostic Rap/Fe3O4@VHP-Lipo serves as a great label for both MRI and fluorescence bimodal imaging of atherosclerosis. It also has therapeutic effects for the early treatment of atherosclerosis, and it has great potential for early diagnosis and can achieve the same level of therapy with a lower dose of Rap.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Lifen Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chunyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA;
| | - Wei Wei
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Yongsheng Li
- Institution of Guang Dong Cord Blood Bank, Guangzhou 510700, China; (W.W.); (Y.L.)
| | - Quan Zhou
- Department of Radiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- Correspondence: (Q.Z.); (Y.T.)
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; (W.H.); (L.Z.); (C.Z.); (W.C.)
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yukuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China;
- Correspondence: (Q.Z.); (Y.T.)
| |
Collapse
|
9
|
Oh ES, You Z, Nowak KL, Jovanovich AJ. Association of Monocyte Count and Monocyte/Lymphocyte Ratio with the Risk of Cardiovascular Outcomes in Patients with CKD. KIDNEY360 2022; 3:657-665. [PMID: 35721602 PMCID: PMC9136887 DOI: 10.34067/kid.0007922021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 01/08/2023]
Abstract
BackgroundEmerging evidence suggests an association of higher monocyte count and monocyte/lymphocyte ratio (MLR) with the risk of cardiovascular disease (CVD) in individuals without chronic kidney disease (CKD); however, limited studies have examined if this association translates to the CKD population. This study examined whether monocyte count and MLR are associated with the risk of CVD, CVD death, and all-cause death in patients with nondialysis CKD who participated in the Chronic Renal Insufficiency Cohort observational study.MethodsBaseline monocyte count and MLR were categorized into tertiles and also modeled continuously. Cox proportional hazards models were used to examine the association between monocyte count (primary predictor) and MLR (secondary predictor) at baseline and time to a composite of CVD events, including heart failure, myocardial infarction, ischemic stroke, and peripheral artery disease (primary outcome). Secondary outcomes were time to CVD death and all-cause death.ResultsThe median follow-up time was 9 years for CVD events and 11.7 years for death. In the fully adjusted model, participants with a higher monocyte count and MLR had a greater risk of CVD events (hazard ratio [HR] per doubling of monocyte count=1.2 [95% CI, 1.1 to 1.31]; HR per doubling of MLR=1.26 [95% CI, 1.16 to 1.36]), CVD death (HR=1.18 [95% CI, 0.99 to 1.41]; HR=1.27 [95% CI, 1.1 to 1.48]), and all-cause death (HR=1.17 [95% CI, 1.06 to 1.3]; HR=1.18 [95% CI, 1.09 to 1.29]).ConclusionsThese results suggest that monocyte count and MLR may have the potential to be cost-effective, clinically available indicators of CVD risk in the CKD population.
Collapse
|
10
|
Gui Y, Zheng H, Cao RY. Foam Cells in Atherosclerosis: Novel Insights Into Its Origins, Consequences, and Molecular Mechanisms. Front Cardiovasc Med 2022; 9:845942. [PMID: 35498045 PMCID: PMC9043520 DOI: 10.3389/fcvm.2022.845942] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Foam cells play a vital role in the initiation and development of atherosclerosis. This review aims to summarize the novel insights into the origins, consequences, and molecular mechanisms of foam cells in atherosclerotic plaques. Foam cells are originated from monocytes as well as from vascular smooth muscle cells (VSMC), stem/progenitor cells, and endothelium cells. Novel technologies including lineage tracing and single-cell RNA sequencing (scRNA-seq) have revolutionized our understanding of subtypes of monocyte- and VSMC-derived foam cells. By using scRNA-seq, three main clusters including resident-like, inflammatory, and triggering receptor expressed on myeloid cells-2 (Trem2 hi ) are identified as the major subtypes of monocyte-derived foam cells in atherosclerotic plaques. Foam cells undergo diverse pathways of programmed cell death including apoptosis, autophagy, necroptosis, and pyroptosis, contributing to the necrotic cores of atherosclerotic plaques. The formation of foam cells is affected by cholesterol uptake, efflux, and esterification. Novel mechanisms including nuclear receptors, non-coding RNAs, and gut microbiota have been discovered and investigated. Although the heterogeneity of monocytes and the complexity of non-coding RNAs make obstacles for targeting foam cells, further in-depth research and therapeutic exploration are needed for the better management of atherosclerosis.
Collapse
Affiliation(s)
- Yuzhou Gui
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Phase I Clinical Research and Quality Consistency Evaluation for Drugs, Shanghai, China
| | - Hongchao Zheng
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Richard Y. Cao
- Department of Cardiovascular, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Chen Y, Su J, Yan Y, Zhao Q, Ma J, Zhu M, He X, Zhang B, Xu H, Yang X, Duan Y, Han J. Intermittent Fasting Inhibits High-Fat Diet-Induced Atherosclerosis by Ameliorating Hypercholesterolemia and Reducing Monocyte Chemoattraction. Front Pharmacol 2021; 12:719750. [PMID: 34658858 PMCID: PMC8517704 DOI: 10.3389/fphar.2021.719750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis is a major pathology for cardiovascular diseases (CVDs). Clinically, the intermittent fasting (IF) has been observed to reduce the risk of CVDs. However, the effect of IF on the development of atherosclerosis has not been fully elucidated. Herein, we determined the protection of IF against high-fat diet–induced atherosclerosis in pro-atherogenic low-density lipoprotein receptor deficient (LDLR-/-) mice and the potentially involved mechanisms. The LDLR-/- mice were scheduled intermittent fasting cycles of 3-day HFD feeding ad libitum and 1 day fasting, while the mice in the control group were continuously fed HFD. The treatment was lasted for 7 weeks (∼12 cycles) or 14 weeks (∼24 cycles). Associated with the reduced total HFD intake, IF substantially reduced lesions in the en face aorta and aortic root sinus. It also increased plaque stability by increasing the smooth muscle cell (SMC)/collagen content and fibrotic cap thickness while reducing macrophage accumulation and necrotic core areas. Mechanistically, IF reduced serum total and LDL cholesterol levels by inhibiting cholesterol synthesis in the liver. Meanwhile, HFD-induced hepatic lipid accumulation was attenuated by IF. Interestingly, circulating Ly6Chigh monocytes but not T cells and serum c-c motif chemokine ligand 2 levels were significantly reduced by IF. Functionally, adhesion of monocytes to the aortic endothelium was decreased by IF via inhibiting VCAM-1 and ICAM-1 expression. Taken together, our study indicates that IF reduces atherosclerosis in LDLR-/- mice by reducing monocyte chemoattraction/adhesion and ameliorating hypercholesterolemia and suggests its potential application for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Jiamin Su
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Yali Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Qian Zhao
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Jialing Ma
