1
|
Knyziak-Mędrzycka I, Cukrowska B, Nazar W, Bierła JB, Janeczek K, Krawiec P, Gromek W, Wysokiński M, Konopka E, Trojanowska I, Smolińska S, Majsiak E. Sensitization to Food and Aero-Allergens in Children with Coeliac Disease Assessed with the Use of a Multiplex Molecular Diagnostic Technique. J Clin Med 2024; 13:2992. [PMID: 38792533 PMCID: PMC11122608 DOI: 10.3390/jcm13102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background. Coeliac disease (CD) often co-occurs with autoimmune conditions or genetic syndromes, but there are few studies on the co-existence of CD and immunoglobulin E (IgE)-mediated allergies. The purpose of this study was to assess sensitization to food and aero-allergens in pediatric patients with CD. (2) Methods. A multiplex ALEX®2 test was used to determine specific IgEs (sIgEs). (3) Results. The study included 108 children newly diagnosed with CD. Allergen extract- and/or allergen molecule-sIgEs were detected in 49.1% of children. Most children (41.5%) were sensitized to both inhalant and food allergens. The three most common aero-allergens (timothy pollen, ryegrass, silver birch) were molecules Phl p 1, Lol p 1, and Bet v 1. The most common food allergens (hazelnut, apple, and peanut) were Cor a 1, Mal d 1, and Ara h 8 molecules of the PR-10 subfamily. Patients were not sensitized to cereal allergens containing gluten. Spearman's rank correlation analysis of sensitized patients showed a significant positive relationship (r = 0.31) between the patients' age and the occurrence of positive sIgEs (≥0.3 kUA/L) for inhalant allergen molecules (p = 0.045). In sensitized patients, mainly symptoms of inhalant allergy were observed, such as hay fever, conjunctivitis, and bronchial asthma. (4) Conclusions. The current study indicates the co-occurrence of IgE sensitization to food and inhalant allergens in children with CD. The study highlights the need to take a closer look at the diagnosis of IgE-mediated allergy in patients with CD, which may help in their care and lead to a better understanding of the relationship between CD and IgE-mediated allergy.
Collapse
Affiliation(s)
- Izabela Knyziak-Mędrzycka
- Allergology Clinic, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Bożena Cukrowska
- Department of Pathomorphology, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Wojciech Nazar
- Faculty of Medicine, Medical University of Gdansk, Marii Sklodowskiej-Curie 3a, 80-210 Gdansk, Poland;
| | - Joanna Beata Bierła
- Department of Clinical Biochemistry, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (J.B.B.)
| | - Kamil Janeczek
- Department of Pulmonary Diseases and Children Rheumatology, Medical University of Lublin, Profesora Antoniego Gębali Street, 20-093 Lublin, Poland;
| | - Paulina Krawiec
- Department of Pediatrics and Gastroenterology, Medical University of Lublin, Profesora Antoniego Gębali Street, 20-093 Lublin, Poland;
| | - Weronika Gromek
- Polish-Ukrainian Foundation of Medicine Development, Nałęczowska 14, 20-701 Lublin, Poland;
| | - Mariusz Wysokiński
- Department of Basic Nursing, Faculty of Health Sciences, Medical University, Staszica 4/6, 20-081 Lublin, Poland;
| | - Ewa Konopka
- Department of Clinical Biochemistry, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (J.B.B.)
| | - Ilona Trojanowska
- Department of Clinical Biochemistry, The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (J.B.B.)
| | - Sylwia Smolińska
- Department of Clinical Immunology, Wroclaw Medical University, Parkowa 34, 51-616 Wroclaw, Poland;
| | - Emilia Majsiak
- Department of Health Promotion, Faculty Health of Sciences, Medical University of Lublin, Staszica 4/6, 20-081 Lublin, Poland
| |
Collapse
|
2
|
Zemelka-Wiacek M, Agache I, Akdis CA, Akdis M, Casale TB, Dramburg S, Jahnz-Różyk K, Kosowska A, Matricardi PM, Pfaar O, Shamji MH, Jutel M. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024; 79:823-842. [PMID: 37984449 DOI: 10.1111/all.15945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The importance of allergen immunotherapy (AIT) is multifaceted, encompassing both clinical and quality-of-life improvements and cost-effectiveness in the long term. Key mechanisms of allergen tolerance induced by AIT include changes in memory type allergen-specific T- and B-cell responses towards a regulatory phenotype with decreased Type 2 responses, suppression of allergen-specific IgE and increased IgG1 and IgG4, decreased mast cell and eosinophil numbers in allergic tissues and increased activation thresholds. The potential of novel patient enrolment strategies for AIT is taking into account recent advances in biomarkers discoveries, molecular allergy diagnostics and mobile health applications contributing to a personalized approach enhancement that can increase AIT efficacy and compliance. Artificial intelligence can help manage and interpret complex and heterogeneous data, including big data from omics and non-omics research, potentially predict disease subtypes, identify biomarkers and monitor patient responses to AIT. Novel AIT preparations, such as synthetic compounds, innovative carrier systems and adjuvants, are also of great promise. Advances in clinical trial models, including adaptive, complex and hybrid designs as well as real-world evidence, allow more flexibility and cost reduction. The analyses of AIT cost-effectiveness show a clear long-term advantage compared to pharmacotherapy. Important research questions, such as defining clinical endpoints, biomarkers of patient selection and efficacy, mechanisms and the modulation of the placebo effect and alternatives to conventional field trials, including allergen exposure chamber studies are still to be elucidated. This review demonstrates that AIT is still in its growth phase and shows immense development prospects.
Collapse
Affiliation(s)
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Thomas B Casale
- Departments of Medicine and Pediatrics and Division of Allergy and Immunology, Joy McCann Culverhouse Clinical Research Center, University of South Florida, Tampa, Florida, USA
| | - Stephanie Dramburg
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karina Jahnz-Różyk
- Department of Internal Diseases, Pneumonology, Allergology and Clinical Immunology, Military Institute of Medicine-National Research Institute, Warsaw, Poland
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
3
|
Chen J, Oshima T, Tomita T, Fukui H, Shinzaki S. Regulatory T cells Are Increased and Correlate With Mast Cells in Eosinophilic Esophagitis. J Neurogastroenterol Motil 2024; 30:29-37. [PMID: 38173156 PMCID: PMC10774801 DOI: 10.5056/jnm23040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 01/05/2024] Open
Abstract
Background/Aims The incidence of eosinophilic esophagitis (EoE) has been increasing recently. The role of regulatory T cells (Tregs) and correlations with other inflammatory cells in EoE remain unknown. We aim to clarify the role of Tregs and their correlations with inflammatory cells in EoE patients. Methods Biopsies from controls and EoE patients before and after treatments were analyzed. Eosinophil infiltration was evaluated by hematoxylin and eosin staining. Immunohistochemical staining was performed to examine infiltration of T cells, Tregs, and mast cells. Gene expressions of chemokines were evaluated by reverse transcription-quantitative polymerase chain reaction. Results Tregs and mast cells were increased in the esophageal epithelial layers of EoE patients. After treatments, Tregs and mast cells were decreased when histologic remission was achieved. Infiltration of Tregs correlated significantly with numbers of eosinophils and mast cells. Filaggrin mRNA was decreased in patients with EoE before treatment and upregulated after treatment, even when histologic remission was not achieved. Conclusions Tregs were increased in esophageal epithelium of patients with EoE, and correlated with mast cell infiltration.
Collapse
Affiliation(s)
- Junji Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Shinichiro Shinzaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo Medical University, Nishinomiya, Japan
| |
Collapse
|
4
|
Haque TT, Weissler KA, Schmiechen Z, Laky K, Schwartz DM, Li J, Locci M, Turfkruyer M, Yao C, Schaughency P, Leak L, Lack J, Kanno Y, O'Shea J, Frischmeyer-Guerrerio PA. TGFβ prevents IgE-mediated allergic disease by restraining T follicular helper 2 differentiation. Sci Immunol 2024; 9:eadg8691. [PMID: 38241399 DOI: 10.1126/sciimmunol.adg8691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024]
Abstract
Allergic diseases are common, affecting more than 20% of the population. Genetic variants in the TGFβ pathway are strongly associated with atopy. To interrogate the mechanisms underlying this association, we examined patients and mice with Loeys-Dietz syndrome (LDS) who harbor missense mutations in the kinase domain of TGFΒR1/2. We demonstrate that LDS mutations lead to reduced TGFβ signaling and elevated total and allergen-specific IgE, despite the presence of wild-type T regulatory cells in a chimera model. Germinal center activity was enhanced in LDS and characterized by a selective increase in type 2 follicular helper T cells (TFH2). Expression of Pik3cg was increased in LDS TFH cells and associated with reduced levels of the transcriptional repressor SnoN. PI3Kγ/mTOR signaling in LDS naïve CD4+ T cells was elevated after T cell receptor cross-linking, and pharmacologic inhibition of PI3Kγ or mTOR prevented exaggerated TFH2 and antigen-specific IgE responses after oral antigen exposure in an adoptive transfer model. Naïve CD4+ T cells from nonsyndromic allergic individuals also displayed decreased TGFβ signaling, suggesting that our mechanistic discoveries may be broadly relevant to allergic patients in general. Thus, TGFβ plays a conserved, T cell-intrinsic, and nonredundant role in restraining TFH2 development via the PI3Kγ/mTOR pathway and thereby protects against allergic disease.
