1
|
Lubberding AF, Veedfald S, Achter JS, Nissen SD, Soattin L, Sorrentino A, Vega ET, Linz B, Eggertsen CHE, Mulvey J, Toräng S, Larsen SA, Nissen A, Petersen LG, Bilir SE, Bentzen BH, Rosenkilde MM, Hartmann B, Lilleør TNB, Qazi S, Møller CH, Tfelt-Hansen J, Sattler SM, Jespersen T, Holst JJ, Lundby A. Glucagon-like peptide-1 increases heart rate by a direct action on the sinus node. Cardiovasc Res 2024; 120:1427-1441. [PMID: 38832935 PMCID: PMC11472427 DOI: 10.1093/cvr/cvae120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS We employed a large animal model, the female landrace pig, and used multiple in vivo and ex vivo approaches including pharmacological challenges, electrophysiology, and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta, or combined alpha-beta blockade), ganglionic blockade (hexamethonium), nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened the action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signalling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pacemaking. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in people treated with GLP-1 RAs.
Collapse
Affiliation(s)
- Anniek Frederike Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sarah Dalgas Nissen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Luca Soattin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Benedikt Linz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Caroline Harriet Eggert Eggertsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - John Mulvey
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Signe Toräng
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Agnete Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nissen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lonnie Grove Petersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Secil Erbil Bilir
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Saddiq Qazi
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Jacob Tfelt-Hansen
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Michael Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Department of Cardiology, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Quigley KS, Gianaros PJ, Norman GJ, Jennings JR, Berntson GG, de Geus EJC. Publication guidelines for human heart rate and heart rate variability studies in psychophysiology-Part 1: Physiological underpinnings and foundations of measurement. Psychophysiology 2024; 61:e14604. [PMID: 38873876 PMCID: PMC11539922 DOI: 10.1111/psyp.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/22/2023] [Accepted: 04/04/2024] [Indexed: 06/15/2024]
Abstract
This Committee Report provides methodological, interpretive, and reporting guidance for researchers who use measures of heart rate (HR) and heart rate variability (HRV) in psychophysiological research. We provide brief summaries of best practices in measuring HR and HRV via electrocardiographic and photoplethysmographic signals in laboratory, field (ambulatory), and brain-imaging contexts to address research questions incorporating measures of HR and HRV. The Report emphasizes evidence for the strengths and weaknesses of different recording and derivation methods for measures of HR and HRV. Along with this guidance, the Report reviews what is known about the origin of the heartbeat and its neural control, including factors that produce and influence HRV metrics. The Report concludes with checklists to guide authors in study design and analysis considerations, as well as guidance on the reporting of key methodological details and characteristics of the samples under study. It is expected that rigorous and transparent recording and reporting of HR and HRV measures will strengthen inferences across the many applications of these metrics in psychophysiology. The prior Committee Reports on HR and HRV are several decades old. Since their appearance, technologies for human cardiac and vascular monitoring in laboratory and daily life (i.e., ambulatory) contexts have greatly expanded. This Committee Report was prepared for the Society for Psychophysiological Research to provide updated methodological and interpretive guidance, as well as to summarize best practices for reporting HR and HRV studies in humans.
Collapse
Affiliation(s)
- Karen S. Quigley
- Department of Psychology, Northeastern University, Boston,
Massachusetts, USA
| | - Peter J. Gianaros
- Department of Psychology, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA
| | - Greg J. Norman
- Department of Psychology, The University of Chicago,
Chicago, Illinois, USA
| | - J. Richard Jennings
- Department of Psychiatry & Psychology, University of
Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary G. Berntson
- Department of Psychology & Psychiatry, The Ohio State
University, Columbus, Ohio, USA
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Ricci E, Mazhar F, Marzolla M, Severi S, Bartolucci C. Sinoatrial node heterogeneity and fibroblasts increase atrial driving capability in a two-dimensional human computational model. Front Physiol 2024; 15:1408626. [PMID: 39139481 PMCID: PMC11319284 DOI: 10.3389/fphys.2024.1408626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 08/15/2024] Open
Abstract
Background: Cardiac pacemaking remains an unsolved matter from many perspectives. Extensive experimental and computational studies have been performed to describe the sinoatrial physiology across different scales, from the molecular to clinical levels. Nevertheless, the mechanism by which a heartbeat is generated inside the sinoatrial node and propagated to the working myocardium is not fully understood at present. This work aims to provide quantitative information about this fascinating phenomenon, especially regarding the contributions of cellular heterogeneity and fibroblasts to sinoatrial node automaticity and atrial driving. Methods: We developed a bidimensional computational model of the human right atrial tissue, including the sinoatrial node. State-of-the-art knowledge of the anatomical and physiological aspects was adopted during the design of the baseline tissue model. The novelty of this study is the consideration of cellular heterogeneity and fibroblasts inside the sinoatrial node for investigating the manner by which they tune the robustness of stimulus formation and conduction under different conditions (baseline, ionic current blocks, autonomic modulation, and external high-frequency pacing). Results: The simulations show that both heterogeneity and fibroblasts significantly increase the safety factor for conduction by more than 10% in almost all the conditions tested and shorten the sinus node recovery time after overdrive suppression by up to 60%. In the human model, especially under challenging conditions, the fibroblasts help the heterogeneous myocytes to synchronise their rate (e.g. -82% inσ C L under 25 nM of acetylcholine administration) and capture the atrium (with 25% L-type calcium current block). However, the anatomical and gap junctional coupling aspects remain the most important model parameters that allow effective atrial excitations. Conclusion: Despite the limitations to the proposed model, this work suggests a quantitative explanation to the astonishing overall heterogeneity shown by the sinoatrial node.