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China.,College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Jin L, Deng Z, Bai Y, Ye P. Functions of Monocytes and Macrophages and the Associated Effective Molecules and Mechanisms at the Early Stage of Atherosclerosis. ACTA CARDIOLOGICA SINICA 2021; 37:522-533. [PMID: 34584385 DOI: 10.6515/acs.202109_37(5).20210323c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Objective This study aimed to explore the functions and possible underlying regulatory molecules and mechanisms of monocytes and macrophages under early atherosclerotic conditions. Methods THP-1-derived monocytes or macrophages were induced by 50 μg/ml oxidized low density lipoprotein (ox-LDL) for 24 hours, and the degree of lipid metabolism and inflammation were determined. In addition, we identified differentially expressed genes, noncoding ribonucleic acids (RNAs), pathways and mechanisms by RNA sequencing, and performed further correlation analysis and molecular expression verification. Results Monocytes could not form foam cells with oil red O staining directly and had low levels of lipids as determined by total cholesterol and triglycerides assays, cholesterol uptake molecules CD36, the class A macrophage scavenger receptor and lectin-like oxidized low-density lipoprotein receptor-1 and cholesterol efflux molecules ATP binding cassette transporter A1, ATP binding cassette transporter G1 and liver X receptor α, and inflammatory factors, which were markedly different from those in macrophages. Additionally, sequencing data showed obviously differentially expressed genes, microRNAs and long noncoding RNAs in the atherosclerotic group. We identified 15 upregulated and downregulated genes, and 10 biological processes and pathways involved in atherosclerosis. Specifically, fatty acid desaturase 2 and apolipoprotein A1 in the peroxisome proliferator-activated receptor signaling pathway were differentially expressed in stimulated macrophages, whereas no changes were observed in the monocyte groups. Furthermore, correlation analysis showed differential expressed lncRNAs targeting miRNAs and mRNAs, and 24 competing endogenous RNA (ceRNA) networks of long noncoding RNA-microRNA-messenger RNA in early oxidative macrophages. Conclusions Monocytes did not directly participate in lipid metabolism before differentiation into macrophages at the early stage in vitro. Furthermore, noncoding RNAs and ceRNA networks might play important roles in regulating the lipid metabolism of macrophages at the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Liyuan Jin
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases
| | - Zihui Deng
- Biochemistry Department of Graduate School, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases
| | - Ping Ye
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases
| |
Collapse
|
13
|
Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. BIOLOGY 2021; 10:biology10100964. [PMID: 34681063 PMCID: PMC8533611 DOI: 10.3390/biology10100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023]
Abstract
Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls' Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis.
Collapse
|
14
|
Kapelouzou A, Katsimpoulas M, Kontogiannis C, Lidoriki I, Georgiopoulos G, Kourek C, Papageorgiou C, Mylonas KS, Dritsas S, Charalabopoulos A, Cokkinos DV. A High-Cholesterol Diet Increases Toll-like Receptors and Other Harmful Factors in the Rabbit Myocardium: The Beneficial Effect of Statins. Curr Issues Mol Biol 2021; 43:818-830. [PMID: 34449561 PMCID: PMC8928938 DOI: 10.3390/cimb43020059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: A high-cholesterol diet (HCD) induces vascular atherosclerosis through vascular inflammatory and immunological processes via TLRs. The aim of this study is to investigate the mRNA expression of TLRs and other noxious biomarkers expressing inflammation, fibrosis, apoptosis, and cardiac dysfunction in the rabbit myocardium during (a) high-cholesterol diet (HCD), (b) normal diet resumption and (c) fluvastatin or rosuvastatin treatment. Methods: Forty-eight male rabbits were randomly divided into eight groups (n = 6/group). In the first experiment, three groups were fed with HCD for 1, 2 and 3 months. In the second experiment, three groups were fed with HCD for 3 months, followed by normal chow for 1 month and administration of fluvastatin or rosuvastatin for 1 month. Control groups were fed with normal chow for 90 and 120 days. The whole myocardium was removed; total RNA was isolated from acquired samples, and polymerase chain reaction, reverse transcription PCR and quantitative real-time PCR were performed. Results: mRNA of TLRs 2, 3, 4 and 8; interleukin-6; TNF-a; metalloproteinase-2; tissue inhibitor of metalloproteinase-1; tumor protein 53; cysteinyl aspartate specific proteinase-3; and brain natriuretic peptide (BNP) increased in HCD. Statins but not resumption of a normal diet decreased levels of these biomarkers and increased levels of antifibrotic factors. Conclusions: HCD increases the levels of TLRs; inflammatory, fibrotic and apoptotic factors; and BNP in the rabbit myocardium. Atherogenic diets adversely affect the myocardium at a molecular level and are reversed by statins.
Collapse
Affiliation(s)
- Alkistis Kapelouzou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
| | - Michalis Katsimpoulas
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Attiko Hospital Animal, 19002 Athens, Greece
| | - Christos Kontogiannis
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Irene Lidoriki
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Georgios Georgiopoulos
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Kourek
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Christos Papageorgiou
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.K.); (G.G.); (C.K.); (C.P.)
| | - Konstantinos S. Mylonas
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Spyridon Dritsas
- Second Department of Surgery, Aretaieio Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Alexandros Charalabopoulos
- Vascular Unit, First Department of Surgery, Laiko General Hospital, National & Kapodistrian University of Athens, 11527 Athens, Greece; (I.L.); (K.S.M.); (A.C.)
| | - Dennis V. Cokkinos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (A.K.); (M.K.)
- Correspondence: ; Tel./Fax: +30-210-6597376
| |
Collapse
|
15
|
Kim GD, Ng HP, Chan ER, Mahabeleshwar GH. Macrophage-Hypoxia-Inducible Factor-1α Signaling in Carotid Artery Stenosis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1118-1134. [PMID: 33753024 PMCID: PMC8176143 DOI: 10.1016/j.ajpath.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022]
Abstract
Macrophages play crucial and diverse roles in the pathogenesis of inflammatory vascular diseases. Macrophages are the principal innate immune cells recruited to arterial walls to govern vascular homeostasis by modulating the proliferation of vascular smooth muscle cells, the reorganization of extracellular matrix components, the elimination of dead cells, and the restoration of normal blood flow. However, chronic sterile inflammation within the arterial walls draws inflammatory macrophages into intimal/neointimal regions that may contribute to disease pathogenesis. In this context, the accumulation and aberrant activation of macrophages in the neointimal regions govern the progression of inflammatory arterial wall diseases. Herein, we report that myeloid-hypoxia-inducible factor-1α (HIF1α) deficiency attenuates vascular smooth muscle cells and macrophage abundance in stenotic arteries and abrogates carotid neointima formation in vivo. The integrated transcriptomics, Gene Set Enrichment Analysis, metabolomics, and target gene evaluation showed that HIF1α represses oxidative phosphorylation, tricarboxylic acid cycle, fatty acid metabolism, and c-MYC signaling pathways while promoting inflammatory, glycolytic, hypoxia response gene expression in stenotic artery macrophages. At the molecular level, proinflammatory agents utilized STAT3 signaling pathways to elevate HIF1α expression in macrophages. Collectively, this study uncovers that macrophage-HIF1α deficiency restrains the pathogenesis of carotid artery stenosis by rewiring inflammatory and metabolic signaling pathways in macrophages.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Hang Pong Ng
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
16
|
Yeo KP, Lim HY, Angeli V. Leukocyte Trafficking via Lymphatic Vessels in Atherosclerosis. Cells 2021; 10:cells10061344. [PMID: 34072313 PMCID: PMC8229118 DOI: 10.3390/cells10061344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 02/03/2023] Open
Abstract
In recent years, lymphatic vessels have received increasing attention and our understanding of their development and functional roles in health and diseases has greatly improved. It has become clear that lymphatic vessels are critically involved in acute and chronic inflammation and its resolution by supporting the transport of immune cells, fluid, and macromolecules. As we will discuss in this review, the involvement of lymphatic vessels has been uncovered in atherosclerosis, a chronic inflammatory disease of medium- and large-sized arteries causing deadly cardiovascular complications worldwide. The progression of atherosclerosis is associated with morphological and functional alterations in lymphatic vessels draining the diseased artery. These defects in the lymphatic vasculature impact the inflammatory response in atherosclerosis by affecting immune cell trafficking, lymphoid neogenesis, and clearance of macromolecules in the arterial wall. Based on these new findings, we propose that targeting lymphatic function could be considered in conjunction with existing drugs as a treatment option for atherosclerosis.