Collapse
Affiliation(s)
- Tamara T Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine A Weissler
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Schmiechen
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karen Laky
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jenny Li
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathilde Turfkruyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen Yao
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul Schaughency
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lashawna Leak
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Justin Lack
- Collaborative Bioinformatics Resource, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuka Kanno
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John O'Shea
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
6
|
Li L, Chai W, Ma L, Zhang T, Chen J, Zhang J, Wu X. Covalent polyphenol with soybean 11S protein to develop hypoallergenic conjugates for potential immunotherapy. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
7
|
Lin H, Li H. How does cigarette smoking affect airway remodeling in asthmatics? Tob Induc Dis 2023; 21:13. [PMID: 36741543 PMCID: PMC9881586 DOI: 10.18332/tid/156047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 10/25/2022] [Indexed: 01/30/2023] Open
Abstract
Asthma is a prevalent chronic airway inflammatory disease involving multiple cells, and the prolonged course of the disease can cause airway remodeling, resulting in irreversible or partial irreversible airflow limitation and persistent airway hyperresponsiveness (AHR) in asthmatics. Therefore, we must ascertain the factors that affect the occurrence and development of airway remodeling in asthmatics. Smokers are not uncommon in asthmatics. However, there is no systematic description of how smoking promotes airway remodeling in asthmatics. This narrative review summarizes the effects of smoking on airway remodeling in asthmatics, and the progress of the methods for evaluating airway remodeling.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
8
|
Muacevic A, Adler JR, Tahlawi R, Aljabri HA. Immunotherapy in the Treatment of Allergic Rhinitis in Children. Cureus 2022; 14:e32464. [PMID: 36644088 PMCID: PMC9834958 DOI: 10.7759/cureus.32464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 12/14/2022] Open
Abstract
Allergic rhinitis (AR) is an inflammation of the nasal membranes characterized by multiple allergic symptoms. It is a widespread health problem that affects patients' ability to engage in social and physical activity, which lowers their quality of life. The pathophysiology of AR is complex and requires sensitization and the development of a specific immune response to the allergen. Allergen-specific immunotherapy (AIT) is a therapeutic method that induces specific immune tolerance to allergens. The objectives of this review are to demonstrate the mechanism of action of immunotherapy, explain how it alleviates clinical symptoms of allergic rhinitis, list the indications and contraindications of immunotherapy in the treatment of allergic rhinitis, and identify different modalities of allergen immunotherapy, their disease-modifying effects, as well as their potential risks and benefits. The review of the literature highlights that T-cell and B-cell responses to inhaled allergens are altered by AIT, which decreases both early and late reactions to allergen exposure. To induce clinical and immunologic tolerance, especially in the pediatric age, escalating dosages of the causing allergen are administered subcutaneously or sublingually. AIT is indicated for severe persistent AR when avoidance measures and medications are inadequate to control the symptoms. To conclude, AIT is a disease-modifying therapy that is safe and effective for the treatment of allergic rhinitis. It is indicated when the symptoms are uncontrolled or when there are undesirable effects from pharmacotherapy.
Collapse
|
9
|
Wang YQ, Chen WJ, Li WY, Pan XW, Cui X. Impact of interaction networks of B cells with other cells on tumorigenesis, progression and response to immunotherapy of renal cell carcinoma: A review. Front Oncol 2022; 12:995519. [PMID: 36465392 PMCID: PMC9712799 DOI: 10.3389/fonc.2022.995519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 08/06/2023] Open
Abstract
Ample evidence indicates that the development and progression of renal cell carcinoma (RCC) are complex pathological processes involving interactions between tumor cells, immune cells and stromal components. Tumor infiltrated immune cells determine whether tumor advancement is promoted or inhibited. Among them, infiltrated B lymphocytes are present in all stages of RCC, playing a major role in determining tumor formation and advancement, as an essential part in the tumor microenvironment (TME). Although the advent of targeted and immune therapies has remarkably improved the survival of patients with advanced RCC, few cases can achieve complete response due to drug resistance. In this review article, we intend to summary the recent studies that outline the interaction networks of B cells with other cells, discuss the role of B cells in RCC development and progression, and assess their impact on RCC immunotherapy.
Collapse
Affiliation(s)
- Yu-qi Wang
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen-jin Chen
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, China
| | - Wen-yan Li
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiu-wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin−gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Takkinsatian P, Mairiang D, Sangkanjanavanich S, Chiewchalermsri C, Tripipitsiriwat A, Sompornrattanaphan M. Dietary Factors Associated with Asthma Development: A Narrative Review and Summary of Current Guidelines and Recommendations. J Asthma Allergy 2022; 15:1125-1141. [PMID: 36046721 PMCID: PMC9420923 DOI: 10.2147/jaa.s364964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma is a complex disease, caused by a combination of genetic and environmental factors. The prevalence of asthma is increasing too rapidly to be attributable to genetic factors alone. Thus, environmental factors are becoming increasingly recognized as the cause of asthma. Modifying these environmental factors may be a simple approach for asthma prevention. To date, dietary intervention is an interesting modifiable factor because it can be implemented at the population level. The modification of systemic inflammation, oxidation, and microbial composition might be a mechanistic basis for prevention. This review summarizes the mechanistic basis and evidence from clinical studies on the association between dietary factors and asthma development. We also summarize the recommendations from many organizations and regional guidelines to assist the practicing physician to improve patient care.
Collapse
Affiliation(s)
- Preyanit Takkinsatian
- Department of Pediatrics, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Dara Mairiang
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sasipa Sangkanjanavanich
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Department of Medicine, Phyathai 2 International Hospital, Bangkok, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Athiwat Tripipitsiriwat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mongkhon Sompornrattanaphan
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Zhang J, Zou Y, Chen L, Xu Q, Wang Y, Xie M, Liu X, Zhao J, Wang CY. Regulatory T Cells, a Viable Target Against Airway Allergic Inflammatory Responses in Asthma. Front Immunol 2022; 13:902318. [PMID: 35757774 PMCID: PMC9226301 DOI: 10.3389/fimmu.2022.902318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a multifactorial disorder characterized by the airway chronic inflammation, hyper-responsiveness (AHR), remodeling, and reversible obstruction. Although asthma is known as a heterogeneous group of diseases with various clinical manifestations, recent studies suggest that more than half of the clinical cases are ‘‘T helper type 2 (Th2)-high’’ type, whose pathogenesis is driven by Th2 responses to an inhaled allergen from the environmental exposures. The intensity and duration of inflammatory responses to inhaled allergens largely depend on the balance between effector and regulatory cells, but many questions regarding the mechanisms by which the relative magnitudes of these opposing forces are remained unanswered. Regulatory T cells (Tregs), which comprise diverse subtypes with suppressive function, have long been attracted extensive attention owing to their capability to limit the development and progression of allergic diseases. In this review we seek to update the recent advances that support an essential role for Tregs in the induction of allergen tolerance and attenuation of asthma progression once allergic airway inflammation established. We also discuss the current concepts about Treg induction and Treg-expressed mediators relevant to controlling asthma, and the therapies designed based on these novel insights against asthma in clinical settings.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Zou
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory of Respiratory Disease, Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Su S, Chen R, Zhang S, Shu H, Luo J. Immune system changes in those with hypertension when infected with SARS-CoV-2. Cell Immunol 2022; 378:104562. [PMID: 35901625 PMCID: PMC9183242 DOI: 10.1016/j.cellimm.2022.104562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak has become an evolving global health crisis. With an increasing incidence of primary hypertension, there is greater awareness of the relationship between primary hypertension and the immune system [including CD4+, CD8+ T cells, interleukin-17 (IL-17)/T regulatory cells (Treg) balance, macrophages, natural killer (NK) cells, neutrophils, B cells, and cytokines]. Hypertension is associated with an increased risk of various infections, post-infection complications, and increased mortality from severe infections. Despite ongoing reports on the epidemiological and clinical features of COVID-19, no articles have systematically addressed the role of primary hypertension in COVID-19 or how COVID-19 affects hypertension or specific treatment in these high-risk groups. Here, we synthesize recent advances in understanding the relationship between primary hypertension and COVID-19 and its underlying mechanisms and provide specific treatment guidelines for these high-risk groups.