Collapse
Affiliation(s)
- Eugenio Ricci
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Fazeelat Mazhar
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Moreno Marzolla
- Department of Computer Science and Engineering, University of Bologna, Cesena, Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| |
Collapse
|
4
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
5
|
Flanders WH, Moïse NS, Otani NF. Use of machine learning and Poincaré density grid in the diagnosis of sinus node dysfunction caused by sinoatrial conduction block in dogs. J Vet Intern Med 2024; 38:1305-1324. [PMID: 38682817 PMCID: PMC11099791 DOI: 10.1111/jvim.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Sinus node dysfunction because of abnormal impulse generation or sinoatrial conduction block causes bradycardia that can be difficult to differentiate from high parasympathetic/low sympathetic modulation (HP/LSM). HYPOTHESIS Beat-to-beat relationships of sinus node dysfunction are quantifiably distinguishable by Poincaré plots, machine learning, and 3-dimensional density grid analysis. Moreover, computer modeling establishes sinoatrial conduction block as a mechanism. ANIMALS Three groups of dogs were studied with a diagnosis of: (1) balanced autonomic modulation (n = 26), (2) HP/LSM (n = 26), and (3) sinus node dysfunction (n = 21). METHODS Heart rate parameters and Poincaré plot data were determined [median (25%-75%)]. Recordings were randomly assigned to training or testing. Supervised machine learning of the training data was evaluated with the testing data. The computer model included impulse rate, exit block probability, and HP/LSM. RESULTS Confusion matrices illustrated the effectiveness in diagnosing by both machine learning and Poincaré density grid. Sinus pauses >2 s differentiated (P < .0001) HP/LSM (2340; 583-3947 s) from sinus node dysfunction (8503; 7078-10 050 s), but average heart rate did not. The shortest linear intervals were longer with sinus node dysfunction (315; 278-323 ms) vs HP/LSM (260; 251-292 ms; P = .008), but the longest linear intervals were shorter with sinus node dysfunction (620; 565-698 ms) vs HP/LSM (843; 799-888 ms; P < .0001). CONCLUSIONS Number and duration of pauses, not heart rate, differentiated sinus node dysfunction from HP/LSM. Machine learning and Poincaré density grid can accurately identify sinus node dysfunction. Computer modeling supports sinoatrial conduction block as a mechanism of sinus node dysfunction.
Collapse
Affiliation(s)
- Wyatt Hutson Flanders
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - N. Sydney Moïse
- Section of Cardiology, Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Niels F. Otani
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNew YorkUSA
| |
Collapse
|
6
|
Mesquita T, Miguel-Dos-Santos R, Cingolani E. Biological Pacemakers: Present and Future. Circ Res 2024; 134:837-841. [PMID: 38547251 DOI: 10.1161/circresaha.123.323180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Thassio Mesquita
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Eugenio Cingolani
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
7
|
Maltsev AV, Stern MD, Lakatta EG, Maltsev VA. A novel conceptual model of heart rate autonomic modulation based on a small-world modular structure of the sinoatrial node. Front Physiol 2023; 14:1276023. [PMID: 38148905 PMCID: PMC10750401 DOI: 10.3389/fphys.2023.1276023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
The present view on heartbeat initiation is that a primary pacemaker cell or a group of cells in the sinoatrial node (SAN) center paces the rest of the SAN and the atria. However, recent high-resolution imaging studies show a more complex paradigm of SAN function that emerges from heterogeneous signaling, mimicking brain cytoarchitecture and function. Here, we developed and tested a new conceptual numerical model of SAN organized similarly to brain networks featuring a modular structure with small-world topology. In our model, a lower rate module leads action potential (AP) firing in the basal state and during parasympathetic stimulation, whereas a higher rate module leads during β-adrenergic stimulation. Such a system reproduces the respective shift of the leading pacemaker site observed experimentally and a wide range of rate modulation and robust function while conserving energy. Since experimental studies found functional modules at different scales, from a few cells up to the highest scale of the superior and inferior SAN, the SAN appears to feature hierarchical modularity, i.e., within each module, there is a set of sub-modules, like in the brain, exhibiting greater robustness, adaptivity, and evolvability of network function. In this perspective, our model offers a new mainframe for interpreting new data on heterogeneous signaling in the SAN at different scales, providing new insights into cardiac pacemaker function and SAN-related cardiac arrhythmias in aging and disease.
Collapse
Affiliation(s)
| | | | | | - Victor A. Maltsev
- Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| |
Collapse
|
8
|
Arbel Ganon L, Eid R, Hamra M, Yaniv Y. The mechano-electric feedback mediates the dual effect of stretch in mouse sinoatrial tissue. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100042. [PMID: 39802174 PMCID: PMC11708250 DOI: 10.1016/j.jmccpl.2023.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 01/16/2025]
Abstract
The sinoatrial node (SAN) is the primary heart pacemaker. The automaticity of SAN pacemaker cells is regulated by an integrated coupled-clock system. The beat interval (BI) of SAN, and its primary initiation location (inferior vs. superior) are determined by mutual entrainment among pacemaker cells and interaction with extrinsic effectors, including increased venous return which stretches the SAN. We aim to understand the mechanisms that link stretch to changes in BI and to heterogeneity of BI in the SAN. Isolated SAN tissues of C57BL/6 mice were gradually stretched to different degrees [(low (5-10 % lengthening), medium (10-20 %), and high (20-40 %))] using motor controlled with a custom-made Arduino software. Recordings were acquired 30 s following each level of step. In 8/15 tissues, stretch led to a positive chronotropic response, while in 7/15 tissues, a negative chronotropic response was observed. In the positive chronotropic response group, BI was shortened in parallel to shortening of the local Ca2+ release (LCR) period, a readout of the degree of clock coupling. In the negative chronotropic response group, in parallel to a prolongation of BI and LCR period, an unsynchronized firing rate was observed among the cells upon application of stretch. Eliminating the mechano-electrical feedback by addition of blebbistatin disabled the stretch-induced chronotropic effect. Reduction of the sarcoplasmic reticulum Ca2+ levels, which mediates the mechano-electrical feedback, by addition of cyclopiazonic acid disabled the dual effect of stretch on SAN function and BI heterogeneity. Thus, the mechano-electric feedback mediates the dual effect of stretch in mouse SAN tissue.
Collapse
Affiliation(s)
- Limor Arbel Ganon
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Rami Eid
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Matan Hamra
- Biomedical Optics Laboratory, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| |
Collapse
|
9
|
Henley T, Goudy J, Easterling M, Donley C, Wirka R, Bressan M. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci Alliance 2023; 6:e202201799. [PMID: 36973005 PMCID: PMC10043993 DOI: 10.26508/lsa.202201799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Collapse
Affiliation(s)
- Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marietta Easterling
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Wirka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Moise N, Weinberg SH. Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node. Biophys J 2023; 122:1613-1632. [PMID: 36945778 PMCID: PMC10183324 DOI: 10.1016/j.bpj.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN activity emerges at an early point in life and maintains a steady rhythm for the lifetime of the organism. The ion channel composition and currents of SAN cells can be influenced by a variety of factors. Therefore, the emergent activity and long-term stability imply some form of dynamical feedback control of SAN activity. We adapt a recent feedback model-previously utilized to describe control of ion conductances in neurons-to a model of SAN cells and tissue. The model describes a minimal regulatory mechanism of ion channel conductances via feedback between intracellular calcium and an intrinsic target calcium level. By coupling a SAN cell to the calcium feedback model, we show that spontaneous electrical activity emerges from quiescence and is maintained at steady state. In a 2D SAN tissue model, spatial variability in intracellular calcium targets lead to significant, self-organized heterogeneous ion channel expression and calcium transients throughout the tissue. Furthermore, multiple pacemaking regions appear, which interact and lead to time-varying cycle length, demonstrating that variability in heart rate is an emergent property of the feedback model. Finally, we demonstrate that the SAN tissue is robust to the silencing of leading cells or ion channel knockouts. Thus, the calcium feedback model can reproduce and explain many fundamental emergent properties of activity in the SAN that have been observed experimentally based on a minimal description of intracellular calcium and ion channel regulatory networks.
