1
|
Guo J, Wang L, Han N, Yuan C, Yin Y, Wang T, Sun J, Jin P, Liu Y, Jia Z. People are an organic unity: Gut-lung axis and pneumonia. Heliyon 2024; 10:e27822. [PMID: 38515679 PMCID: PMC10955322 DOI: 10.1016/j.heliyon.2024.e27822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
People are an organic unity. Every organ of our body doesn't exist alone. They are a part of our body and have important connections with other tissues or organs. The gut-lung axis is a typical example. Here, we reviewed the current research progress of the gut-lung axis. The main cross-talk between the intestine and lungs was sorted out, i.e. the specific interaction content contained in the gut-lung axis. We determine a relatively clear concept for the gut-lung axis, that is, the gut-lung axis is a cross-talk that the gut and lungs interact with each other through microorganisms and the immune system to achieve bidirectional regulation. The gut and lungs communicate with each other mainly through the immune system and symbiotic microbes, and these two pathways influence each other. The portal vein system and mesenteric lymphatics are the primary communication channels between the intestine and lungs. We also summarized the effects of pneumonia, including Coronavirus disease 2019 (COVID-19) and Community-Acquired Pneumonia (CAP), on intestinal microbes and immune function through the gut-lung axis, and discussed the mechanism of this effect. Finally, we explored the value of intestinal microbes and the gut-lung axis in the treatment of pneumonia through the effect of intestinal microbes on pneumonia.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Ningxin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
| | - Yujie Yin
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Tongxing Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Peipei Jin
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, Hebei, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, Hebei, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Key Laboratory of State Administration of Traditional Chinese Medicine (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, 050035, Hebei, China
| |
Collapse
|
2
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
3
|
Deng X, Wang Y, Jiang L, Li J, Chen Q. Updates on immunological mechanistic insights and targeting of the oral lichen planus microenvironment. Front Immunol 2023; 13:1023213. [PMID: 36700192 PMCID: PMC9870618 DOI: 10.3389/fimmu.2022.1023213] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic immune inflammatory disease that is an oral potentially malignant disorder (OPMD), occurs in the oral mucosa and affects approximately 0.5% to 4% of the general population. There are usually five types of OLP: reticular/papular, plaque-like, atrophic/erythematous, erosive/ulcerative, and bullous. Furthermore, the chance of causing oral squamous cell carcinoma (OSCC) is 1.4%. Although the etiology of OLP is still unknown, accumulating evidence supports that immune dysregulation may play a vital role in the pathogenesis of OLP, especially the massive production of various inflammatory cells and inflammatory mediators. In this review, we focus on the relationship between OLP and its immune microenvironment. We summarize current developments in the immunology of OLP, summarizing functional cell types and crucial cytokines in the OLP immune microenvironment and the underlying mechanisms of key signaling pathways in the OLP immune microenvironment. We highlight the application potential of targeted immune microenvironment therapy for OLP.
Collapse
Affiliation(s)
| | | | - Lu Jiang
- *Correspondence: Jing Li, ; Lu Jiang,
| | - Jing Li
- *Correspondence: Jing Li, ; Lu Jiang,
| | | |
Collapse
|
4
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
5
|
Sankar S, Ganesh PS, Subramaniam S, Shankar EM, Yuwanati M, Govindasamy R, Thiruvengadam M. Host cell responses against the pseudomonal biofilm: A continued tale of host-pathogen interactions. Microb Pathog 2023; 174:105940. [PMID: 36513294 DOI: 10.1016/j.micpath.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In biofilm formation, pathogens within the bacterial community coordinate a cell-cell communication system called quorum sensing (QS). This is achieved through various signalling pathways that regulate bacterial virulence and host immune response. Here, we reviewed the host responses, key clinical implications, and novel therapeutic approaches against the biofilms of P. aeruginosa. Given the high degree of intrinsic antibiotic resistance and biofilm formation by the pathogen, the ensuing treatment complications could result in high morbidity and mortality rates worldwide. Notwithstanding the availability of intervention strategies, there remains a paucity of effective therapeutic options to control biofilmogenesis. This review discusses the basic understanding of QS-associated virulence factors and several key therapeutic interventions to foil the biofilm menace of P. aeruginosa.