Collapse
|
13
|
Younas, Khan A, Shehzad O, Seo EK, Onder A, Khan S. Anti-allergic activities of Umbelliferone against histamine- and Picryl chloride-induced ear edema by targeting Nrf2/iNOS signaling in mice. BMC Complement Med Ther 2021; 21:215. [PMID: 34452623 PMCID: PMC8394045 DOI: 10.1186/s12906-021-03384-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current study was aimed to investigate the anti-allergic activities of the Umbelliferone (UMB) against the acute Histamine and chronic Picryl chloride (PiCl)-induced allergy in mice. UMB is a coumarin derivative (isolated from Angelica decursiva) found in various parts of the plants such as flowers, roots and, stems isolated from the plants of Umbelliferae family. METHODS The UMB (1, 10, 50 mg/kg) was administered intraperitoneally (i.p) half an h before or 2 h after the induction of allergic ear edema. The acute ear edema was induced by histamine (intradermally, i.d), while the chronic ear edema was induced by painting the PiCl (sensitized with the toluene) on the ear. The antioxidants and oxidative stress markers were assessed. The histological changes were assessed using Hematoxylin and eosin (H and E) and giemsa staining. The immunohistochemistry studies were performed to assess the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and inducible nitric oxide synthase (iNOS). The data was analyzed using one-way ANOVA tests followed by Tukey's test with p < 0.05 was chosen as criteria for statistical significance. RESULTS UMB treatment markedly reduced the allergic ear edema and ear weight compared to the negative control. Furthermore, the UMB attenuated the oxidative stress markers, while induced the antioxidants enzymes. Similarly, the UMB treatment significantly attenuated the serum immunoglobulin E (IgE) level. The UMB treatment markedly improved the histological parameters using H and E staining and Giemsa staining. The UMB administration induced the Nrf2 expression, while attenuated the iNOS expression. Furthermore, the computational analysis was performed to assess the interaction of the UMB with the various protein targets and to determine the mechanism of interaction with the target proteins. CONCLUSION In conclusion, the UMB treatment significantly alleviated the allergic symptoms, attenuating the oxidative stress, improved the histological features using in vivo and computational approaches.
Collapse
Affiliation(s)
- Younas
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Omer Shehzad
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Alev Onder
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
14
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
15
|
Zhovmer AS, Chandler M, Manning A, Afonin KA, Tabdanov ED. Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102442. [PMID: 34284132 DOI: 10.1016/j.nano.2021.102442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/25/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022]
Abstract
Contractile forces within the planar interface between T cell and antigen-presenting surface mechanically stimulate T cell receptors (TCR) in the mature immune synapses. However, the origin of mechanical stimulation during the initial, i.e., presynaptic, microvilli-based TCR activation in the course of immune surveillance remains unknown and new tools to help address this problem are needed. In this work, we develop nucleic acid nanoassembly (NAN)-based technology for functionalization of hydrogels using isothermal toehold-mediated reassociation of RNA/DNA heteroduplexes. Resulting platform allows for regulation with NAN linkers of 3D force momentum along the TCR mechanical axis, whereas hydrogels contribute to modulation of 2D shear modulus. By utilizing different lengths of NAN linkers conjugated to polyacrylamide gels of different shear moduli, we demonstrate an efficient capture of human T lymphocytes and tunable activation of TCR, as confirmed by T-cell spreading and pY foci.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alexis Manning
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Erdem D Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
16
|
Smaldini PL, Trejo FM, Rizzo GP, Comerci DJ, Kampinga J, Docena GH. Mucosal Immunoregulatory Properties of Tsukamurella inchonensis to Reverse Experimental Food Allergy. Front Immunol 2021; 12:641597. [PMID: 33995359 PMCID: PMC8120237 DOI: 10.3389/fimmu.2021.641597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
The intestinal mucosa is lined by epithelial cells, which are key cells to sustain gut homeostasis. Food allergy is an immune-mediated adverse reaction to food, likely due to defective regulatory circuits. Tsukamurella inchonensis is a non-pathogenic bacterium with immunomodulatory properties. We hypothesize that the anti-inflammatory effect of dead T. inchonensis on activated epithelial cells modulates milk allergy through the restoration of tolerance in a mouse model. Epithelial cells (Caco-2 and enterocytes from mouse gut) and macrophages were stimulated with T. inchonensis and induction of luciferase under the NF-κB promoter, ROS and cytokines production were studied. Balb/c mice were mucosally sensitized with cow´s milk proteins plus cholera toxin and orally challenged with the allergen to evidence hypersensitivity symptoms. After that, mice were orally administered with heat-killed T. inchonensis as treatment and then challenged with the allergen. The therapeutic efficacy was in vivo (clinical score and cutaneous test) and in vitro (serum specific antibodies and cytokines-ELISA, and cell analysis-flow cytometry) evaluated. Heat-killed T. inchonensis modulated the induction of pro-inflammatory chemokines, with an increase in anti-inflammatory cytokines by intestinal epithelial cells and by macrophages with decreased OX40L expression. In vivo, oral administration of T. inchonensis increased the frequency of lamina propria CD4+CD25+FoxP3+ T cells, and clinical signs were lower in T. inchonensis-treated mice compared with milk-sensitized animals. In vivo depletion of Tregs (anti-CD25) abrogated T. inchonensis immunomodulation. In conclusion, these bacteria suppressed the intestinal inflammatory immune response to reverse food allergy.
Collapse
Affiliation(s)
- Paola L Smaldini
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Fernando M Trejo
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Gastón P Rizzo
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas, Dr. Rodolfo A. Ugalde (IIB-INTECH), CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | | | - Guillermo H Docena
- Departamento de Ciencias Biológicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado a CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| |
Collapse
|
17
|
Xue Q, Li X, Li Y, Xu J, Wu Z, Wang J. Dialogue between gastrointestinal tract and skin: New insights into the Helicobacter pylori and atopic dermatitis. Helicobacter 2021; 26:e12771. [PMID: 33368906 DOI: 10.1111/hel.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although many studies have focused on the protective function of H pylori in some allergic diseases, it remains unknown as whether H pylori infection exerts a similar protective effect on atopic dermatitis(AD). Thus, the aim of this study was to evaluate the association between H pylori infection and AD. MATERIALS AND METHODS An animal model of H pylori infection-AD was established by epicutaneous sensitization with calcipotriol after infection with H pylori by gavage. The Treg cells were analyzed by flow cytometry and immunohistochemistry. The expression of key inflammatory cytokines in dermal tissues was investigated at the mRNA level by real-time PCR. RESULTS Compared with that in the H pylori-negative AD group, the severity of skin lesions, such as hyperemia, erythema, and swelling, was lower in the H pylori-positive AD group, while the serum IgE level decreased significantly in the H pylori-positive AD group. The percentage of CD4+ CD25+ Foxp3+ Treg cells in the peripheral blood and the number of Foxp3+ cells in dermal tissues increased significantly in the H pylori-positive AD group. The expression of IL-10 and TGF-β was upregulated, while the expression of IL-4 mRNA was downregulated in dermal tissues in the H pylori-positive AD group. The adoptive transfer assay showed that the number of CFSE+ Treg cells in the cervical lymph nodes of AD mice was significantly higher than that in normal mice, indicating the Tregs in H pylori-positive mice had a tendency to migrate to the skin tissue. It was also found that H pylori infection induced CCR4+ Treg cells expansion synchronously in gastric lymph nodes, spleen, blood, mesenteric lymph node (MLN), and cervical lymph nodes by the time of H pylori infection. CONCLUSIONS H pylori infection alleviated calcipotriol-inducing AD manifestations by inducing the amplification of CD4+ CD25+ Foxp3+ Treg cells in the peripheral blood. H pylori showed possible protection against atopic dermatitis, suggesting an immune dialogue between gastrointestinal tract and skin.
Collapse
Affiliation(s)
- Qian Xue
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| | - Xia Li
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| | - Yuchen Li
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| | - Jun Xu
- Institute of Clinical Molecular Biology and Central Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Jingtong Wang
- Department of Gerontology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
18
|
Preliminary discovery of novel markers for human cell line activation test (h-CLAT). Toxicol In Vitro 2021; 74:105154. [PMID: 33774146 DOI: 10.1016/j.tiv.2021.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
The human cell line activation test (h-CLAT) is an OECD approved (Test No. 442E) assay to identify novel skin sensitizers. h-CLAT simulates dendritic cell activation in the skin sensitization pathway and is based on the measurement of CD54 and CD86 overexpression on monocytic, leukemic THP-1 cells. However, the current h-CLAT markers show inconsistent results with moderate and weak sensitizers. Moreover, these markers have accessory roles in cell adhesion and signaling rather than a direct role in cellular inflammation. Therefore, we have explored other inflammation-related markers in this study. PBMCs comprises a mixture of cells that resemble the complex immunological milieu in adults and were primarily used to identify markers. PBMCs (n = 10) and THP-1 cells were treated with 1-chloro-2,4-dinitrobenzene (DNCB, strong) and NiCl2 (Ni, moderate) sensitizers or DMSO (control) and incubated for 24 h. The samples were subjected to RNA sequencing to obtain log2fold change in gene expression. DNCB and NiCl2 significantly upregulated 80 genes in both cell types. Of these, CD109, CD181, CD183, CLEC5A, CLEC8A & CD354 were experimentally validated. DNCB and Ni but not isopropyl alcohol (non-sensitizer) significantly induced the expression of all novel markers except CLEC8A. Moreover, the percentage induction of all novel markers except CLEC8A satisfied the OECD acceptance criteria. In summary, we identified five novel markers that may supplement the current repertoire of h-CLAT markers.