Collapse
Affiliation(s)
- Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
11
|
Arbel Ganon L, Davoodi M, Alexandrovich A, Yaniv Y. Synergy between Membrane Currents Prevents Severe Bradycardia in Mouse Sinoatrial Node Tissue. Int J Mol Sci 2023; 24:ijms24065786. [PMID: 36982861 PMCID: PMC10051777 DOI: 10.3390/ijms24065786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Bradycardia is initiated by the sinoatrial node (SAN), which is regulated by a coupled-clock system. Due to the clock coupling, reduction in the 'funny' current (If), which affects SAN automaticity, can be compensated, thus preventing severe bradycardia. We hypothesize that this fail-safe system is an inherent feature of SAN pacemaker cells and is driven by synergy between If and other ion channels. This work aimed to characterize the connection between membrane currents and their underlying mechanisms in SAN cells. SAN tissues were isolated from C57BL mice and Ca2+ signaling was measured in pacemaker cells within them. A computational model of SAN cells was used to understand the interactions between cell components. Beat interval (BI) was prolonged by 54 ± 18% (N = 16) and 30 ± 9% (N = 21) in response to If blockade, by ivabradine, or sodium current (INa) blockade, by tetrodotoxin, respectively. Combined drug application had a synergistic effect, manifested by a BI prolonged by 143 ± 25% (N = 18). A prolongation in the local Ca2+ release period, which reports on the level of crosstalk within the coupled-clock system, was measured and correlated with the prolongation in BI. The computational model predicted that INa increases in response to If blockade and that this connection is mediated by changes in T and L-type Ca2+ channels.
Collapse
Affiliation(s)
- Limor Arbel Ganon
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Moran Davoodi
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Alexandra Alexandrovich
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenergetic Systems, Faculty of Biomedical Engineering, Technion-IIT, Haifa 3200003, Israel
| |
Collapse
|
12
|
Manoj P, Kim JA, Kim S, Li T, Sewani M, Chelu MG, Li N. Sinus node dysfunction: current understanding and future directions. Am J Physiol Heart Circ Physiol 2023; 324:H259-H278. [PMID: 36563014 PMCID: PMC9886352 DOI: 10.1152/ajpheart.00618.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The sinoatrial node (SAN) is the primary pacemaker of the heart. Normal SAN function is crucial in maintaining proper cardiac rhythm and contraction. Sinus node dysfunction (SND) is due to abnormalities within the SAN, which can affect the heartbeat frequency, regularity, and the propagation of electrical pulses through the cardiac conduction system. As a result, SND often increases the risk of cardiac arrhythmias. SND is most commonly seen as a disease of the elderly given the role of degenerative fibrosis as well as other age-dependent changes in its pathogenesis. Despite the prevalence of SND, current treatment is limited to pacemaker implantation, which is associated with substantial medical costs and complications. Emerging evidence has identified various genetic abnormalities that can cause SND, shedding light on the molecular underpinnings of SND. Identification of these molecular mechanisms and pathways implicated in the pathogenesis of SND is hoped to identify novel therapeutic targets for the development of more effective therapies for this disease. In this review article, we examine the anatomy of the SAN and the pathophysiology and epidemiology of SND. We then discuss in detail the most common genetic mutations correlated with SND and provide our perspectives on future research and therapeutic opportunities in this field.
Collapse
Affiliation(s)
- Pavan Manoj
- School of Public Health, Texas A&M University, College Station, Texas
| | - Jitae A Kim
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Stephanie Kim
- Department of BioSciences, Rice University, Houston, Texas
| | - Tingting Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Maham Sewani
- Department of BioSciences, Rice University, Houston, Texas
| | - Mihail G Chelu
- Division of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
13
|
Januszewska K. Postoperative sinus node dysfunctions-maybe not always the surgeon should to be blamed…. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2023; 36:6991171. [PMID: 36802261 PMCID: PMC9931066 DOI: 10.1093/icvts/ivad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Katarzyna Januszewska
- Corresponding author. Polish Mother’s Memorial Hospital - Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland. Tel: +49-251-83-46104; fax: +0048 42 271 1452; e-mail: (K. Januszewska)
| |
Collapse
|
14
|
Ricci E, Bartolucci C, Severi S. The virtual sinoatrial node: What did computational models tell us about cardiac pacemaking? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:55-79. [PMID: 36374743 DOI: 10.1016/j.pbiomolbio.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Since its discovery, the sinoatrial node (SAN) has represented a fascinating and complex matter of research. Despite over a century of discoveries, a full comprehension of pacemaking has still to be achieved. Experiments often produced conflicting evidence that was used either in support or against alternative theories, originating intense debates. In this context, mathematical descriptions of the phenomena underlying the heartbeat have grown in importance in the last decades since they helped in gaining insights where experimental evaluation could not reach. This review presents the most updated SAN computational models and discusses their contribution to our understanding of cardiac pacemaking. Electrophysiological, structural and pathological aspects - as well as the autonomic control over the SAN - are taken into consideration to reach a holistic view of SAN activity.
Collapse
Affiliation(s)
- Eugenio Ricci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena (FC), Italy.
| |
Collapse
|
15
|
Iwasa K, Okada M, Tanaka K, Hirao Y, Harada S, Miyazaki N, Tanaka N. Notable Pacemaker Shift in the Sinoatrial Node After Administration of Isoproterenol. Can J Cardiol 2023; 39:18-19. [PMID: 36243256 DOI: 10.1016/j.cjca.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Kohei Iwasa
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Masato Okada
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan.