Collapse
Affiliation(s)
- Sathish Sankar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India.
| | - Suganya Subramaniam
- Department of Biotechnology, MMES Women's Arts and Science College, Melvisharam, 632 509, Tamil Nadu, India
| | - Esaki M Shankar
- Infection and Inflammation, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, 610 005, Tamil Nadu, India
| | - Monal Yuwanati
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, 600 077, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
6
|
Ortiz-López N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol 2022; 13:954869. [PMID: 36300120 PMCID: PMC9589255 DOI: 10.3389/fimmu.2022.954869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous disorder considered a liver-damaging manifestation of metabolic syndrome. Its prevalence has increased in the last decades due to modern-day lifestyle factors associated with overweight and obesity, making it a relevant public health problem worldwide. The clinical progression of NAFLD is associated with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). As such, diverse pharmacological strategies have been implemented over the last few years, principally focused on metabolic pathways involved in NAFLD progression. However, a variable response rate has been observed in NAFLD patients, which is explained by the interindividual heterogeneity of susceptibility to liver damage. In this scenario, it is necessary to search for different therapeutic approaches. It is worth noting that chronic low-grade inflammation constitutes a central mechanism in the pathogenesis and progression of NAFLD, associated with abnormal composition of the intestinal microbiota, increased lymphocyte activation in the intestine and immune effector mechanisms in liver. This review aims to discuss the current knowledge about the role of the immune response in NAFLD development. We have focused mainly on the impact of altered gut-liver-microbiota axis communication on immune cell activation in the intestinal mucosa and the role of subsequent lymphocyte homing to the liver in NAFLD development. We further discuss novel clinical trials that addressed the control of the liver and intestinal immune response to complement current NAFLD therapies.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Fuenzalida
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Araceli Pinto-León
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Federica R, Edda R, Daniela R, Simone B, Giulia N, Gabriele L, Marta M, Marco P, Gianluca B, Elena N, Matteo C, Serena S, Matteo R, Amedeo A, Salvatore CA. Characterization of the “gut microbiota-immunity axis” and microbial lipid metabolites in atrophic and potential celiac disease. Front Microbiol 2022; 13:886008. [PMID: 36246269 PMCID: PMC9561818 DOI: 10.3389/fmicb.2022.886008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Potential celiac disease (pCD) is characterized by genetic predisposition, positive anti-endomysial and anti-tissue transglutaminase antibodies, but a normal or almost normal jejunal mucosa (e.g., minor histological abnormalities without villous atrophy). To gain further insights into basic mechanisms involved in the development of intestinal villous atrophy, we evaluated and compared the microbial, lipid, and immunological signatures of pCD and atrophic CD (aCD). Materials and methods This study included 17 aCD patients, 10 pCD patients, and 12 healthy controls (HC). Serum samples from all participants were collected to analyze free fatty acids (FFAs). Duodenal mucosa samples of aCD and pCD patients were taken to evaluate histology, tissue microbiota composition, and mucosal immune response. Results We found no significant differences in the mucosa-associated microbiota composition of pCD and aCD patients. On the other hand, in pCD patients, the overall abundance of serum FFAs showed relevant and significant differences in comparison with aCD patients and HC. In detail, compared to HC, pCD patients displayed higher levels of propionic, butyric, valeric, 2-ethylhexanoic, tetradecanoic, hexadecanoic, and octadecanoic acids. Instead, aCD patients showed increased levels of propionic, isohexanoic, and 2-ethylhexanoic acids, and a lower abundance of isovaleric and 2-methylbutyricacids when compared to HC. In addition, compared to aCD patients, pCD patients showed a higher abundance of isobutyric and octadecanoic acid. Finally, the immunological analysis of duodenal biopsy revealed a lower percentage of CD4+ T lymphocytes in pCD infiltrate compared to that observed in aCD patients. The functional characterization of T cells documented a pro-inflammatory immune response in both aCD and pCD patients, but the pCD patients showed a higher percentage of Th0/Th17 and a lower percentage of Th1/Th17. Conclusion The results of the present study show, for the first time, that the duodenal microbiota of patients with pCD does not differ substantially from that of aCD; however, serum FFAs and local T cells displayed a distinctive profile between pCD, aCD, and HC. In conclusion, our result may help to shed new light on the “gut microbiota-immunity axis,” lipid metabolites, and duodenal immune response in overt CD and pCD patients, opening new paradigms in understanding the pathogenesis behind CD progression.