Collapse
|
17
|
Leuschner F, Nahrendorf M. Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. Eur Heart J 2021; 41:989-994. [PMID: 30945736 DOI: 10.1093/eurheartj/ehz159] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Over a century ago, Élie Metchnikoff described the macrophages' ability to phagocytose. Propelled by advances in technology enabling phenotypic and functional analyses at unpreceded resolution, a recent renaissance in macrophage research has shed new light on these 'big eaters'. We here give an overview of cardiac macrophages' provenance in the contexts of cardiac homeostasis and stress. We highlight the recently identified mechanism by which these cells regulate electrical conduction in the atrioventricular node and discuss why we need a deeper understanding of monocytes and macrophages in systolic and diastolic dysfunctions.
Collapse
Affiliation(s)
- Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.,Partner site Heidelberg, DZHK (German Centre for Cardiovascular Research), Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA.,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
18
|
肖 珊, 马 郁, 李 婧, 张 彦, 何 泓, 方 春, 王 万. [Angiotensin Ⅱ inhibits AMPK/SIRT1 pathway by inducing oxidative stress in RAW264.7 macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:384-390. [PMID: 33849829 PMCID: PMC8075794 DOI: 10.12122/j.issn.1673-4254.2021.03.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism by which angiotensin Ⅱ-induced oxidative stress response inhibits AMPK/ SIRT1 signaling in RAW264.7 macrophages. OBJECTIVE RAW264.7 cells were treated with 0.5, 1, 3, 10, or 20 μmol/L angiotensin Ⅱ for 24 h, and the changes in the expressions of AMPK, p-AMPK, and SIRT1 proteins were detected using Western blotting. The intracellular ROS release level was measured and the levels of SOD and MDA were detected. The effects of angiotensin Ⅱ type 1 receptor (AT1R) gene silencing on the cell response to angiotensin Ⅱ treatment were examined by detecting the changes in AMPK, p-AMPK and SIRT1 protein levels. The effects of a ROS inhibitor on cellular AMPK and SIRT1 were also examined. OBJECTIVE Angiotensin Ⅱ stimulation at 20 μmol/L significantly inhibited the phosphorylation of AMPK protein and increased cellular ROS release (P < 0.05). Treatment with 0.5-10 μmol/L angiotensin Ⅱ did not cause significant changes in SOD activity or MDA expression, but angiotensin Ⅱ at the dose of 20 μmol/L significantly inhibited SOD activity in the cells (P < 0.05). In the macrophages with AT1R gene silencing, treatment with angiotensin Ⅱ did not obviously inhibit AMPK phosphorylation or down- regulate SIRT1 expression. In cells treated with the ROS inhibitor, angiotensin Ⅱ failed to lower the level of AMPK phosphorylation or the expression of SIRT1. OBJECTIVE Angiotensin Ⅱ induces oxidative stress to cause disturbance of AMPK/ SIRT1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- 珊 肖
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 郁文 马
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 婧 李
- 广 州中医药大学中药学院,广东 广州 511400School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 511400, China
| | - 彦红 张
- 广州市第一人民医院中医科,广东 广州 511400Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, Guangzhou 511400, China
| | - 泓 何
- 广州医科大学第三附属医院妇产科,广东 广 州 511400Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - 春香 方
- 华中科技大学同济医学院附属武汉市中心医院药学部,湖北 武汉 430014Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - 万铭 王
- 长江航运总医院,湖北 武汉 430000General Hospital of the Yangtze River Shipping, Wuhan 430000, China
- 武汉脑科医院,湖北 武汉 430000Wuhan Brain Hospital, Wuhan 430000, China
| |
Collapse
|
19
|
Osborn EA, Albaghdadi M, Libby P, Jaffer FA. Molecular Imaging of Atherosclerosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
In Vitro Exposure of Leukocytes to HIV Preexposure Prophylaxis Decreases Mitochondrial Function and Alters Gene Expression Profiles. Antimicrob Agents Chemother 2020; 65:AAC.01755-20. [PMID: 33020165 PMCID: PMC7927818 DOI: 10.1128/aac.01755-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022] Open
Abstract
The use of antiretroviral therapy (ART) as preexposure prophylaxis (PrEP) is an effective strategy for preventing HIV acquisition. The cellular consequences of PrEP exposure, however, have not been sufficiently explored to determine potential effects on health in individuals without HIV. In this study, peripheral blood mononuclear cells (PBMCs) from people without HIV were exposed to tenofovir disoproxil fumarate (TDF) or emtricitabine (FTC) overnight. Mitochondrial mass and function were measured by flow cytometry and an Agilent XFp analyzer. The use of antiretroviral therapy (ART) as preexposure prophylaxis (PrEP) is an effective strategy for preventing HIV acquisition. The cellular consequences of PrEP exposure, however, have not been sufficiently explored to determine potential effects on health in individuals without HIV. In this study, peripheral blood mononuclear cells (PBMCs) from people without HIV were exposed to tenofovir disoproxil fumarate (TDF) or emtricitabine (FTC) overnight. Mitochondrial mass and function were measured by flow cytometry and an Agilent XFp analyzer. Monocyte-derived macrophages (MDMs) were differentiated in 20% autologous serum for 5 days in the presence or absence of TDF or FTC, and surface markers, lipid uptake, and efferocytosis were measured by flow cytometry. MDM gene expression was measured using transcriptome sequencing (RNA-seq). Plasma lipids were measured using mass spectrometry. PBMCs exposed to TDF or FTC had decreased maximal oxygen consumption rate (OCR) and reduced mitochondrial mass. Exposure to PrEP also increased reactive oxygen species (ROS) production from monocyte subsets. Compared to MDMs cultured in medium alone, cells differentiated in the presence of TDF (829 genes) or FTC (888 genes) had significant changes in gene expression. Further, PrEP-exposed MDMs had decreased mitochondrial mass and displayed increased lipid uptake and reduced efferocytosis. Plasma biomarkers and lipid levels were also altered in vivo in individuals receiving a PrEP regimen. In conclusion, exposure of leukocytes to TDF or FTC resulted in decreased mitochondrial function and altered functional and transcriptional profiles. These findings may have important implications for the metabolic and immunologic consequences of PrEP in populations at risk for HIV acquisition.