| | - Koji Tanaka
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Yuko Hirao
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Shinichi Harada
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Naoko Miyazaki
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan
| | - Nobuaki Tanaka
- Cardiovascular Center, Sakurabashi Watanabe Hospital, Osaka, Japan
| |
Collapse
|
16
|
Ramdat Misier NL, Taverne YJHJ, van Schie MS, Kharbanda RK, van Leeuwen WJ, Kammeraad JAE, Bogers AJJC, de Groot NMS. Unravelling early sinus node dysfunction after pediatric cardiac surgery: a pre-existing arrhythmogenic substrate. Interact Cardiovasc Thorac Surg 2022; 36:ivac262. [PMID: 36321962 PMCID: PMC10021071 DOI: 10.1093/icvts/ivac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/15/2022] [Accepted: 10/30/2022] [Indexed: 03/19/2023] Open
Abstract
Early post-operative sinus node dysfunction (SND) is common in paediatric patients undergoing surgical correction of congenital heart defects (CHD). At present, the pathophysiology of these arrhythmias is incompletely understood. In this case series, we present three paediatric patients in whom we performed intraoperative epicardial mapping and who developed early post-operative SND. All patients had either an inferior or multiple sinoatrial node (SAN) exit sites, in addition to extensive conduction disorders at superior and inferior right atrium. Our findings contribute to the hypothesis that pre-existing alterations in SAN exit sites in combination with atrial conduction disorders may predispose paediatric patients with CHD for early post-operative SND. Such insights in the development of arrhythmias are crucial as it may be the first step in identifying high-risk patients.
Collapse
Affiliation(s)
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Rohit K Kharbanda
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wouter J van Leeuwen
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | - Janneke A E Kammeraad
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
17
|
Campana C, Ricci E, Bartolucci C, Severi S, Sobie EA. Coupling and heterogeneity modulate pacemaking capability in healthy and diseased two-dimensional sinoatrial node tissue models. PLoS Comput Biol 2022; 18:e1010098. [PMID: 36409762 DOI: 10.1371/journal.pcbi.1010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/14/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Both experimental and modeling studies have attempted to determine mechanisms by which a small anatomical region, such as the sinoatrial node (SAN), can robustly drive electrical activity in the human heart. However, despite many advances from prior research, important questions remain unanswered. This study aimed to investigate, through mathematical modeling, the roles of intercellular coupling and cellular heterogeneity in synchronization and pacemaking within the healthy and diseased SAN. In a multicellular computational model of a monolayer of either human or rabbit SAN cells, simulations revealed that heterogenous cells synchronize their discharge frequency into a unique beating rhythm across a wide range of heterogeneity and intercellular coupling values. However, an unanticipated behavior appeared under pathological conditions where perturbation of ionic currents led to reduced excitability. Under these conditions, an intermediate range of intercellular coupling (900-4000 MΩ) was beneficial to SAN automaticity, enabling a very small portion of tissue (3.4%) to drive propagation, with propagation failure occurring at both lower and higher resistances. This protective effect of intercellular coupling and heterogeneity, seen in both human and rabbit tissues, highlights the remarkable resilience of the SAN. Overall, the model presented in this work allowed insight into how spontaneous beating of the SAN tissue may be preserved in the face of perturbations that can cause individual cells to lose automaticity. The simulations suggest that certain degrees of gap junctional coupling protect the SAN from ionic perturbations that can be caused by drugs or mutations.
Collapse
Affiliation(s)
- Chiara Campana
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Eugenio Ricci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
18
|
Wiesinger A, Li J, Fokkert L, Bakker P, Verkerk AO, Christoffels VM, Boink GJJ, Devalla HD. A single cell transcriptional roadmap of human pacemaker cell differentiation. eLife 2022; 11:76781. [PMID: 36217819 PMCID: PMC9553210 DOI: 10.7554/elife.76781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Each heartbeat is triggered by the sinoatrial node (SAN), the primary pacemaker of the heart. Studies in animal models have revealed that pacemaker cells share a common progenitor with the (pro)epicardium, and that the pacemaker cardiomyocytes further diversify into ‘transitional’, ‘tail’, and ‘head’ subtypes. However, the underlying molecular mechanisms, especially of human pacemaker cell development, are poorly understood. Here, we performed single cell RNA sequencing (scRNA-seq) and trajectory inference on human induced pluripotent stem cells (hiPSCs) differentiating to SAN-like cardiomyocytes (SANCMs) to construct a roadmap of transcriptional changes and lineage decisions. In differentiated SANCM, we identified distinct clusters that closely resemble different subpopulations of the in vivo SAN. Moreover, the presence of a side population of proepicardial cells suggested their shared ontogeny with SANCM, as also reported in vivo. Our results demonstrate that the divergence of SANCM and proepicardial lineages is determined by WNT signaling. Furthermore, we uncovered roles for TGFβ and WNT signaling in the branching of transitional and head SANCM subtypes, respectively. These findings provide new insights into the molecular processes involved in human pacemaker cell differentiation, opening new avenues for complex disease modeling in vitro and inform approaches for cell therapy-based regeneration of the SAN.
Collapse
Affiliation(s)
- Alexandra Wiesinger
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Jiuru Li
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Priscilla Bakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Guarina L, Moghbel AN, Pourhosseinzadeh MS, Cudmore RH, Sato D, Clancy CE, Santana LF. Biological noise is a key determinant of the reproducibility and adaptability of cardiac pacemaking and EC coupling. J Gen Physiol 2022; 154:e202012613. [PMID: 35482009 PMCID: PMC9059386 DOI: 10.1085/jgp.202012613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Each heartbeat begins with the generation of an action potential in pacemaking cells in the sinoatrial node. This signal triggers contraction of cardiac muscle through a process termed excitation-contraction (EC) coupling. EC coupling is initiated in dyadic structures of cardiac myocytes, where ryanodine receptors in the junctional sarcoplasmic reticulum come into close apposition with clusters of CaV1.2 channels in invaginations of the sarcolemma. Cooperative activation of CaV1.2 channels within these clusters causes a local increase in intracellular Ca2+ that activates the juxtaposed ryanodine receptors. A salient feature of healthy cardiac function is the reliable and precise beat-to-beat pacemaking and amplitude of Ca2+ transients during EC coupling. In this review, we discuss recent discoveries suggesting that the exquisite reproducibility of this system emerges, paradoxically, from high variability at subcellular, cellular, and network levels. This variability is attributable to stochastic fluctuations in ion channel trafficking, clustering, and gating, as well as dyadic structure, which increase intracellular Ca2+ variance during EC coupling. Although the effects of these large, local fluctuations in function and organization are sometimes negligible at the macroscopic level owing to spatial-temporal summation within and across cells in the tissue, recent work suggests that the "noisiness" of these intracellular Ca2+ events may either enhance or counterintuitively reduce variability in a context-dependent manner. Indeed, these noisy events may represent distinct regulatory features in the tuning of cardiac contractility. Collectively, these observations support the importance of incorporating experimentally determined values of Ca2+ variance in all EC coupling models. The high reproducibility of cardiac contraction is a paradoxical outcome of high Ca2+ signaling variability at subcellular, cellular, and network levels caused by stochastic fluctuations in multiple processes in time and space. This underlying stochasticity, which counterintuitively manifests as reliable, consistent Ca2+ transients during EC coupling, also allows for rapid changes in cardiac rhythmicity and contractility in health and disease.