Collapse
Affiliation(s)
- Ricci Federica
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Russo Edda
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Renzi Daniela
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Baldi Simone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nannini Giulia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lami Gabriele
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| | - Menicatti Marta
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), Florence, Italy
| | - Pallecchi Marco
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), Florence, Italy
| | - Bartolucci Gianluca
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), Florence, Italy
| | - Niccolai Elena
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cerboneschi Matteo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Smeazzetto Serena
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ramazzotti Matteo
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Florence, Italy
| | - Amedei Amedeo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Amedei Amedeo,
| | - Calabrò Antonino Salvatore
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio” University of Florence, Tuscany Regional Referral Center for Adult Celiac Disease, Florence, Italy
| |
Collapse
|
8
|
Garo LP, Ajay AK, Fujiwara M, Gabriely G, Raheja R, Kuhn C, Kenyon B, Skillin N, Kadowaki-Saga R, Saxena S, Murugaiyan G. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat Commun 2021; 12:2419. [PMID: 33893298 PMCID: PMC8065171 DOI: 10.1038/s41467-021-22641-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation can drive tumor development. Here, we have identified microRNA-146a (miR-146a) as a major negative regulator of colonic inflammation and associated tumorigenesis by modulating IL-17 responses. MiR-146a-deficient mice are susceptible to both colitis-associated and sporadic colorectal cancer (CRC), presenting with enhanced tumorigenic IL-17 signaling. Within myeloid cells, miR-146a targets RIPK2, a NOD2 signaling intermediate, to limit myeloid cell-derived IL-17-inducing cytokines and restrict colonic IL-17. Accordingly, myeloid-specific miR-146a deletion promotes CRC. Moreover, within intestinal epithelial cells (IECs), miR-146a targets TRAF6, an IL-17R signaling intermediate, to restrict IEC responsiveness to IL-17. MiR-146a within IECs further suppresses CRC by targeting PTGES2, a PGE2 synthesis enzyme. IEC-specific miR-146a deletion therefore promotes CRC. Importantly, preclinical administration of miR-146a mimic, or small molecule inhibition of the miR-146a targets, TRAF6 and RIPK2, ameliorates colonic inflammation and CRC. MiR-146a overexpression or miR-146a target inhibition represent therapeutic approaches that limit pathways converging on tumorigenic IL-17 signaling in CRC.
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Amrendra K Ajay
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Fujiwara
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brendan Kenyon
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathaniel Skillin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ryoko Kadowaki-Saga
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, Baghi HB. The role of Th17 cells in viral infections. Int Immunopharmacol 2021; 91:107331. [PMID: 33418239 DOI: 10.1016/j.intimp.2020.107331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, ZIP Code 14155 Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran.
| |
Collapse
|
10
|
Grayson JW, Hopkins C, Mori E, Senior B, Harvey RJ. Contemporary Classification of Chronic Rhinosinusitis Beyond Polyps vs No Polyps. JAMA Otolaryngol Head Neck Surg 2020; 146:831-838. [DOI: 10.1001/jamaoto.2020.1453] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jessica W. Grayson
- Department of Otolaryngology–Head and Neck Surgery, University of Alabama at Birmingham
| | - Claire Hopkins
- Department of Otolaryngology, Guy’s Hospital, London, United Kingdom
| | - Eri Mori
- Department of Otorhinolaryngology–Head and Neck Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Brent Senior
- Department of Otolaryngology–Head and Neck Surgery, University of North Carolina at Chapel Hill
| | - Richard J. Harvey
- Rhinology and Skull Base Research Group, St Vincent’s Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia
- Department of Otolaryngology, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
12
|
Walker EM, Slisarenko N, Gerrets GL, Kissinger PJ, Didier ES, Kuroda MJ, Veazey RS, Jazwinski SM, Rout N. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. GeroScience 2019; 41:739-757. [PMID: 31713098 PMCID: PMC6925095 DOI: 10.1007/s11357-019-00099-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The development of chronic inflammation, called inflammaging, contributes to the pathogenesis of age-related diseases. Although it is known that both B and T lymphocyte compartments of the adaptive immune system deteriorate with advancing age, the impact of aging on immune functions of Th17-type CD161-expressing innate immune cells and their role in inflammaging remain incompletely understood. Here, utilizing the nonhuman primate model of rhesus macaques, we report that a dysregulated Th17-type effector function of CD161+ immune cells is associated with leaky gut and inflammatory phenotype of aging. Higher plasma levels of inflammatory cytokines IL-6, TNF-α, IL-1β, GM-CSF, IL-12, and Eotaxin correlated with elevated markers of gut permeability including LPS-binding protein (LBP), intestinal fatty acid binding protein (I-FABP), and sCD14 in aging macaques. Further, older macaques displayed significantly lower frequencies of circulating Th17-type immune cells comprised of CD161+ T cell subsets, NK cells, and innate lymphoid cells. Corresponding with the increased markers of gut permeability, production of the type-17 cytokines IL-17 and IL-22 was impaired in CD161+ T cell subsets and NK cells, along with a skewing towards IFN-γ cytokine production. These findings suggest that reduced frequencies of CD161+ immune cells along with a specific loss in Th17-type effector functions contribute to impaired gut barrier integrity and systemic inflammation in aging macaques. Modulating type-17 immune cell functions via cytokine therapy or dietary interventions towards reducing chronic inflammation in inflammaging individuals may have the potential to prevent or delay age-related chronic diseases and improve immune responses in the elderly population.