Collapse
|
21
|
Circadian influence on inflammatory response during cardiovascular disease. Curr Opin Pharmacol 2020; 57:60-70. [PMID: 33340915 DOI: 10.1016/j.coph.2020.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022]
Abstract
Circadian rhythms follow a 24 h day and night cycle, regulate vital physiological processes, and are especially relevant to cardiovascular growth, renewal, repair, and remodeling. A recent flurry of clinical and experimental studies reveals a profound circadian influence on immune responses in cardiovascular disease. The first section of this review summarizes the importance of circadian rhythms for cardiovascular health and disease. The second section introduces the circadian nature of inflammatory responses. The third section combines these to elucidate a new role for the circadian system, influencing inflammation in heart disease, especially myocardial infarction. Particular focus is on circadian regulation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, neutrophils, monocytes/macrophages, and T cells involved in cardiac repair. A role for biological sex is noted. The final section explores circadian influences on inflammation in other major cardiovascular conditions. Circadian regulation of inflammation has profound implications for benefitting the diagnosis, treatment, and prognosis of patients with cardiovascular disease.
Collapse
|
22
|
Sigirci S, Ser ÖS, Keskin K, Yildiz SS, Gurdal A, Kilickesmez KO. Comparing the Prognostic Value of Hematological Indices in Patients With ST Segment Elevation Myocardial Infarction: "A Head to Head" Analysis. Angiology 2020; 72:348-354. [PMID: 33272027 DOI: 10.1177/0003319720977754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although there are reviews and meta-analyses focusing on hematological indices for risk prediction of mortality in patients with ST segment elevation myocardial infarction (STEMI), there are not enough data with respect to direct to head-to-head comparison of their predictive values. We aimed to investigate which hematological indices have the most discriminatory capability for prediction of in-hospital and long-term mortality in a large STEMI cohort. We analyzed the data of 1186 patients with STEMI. In-hospital and long-term all-cause mortality was defined as the primary end point of the study. In-hospital mortality rate was 8.6% and long-term mortality rate 9.0%. Although the neutrophil to lymphocyte ratio (NLR) and age were found to be independent predictors of in-hospital mortality in the multivariate regression analyses; Cox regression analysis revealed that age, ejection fraction, red cell distribution width (RDW), and monocyte to high-density lipoprotein ratio (MHDLr) were independently associated with long-term mortality. Neutrophil to lymphocyte ratio had the highest area under curve value in the receiver operating characteristic curve analyses for prediction of in-hospital mortality. In conclusion, while NLR may be used for prediction of in-hospital mortality, RDW and MHDLr ratio are better hematological indices for long-term mortality prediction after STEMI than other most common indices.
Collapse
Affiliation(s)
- Serhat Sigirci
- Department of Cardiology, 64159Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Özgür Selim Ser
- Department of Cardiology, 64159Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Kudret Keskin
- Department of Cardiology, 64159Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Süleyman Sezai Yildiz
- Department of Cardiology, 64159Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Ahmet Gurdal
- Department of Cardiology, 64159Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| | - Kadriye Orta Kilickesmez
- Department of Cardiology, 64159Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
23
|
Mistry P, Reitz CJ, Khatua TN, Rasouli M, Oliphant K, Young ME, Allen-Vercoe E, Martino TA. Circadian influence on the microbiome improves heart failure outcomes. J Mol Cell Cardiol 2020; 149:54-72. [PMID: 32961201 PMCID: PMC11027088 DOI: 10.1016/j.yjmcc.2020.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) leading to heart failure (HF) is a major cause of death worldwide. Previous studies revealed that the circadian system markedly impacts cardiac repair post-MI, and that light is an important environmental factor modulating the circadian influence over healing. Recent studies suggest that gut physiology also affects the circadian system, but how it contributes to cardiac repair post-MI and in HF is not well understood. To address this question, we first used a murine coronary artery ligation MI model to reveal that an intact gut microbiome is important for cardiac repair. Specifically, gut microbiome disruption impairs normal inflammatory responses in infarcted myocardium, elevates adverse cardiac gene biomarkers, and leads to worse HF outcomes. Conversely, reconstituting the microbiome post-MI in mice with prior gut microbiome disruption improves healing, consistent with the notion that normal gut physiology contributes to cardiac repair. To investigate a role for the circadian system, we initially utilized circadian mutant Clock∆19/∆19 mice, revealing that a functional circadian mechanism is necessary for gut microbiome benefits on post-MI cardiac repair and HF. Finally, we demonstrate that circadian-mediated gut responses that benefit cardiac repair can be conferred by time-restricted feeding, as wake time feeding of MI mice improves HF outcomes, but these benefits are not observed in MI mice fed during their sleep time. In summary, gut physiology is important for cardiac repair, and the circadian system influences the beneficial gut responses to improve post-MI and HF outcomes.
Collapse
Affiliation(s)
- Priya Mistry
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Cristine J Reitz
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tarak Nath Khatua
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mina Rasouli
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kaitlyn Oliphant
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tami A Martino
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
24
|
Schumski A, Ortega-Gómez A, Wichapong K, Winter C, Lemnitzer P, Viola JR, Pinilla-Vera M, Folco E, Solis-Mezarino V, Völker-Albert M, Maas SL, Pan C, Perez Olivares L, Winter J, Hackeng T, Karlsson MCI, Zeller T, Imhof A, Baron RM, Nicolaes GAF, Libby P, Maegdefessel L, Kamp F, Benoit M, Döring Y, Soehnlein O. Endotoxinemia Accelerates Atherosclerosis Through Electrostatic Charge-Mediated Monocyte Adhesion. Circulation 2020; 143:254-266. [PMID: 33167684 DOI: 10.1161/circulationaha.120.046677] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute infection is a well-established risk factor of cardiovascular inflammation increasing the risk for a cardiovascular complication within the first weeks after infection. However, the nature of the processes underlying such aggravation remains unclear. Lipopolysaccharide derived from Gram-negative bacteria is a potent activator of circulating immune cells including neutrophils, which foster inflammation through discharge of neutrophil extracellular traps (NETs). Here, we use a model of endotoxinemia to link acute infection and subsequent neutrophil activation with acceleration of vascular inflammation Methods: Acute infection was mimicked by injection of a single dose of lipopolysaccharide into hypercholesterolemic mice. Atherosclerosis burden was studied by histomorphometric analysis of the aortic root. Arterial myeloid cell adhesion was quantified by intravital microscopy. RESULTS Lipopolysaccharide treatment rapidly enhanced atherosclerotic lesion size by expansion of the lesional myeloid cell accumulation. Lipopolysaccharide treatment led to the deposition of NETs along the arterial lumen, and inhibition of NET release annulled lesion expansion during endotoxinemia, thus suggesting that NETs regulate myeloid cell recruitment. To study the mechanism of monocyte adhesion to NETs, we used in vitro adhesion assays and biophysical approaches. In these experiments, NET-resident histone H2a attracted monocytes in a receptor-independent, surface charge-dependent fashion. Therapeutic neutralization of histone H2a by antibodies or by in silico designed cyclic peptides enables us to reduce luminal monocyte adhesion and lesion expansion during endotoxinemia. CONCLUSIONS Our study shows that NET-associated histone H2a mediates charge-dependent monocyte adhesion to NETs and accelerates atherosclerosis during endotoxinemia.