Collapse
Affiliation(s)
- Laura Guarina
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Ariana Neelufar Moghbel
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | | | - Robert H. Cudmore
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis School of Medicine, Davis, CA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| | - Luis Fernando Santana
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, CA
| |
Collapse
|
20
|
Maltsev AV, Stern MD, Maltsev VA. Disorder in Ca2+ release unit locations confers robustness but cuts flexibility of heart pacemaking. J Gen Physiol 2022; 154:e202113061. [PMID: 35943725 PMCID: PMC9366202 DOI: 10.1085/jgp.202113061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Excitation-contraction coupling kinetics is dictated by the action potential rate of sinoatrial-nodal cells. These cells generate local Ca releases (LCRs) that activate Na/Ca exchanger current, which accelerates diastolic depolarization and determines the pace. LCRs are generated by clusters of ryanodine receptors, Ca release units (CRUs), residing in the sarcoplasmic reticulum. While CRU distribution exhibits substantial heterogeneity, its functional importance remains unknown. Using numerical modeling, here we show that with a square lattice distribution of CRUs, Ca-induced-Ca-release propagation during diastolic depolarization is insufficient for pacemaking within a broad range of realistic ICaL densities. Allowing each CRU to deviate randomly from its lattice position allows sparks to propagate, as observed experimentally. As disorder increases, the CRU distribution exhibits larger empty spaces and simultaneously CRU clusters, as in Poisson clumping. Propagating within the clusters, Ca release becomes synchronized, increasing action potential rate and reviving pacemaker function of dormant/nonfiring cells. However, cells with fully disordered CRU positions could not reach low firing rates and their β-adrenergic-receptor stimulation effect was substantially decreased. Inclusion of Cav1.3, a low-voltage activation L-type Ca channel isoform into ICaL, strongly increases recruitment of CRUs to fire during diastolic depolarization, increasing robustness of pacemaking and complementing effects of CRU distribution. Thus, order/disorder in CRU locations along with Cav1.3 expression regulates pacemaker function via synchronization of CRU firing. Excessive CRU disorder and/or overexpression of Cav1.3 boosts pacemaker function in the basal state, but limits the rate range, which may contribute to heart rate range decline with age and disease.
Collapse
Affiliation(s)
- Anna V. Maltsev
- School of Mathematics, Queen Mary University of London, London, UK
| | - Michael D. Stern
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
21
|
Ren H, Pu Z, Sun T, Chen T, Liu L, Liu Z, O’Shea C, Pavlovic D, Tan X, Lei M. High-Resolution 3D Heart Models of Cardiomyocyte Subpopulations in Cleared Murine Heart. Front Physiol 2022; 13:779514. [PMID: 35665220 PMCID: PMC9158482 DOI: 10.3389/fphys.2022.779514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Biological tissues are naturally three-dimensional (3D) opaque structures, which poses a major challenge for the deep imaging of spatial distribution and localization of specific cell types in organs in biomedical research. Here we present a 3D heart imaging reconstruction approach by combining an improved heart tissue-clearing technique with high-resolution light-sheet fluorescence microscopy (LSFM). We have conducted a three-dimensional and multi-scale volumetric imaging of the ultra-thin planes of murine hearts for up to 2,000 images per heart in x-, y-, and z three directions. High-resolution 3D volume heart models were constructed in real-time by the Zeiss Zen program. By using such an approach, we investigated detailed three-dimensional spatial distributions of two specific cardiomyocyte populations including HCN4 expressing pacemaker cells and Pnmt+ cell-derived cardiomyocytes by using reporter mouse lines Hcn4DreER/tdTomato and PnmtCre/ChR2-tdTomato. HCN4 is distributed throughout right atrial nodal regions (i.e., sinoatrial and atrioventricular nodes) and the superior-inferior vena cava axis, while Pnmt+ cell-derived cardiomyocytes show distinct ventral, left heart, and dorsal side distribution pattern. Our further electrophysiological analysis indicates that Pnmt + cell-derived cardiomyocytes rich left ventricular (LV) base is more susceptible to ventricular arrhythmia under adrenergic stress than left ventricular apex or right ventricle regions. Thus, our 3D heart imaging reconstruction approach provides a new solution for studying the geometrical, topological, and physiological characteristics of specific cell types in organs.
Collapse
Affiliation(s)
- Huiying Ren
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhaoli Pu
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianyi Sun
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Tangting Chen
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
| | - Leiying Liu
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
| | - Zhu Liu
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaoqiu Tan
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ming Lei
- Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Luzhou Medical College, Luzhou, China
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Cumberland MJ, Riebel LL, Roy A, O’Shea C, Holmes AP, Denning C, Kirchhof P, Rodriguez B, Gehmlich K. Basic Research Approaches to Evaluate Cardiac Arrhythmia in Heart Failure and Beyond. Front Physiol 2022; 13:806366. [PMID: 35197863 PMCID: PMC8859441 DOI: 10.3389/fphys.2022.806366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with heart failure often develop cardiac arrhythmias. The mechanisms and interrelations linking heart failure and arrhythmias are not fully understood. Historically, research into arrhythmias has been performed on affected individuals or in vivo (animal) models. The latter however is constrained by interspecies variation, demands to reduce animal experiments and cost. Recent developments in in vitro induced pluripotent stem cell technology and in silico modelling have expanded the number of models available for the evaluation of heart failure and arrhythmia. An agnostic approach, combining the modalities discussed here, has the potential to improve our understanding for appraising the pathology and interactions between heart failure and arrhythmia and can provide robust and validated outcomes in a variety of research settings. This review discusses the state of the art models, methodologies and techniques used in the evaluation of heart failure and arrhythmia and will highlight the benefits of using them in combination. Special consideration is paid to assessing the pivotal role calcium handling has in the development of heart failure and arrhythmia.