Collapse
Affiliation(s)
- Edith M Walker
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Giovanni L Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Patricia J Kissinger
- School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Elizabeth S Didier
- Center for Comparative Medicine and California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Marcelo J Kuroda
- Center for Comparative Medicine and California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - Ronald S Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | | | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
13
|
Vitale S, Santarlasci V, Camarca A, Picascia S, Pasquale AD, Maglio M, Maggi E, Cosmi L, Annunziato F, Troncone R, Auricchio R, Gianfrani C. The intestinal expansion of TCRγδ + and disappearance of IL4 + T cells suggest their involvement in the evolution from potential to overt celiac disease. Eur J Immunol 2019; 49:2222-2234. [PMID: 31553811 DOI: 10.1002/eji.201948098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Celiac disease (CD) is characterized by a spectrum of intestinal inflammatory lesions. Most patients have villous atrophy (overt-CD), while others have a morphologically normal mucosa, despite the presence of CD-specific autoantibodies (potential-CD). As the mechanism responsible for villous atrophy is not completely elucidated, we investigated biomarkers specific for the different celiac lesions. Phenotype and cytokine production of intestinal mucosa cells were analyzed by flow cytometry in gut biopsies of children with overt- or potential-CD and in healthy controls. Density of TCRγδ+ T cells was found markedly enhanced in intestinal mucosa of children with overt-CD compared to potential-CD or controls. By contrast, very few IL4+ T cells infiltrated the mucosa with villous atrophy compared to morphologically normal mucosa. IL4+ T cells were classical CD4+ T-helper cells (CD161- ), producing or not IFN-γ, and negative for IL17A. Our study demonstrated that the transition to villous atrophy in CD patients is characterized by increased density of TCRγδ+ T cells, and concomitant disappearance of IL4+ cells. These findings suggest that immunomodulatory mechanisms are active in potential-CD to counteract the inflammatory cascade responsible of villous atrophy. Further studies are required to validate the use of IL4+ and TCRγδ+ T cells as biomarkers of the different CD forms.
Collapse
Affiliation(s)
- Serena Vitale
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | | | | | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Di Pasquale
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Enrico Maggi
- Immunology Department, Pediatric Hospital Bambino Gesù, IRCCS, Rome
| | - Lorenzo Cosmi
- Denothe Center, University of Florence, Florence, Italy
| | | | - Riccardo Troncone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Translational Medicine & European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| |
Collapse
|
14
|
Novotny LA, Brockman KL, Mokrzan EM, Jurcisek JA, Bakaletz LO. Biofilm biology and vaccine strategies for otitis media due to nontypeable Haemophilus influenzae. J PEDIAT INF DIS-GER 2019; 14:69-77. [PMID: 30853830 PMCID: PMC6402341 DOI: 10.1055/s-0038-1660818] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Otitis media (OM) is one of the most common diseases of childhood, and nontypeable Haemophilus influenzae (NTHI) is the predominant causative agent of chronic and recurrent OM, as well as OM for which treatment has failed. Moreover, NTHI is now as important a causative agent of acute OM as the pneumococcus. NTHI colonizes the human nasopharynx asymptomatically. However, upon perturbation of the innate and physical defenses of the airway by upper respiratory tract viral infection, NTHI can replicate, ascend the Eustachian tube, gain access to the normally sterile middle ear space, and cause disease. Bacterial biofilms within the middle ear, including those formed by NTHI, contribute to the chronic and recurrent nature of this disease. These multicomponent structures are highly resistant to clearance by host defenses and elimination by traditional antimicrobial therapies. Herein, we review several strategies utilized by NTHI in order to persist within the human host and interventions currently under investigation to prevent and/or resolve NTHI-induced diseases of the middle ear and uppermost airway.