Collapse
|
19
|
Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and Hypertension. Acta Physiol (Oxf) 2021; 231:e13487. [PMID: 32359222 DOI: 10.1111/apha.13487] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
Abstract
Hypertension is the primary cause of cardiovascular mortality. Despite multiple existing treatments, only half of those with the disease achieve adequate control. Therefore, understanding the mechanisms causing hypertension is essential for the development of novel therapies. Many studies demonstrate that immune cell infiltration of the vessel wall, kidney and central nervous system, as well as their counterparts of oxidative stress, the renal renin-angiotensin system (RAS) and sympathetic tone play a critical role in the development of hypertension. Genetically modified mice lacking components of innate and/or adaptive immunity confirm the importance of chronic inflammation in hypertension and its complications. Depletion of immune cells improves endothelial function, decreases oxidative stress, reduces vascular tone and prevents renal interstitial infiltrates, sodium retention and kidney damage. Moreover, the ablation of microglia or central nervous system perivascular macrophages reduces RAS-induced inflammation and prevents sympathetic nervous system activation and hypertension. Therefore, understanding immune cell functioning and their interactions with tissues that regulate hypertensive responses may be the future of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Rong M. Zhang
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Kyle P. McNerney
- Department of Pediatrics Washington University School of Medicine St. Louis MO USA
| | - Amy E. Riek
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
| | - Carlos Bernal‐Mizrachi
- Department of Medicine Division of Endocrinology, Metabolism, and Lipid Research Washington University School of Medicine St. Louis MO USA
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
- Department of Medicine VA Medical Center St. Louis MO USA
| |
Collapse
|
20
|
Klein M, Colas L, Cheminant MA, Brosseau C, Sauzeau V, Magnan A, Bouchaud G. Der p 2.1 Peptide Abrogates House Dust Mites-Induced Asthma Features in Mice and Humanized Mice by Inhibiting DC-Mediated T Cell Polarization. Front Immunol 2020; 11:565431. [PMID: 33312170 PMCID: PMC7708318 DOI: 10.3389/fimmu.2020.565431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Asthma is a chronic airway disease often due to sensitization to aeroallergens, especially house dust mite allergens (HDMs). The Dermatophagoides pteronyssinus group 2 (Der p 2), is one of the most representative HDM allergens and is recognized by more than 90% of HDM-allergic patients. In mouse models, all asthma-related features can be prevented by prophylactic administration of Dermatophagoides pteronyssinus 2-derived peptide (Der p 2.1). However, it is unknown whether it is able to treat well-established asthma in mice and humans. We aimed here to evaluate the efficacy of Der p 2.1 immunotherapy in a mouse, humanized mouse, and asthmatic patients. Asthma related-features were analyzed through airway hyperresponsiveness (AHR), allergen-specific IgE, and lung histology in mice and humanized mice. Immune profile was analyzed using lung and blood from mice and severe asthmatic patients respectively. T cell and dendritic cell (DC) polarization was evaluated using co-culture of bone marrow derived cells (BMDCs) and naïve T cell from naïve mice. Mice and humanized mice both have a reduced AHR, lung tissue alteration, and HDM-specific IgE under Der p 2.1 treatment. Concerning the immune profile, T helper 2 cells (Th2) and T helper 17 cells (Th17) were significantly reduced in both mice and humanized mice lung and in peripheral blood mononuclear cells (PBMCs) from severe asthmatic patients after Der p 2.1 incubation. The downregulation of T cell polarization seems to be linked to an increase of IL-10-secreting DC under Der p 2.1 treatment in both mice and severe asthmatic patients. This study shows that allergen-derived peptide immunotherapy abrogates asthma-related features in mice and humanized mice by reducing Th2 and Th17 cells polarization via IL-10-secreting DC. These results suggest that Der p 2.1 peptide immunotherapy could be a promising approach to treat both Th2 and Th17 immunity in asthma.
Collapse
Affiliation(s)
- Martin Klein
- UMR INSERM 1087/CNRS 6291, Institut du thorax, Nantes, France.,School of Medicine, Université of Nantes, Nantes, France
| | - Luc Colas
- UMR INSERM 1087/CNRS 6291, Institut du thorax, Nantes, France.,UMR INSERM 1064, Centre de Recherche en Transplantation et Immunologie (CRTI), Nantes, France
| | | | - Carole Brosseau
- INRAE, Biopolymères Intéractions Assemblages (BIA), Nantes, France
| | - Vincent Sauzeau
- UMR INSERM 1087/CNRS 6291, Institut du thorax, Nantes, France.,School of Medicine, Université of Nantes, Nantes, France
| | - Antoine Magnan
- UMR INSERM 1087/CNRS 6291, Institut du thorax, Nantes, France.,Centre Hospitalier Universitaire de Nantes, Service de Pneumologie, Nantes, France
| | - Grégory Bouchaud
- INRAE, Biopolymères Intéractions Assemblages (BIA), Nantes, France
| |
Collapse
|
21
|
Jafarzadeh A, Nemati M, Jafarzadeh S, Chauhan P, Saha B. The immunomodulatory potentials of interleukin-27 in airway allergies. Scand J Immunol 2020; 93:e12959. [PMID: 32797730 DOI: 10.1111/sji.12959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Bhubaneswar, India
| |
Collapse
|
22
|
Feng Z, Yi X, Hajavi J. New and old adjuvants in allergen-specific immunotherapy: With a focus on nanoparticles. J Cell Physiol 2020; 236:863-876. [PMID: 32657468 DOI: 10.1002/jcp.29941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Allergic diseases have remarkably increased in recent years. Nowadays, efforts for curing and management of these disorders are an important concern worldwide. Allergen-specific immunotherapy (ASIT) has recently gained more attention as a means for the management of allergic diseases. Adjuvants or helper agents are materials applied for better stimulating and shifting of protective responses, and these belong to an extremely diverse collection of complexes. The main function of adjuvants includes acting as depot foundations, transferring vehicles, and immunostimulators. Immunostimulatory adjuvants have gained increasing attention for ASIT. In this regard, the present study provides a review of old and new adjuvants used in allergen immunotherapy.
Collapse
Affiliation(s)
- Zhongtao Feng
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, China
| | - Xin Yi
- Department of Clinical Laboratory, Jining No.1 People's Hospital, Jining, China
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
23
|
Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen M, O’Mahony L, Gao Y, Nadeau K, Akdis CA. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020; 75:1564-1581. [PMID: 32396996 PMCID: PMC7272948 DOI: 10.1111/all.14364] [Citation(s) in RCA: 710] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.
Collapse
Affiliation(s)
- Ahmet Kursat Azkur
- Department of VirologyFaculty of Veterinary MedicineUniversity of KirikkaleKirikkaleTurkey
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Dilek Azkur
- Division of Pediatric Allergy and ImmunologyDepartment of PediatricsFaculty of MedicineUniversity of KirikkaleKirikkaleTurkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| | - Marie‐Charlotte Brüggen
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Faculty of MedicineUniversity ZurichZurichSwitzerland
- Hochgebirgsklinik DavosDavosSwitzerland
| | - Liam O’Mahony
- Departments of Medicine and MicrobiologyAPC Microbiome IrelandUniversity College CorkCorkIreland
| | - Yadong Gao
- Department of AllergologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| |
Collapse
|
24
|
Koushki K, Varasteh AR, Shahbaz SK, Sadeghi M, Mashayekhi K, Ayati SH, Moghadam M, Sankian M. Dc-specific aptamer decorated gold nanoparticles: A new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. Int J Pharm 2020; 584:119403. [PMID: 32387307 DOI: 10.1016/j.ijpharm.2020.119403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/19/2023]
Abstract
Recently, the main goal of many allergy epicutaneous immunotherapy (EPIT) studies is to enhance the allergen delivery through the intact skin. Therefore, applying new strategies for tackling this issue are inevitable. For this purpose, ten groups of Che a 2-sensitized BALB/c mice were epicutaneously treated for a 6-week period with the rChe a 2-GNPs-Aptamer, rChe a 2-GNPs-Aptamer + skin-penetrating peptides (SPPs), rChe a 2-GNPs, rChe a 2, GNPs, and PBS. Afterward, the serum IgE and IFN-γ, TGF-β, IL-10, IL-4, IL-17a cytokine production, NALF analysis, and lung/nasal histological examinations were performed. The present study results demonstrate that, EPIT in aptamer treated groups had a significant increase of IFN-γ, TGF-β, and IL-10 concentrations and a significant decrease of IgE, IL-4, and IL-17a concentrations as well as NALF infiltrated immune cell count compared to the non-targeted ones. In addition, SPPs led to more significant improvement of immunoregulatory parameters, especially IL-10 cytokine. Accordingly, the targeted-GNPs with DC-specific aptamers could act as an efficient approach for the improvement of EPIT efficacy compared to the free allergen. Moreover, the application of SPPs might be considered as a useful tool in achieving a successful EPIT with lower doses of allergen at a shorter duration of the treatment.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Keshavarz Shahbaz
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hasan Ayati
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Sookrung N, Tungtrongchitr A, Chaicumpa W. Cockroaches: Allergens, Component-Resolved Diagnosis (CRD) and Component-Resolved Immunotherapy. Curr Protein Pept Sci 2020; 21:124-141. [DOI: 10.2174/1389203720666190731144043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022]
Abstract
Allergic diseases are assuming increasing trend of prevalence worldwide. The diseases confer increasing demand on medical and healthcare facilities. Patients with allergies have poor quality of life and impaired cognition. Adult patients have subpar working efficiency while afflicted children are less effective at school, often have school absenteeism and need more attention of their caregivers. All of them lead to negative socio-economic impact. This narrative review focuses on cockroach allergy including currently recognized cockroach allergens, pathogenic mechanisms of allergy, componentresolved diagnosis and allergen-specific immunotherapy, particularly the component-resolved immunotherapy and the molecular mechanisms that bring about resolution of the chronic airway inflammation.