Collapse
Affiliation(s)
- Max J. Cumberland
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leto L. Riebel
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ashwin Roy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris Denning
- Stem Cell Biology Unit, Biodiscovery Institute, British Heart Foundation Centre for Regenerative Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and British Heart Foundation Centre of Research Excellence Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Reddy GR, Ren L, Thai PN, Caldwell JL, Zaccolo M, Bossuyt J, Ripplinger CM, Xiang YK, Nieves-Cintrón M, Chiamvimonvat N, Navedo MF. Deciphering cellular signals in adult mouse sinoatrial node cells. iScience 2022; 25:103693. [PMID: 35036877 PMCID: PMC8749457 DOI: 10.1016/j.isci.2021.103693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/27/2023] Open
Abstract
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Gopireddy R. Reddy
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
| | - Jessica L. Caldwell
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Crystal M. Ripplinger
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Yang K. Xiang
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California Davis, 451 Health Science Drive, GBSF 6315, Davis, CA 95616, USA
- VA Northern California Healthcare System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue MED: PHARM Tupper 242, Davis, CA 95616, USA
| |
Collapse
|
24
|
Pambrun T, Derval N, Duchateau J, Ramirez FD, Chauvel R, Tixier R, Marchand H, Bouyer B, Welte N, André C, Nakashima T, Nakatani Y, Kamakura T, Takagi T, Krisai P, Ascione C, Balbo C, Cheniti G, Vlachos K, Bourier F, Takigawa M, Kitamura T, Frontera A, Meo M, Denis A, Sacher F, Hocini M, Jaïs P, Haïssaguerre M. Sinus node exit, crista terminalis conduction, interatrial connection and wavefront collision: key features of human atrial activation in sinus rhythm. Heart Rhythm 2022; 19:701-709. [PMID: 35033665 DOI: 10.1016/j.hrthm.2022.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND An understanding of normal atrial activation during sinus rhythm can inform catheter ablation strategies to avoid deleterious impacts of ablation lesions on atrial conduction and mechanics. OBJECTIVE To describe how the sinus node impulse originates, propagates, and collides in right and left atria with normal voltage. METHODS Fifty consecutive patients undergoing catheter ablation of atrial fibrillation with endocardial atrial voltage > 0.5 mV during high-density 3D-mapping were studied. RESULTS Sinus node exits varied between patients along a lateral oblique arc extending from the anterior aspect of the superior vena cava (SVC) to the mid-posterior wall of the right atrium (RA). Conduction slowing or block at one of the smooth components that faces the crista terminalis was observed in 54% of cases, including complete block at the SVC musculature and the systemic venous sinus in 6% of cases. Depending on these two key features of RA activation, interatrial conduction was mediated by the Bachmann bundle (64%) and posterior bundles (54%), with an overlap of the resulting LA breakthrough location. Wavefront collision was consistently observed at three sites: the septal aspect of the cavotricuspid isthmus; and the lower aspects of the dome and of the mitral isthmus. CONCLUSION During sinus rhythm, atrial activation occurs via distinct sequences mediated by a complex interaction of anatomic factors.
Collapse
Affiliation(s)
- Thomas Pambrun
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France.
| | - Nicolas Derval
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Josselin Duchateau
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - F Daniel Ramirez
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Rémi Chauvel
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Romain Tixier
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Hugo Marchand
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Benjamin Bouyer
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Nicolas Welte
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Clémentine André
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Takashi Nakashima
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Yosuke Nakatani
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Tsukasa Kamakura
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Takamitsu Takagi
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Philipp Krisai
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Ciro Ascione
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Conrado Balbo
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Ghassen Cheniti
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Konstantinos Vlachos
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Félix Bourier
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Masateru Takigawa
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Takeshi Kitamura
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Antonio Frontera
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Marianna Meo
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Arnaud Denis
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Frédéric Sacher
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Mélèze Hocini
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Pierre Jaïs
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| | - Michel Haïssaguerre
- Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux. L'Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, France
| |
Collapse
|
25
|
Kay MW, Jain V, Panjrath G, Mendelowitz D. Targeting Parasympathetic Activity to Improve Autonomic Tone and Clinical Outcomes. Physiology (Bethesda) 2022; 37:39-45. [PMID: 34486396 PMCID: PMC8742722 DOI: 10.1152/physiol.00023.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this review we will briefly summarize the evidence that autonomic imbalance, more specifically reduced parasympathetic activity to the heart, generates and/or maintains many cardiorespiratory diseases and will discuss mechanisms and sites, from myocytes to the brain, that are potential translational targets for restoring parasympathetic activity and improving cardiorespiratory health.
Collapse
Affiliation(s)
- Matthew W. Kay
- 1Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Vivek Jain
- 2Division of Pulmonary Medicine, Department of Medicine, George Washington University, Washington, District of Columbia
| | - Gurusher Panjrath
- 3Division of Cardiology, Department of Medicine, George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- 4Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
26
|
Chen Y, Deng C, Zhang J. Epicardial ablation of a Focal atrial Tachycardia Adjacent to the Sino-atrial Node: A Case Report. HeartRhythm Case Rep 2022; 8:247-249. [PMID: 35497473 PMCID: PMC9039112 DOI: 10.1016/j.hrcr.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Chenggang Deng
- Address reprint requests and correspondence: Dr Chenggang Deng, Department of Cardiology, Wuhan Asia Heart Hospital, 753 Jinghan Rd, Wuhan, Hubei, China, 430000.
| | | |
Collapse
|
27
|
Sánchez-Quintana D, Anderson RH, Tretter JT, Cabrera JA, Sternick EB, Farré J. Anatomy of the conduction tissues 100 years on: what have we learned? Heart 2021; 108:1430-1437. [PMID: 34969873 DOI: 10.1136/heartjnl-2021-320304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022] Open
Abstract
Knowledge of the anatomy of the 'conduction tissues' of the heart is a 20th century phenomenon. Although controversies still continue on the topic, most could have been avoided had greater attention been paid to the original descriptions. All cardiomyocytes, of course, have the capacity to conduct the cardiac impulse. The tissues specifically described as 'conducting' first generate the cardiac impulse, and then deliver it in such a fashion that the ventricles contract in orderly fashion. The tissues cannot readily be distinguished by gross inspection. Robust definitions for their recognition had been provided by the end of the first decade of the 20th century. These definitions retain their currency. The sinus node lies as a cigar-shaped structure subepicardially within the terminal groove. There is evidence that it is associated with a paranodal area that may have functional significance. Suggestions of dual nodes, however, are without histological confirmation. The atrioventricular node is located within the triangle of Koch, with significant inferior extensions occupying the atrial vestibules and with septal connections. The conduction axis penetrates the insulating plane of the atrioventricular junctions to continue as the ventricular pathways. Remnants of a ring of cardiomyocytes observed during development are also to be found within the atrial vestibules, particularly a prominent retroaortic remnant, although that their role has still to be determined. Application of the initial criteria for nodes and tracts shows that there are no special 'conducting tissues' in the pulmonary venous sleeves that might underscore the abnormal rhythm of atrial fibrillation.