Collapse
Affiliation(s)
- Ariane Schumski
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany (A.S., A.O.-G., S.L.M., L.M., O.S.)
| | - Almudena Ortega-Gómez
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany (A.S., A.O.-G., S.L.M., L.M., O.S.)
| | - Kanin Wichapong
- Department of Biochemistry, CARIM, University Maastricht, The Netherlands (K.W., T.H., G.A.F.N.)
| | - Carla Winter
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
| | - Patricia Lemnitzer
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
| | - Joana R Viola
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
| | - Mayra Pinilla-Vera
- Division of Pulmonary and Critical Care Medicine (M.P.-V., R.M.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Eduardo Folco
- Division of Cardiovascular Medicine (E.F., P. L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Sanne L Maas
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany (A.S., A.O.-G., S.L.M., L.M., O.S.)
| | - Chang Pan
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
| | - Laura Perez Olivares
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
| | - Janine Winter
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
| | - Tilman Hackeng
- Department of Biochemistry, CARIM, University Maastricht, The Netherlands (K.W., T.H., G.A.F.N.)
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology (M.C.I.K.), Karolinska Institute, Stockholm, Sweden
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Germany (T.Z.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg, Germany (T.Z.)
| | - Axel Imhof
- BMC, Chromatin Proteomics Group, Department of Molecular Biology (A.I.), LMU München, Germany
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine (M.P.-V., R.M.B.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gerry A F Nicolaes
- Department of Biochemistry, CARIM, University Maastricht, The Netherlands (K.W., T.H., G.A.F.N.)
| | - Peter Libby
- Division of Cardiovascular Medicine (E.F., P. L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lars Maegdefessel
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany (A.S., A.O.-G., S.L.M., L.M., O.S.)
- Department of Vascular and Endovascular Surgery, Technical University Munich, Germany (L.M.)
| | - Frits Kamp
- BMC, Metabolic Biochemistry (F.K.), LMU München, Germany
| | - Martin Benoit
- Center for Nano Science (CeNS), Department of Physics, Munich, Germany (M.B.)
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
- Division of Angiology, Swiss Cardiovascular Centre, Inselspital, Bern University Hospital, University of Bern, Switzerland (Y.D.)
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), LMU Munich Hospital, Germany (A.S., A.O.-G., C.W., P. Lemnitzer, J.R.V., C.P., L.P.O., J.W., Y.D., O.S.)
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance (MHA), Munich, Germany (A.S., A.O.-G., S.L.M., L.M., O.S.)
- Department of Physiology and Pharmacology (FyFa) (O.S.), Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
26
|
Bowman ER, Cameron CM, Richardson B, Kulkarni M, Gabriel J, Cichon MJ, Riedl KM, Mustafa Y, Cartwright M, Snyder B, Raman SV, Zidar DA, Koletar SL, Playford MP, Mehta NN, Sieg SF, Freeman ML, Lederman MM, Cameron MJ, Funderburg NT. Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms. PLoS Pathog 2020; 16:e1008869. [PMID: 33002093 PMCID: PMC7553323 DOI: 10.1371/journal.ppat.1008869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
People with HIV (PWH) are at increased risk for atherosclerotic cardiovascular disease (ASCVD). Proportions of vascular homing monocytes are enriched in PWH; however, little is known regarding monocyte-derived macrophages (MDMs) that may drive atherosclerosis in this population. We isolated PBMCs from people with and without HIV, and cultured these cells for 5 days in medium containing autologous serum to generate MDMs. Differential gene expression (DGE) analysis of MDMs from PWH identified broad alterations in innate immune signaling (IL-1β, TLR expression, PPAR βδ) and lipid processing (LXR/RXR, ACPP, SREBP1). Transcriptional changes aligned with the functional capabilities of these cells. Expression of activation markers and innate immune receptors (CD163, TLR4, and CD300e) was altered on MDMs from PWH, and these cells produced more TNFα, reactive oxygen species (ROS), and matrix metalloproteinases (MMPs) than did cells from people without HIV. MDMs from PWH also had greater lipid accumulation and uptake of oxidized LDL. PWH had increased serum levels of free fatty acids (FFAs) and ceramides, with enrichment of saturated FAs and a reduction in polyunsaturated FAs. Levels of lipid classes and species that are associated with CVD correlated with unique DGE signatures and altered metabolic pathway activation in MDMs from PWH. Here, we show that MDMs from PWH display a pro-atherogenic phenotype; they readily form foam cells, have altered transcriptional profiles, and produce mediators that likely contribute to accelerated ASCVD. People with HIV (PWH) are at greater risk for developing cardiovascular disease (CVD) than the general public, but the mechanisms underlying this increased risk are poorly understood. Macrophages play key roles in the pathogenesis of atherosclerosis, and are potential targets for therapeutic intervention. Here, we investigate phenotypic and functional abnormalities in monocyte-derived macrophages (MDMs) isolated from PWH that may drive CVD risk in this population. MDMs were differentiated in the presence of autologous serum, enabling us to explore the contributions of serum components (lipids, inflammatory cytokines, microbial products) as drivers of altered MDM function. We link serum levels of inflammatory biomarkers and CVD-associated lipid species to MDM activation. Our study provides new insight into drivers of pro-atherogenic MDM phenotype in PWH, and identifies directions for future study and potential intervention strategies to mitigate CVD risk.