Collapse
Affiliation(s)
- Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
van Sadelhoff JHJ, Hogenkamp A, Wiertsema SP, Harthoorn LF, Loonstra R, Hartog A, Garssen J. A free amino acid-based diet partially prevents symptoms of cow's milk allergy in mice after oral sensitization with whey. Immun Inflamm Dis 2020; 8:93-105. [PMID: 32031763 PMCID: PMC7016843 DOI: 10.1002/iid3.288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Amino acid-based formulas (AAFs) are used for the dietary management of cow's milk allergy (CMA). Whether AAFs have the potential to prevent the development and/or symptoms of CMA is not known. OBJECTIVE The present study evaluated the preventive effects of an amino acid (AA)-based diet on allergic sensitization and symptoms of CMA in mice and aimed to provide insight into the underlying mechanism. METHODS C3H/HeOuJ mice were sensitized with whey protein or with phosphate-buffered saline as sham-sensitized control. Starting 2 weeks before sensitization, mice were fed with either a protein-based diet or an AA-based diet with an AA composition based on that of the AAF Neocate, a commercially available AAF prescribed for the dietary management of CMA. Upon challenge, allergic symptoms, mast cell degranulation, whey-specific immunoglobulin levels, and FoxP3+ cell counts in jejunum sections were assessed. RESULTS Compared to mice fed with the protein-based diet, AA-fed mice had significantly lower acute allergic skin responses. Moreover, the AA-based diet prevented the whey-induced symptoms of anaphylaxis and drop in body temperature. Whereas the AA-based diet had no effect on the levels of serum IgE and mucosal mast cell protease-1 (mMCP-1), AA-fed mice had significantly lower serum IgG2a levels and tended to have lower IgG1 levels (P = .076). In addition, the AA-based diet prevented the whey-induced decrease in FoxP3+ cells. In sham-sensitized mice, no differences between the two diets were observed in any of the tested parameters. CONCLUSION This study demonstrates that an AA-based diet can at least partially prevent allergic symptoms of CMA in mice. Differences in FoxP3+ cell counts and serum levels of IgG2a and IgG1 may suggest enhanced anti-inflammatory and tolerizing capacities in AA-fed mice. This, combined with the absence of effects in sham-sensitized mice indicates that AAFs for the prevention of food allergies may be an interesting concept that warrants further research.
Collapse
Affiliation(s)
- Joris H. J. van Sadelhoff
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | | | | | | | - Anita Hartog
- CeO ImmunologyDanone Nutricia ResearchUtrechtThe Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- CeO ImmunologyDanone Nutricia ResearchUtrechtThe Netherlands
| |
Collapse
|
27
|
Lyons JJ, Milner JD. The clinical and mechanistic intersection of primary atopic disorders and inborn errors of growth and metabolism. Immunol Rev 2019; 287:135-144. [PMID: 30565252 DOI: 10.1111/imr.12727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Abstract
Dynamic changes in metabolism have long been understood as critical for both the initiation and maintenance of innate and adaptive immune responses. A number of recent advances have clarified details of how metabolic pathways can specifically affect cellular function in immune cells. Critical to this understanding is ongoing study of the congenital disorders of glycosylation and other genetic disorders of metabolism that lead to altered immune function in humans. While there are a number of immune phenotypes associated with metabolic derangements caused by single gene disorders, several genetic mutations have begun to link discrete alterations in metabolism and growth specifically with allergic disease. This subset of primary atopic disorders is of particular interest as they illuminate how hypomorphic mutations which allow for some residual function of mutated protein products permit the "abnormal" allergic response. This review will highlight how mutations altering sugar metabolism and mTOR activation place similar constraints on T lymphocyte metabolism to engender atopy, and how alterations in JAK/STAT signaling can impair growth and cellular metabolism while concomitantly promoting allergic diseases and reactions in humans.
Collapse
Affiliation(s)
- Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Acute Severe Asthma in Adolescent and Adult Patients: Current Perspectives on Assessment and Management. J Clin Med 2019; 8:jcm8091283. [PMID: 31443563 PMCID: PMC6780340 DOI: 10.3390/jcm8091283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Asthma is a chronic airway inflammatory disease that is associated with variable expiratory flow, variable respiratory symptoms, and exacerbations which sometimes require hospitalization or may be fatal. It is not only patients with severe and poorly controlled asthma that are at risk for an acute severe exacerbation, but this has also been observed in patients with otherwise mild or moderate asthma. This review discusses current aspects on the pathogenesis and pathophysiology of acute severe asthma exacerbations and provides the current perspectives on the management of acute severe asthma attacks in the emergency department and the intensive care unit.
Collapse
|
29
|
Marteles D, Verde MT, Conde T, Pereboom D, Casanova Á, Villanueva-Saz S, Ortín A, Fernández A. Effects of allergen-specific immunotherapy on peripheral blood regulatory T cells and serum concentrations of cytokines and immunoglobulins in horses with allergic dermatitis. Int Immunopharmacol 2019; 74:105674. [PMID: 31195188 DOI: 10.1016/j.intimp.2019.105674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to assess the effect of allergen-specific immunotherapy (ASIT) on the immunological responses of horses. Blood samples were taken from thirty-two horses with allergic dermatitis treated with ASIT and 10 healthy control horses at 0, 3, 6, 9 and 12 months to investigate the evolution of the percentage of regulatory T cells (Treg) in the peripheral blood and the serum levels of cytokines and immunoglobulins. Clinical improvement was appreciated by the majority of the horses' owners (56.6%). No effect of ASIT on CD4+CD25High Treg cells was found during the one year treatment period. No differences in the percentage of CD4+ T cells were observed between the groups, and no effects of ASIT over time were observed. The percentage of CD25+ T cells was always higher in the ASIT group (17.9 ± 11.3%) than in the control group (7.3 ± 4.4%, p < 0.001). We did not detect any effect of ASIT on the serum levels of TGF-β, IL-10 and IFN-γ or on the serum concentrations of IgA and IgG4. A reduction in the serum levels of total IgE in the horses with allergic dermatitis was observed at the 6th month (p < 0.05), but increased again at the end of the study. The results indicate that immunotherapy was insufficient to induce significant changes that could indicate T cell tolerance, a shift in cytokine production to more protective Th1 cells. More studies are needed with new vaccine compositions and administration protocols to improve the immunological responses of the horses with allergic dermatitis.
Collapse
Affiliation(s)
- Diana Marteles
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain
| | - María Teresa Verde
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain; Clinical Immunology Laboratory, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain
| | - Tomás Conde
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain
| | - Desirée Pereboom
- Pharmacology and Physiology Department, Medicine Faculty, Zaragoza University, SAI de Citomica 50009 Zaragoza, Spain
| | - Álvaro Casanova
- Pharmacology and Physiology Department, Medicine Faculty, Zaragoza University, SAI de Citomica 50009 Zaragoza, Spain
| | - Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain; Pharmacology and Physiology Department, Medicine Faculty, Zaragoza University, SAI de Citomica 50009 Zaragoza, Spain
| | - Aurora Ortín
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain
| | - Antonio Fernández
- Animal Pathology Department, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain; Clinical Immunology Laboratory, Veterinary Faculty, Zaragoza University, 50013 Zaragoza, Spain.
| |
Collapse
|
30
|
Kianmehr M, Rezaee A, Mahmoudi M, Ghorani V, Boskabady MH. T helper cells subtypes and their cytokine gene expression affected by carvacrol in sensitized mice administered during sensitization period. J Cell Biochem 2018; 120:5343-5354. [PMID: 30387169 DOI: 10.1002/jcb.27812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Th1, Th2, Th17, and Treg cells and their cytokine gene expressions in splenocytes of control mice, ovalbumin sensitized (S), and S treated with dexamethasone and carvacrol during a sensitization period were examined. Th2 and Th17 population as well as the gene expression of IL-4, IL-17, and TGF-β were increased, but Th1, Th1/Th2 ratio, the gene expression of IFN-γ and FOXP3 as well as the IFN-γ/IL-4 ratio were decreased in S compared with control group ( P < 0.001 for all cases). Carvacrol treatment caused significant reduction of Th2 and Th17 population as well as gene expression of IL-4, IL-17, and TGF-β but increase in Treg cells, Th1/Th2 ratio, gene expressions of FOXP3, IFN-γ, and IFN-γ/IL-4 ratio ( P < 0.05 to P < 0.001). The population of Th1, Th2, Th17 cells as well as the gene expression of IL-4, IL-17, and TGF-β were significantly decreased, but only Treg was increased in the dexamethasone treatment group ( P < 0.05 to P < 0.001). Carvacrol treatment during the sensitization period showed a more specific effect on Th1/Th2 imbalance in sensitized mice than dexamethasone, which may indicate the therapeutic potentials of carvacrol in disorders associated with Th1/Th2 imbalance such as asthma.