Collapse
Affiliation(s)
| | - Robert H Anderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - José Angel Cabrera
- Department of Cardiology, Hospital Universitario Quirón-Madrid, European University of Madrid, Madrid, Spain
| | | | - Jerónimo Farré
- Madrid Autonomous University, Fundación Jiménez Díaz Hospital, Madrid, Spain
| |
Collapse
|
28
|
Smithers RL, Kao HKJ, Zeigler S, Yechikov S, Nolta JA, Chan JW, Chiamvimonvat N, Lieu DK. Making Heads or Tails of the Large Mammalian Sinoatrial Node Micro-Organization. Circ Arrhythm Electrophysiol 2021; 14:e010465. [PMID: 34794338 DOI: 10.1161/circep.121.010465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Regan L Smithers
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis. (R.L.S., H.K.J.K., N.C., D.K.L.).,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems (R.L.S., H.K.J.K., S.Z., J.A.N., D.K.L.)
| | - Hillary K J Kao
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis. (R.L.S., H.K.J.K., N.C., D.K.L.).,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems (R.L.S., H.K.J.K., S.Z., J.A.N., D.K.L.)
| | - Sarah Zeigler
- Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems (R.L.S., H.K.J.K., S.Z., J.A.N., D.K.L.).,Bridges to Stem Cell Research Program, California State University (S.Z.)
| | - Sergey Yechikov
- Department of Biomedical Engineering, University of California, Davis.(S.Y.)
| | - Jan A Nolta
- Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems (R.L.S., H.K.J.K., S.Z., J.A.N., D.K.L.)
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis. (J.W.C.)
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis. (R.L.S., H.K.J.K., N.C., D.K.L.).,Department of Veterans Affairs, Northern California Health Care System, Mather, CA(N.C.)
| | - Deborah K Lieu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis. (R.L.S., H.K.J.K., N.C., D.K.L.).,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems (R.L.S., H.K.J.K., S.Z., J.A.N., D.K.L.)
| |
Collapse
|
29
|
What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm. Biophys Rev 2021; 13:707-716. [PMID: 34777615 DOI: 10.1007/s12551-021-00831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The rhythmic and spontaneously generated electrical excitation that triggers the heartbeat originates in the sinoatrial node (SAN). SAN automaticity has been thoroughly investigated, which has uncovered fundamental mechanisms involved in cardiac pacemaking that are generally categorised into two interacting and overlapping systems: the 'membrane' and 'Ca2+ clock'. The principal focus of research has been on these two systems of oscillators, which have been studied primarily in single cells and isolated tissue, experimental preparations that do not consider mechanical factors present in the whole heart. SAN mechano-sensitivity has long been known to be a contributor to SAN pacemaking-both as a driver and regulator of automaticity-but its essential nature has been underappreciated. In this review, following a description of the traditional 'clocks' of SAN automaticity, we describe mechanisms of SAN mechano-sensitivity and its vital role for SAN function, making the argument that the 'mechanics oscillator' is, in fact, the 'grandfather clock' of cardiac rhythm.
Collapse
|
30
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
31
|
Earley S, Lederer WJ. Metabolic Control of Cardiac Pacemaking. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab043. [PMID: 35330951 PMCID: PMC8788821 DOI: 10.1093/function/zqab043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/07/2023]
Affiliation(s)
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Kim MS, Monfredi O, Maltseva LA, Lakatta EG, Maltsev VA. β-Adrenergic Stimulation Synchronizes a Broad Spectrum of Action Potential Firing Rates of Cardiac Pacemaker Cells toward a Higher Population Average. Cells 2021; 10:2124. [PMID: 34440893 PMCID: PMC8391682 DOI: 10.3390/cells10082124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/28/2023] Open
Abstract
The heartbeat is initiated by pacemaker cells residing in the sinoatrial node (SAN). SAN cells generate spontaneous action potentials (APs), i.e., normal automaticity. The sympathetic nervous system increases the heart rate commensurate with the cardiac output demand via stimulation of SAN β-adrenergic receptors (βAR). While SAN cells reportedly represent a highly heterogeneous cell population, the current dogma is that, in response to βAR stimulation, all cells increase their spontaneous AP firing rate in a similar fashion. The aim of the present study was to investigate the cell-to-cell variability in the responses of a large population of SAN cells. We measured the βAR responses among 166 single SAN cells isolated from 33 guinea pig hearts. In contrast to the current dogma, the SAN cell responses to βAR stimulation substantially varied. In each cell, changes in the AP cycle length were highly correlated (R2 = 0.97) with the AP cycle length before βAR stimulation. While, as expected, on average, the cells increased their pacemaker rate, greater responses were observed in cells with slower basal rates, and vice versa: cells with higher basal rates showed smaller responses, no responses, or even decreased their rate. Thus, βAR stimulation synchronized the operation of the SAN cell population toward a higher average rate, rather than uniformly shifting the rate in each cell, creating a new paradigm of βAR-driven fight-or-flight responses among individual pacemaker cells.
Collapse
Affiliation(s)
| | | | | | | | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA; (M.S.K.); (O.M.); (L.A.M.); (E.G.L.)
| |
Collapse
|
33
|
Lakkireddy D, Garg J, DeAsmundis C, LaMeier M, Romeya A, Vanmeetren J, Park P, Tummala R, Koerber S, Vasamreddy C, Shah A, Shivamurthy P, Frazier K, Awasthi Y, Chierchia GB, Atkins D, Bommana S, Di Biase L, Al-Ahmad A, Natale A, Gopinathannair R. Sinus Node Sparing Hybrid Thoracoscopic Ablation Outcomes in Patients with Inappropriate Sinus Tachycardia (SUSRUTA-IST) Registry. Heart Rhythm 2021; 19:30-38. [PMID: 34339847 DOI: 10.1016/j.hrthm.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Medical treatment of inappropriate sinus tachycardia (IST) remains suboptimal. Radiofrequency sinus node (RF-SN) ablation has poor success and higher complication rates. OBJECTIVE We aimed to compare clinical outcomes of the novel SN sparing hybrid ablation technique with those of RF-SN modification for IST management. METHODS This is a multicenter prospective registry comparing the SN sparing hybrid ablation strategy with RF-SN modification. The hybrid procedure was performed using an RF bipolar clamp, isolating superior vena cava/inferior vena cava with the creation of a lateral line across the crista terminalis while sparing the SN region (identified by endocardial 3-dimensional mapping). RF-SN modification was performed by endocardial and/or epicardial mapping and ablation at the site of earliest atrial activation. RESULTS Of the 100 patients (hybrid ablation group, n = 50; RF-SN group, n = 50), 82% were women, and the mean age was 22.8 years. Normal sinus rhythm and rate were restored in all patients in the hybrid group (vs 84% in the RF-SN group; P = .006). Hybrid ablation was associated with significantly better improvement in mean daily heart rate and peak 6-minute walk heart rate compared with RF-SN ablation. The RF-SN group had a significantly higher rate of redo procedures (100% vs 8%; P < .001), phrenic nerve injury (14% vs 0%; P = .012), lower acute pericarditis (48% vs 92%; P < .0001), permanent pacemaker implantation (50% vs 4%; P < .0001) than did the hybrid ablation group. CONCLUSION The novel sinus node sparing hybrid ablation procedure appears to be more efficacious and safer in patients with symptomatic drug-resistant IST with long-term durability than RF-SN ablation.