Collapse
Affiliation(s)
- Emily R. Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Manjusha Kulkarni
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Morgan J. Cichon
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth M. Riedl
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Yousef Mustafa
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brandon Snyder
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Subha V. Raman
- Department of Internal Medicine, Division of Cardiovascular Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Susan L. Koletar
- Department of Medicine, Division of Infectious Diseases, Ohio State University, Columbus, Ohio, United States of America
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott F. Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael L. Freeman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nicholas T. Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
27
|
Borowczyk C, Laroche-Traineau J, Brevier J, Jacobin-Valat MJ, Marais S, Gerbaud E, Clofent-Sanchez G, Ottones F. Two-photon excited fluorescence (TPEF) may be useful to identify macrophage subsets based on their metabolic activity and cellular responses in atherosclerotic plaques. Atherosclerosis 2020; 309:47-55. [PMID: 32871394 DOI: 10.1016/j.atherosclerosis.2020.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is characterized by the formation of lipid plaques within the arterial wall. In such plaques, the massive and continuous recruitment of circulating monocyte-derived macrophages induces inflammation, leading to plaque destabilization and rupture. Plaque vulnerability is linked to the presence of (i) a large lipid core that contains necrotic, "foamy" macrophages (FMs), (ii) a thin fibrous cap that cannot limit the prothrombotic lipid core, and potentially (iii) an imbalance between inflammatory and immunoregulatory macrophages. These opposite macrophage functions rely on the use of different energy pathways (glycolysis and oxidative phosphorylation, respectively) that may lead to different levels of the auto-fluorescent cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). We hypothesized that high-resolution two-photon excited autofluorescence (TPEF) imaging of these cofactors may be used to monitor the metabolic activity and cellular responses of macrophages in atherosclerotic plaques. METHODS Different models of human FMs were generated by exposure to acetylated or oxidized low-density lipoproteins (LDL), with/without human carotid extract (CE). Their phenotype and optical properties were compared with those of extremely polarized macrophages, inflammatory M1 (MLPS+IFNγ) and immunoregulatory M2 (MIL4+IL13). RESULTS These FM models displayed an intermediate phenotype with low levels of M1 and M2 "specific" markers. Moreover, the NADH and FAD autofluorescence profiles of FMoxLDL ± CE cells were significantly distinct from those of M1 and M2 macrophages. CONCLUSIONS TPEF imaging may be useful to follow the metabolic activity and cellular responses of the different macrophage subtypes present in atherosclerotic plaques in order to detect vulnerable areas.
Collapse
Affiliation(s)
| | | | | | | | | | - Edouard Gerbaud
- Centre de Recherche Cardio Thoracique, INSERM U 1045, Bordeaux, France
| | | | | |
Collapse
|
28
|
Li T, Safitri M, Zhang K, Wang Y, Huang L, Zhu Y, Daniel R, Wu LJ, Qiu J, Wang G. Downregulation of G3BP2 reduces atherosclerotic lesions in ApoE -/- mice. Atherosclerosis 2020; 310:64-74. [PMID: 32919187 DOI: 10.1016/j.atherosclerosis.2020.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis is mainly caused by stress in arterial microenvironments, which results in the formation of stress granules as a consequence of the stress response. As the core protein of stress granules, GTPase-activating protein (SH3 domain)-binding protein 2 (G3BP2) is known to play pivotal roles in tumour initiation, viral infection and Alzheimer's disease, but the role of G3BP2 in atherosclerosis development is poorly understood. Previous studies have shown that vaccination with epitopes from self-antigens could reduce atherosclerotic lesions. Here, we investigated the effect of immunizing ApoE-/- mice with G3BP2 peptides, and whether this immunization exerted an anti-atherogenic effect. METHODS AND RESULTS In our study, ApoE-/- mice were fed a high-fat diet for 12 weeks from 8 to 20 weeks of age. Then, using a repetitive multiple site strategy, the mice were immunized with a Keyhole limpet haemocyanin (KLH) conjugated G3BP2 peptide for 2 weeks from weeks 16 to 18. High levels of G3BP2 antibodies were detectable before sacrifice. Histological analyses showed that the number of atherosclerotic lesions in ApoE-/- mice was significantly reduced following G3BP2 immunotherapy. The levels of pro-inflammatory cytokines and macrophages were also greatly decreased, while the collagen content of the plaques showed significant increase. Furthermore, knocking down G3BP2 in ApoE-/- mice reduced the number of lesions compared to ApoE-/- mice fed a high-fat diet for eight weeks. In vitro studies demonstrated that G3BP2 regulated ox-LDL-induced inflammation in HUVECs via controlling the localization of IκBα. CONCLUSIONS Immunization with the G3BP2 peptide antigen or knocking down of G3BP2 significantly decreased early atherosclerotic plaques in the ApoE-/- mouse model of atherosclerosis. G3BP2 is a promising potential target for atherosclerosis therapy.
Collapse
Affiliation(s)
- Tianhan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Maharani Safitri
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Kang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Lu Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Yuan Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Richard Daniel
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK.
| | - Ling Juan Wu
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State Key Laboratory of Mechanical Transmission, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
29
|
Zhang H, Xu A, Sun X, Yang Y, Zhang L, Bai H, Ben J, Zhu X, Li X, Yang Q, Wang Z, Wu W, Yang D, Zhang Y, Xu Y, Chen Q. Self-Maintenance of Cardiac Resident Reparative Macrophages Attenuates Doxorubicin-Induced Cardiomyopathy Through the SR-A1-c-Myc Axis. Circ Res 2020; 127:610-627. [PMID: 32466726 DOI: 10.1161/circresaha.119.316428] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Doxorubicin-induced cardiomyopathy (DiCM) is a primary cause of heart failure and mortality in cancer patients, in which macrophage-orchestrated inflammation serves as an essential pathological mechanism. However, the specific roles of tissue-resident and monocyte-derived macrophages in DiCM remain poorly understood. OBJECTIVE Uncovering the origins, phenotypes, and functions of proliferative cardiac resident macrophages and mechanistic insights into the self-maintenance of cardiac macrophage during DiCM progression. METHODS AND RESULTS Mice were administrated with doxorubicin to induce cardiomyopathy. Dynamic changes of resident and monocyte-derived macrophages were examined by lineage tracing, parabiosis, and bone marrow transplantation. We found that the monocyte-derived macrophages primarily exhibited a proinflammatory phenotype that dominated the whole DiCM pathological process and impaired cardiac function. In contrast, cardiac resident macrophages were vulnerable to doxorubicin insult. The survived resident macrophages exhibited enhanced proliferation and conferred a reparative role. Global or myeloid specifically ablation of SR-A1 (class A1 scavenger receptor) inhibited proliferation of cardiac resident reparative macrophages and, therefore, exacerbated cardiomyopathy in DiCM mice. Importantly, the detrimental effect of macrophage SR-A1 deficiency was confirmed by transplantation of bone marrow. At the mechanistic level, we show that c-Myc (Avian myelocytomatosis virus oncogene cellular homolog), a key transcriptional factor for the SR-A1-P38-SIRT1 (Sirtuin 1) pathway, mediated the effect of SR-A1 in reparative macrophage proliferation in DiCM. CONCLUSIONS The SR-A1-c-Myc axis may represent a promising target to treat DiCM through augmentation of cardiac resident reparative macrophage proliferation.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Cardiomyopathy, Dilated/chemically induced
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Cell Proliferation
- Cell Self Renewal
- Cells, Cultured
- Disease Models, Animal
- Doxorubicin
- Female
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Macrophages/enzymology
- Macrophages/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardium/enzymology
- Myocardium/pathology
- Phenotype
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Scavenger Receptors, Class A/deficiency
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
- Signal Transduction
- Ventricular Remodeling
Collapse
Affiliation(s)
- Hanwen Zhang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Andi Xu
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Xuan Sun
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Department of Cardiology, Nanjing Drum Tower Hospital, China (X.S.)