Collapse
Affiliation(s)
| | - Abdolrahim Rezaee
- Division of Inflammation and Inflammatory Diseases, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Ghorani
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
31
|
Bernaldo de Quiros E, Seoane-Reula E, Alonso-Lebrero E, Pion M, Correa-Rocha R. The role of regulatory T cells in the acquisition of tolerance to food allergens in children. Allergol Immunopathol (Madr) 2018; 46:612-618. [PMID: 29739687 DOI: 10.1016/j.aller.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023]
Abstract
Food allergy is a pathological immune reaction that identifies certain harmless food proteins, usually tolerated by the majority of the people, as a threat. The prevalence of these food allergies is increasing worldwide and currently affects 8% of children. Exacerbated reactions to milk, egg and peanut are the most frequent in the pediatric population. It is well known that allergic diseases are a type 2 T-helper (Th2) immune response, characterized by the elevated production of IgE antibodies. However, little is known about the immune mechanisms responsible for the development of clinical tolerance toward food allergens. Recent studies have suggested the key role of regulatory T cells (Tregs) in controlling allergic inflammation. In this review, we discuss the importance of Tregs in the pathogenesis of food allergy and the acquisition of oral tolerance in children. Further investigation in this area will be crucial for the identification of predictive markers and the development of new therapies, which will represent a clinical and social benefit for these allergic diseases.
Collapse
|
32
|
Prangtaworn P, Chaisri U, Seesuay W, Mahasongkram K, Onlamoon N, Reamtong O, Tungtrongchitr A, Indrawattana N, Chaicumpa W, Sookrung N. Tregitope-linked Refined Allergen Vaccines for Immunotherapy in Cockroach Allergy. Sci Rep 2018; 8:15480. [PMID: 30341299 PMCID: PMC6195530 DOI: 10.1038/s41598-018-33680-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/01/2018] [Indexed: 01/17/2023] Open
Abstract
Allergen-specific immunotherapy (AIT) facilitates long-term resolution of allergic morbidity resulting in reduced drug use and increased refractoriness to new sensitization. AIT effectiveness has been demonstrated in seasonal and perennial allergies, and insect stings. However, data and studies in AIT relative to cockroach (CR) allergy are relatively scarce. In this study, mice allergic to American CR (Periplaneta americana) were treated with a liposome (L)-entrapped vaccine made of mouse Tregitope289-Per a 9 of the CR, Tregitope167-Per a 9, or Per a 9 alone - or placebo. Allergic mice that received an individual vaccine intranasally had reduced Th2 response, reduced lung inflammation, and reduced respiratory tissue remodeling. However, only L-Tregitope289-Per a 9 and L-Tregitope167-Per a 9 induced expression of immunosuppressive cytokine genes (IL-10, TGF-β, and IL-35 for L-Tregitope289-Per a 9, and IL-10 and TGF-β for L-Tregitope167-Per a 9) and increment of idoleamine-2,3-dioxygenase 1 (IDO1), indicating that these vaccines caused allergic disease suppression and reversal of respiratory tissue remodeling via generation of regulatory lymphocytes. Liposome entrapped-recombinant Per a 9 (L-Per a 9) did not cause upregulation of immunosuppressive cytokine genes and IDO1 increment; rather, L-Per a 9 induced high expression of IFN-γ in lungs of treated mice, which resulted in mitigation of allergic manifestations. This study provides compelling evidence that both liposome-entrapped vaccines made of single refined major allergen alone and single refined major allergen linked with Tregitopes are effective for reducing allergen-mediated respiratory tissue inflammation and remodeling, but through different mechanisms.
Collapse
Affiliation(s)
- Pannathee Prangtaworn
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattawat Onlamoon
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anchalee Tungtrongchitr
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
33
|
Ramesh M, Karagic M. New modalities of allergen immunotherapy. Hum Vaccin Immunother 2018; 14:2848-2863. [PMID: 30183485 PMCID: PMC6343630 DOI: 10.1080/21645515.2018.1502126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/27/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022] Open
Abstract
Allergen immunotherapy is a rapidly evolving field. Although subcutaneous immunotherapy has been practiced for over a hundred years, improved understanding of the underlying immunological mechanisms has led to the development of new, efficacious and better tolerated allergen-derivatives, adjuvants and encapsulated allergens. Diverse routes of allergen immunotherapy - oral, sublingual, epicutanoeus and intralymphatic - are enabling immunotherapy for anaphylactic food allergies and pollen-food allergy syndrome, while improving the tolerability and effectiveness of aeroallergen immunotherapy. The addition of Anti-IgE therapy decreases adverse effects of subcutaneous and oral immunotherapy.
Collapse
|
34
|
Xin L, Gao J, Ge X, Tian C, Ma W, Tian Z, Zheng X, Hou J. Increased pro-inflammatory cytokine-secreting regulatory T cells are correlated with the plasticity of T helper cell differentiation and reflect disease status in asthma. Respir Med 2018; 143:129-138. [PMID: 30261984 DOI: 10.1016/j.rmed.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Human regulatory T cells (Tregs) are a heterogeneous population which consists of three distinct subpopulations: CD25+CD45RA+ resting Treg (rTreg) cells; CD25hiCD45RA- activated Treg (aTreg) cells, which are both suppressive; and CD25+CD45RA- cytokine-secreting T cells with pro-inflammatory capacity. OBJECTIVE We investigated variation in peripheral Treg subpopulations of asthma and explored their potential roles in asthma inflammation. METHODS Twenty-eight mild asthma patients, 26 moderate asthma patients, 18 severe asthma patients, and 36 healthy controls were recruited for a cross-sectional study. Phenotyping of peripheral CD4+ Tregs was performed based on flow cytometry results. RESULTS The proportions of rTreg and aTreg cells among CD4+ T cells were higher in mild and moderate asthma patients than in healthy controls. All three groups of asthmatics had a higher proportion of pro-inflammatory Tregs than healthy controls, and these increased with asthma severity. The proportion of IL-17-producing Foxp3+ cells and IFN-ɤ-producing Foxp3+ cells strongly correlated with T helper 17 (Th17) cells (r = 0.66, p < 0.001) and Th1 cells (r = 0.48, p < 0.001). The pro-inflammatory Treg subpopulation was correlated with the severity of asthma and may be insensitive to corticosteroids. CONCLUSIONS Our data suggest that pro-inflammatory Treg subpopulations may be relevant to the plasticity of Th17 and Th1 differentiation and play an important role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Lei Xin
- Ningxia Medical University, Ningxia, China.
| | - Junjie Gao
- Ningxia Medical University, Ningxia, China.
| | - Xiahui Ge
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | | | - Weirong Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Zhigang Tian
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Xiwei Zheng
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Jia Hou
- Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
35
|
The levels of CD4+CD25+ regulatory T cells in patients with allergic rhinitis. Allergol Select 2018; 2:144-150. [PMID: 31826046 PMCID: PMC6881876 DOI: 10.5414/alx01782e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/16/2015] [Indexed: 11/18/2022] Open
Abstract
Background: The involvement of CD4+CD25+ regulatory T cells (CD4+CD25+ TRegs) in allergic diseases was reported previously. However, it remains unclear whether CD4+CD25+ TRegs are involved in allergic rhinitis (AR). Methods: Fresh whole blood from 20 patients with AR and 16 healthy donors was used to investigate the frequency of CD4+CD25+ and CD4+CD25hi Treg cells using flow cytometry. In addition, serum total IgE (IU/mL) levels were determined using enzyme-linked immunosorbent assays. Results: Patients with AR had fewer CD4+CD25+ Treg cells (2.80 ± 1.36% vs. 3.94 ± 0.97%, P < 0.01) and CD4+CD25hi TRegs (1.53 ± 0·62% vs. 2.00 ± 0.52%, P < 0.05) than control subjects. The number of CD4+CD25+ and CD4+CD25hi TRegs was correlated negatively with total immunoglobulin E levels (r = –0.79, P < 0.01 and r = –0.61, P < 0.01, respectively). Conclusion: Deficient regulatory T cells might play a role in the development of AR.