Collapse
Affiliation(s)
| | - Jalaj Garg
- Division of Cardiology, Cardiac Arrhythmia Service, Loma Linda University Health, Loma Linda, California
| | - Carlo DeAsmundis
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark LaMeier
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmed Romeya
- Kansas City Heart Rhythm Institute, Overland Park, Kansas
| | | | - Peter Park
- Kansas City Heart Rhythm Institute, Overland Park, Kansas
| | | | - Scott Koerber
- Kansas City Heart Rhythm Institute, Overland Park, Kansas
| | | | - Alap Shah
- Kansas City Heart Rhythm Institute, Overland Park, Kansas
| | | | | | | | - Gian Battista Chierchia
- Heart Rhythm Management Center, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel - Vrije Universiteit Brussel, Brussels, Belgium
| | - Donita Atkins
- Kansas City Heart Rhythm Institute, Overland Park, Kansas
| | - Sudha Bommana
- Kansas City Heart Rhythm Institute, Overland Park, Kansas
| | - Luigi Di Biase
- Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Amin Al-Ahmad
- Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, Texas
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, Texas
| | | |
Collapse
|
34
|
Mandla R, Jung C, Vedantham V. Transcriptional and Epigenetic Landscape of Cardiac Pacemaker Cells: Insights Into Cellular Specialization in the Sinoatrial Node. Front Physiol 2021; 12:712666. [PMID: 34335313 PMCID: PMC8322687 DOI: 10.3389/fphys.2021.712666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiac pacemaker cells differentiate and functionally specialize early in embryonic development through activation of critical gene regulatory networks. In general, cellular specification and differentiation require that combinations of cell type-specific transcriptional regulators activate expression of key effector genes by binding to DNA regulatory elements including enhancers and promoters. However, because genomic DNA is tightly packaged by histones that must be covalently modified in order to render DNA regulatory elements and promoters accessible for transcription, the process of development and differentiation is intimately connected to the epigenetic regulation of chromatin accessibility. Although the difficulty of obtaining sufficient quantities of pure populations of pacemaker cells has limited progress in this field, the advent of low-input genomic technologies has the potential to catalyze a rapid growth of knowledge in this important area. The goal of this review is to outline the key transcriptional networks that control pacemaker cell development, with particular attention to our emerging understanding of how chromatin accessibility is modified and regulated during pacemaker cell differentiation. In addition, we will discuss the relevance of these findings to adult sinus node function, sinus node diseases, and origins of genetic variation in heart rhythm. Lastly, we will outline the current challenges facing this field and promising directions for future investigation.
Collapse
Affiliation(s)
- Ravi Mandla
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Catherine Jung
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Vasanth Vedantham
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
35
|
Regulation of sinus node pacemaking and atrioventricular node conduction by HCN channels in health and disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:61-85. [PMID: 34197836 DOI: 10.1016/j.pbiomolbio.2021.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The funny current, If, was first recorded in the heart 40 or more years ago by Dario DiFrancesco and others. Since then, we have learnt that If plays an important role in pacemaking in the sinus node, the innate pacemaker of the heart, and more recently evidence has accumulated to show that If may play an important role in action potential conduction through the atrioventricular (AV) node. Evidence has also accumulated to show that regulation of the transcription and translation of the underlying Hcn genes plays an important role in the regulation of sinus node pacemaking and AV node conduction under normal physiological conditions - in athletes, during the circadian rhythm, in pregnancy, and during postnatal development - as well as pathological states - ageing, heart failure, pulmonary hypertension, diabetes and atrial fibrillation. There may be yet more pathological conditions involving changes in the expression of the Hcn genes. Here, we review the role of If and the underlying HCN channels in physiological and pathological changes of the sinus and AV nodes and we begin to explore the signalling pathways (microRNAs, transcription factors, GIRK4, the autonomic nervous system and inflammation) involved in this regulation. This review is dedicated to Dario DiFrancesco on his retirement.
Collapse
|
36
|
Grainger N, Guarina L, Cudmore RH, Santana LF. The Organization of the Sinoatrial Node Microvasculature Varies Regionally to Match Local Myocyte Excitability. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab031. [PMID: 34250490 PMCID: PMC8259512 DOI: 10.1093/function/zqab031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023]
Abstract
The cardiac cycle starts when an action potential is produced by pacemaking cells in the sinoatrial node. This cycle is repeated approximately 100 000 times in humans and 1 million times in mice per day, imposing a monumental metabolic demand on the heart, requiring efficient blood supply via the coronary vasculature to maintain cardiac function. Although the ventricular coronary circulation has been extensively studied, the relationship between vascularization and cellular pacemaking modalities in the sinoatrial node is poorly understood. Here, we tested the hypothesis that the organization of the sinoatrial node microvasculature varies regionally, reflecting local myocyte firing properties. We show that vessel densities are higher in the superior versus inferior sinoatrial node. Accordingly, sinoatrial node myocytes are closer to vessels in the superior versus inferior regions. Superior and inferior sinoatrial node myocytes produce stochastic subthreshold voltage fluctuations and action potentials. However, the intrinsic action potential firing rate of sinoatrial node myocytes is higher in the superior versus inferior node. Our data support a model in which the microvascular densities vary regionally within the sinoatrial node to match the electrical and Ca2+ dynamics of nearby myocytes, effectively determining the dominant pacemaking site within the node. In this model, the high vascular density in the superior sinoatrial node places myocytes with metabolically demanding, high-frequency action potentials near vessels. The lower vascularization and electrical activity of inferior sinoatrial node myocytes could limit these cells to function to support sinoatrial node periodicity with sporadic voltage fluctuations via a stochastic resonance mechanism.
Collapse
|
37
|
Assembly of the Cardiac Pacemaking Complex: Electrogenic Principles of Sinoatrial Node Morphogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8040040. [PMID: 33917972 PMCID: PMC8068396 DOI: 10.3390/jcdd8040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.
Collapse
|
38
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|