| | - Yaqing Yang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Lai Zhang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Hui Bai
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Jingjing Ben
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Xudong Zhu
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Xiaoyu Li
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Qing Yang
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Zidun Wang
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, China (Z.W., D.Y.)
| | - Wei Wu
- Bioinformatics (W.W.), Nanjing Medical University, China
| | - Di Yang
- Department of Cardiology, First Affiliated Hospital with Nanjing Medical University, China (Z.W., D.Y.)
| | | | - Yong Xu
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| | - Qi Chen
- From the Department of Pathophysiology (H.Z., A.X., X.S., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.), Nanjing Medical University, China
- Key Laboratory of Targeted Intervention of Cardiovascular Diseases, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Jiangsu Province, China (H.Z., A.X., Y.Y., L.Z., H.B., J.B., X.Z., X.L., Q.Y., Y.X., Q.C.)
| |
Collapse
|
30
|
Carnevale D, Lembo G. Neuroimmune interactions in cardiovascular diseases. Cardiovasc Res 2020; 117:402-410. [PMID: 32462184 DOI: 10.1093/cvr/cvaa151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Our body is continuously in contact with external stimuli that need a fine integration with the internal milieu in order to maintain the homoeostasis. Similarly, perturbations of the internal environment are responsible for the alterations of the physiological mechanisms regulating our main functions. The nervous system and the immune system represent the main interfaces between the internal and the external environment. In carrying out these functions, they share many similarities, being able to recognize, integrate, and organize responses to a wide variety of stimuli, with the final aim to re-establish the homoeostasis. The autonomic nervous system, which collectively refers to the ensemble of afferent and efferent neurons that wire the central nervous system with visceral effectors throughout the body, is the prototype system controlling the homoeostasis through reflex arches. On the other hand, immune cells continuously patrol our body against external enemies and internal perturbations, organizing acute responses and forming memory for future encounters. Interesting to notice, the integration of the two systems provides a further unique opportunity for fine tuning of our body's homoeostasis. In fact, the autonomic nervous system guides the development of lymphoid and myeloid organs, as well as the deployment of immune cells towards peripheral tissues where they can affect and control several physiological functions. In turn, every specific immune cell type can contribute to regulate neural circuits involved in cardiovascular function, metabolism, and inflammation. Here, we review current understanding of the cross-regulation between these systems in cardiovascular diseases.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli IS, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, 86077 Pozzilli IS, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
31
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
32
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|
33
|
Distinct origins and functions of cardiac orthotopic macrophages. Basic Res Cardiol 2020; 115:8. [PMID: 31897858 DOI: 10.1007/s00395-019-0769-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
Macrophages are one cell type in the innate immune system. Recent studies involving macrophages have overturned the conventional concept that circulating bone marrow-derived blood mononuclear cells in the adult body continuously replace macrophages residing in the tissues. Investigations using refined technologies have suggested that embryonic hematopoiesis can result in the differentiation into macrophage subgroups in some tissues. In adulthood, these macrophages are self-sustaining via in situ proliferation, with little contribution of circulating bone marrow-derived blood mononuclear cells. Macrophages are integral component of the heart, accounting for 8% of the non-cardiac cells. The use of innovative molecular techniques in paradigm shifting researches has revealed the complexity of cardiac macrophages, including their heterogeneity and ontological diversity. Resident cardiac macrophages modulate the physiological and pathophysiological processes of the cardiovascular system, with distinct and crucial roles in healthy and injured hearts. Their functions include sensing of pathogens, antigen presentation, digesting cell debris, regulating inflammatory responses, generating distinct cytokines, and secreting some regulatory factors. More recent studies have revealed further functions of cardiac macrophages. This review focuses on macrophages within the cardiovascular system. We discuss evidence that has changed our collective view of cardiac macrophage subgroups, and improved our understanding of the different phenotypes, cell surface markers, heterogeneities, origins, developments, and the dynamic and separate roles of these cardiac macrophage subgroups in the steady state and injured hearts. This review may provide novel insights concerning the pathophysiology of cardiac-resident macrophages in cardiovascular diseases and innovative therapeutic strategies that could include the modulation of the role of macrophages in cardiovascular injuries.
Collapse
|
34
|
Lai B, Wang J, Fagenson A, Sun Y, Saredy J, Lu Y, Nanayakkara G, Yang WY, Yu D, Shao Y, Drummer C, Johnson C, Saaoud F, Zhang R, Yang Q, Xu K, Mastascusa K, Cueto R, Fu H, Wu S, Sun L, Zhu P, Qin X, Yu J, Fan D, Shen YH, Sun J, Rogers T, Choi ET, Wang H, Yang X. Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors. Front Immunol 2019; 10:2612. [PMID: 31824480 PMCID: PMC6880770 DOI: 10.3389/fimmu.2019.02612] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying pathophysiological regulation of tissue macrophage (Mφ) subsets remain poorly understood. From the expression of 207 Mφ genes comprising 31 markers for 10 subsets, 45 transcription factors (TFs), 56 immunometabolism enzymes, 23 trained immunity (innate immune memory) enzymes, and 52 other genes in microarray data, we made the following findings. (1) When 34 inflammation diseases and tumor types were grouped into eight categories, there was differential expression of the 31 Mφ markers and 45 Mφ TFs, highlighted by 12 shared and 20 group-specific disease pathways. (2) Mφ in lung, liver, spleen, and intestine (LLSI-Mφ) express higher M1 Mφ markers than lean adipose tissue Mφ (ATMφ) physiologically. (3) Pro-adipogenic TFs C/EBPα and PPARγ and proinflammatory adipokine leptin upregulate the expression of M1 Mφ markers. (4) Among 10 immune checkpoint receptors (ICRs), LLSI-Mφ and bone marrow (BM) Mφ express higher levels of CD274 (PDL-1) than ATMφ, presumably to counteract the M1 dominant status via its reverse signaling behavior. (5) Among 24 intercellular communication exosome mediators, LLSI- and BM- Mφ prefer to use RAB27A and STX3 than RAB31 and YKT6, suggesting new inflammatory exosome mediators for propagating inflammation. (6) Mφ in peritoneal tissue and LLSI-Mφ upregulate higher levels of immunometabolism enzymes than does ATMφ. (7) Mφ from peritoneum and LLSI-Mφ upregulate more trained immunity enzyme genes than does ATMφ. Our results suggest that multiple new mechanisms including the cell surface, intracellular immunometabolism, trained immunity, and TFs may be responsible for disease group-specific and shared pathways. Our findings have provided novel insights on the pathophysiological regulation of tissue Mφ, the disease group-specific and shared pathways of Mφ, and novel therapeutic targets for cancers and inflammations.