Collapse
|
36
|
Kouzegaran S, Zamani MA, Faridhosseini R, Rafatpanah H, Rezaee A, Yousefzadeh H, Movahed R, Azad FJ, Tehrani H. Immunotherapy in Allergic Rhinitis: It's Effect on the Immune System and Clinical Symptoms. Open Access Maced J Med Sci 2018; 6:1248-1252. [PMID: 30087730 PMCID: PMC6062272 DOI: 10.3889/oamjms.2018.264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/26/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND: Allergic rhinitis is one of the most common allergic diseases and characterised by sneezing, rhinorrhea, nasal congestion and nasopharyngeal itching. Subcutaneous immunotherapy (SCIT) for specific allergens is an effective treatment and induces the inhibitory effect of T regulatory lymphocytes and decreases clinical symptoms in allergic rhinitis. AIM: In this study effect of subcutaneous immunotherapy with specific allergens on clinical symptoms and T regulatory and T Helper cells cytokines, in patients with allergic rhinitis are evaluated. METHODS: In this study, 30 patients with moderate to severe allergic rhinitis according to clinical criteria and positive skin prick test for aeroallergens were selected and treated by SCIT. Clinical symptoms and T cells cytokines IL4, IL17, IFN gamma, TGF beta, GITR, FOXP3 and IL-10 (by RT-PCR) were evaluated before and one year after initiation of treatment. RESULTS: Thirty (30) patients with allergic rhinitis at age range 15-45 years old were treated by SCIT, and 23 (14 female, 9 male) patients continued the study, and 7 patients did not continue treatment. After immunotherapy, clinical symptoms decreased significantly. The specific cytokines TGF beta and IL10 levels increased and changes were statistically significant. (Respectively P = 0.013 and P = 0.05) The IL17 level was also increased, but not statistically significant. (P = 0.8) IFN gamma, IL4, GITR, FOXP3, all decreased, but the changes were not statistically significant (P > 0.05). CONCLUSION: Subcutaneous Immunotherapy for specific allergens decreases clinical symptoms in patients with allergic rhinitis and induces tolerance in T lymphocytes, especially by increasing T regulatory cells cytokines, TGF beta and IL10.
Collapse
Affiliation(s)
- Samaneh Kouzegaran
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Zamani
- Pediatric Department, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Faridhosseini
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolrahim Rezaee
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadis Yousefzadeh
- Immunology Research Center, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahman Movahed
- Otorhinolaryngology-Head & Neck Surgery, Sinus and Surgical Endoscopic Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahzad Jabbari Azad
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Tehrani
- Allergy Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Gamazo C, D'Amelio C, Gastaminza G, Ferrer M, Irache JM. Adjuvants for allergy immunotherapeutics. Hum Vaccin Immunother 2018; 13:2416-2427. [PMID: 28825867 DOI: 10.1080/21645515.2017.1348447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Allergic diseases are reaching epidemic proportions in developed countries. In particular, food allergy is increasing in prevalence and severity, thus becoming an important socioeconomic burden. Numerous cell types and cell populations, which form an intricate and balanced network, are involved in an immune response. This balance is occasionally disturbed, leading to the onset of different diseases, such as allergic diseases. Antihistamines and corticosteroids provide some degree of relief from the symptoms of allergic conditions. However, the only treatment that can revert the disease is immunotherapy. Nevertheless, specific immunotherapy has at least 2 major drawbacks: it is time-consuming, and it can produce local and even systemic allergic side effects. Immunotherapy's potential goes beyond our current knowledge of the immune response; nevertheless, we can still design strategies to reach a safer immune modulation for treating allergies. This review deals with the use of adjuvants to reduce the undesirable side effects associated with specific allergen immunotherapy. For example, nanoparticles used as immunoadjuvants are offering promising results in preclinical assays.
Collapse
Affiliation(s)
- Carlos Gamazo
- a Dept. Microbiology , Instituto de Investigación Sanitaria de Navarra (Idisna), University of Navarra , Pamplona , Spain
| | - Carmen D'Amelio
- b Department of Allergology and Clinical Immunology , Clínica Universidad de Navarra-Pamplona , Pamplona , Spain
| | - Gabriel Gastaminza
- c Department of Allergology and Clinical Immunology , Clínica Universidad de Navarra-Pamplona , Pamplona , Spain
| | - Marta Ferrer
- d Department of Allergology and Clinical Immunology , Clínica Universidad de Navarra-Pamplona , Pamplona , Spain
| | - Juan M Irache
- e Dept. Pharmacy and Pharmaceutical Technology , University of Navarra , Pamplona , Spain
| |
Collapse
|
39
|
Poly(anhydride) nanoparticles containing cashew nut proteins can induce a strong Th1 and Treg immune response after oral administration. Eur J Pharm Biopharm 2018; 127:51-60. [DOI: 10.1016/j.ejpb.2018.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
|
40
|
Borlée F, Yzermans CJ, Krop EJM, Maassen CBM, Schellevis FG, Heederik DJJ, Smit LAM. Residential proximity to livestock farms is associated with a lower prevalence of atopy. Occup Environ Med 2018; 75:453-460. [DOI: 10.1136/oemed-2017-104769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 11/03/2022]
Abstract
ObjectivesExposure to farm environments during childhood and adult life seems to reduce the risk of atopic sensitisation. Most studies have been conducted among farmers, but people living in rural areas may have similar protective effects for atopy. This study aims to investigate the association between residential proximity to livestock farms and atopy among non-farming adults living in a rural area in the Netherlands.MethodsWe conducted a cross-sectional study among 2443 adults (20–72 years). Atopy was defined as specific IgE to common allergens and/or total IgE ≥100 IU/mL. Residential proximity to livestock farms was assessed as 1) distance to the nearest pig, poultry, cattle or any farm, 2) number of farms within 500 m and 1000 m, and 3) modelled annual average fine dust emissions from farms within 500 m and 1000 m. Data were analysed with multiple logistic regression and generalised additive models.ResultsThe prevalence of atopy was 29.8%. Subjects living at short distances from farms (<327 m, first tertile) had a lower odds for atopy compared with subjects living further away (>527 m, third tertile) (OR 0.79, 95% CI 0.63 to 0.98). Significant associations in the same direction were found with distance to the nearest pig or cattle farm. The associations between atopy and livestock farm exposure were somewhat stronger in subjects who grew up on a farm.ConclusionsLiving in close proximity to livestock farms seems to protect against atopy. This study provides evidence that protective effects of early-life and adult farm exposures may extend beyond farming populations.
Collapse
|
41
|
Chaker AM. [Biologics in Rhinology - Forthcoming Personalized Concepts: the Future Starts Today]. Laryngorhinootologie 2018; 97:S142-S184. [PMID: 29905356 PMCID: PMC6541111 DOI: 10.1055/s-0043-123484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinunasale Erkrankungen zählen mit zu den häufigsten chronischen Erkrankungen und führen zu einer erheblichen Störung der Lebensqualität, ein komorbides Asthma ist häufig. Trotz leitliniengerechter Therapie ist anzunehmen, dass mind. 20% der Patienten ihre Erkrankungssymptome nicht adäquat kontrollieren können. Neben den etablierten chirurgischen und konservativen Therapieoptionen finden sich nun vielversprechende Therapieansätze, die bspw. mittels therapeutischer Antikörper mechanistisch gezielt in die Pathophysiologie der Erkrankungen eingreifen können. Die Auswahl der geeigneten Patienten durch geeignete Biomarker und die richtige Therapie zum richtigen Stadium der Erkrankung anbieten zu können, ist das Ziel stratifizierter Medizin und eine wichtige Perspektive für die HNO.Chronic diseases of the nose and the paranasal sinuses are most common, frequently associated with bronchial asthma, and result in substantial reduction of quality of life. Despite optimal treatment according to guidelines, approx. 20 % of the patients will report inadequate control of symptoms. Apart from well established surgical and conservative approaches in therapy new therapeutic antibodies are available that aim specifically pathophysiological targets. The optimal allocation of effective therapy for patients using appropriate biomarkers at the most suitable timepoint is the hallmark of stratified medicine and an important perspective in ENT.
Collapse
Affiliation(s)
- Adam M. Chaker
- Klinik für Hals-Nasen-Ohrenheilkunde und Zentrum für Allergie und Umwelt, Klinikum rechts der Isar, Technische Universität München
| |
Collapse
|
42
|
Pavlova KS, Kurbacheva OM, Galitskaya MA, Smirnov DS. ACTUAL CONCEPTION OF ALLERGEN-SPECIFIC IMMUNOTHERAPY MECHANISMS, POTENTIAL BIOMARKERS OF EFFICACY AND WAYS OF ENHANCEMENT. ACTA ACUST UNITED AC 2017. [DOI: 10.36691/rja290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The article analyzes international position papers on the allergen-specific immunotherapy mechanisms, discusses potential biomarkers for evaluation of ASIT efficacy, as well as the perspectives for ASIT enhancement.
Collapse
|
43
|
Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev 2017; 16:1209-1218. [PMID: 29037907 DOI: 10.1016/j.autrev.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Interleukin-22 (IL22) is one of the members of IL10 family. Elevated levels of this cytokine can be seen in diseases caused by T lymphocytes, such as Psoriasis, Rheumatoid arthritis, interstitial lung diseases. IL22 is produced by different cells in both innate and acquired immunities. Different types of T cells are able to produce IL22, but the major IL22-producing T-cell is the TCD4. TH22 cell is a new line of TCD4 cells, which differentiated from naive T cells in the presence of TNFα and IL6; 50% of peripheral blood IL22 is produced by these cells. IL22 has important functions in host defense at mucosal surfaces as well as in tissue repair. In this review, we assess the current understanding of this cytokine and focus on the possible roles of IL-22 in autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Blood Borne Infections Research Center, AcademicCenter for Education, Culture and Research (ACECR), Razavi Khorasan Branch,Mashhad, Iran
| | - Jamshid Gholizadeh Navashenaq
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical sciencesfaculty, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mohammadi
- ImmunologyResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- BiotechnologyResearch Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Gupta RK, Raghav A, Sharma A, Gupta K, Neelabh, Mandal P, Tripathi A, Ansari IA, Das M, Dwivedi PD. Glycation of clinically relevant chickpea allergen attenuates its allergic immune response in Balb/c mice. Food Chem 2017; 235:244-256. [DOI: 10.1016/j.foodchem.2017.05.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 01/11/2023]
|
45
|
The Current State of Epicutaneous Immunotherapy for Food Allergy: a Comprehensive Review. Clin Rev Allergy Immunol 2017; 55:153-161. [DOI: 10.1007/s12016-017-8650-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
|
47
|
Skuljec J, Chmielewski M, Happle C, Habener A, Busse M, Abken H, Hansen G. Chimeric Antigen Receptor-Redirected Regulatory T Cells Suppress Experimental Allergic Airway Inflammation, a Model of Asthma. Front Immunol 2017; 8:1125. [PMID: 28955341 PMCID: PMC5600908 DOI: 10.3389/fimmu.2017.01125] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 08/28/2017] [Indexed: 01/31/2023] Open
Abstract
Cellular therapy with chimeric antigen receptor (CAR)-redirected cytotoxic T cells has shown impressive efficacy in the treatment of hematologic malignancies. We explored a regulatory T cell (Treg)-based therapy in the treatment of allergic airway inflammation, a model for asthma, which is characterized by an airway hyper-reactivity (AHR) and a chronic, T helper-2 (Th2) cell-dominated immune response to allergen. To restore the immune balance in the lung, we redirected Tregs by a CAR toward lung epithelia in mice upon experimentally induced allergic asthma, closely mimicking the clinical situation. Adoptively transferred CAR Tregs accumulated in the lung and in tracheobronchial lymph nodes, reduced AHR and diminished eosinophilic airway inflammation, indicated by lower cell numbers in the bronchoalveolar lavage fluid and decreased cell infiltrates in the lung. CAR Treg cells furthermore prevented excessive pulmonary mucus production as well as increase in allergen-specific IgE and Th2 cytokine levels in exposed animals. CAR Tregs were more efficient in controlling asthma than non-modified Tregs, indicating the pivotal role of specific Treg cell activation in the affected organ. Data demonstrate that lung targeting CAR Treg cells ameliorate key features of experimental airway inflammation, paving the way for cell therapy of severe allergic asthma.
Collapse
Affiliation(s)
- Jelena Skuljec
- Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Markus Chmielewski
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Clinic I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Christine Happle
- Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Anika Habener
- Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Mandy Busse
- Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Clinic I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Gesine Hansen
- Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
48
|
Sampath V, Tupa D, Graham MT, Chatila TA, Spergel JM, Nadeau KC. Deciphering the black box of food allergy mechanisms. Ann Allergy Asthma Immunol 2017; 118:21-27. [PMID: 28007085 DOI: 10.1016/j.anai.2016.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To review our current understanding of immunotherapy, the immune mechanisms underlying food allergy, and the methodological advances that are furthering our understanding of the role of immune cells and other molecules in mediating food allergies. DATA SOURCES Literature searches were performed using the following combination of terms: allergy, immunotherapy, food, and mechanisms. Data from randomized clinical studies using state-of-the-art mechanistic tools were prioritized. STUDY SELECTIONS Articles were selected based on their relevance to food allergy. RESULTS Current standard of care for food allergies is avoidance of allergenic foods and the use of epinephrine in case of severe reaction during unintentional ingestion. During the last few decades, great strides have been made in understanding the cellular and molecular mechanisms underlying food allergy, and this information is spearheading the development of exciting new treatments. CONCLUSION Immunotherapy protocols are effective in desensitizing individuals to specific allergens; however, recurrence of allergic sensitization is common after discontinuation of therapy. Interestingly, in a subset of individuals, immunotherapy is protective against allergens even after discontinuation of immunotherapy. Whether this protection is permanent is currently unknown because of inadequate long-term follow-up data. Research on understanding the underlying mechanisms may assist in modifying protocols to improve outcome and enable sustained unresponsiveness, rather than a temporary relief against food allergies. The cellular changes brought about by immunotherapy are still a black box, but major strides in our understanding are being made at an exciting pace.
Collapse
Affiliation(s)
- Vanitha Sampath
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California
| | - Dana Tupa
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California
| | - Michelle Toft Graham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Jonathan M Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kari C Nadeau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
49
|
Chiang CY, Lee CC, Fan CK, Huang HM, Chiang BL, Lee YL. Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function. Cell Mol Immunol 2017; 14:cmi201771. [PMID: 28782757 PMCID: PMC5675958 DOI: 10.1038/cmi.2017.71] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Osthole, an active component of Chinese herbal medicines, reportedly possesses various pharmacological properties and has potential therapeutic applications. This study explored the anti-allergic effects of osthole in asthmatic mice and investigated the immunomodulatory actions of osthole on dendritic cells (DCs) and T cells. Herein, we show that oral administration of osthole to BALB/c mice after ovalbumin (OVA) sensitization ameliorated all of the cardinal features of T helper 2 (Th2)-mediated allergic asthma; namely, the production of OVA-specific immunoglobulin E, airway hyperresponsiveness, airway inflammation and the production of Th2-type cytokines including interleukin (IL)-4, IL-5 and IL-13. Surprisingly, IL-10 production was not inhibited and was even enhanced by osthole treatment. We observed a significant increase in the percentages of IL-10-producing DCs and forkhead box P3-positive regulatory T (Treg) cells in osthole-treated asthmatic mice. Additionally, in vitro analyses revealed that osthole-treated bone-marrow-derived DCs had a partial maturation phenotype, secreting large amounts of IL-10 and low levels of proinflammatory cytokines, such as IL-12, IL-6 and tumor necrosis factor-α, and displaying reduced levels of MHC class II surface molecules. These DCs displayed immunosuppressive capacity by directly inhibiting effector T-cell responses or inducing Treg cells. In addition, osthole directly inhibited the activated CD4+ T-cell proliferation and Th1/Th2-type cytokine production in this system. Collectively, these results suggest that DCs and T cells are potential target cells responsible for the action of osthole against allergic asthma.Cellular &Molecular Immunology advance online publication, 7 August 2017; doi:10.1038/cmi.2017.71.
Collapse
Affiliation(s)
- Chen-Yuan Chiang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan, China
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, China
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan, China
| | - Chia-Kwung Fan
- Department of Parasitology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, China
| | - Huei-Mei Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, China
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10048, Taiwan, China
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, China
| |
Collapse
|
50
|
The effects of early life adversity on the immune system. Psychoneuroendocrinology 2017; 82:140-154. [PMID: 28549270 DOI: 10.1016/j.psyneuen.2017.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/23/2022]
Abstract
Early life adversity (ELA) is associated with a higher risk for diseases in adulthood. Although the pathophysiological effects of ELA are varied, there may be a unifying role for the immune system in all of the long-term pathologies such as chronic inflammatory disorders (autoimmune diseases, allergy, and asthma). Recently, significant efforts have been made to elucidate the long-term effects ELA has on immune function, as well as the mechanisms underlying these immune changes. In this review, we focus on data from human studies investigating immune parameters in relation to post-natal adverse experiences. We describe the current understanding of the 'ELA immune phenotype', characterized by inflammation, impairment of the cellular immune system, and immunosenescence. However, at present, data addressing specific immune functions are limited and there is a need for high-quality, well powered, longitudinal studies to unravel cause from effect. Besides the immune system, also the stress system and health behaviors are altered in ELA. We discuss probable underlying mechanisms based on epigenetic programming that could explain the ELA immune phenotype and whether this is a direct effect of immune programming or an indirect consequence of changes in behavior or stress reactivity. Understanding the underlying mechanisms will help define effective strategies to prevent or counteract negative ELA-associated outcomes.
Collapse
|