Collapse
Affiliation(s)
- Bin Lai
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiwei Wang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alexander Fagenson
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Division of Abdominal Organ Transplantation, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gayani Nanayakkara
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qian Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Susu Wu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lizhe Sun
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Peiqian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuebin Qin
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Jun Yu
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ying H Shen
- Cardiothoracic Surgery Research Laboratory, Texas Heart Institute, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Abstract
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Collapse
Affiliation(s)
- Tessa J. Barrett
- From the Division of Cardiology, Department of Medicine, New York University
| |
Collapse
|
36
|
Liu CH, Abrams ND, Carrick DM, Chander P, Dwyer J, Hamlet MRJ, Kindzelski AL, PrabhuDas M, Tsai SYA, Vedamony MM, Wang C, Tandon P. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities. FASEB J 2019; 33:13085-13097. [PMID: 31577913 DOI: 10.1096/fj.201902024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inflammation is a normal process in our body; acute inflammation acts to suppress infections and support wound healing. Chronic inflammation likely leads to a wide range of diseases, including cancer. Tools to locate and monitor inflammation are critical for developing effective interventions to arrest inflammation and promote its resolution. To identify current clinical needs, challenges, and opportunities in advancing imaging-based evaluations of inflammatory status in patients, the U.S. National Institutes of Health convened a workshop on imaging inflammation and its resolution in health and disease. Clinical speakers described their needs for image-based capabilities that could help determine the extent of inflammatory conditions in patients to guide treatment planning and undertake necessary interventions. The imaging speakers showcased the state-of-the-art in vivo imaging techniques for detecting inflammation in different disease areas. Many imaging capabilities developed for 1 organ or disease can be adapted for other diseases and organs, whereas some have promise for clinical utility within the next 5-10 yr. Several speakers demonstrated that multimodal imaging measurements integrated with serum-based measures could improve in robustness for clinical utility. All speakers agreed that multiple inflammatory measures should be acquired longitudinally to comprehend the dynamics of unresolved inflammation that leads to disease development. They also agreed that the best strategies for accelerating clinical translation of imaging inflammation capabilities are through integration between new imaging techniques and biofluid-based biomarkers of inflammation as well as already established imaging measurements.-Liu, C. H., Abrams, N. D., Carrick, D. M., Chander, P., Dwyer, J., Hamlet, M. R. J., Kindzelski, A. L., PrabhuDas, M., Tsai, S.-Y. A., Vedamony, M. M., Wang, C., Tandon, P. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities.
Collapse
Affiliation(s)
| | | | | | - Preethi Chander
- National Institute of Dental and Craniofacial Research, (NIH), Bethesda, Maryland, USA
| | - Johanna Dwyer
- Office of Dietary Supplements, (NIH), Bethesda, Maryland, USA
| | | | | | - Mercy PrabhuDas
- National Institute of Allergy and Infectious Diseases, (NIH), Rockville, Maryland, USA
| | - Shang-Yi Anne Tsai
- National Institute on Drug Abuse, National Institutes of Health (NIH), Rockville, Maryland, USA
| | - Merriline M Vedamony
- National Institute of Allergy and Infectious Diseases, (NIH), Rockville, Maryland, USA
| | - Chiayeng Wang
- National Institute of Dental and Craniofacial Research, (NIH), Bethesda, Maryland, USA
| | - Pushpa Tandon
- National Cancer Institute, (NIH), Rockville, Maryland, USA
| |
Collapse
|
37
|
Yang S, Xia YP, Luo XY, Chen SL, Li BW, Ye ZM, Chen SC, Mao L, Jin HJ, Li YN, Hu B. Exosomal CagA derived from Helicobacter pylori-infected gastric epithelial cells induces macrophage foam cell formation and promotes atherosclerosis. J Mol Cell Cardiol 2019; 135:40-51. [PMID: 31352044 DOI: 10.1016/j.yjmcc.2019.07.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Seroepidemiological studies have highlighted a positive relation between CagA-positive Helicobacter pylori (H. pylori), atherosclerosis and related clinic events. However, this link has not been well validated. The present study was designed to explore the role of H. pylori PMSS1 (a CagA-positive strain that can translocate CagA into host cells) and exosomal CagA in the progression of atherosclerosis. METHODS To evaluate whether H. pylori accelerates or even induces atherosclerosis, H. pylori-infected C57/BL6 mice and ApoE-/- mice were maintained under different dietary conditions. To identify the role of H. pylori-infected gastric epithelial cells-derived exosomes (Hp-GES-EVs) and exosomal CagA in atherosclerosis, ApoE-/- mice were given intravenous or intraperitoneal injections of saline, GES-EVs, Hp-GES-EVs, and recombinant CagA protein (rCagA). FINDINGS CagA-positive H. pylori PMSS1 infection does not induce but promotes macrophage-derived foam cell formation and augments atherosclerotic plaque growth and instability in two animal models. Meanwhile, circulating Hp-GES-EVs are taken up in aortic plaque, and CagA is secreted in Hp-GES-EVs. Furthermore, the CagA-containing EVs and rCagA exacerbates macrophage-derived foam cell formation and lesion development in vitro and in vivo, recapitulating the pro-atherogenic effects of CagA-positive H. pylori. Mechanistically, CagA suppresses the transcription of cholesterol efflux transporters by downregulating the expression of transcriptional factors PPARγ and LXRα and thus enhances foam cell formation. INTERPRETATION These results may provide new insights into the role of exosomal CagA in the pathogenesis of CagA-positive H. pylori infection-related atherosclerosis. It is suggested that preventing and eradicating CagA-positive H. pylori infection could reduce the incidence of atherosclerosis and related events.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Ying Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Li Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo-Wei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-Ming Ye
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Sheng-Cai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Zhang X, Liu J, Yang X, He G, Li B, Qin J, Shearing PR, Brett DJL, Hu J, Lu X. CuCo 2S 4 nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation. NANOSCALE 2019; 11:9733-9742. [PMID: 31066405 DOI: 10.1039/c9nr00772e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrasmall CuCo2S4 nanocrystals (NCs) have been demonstrated as an effective agent in the photothermal therapy (PTT) of tumors, but have not been investigated for treatment of arterial inflammation, which is critical in the initiation and development of atherosclerosis (AS), a leading cause of vascular diseases worldwide. In this study, CuCo2S4 NCs were synthesized and used as an efficient PTT nanoplatform for arterial inflammation. In vitro experiments illustrated an effective ablation of inflammatory macrophages by CuCo2S4 incubation combined with the irradiation with an 808 nm near-infrared (NIR) laser. In vivo experiments in an apolipoprotein E knockout (Apo E-/-) mouse model showed that the local injection with CuCo2S4 followed by irradiation with an 808 nm NIR laser notably ablated infiltrating inflammatory macrophages and effectively reduced arterial inflammation and arterial stenosis. This work provides a new strategy for treatment of AS by exploring bimetal sulfides as effective PTT agents.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|