Collapse
Affiliation(s)
- Laura A Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elaine M Mokrzan
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph A Jurcisek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
15
|
Gameiro SF, Ghasemi F, Barrett JW, Koropatnick J, Nichols AC, Mymryk JS, Maleki Vareki S. Treatment-naïve HPV+ head and neck cancers display a T-cell-inflamed phenotype distinct from their HPV- counterparts that has implications for immunotherapy. Oncoimmunology 2018; 7:e1498439. [PMID: 30288365 PMCID: PMC6169583 DOI: 10.1080/2162402x.2018.1498439] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/13/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023] Open
Abstract
Cancers progress when the immune system fails to identify and eliminate malignant cells. Recognition of this, combined with advances in tumor immunology, has allowed development of therapies that induce effective anti-tumor immune responses. For incompletely-understood reasons, effective responses to immunotherapy occur in some patients and not others. Head and neck squamous cell carcinomas (HNSCC) are a common cancer type that can be divided into two subsets based on human papillomavirus (HPV) status. HPV status is a strong predictor of positive clinical outcome. Expression of exogenous viral antigens by HPV+, but not HPV-, HNSCC allows direct comparison of the immune status (immune cell presence and characteristics) between these two otherwise anatomically-similar tumors. Using TCGA data, we compared the immune landscape between HPV+ and HPV- treatment-naïve HNSCC. As compared to HPV- samples, HPV+ HNSCC exhibited a strong Th1 response characterized by increased infiltration with multiple types of immune cells and expression of their effector molecules. HPV+ HNSCC also expressed higher levels of CD39 and multiple T-cell exhaustion markers including LAG3, PD1, TIGIT, and TIM3 compared to HPV- HNSCC. Importantly, patients with higher expression of these exhaustion markers–indicative of a T-cell-inflamed tumor–correlated with markedly improved survival in HPV+, but not HPV-, HNSCC. Thus, profound differences exist between the immune landscape of HPV+ and HPV- HNSCC. These results suggest that immune checkpoint inhibitor therapy is a promising treatment strategy for HPV+ HNSCC, and that expression of immune checkpoint molecules could serve as a predictive biomarker of patient outcome in HPV+ HNSCC.
Collapse
Affiliation(s)
- Steven F Gameiro
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Farhad Ghasemi
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada
| | - John W Barrett
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada
| | - James Koropatnick
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,Department of Pathology, The University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Anthony C Nichols
- Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.,Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Saman Maleki Vareki
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
16
|
Sun J, Zhang H, Wang C, Yang M, Chang S, Geng Y, Yang H, Zhuang Z, Wang X, Xie L, Huang B, Zhao N, Zhou W, Cheng X, Cai B, Wu Q, Yu SG. Regulating the Balance of Th17/Treg via Electroacupuncture and Moxibustion: An Ulcerative Colitis Mice Model Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7296353. [PMID: 29391874 PMCID: PMC5748152 DOI: 10.1155/2017/7296353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023]
Abstract
AIM To investigate the relationship between the effects of electroacupuncture/moxibustion and the balance of Th17/Treg in treating ulcerative colitis (UC) and to preliminary compare the effects of the above two methods. METHODS DSS-induced UC mice were treated by electroacupuncture and moxibustion. Disease activity index (DAI) was scored; intestinal pathological structure and ultrastructure were observed. The levels of IL-2, IL-6, IL-10, IL-17A, IL-17F, and TGF-β in plasma were measured by ELISA. The percentages of Treg and Th17 in spleen lymphocytes were analyzed by flow cytometry. Also, the expressions of TLR2, TLR4, RORγt, and FOXP3 in the distal colon were detected by immunohistochemistry or western blot. RESULTS Both electroacupuncture and moxibustion can relieve UC. These effects are further supported by ELISA results. In addition, the ratio of Treg and Th17 in spleen lymphocytes and the expression of TLR2 and TLR4 are significantly improved. Also, the expression of RORγt and FOXP3 in distal colon were improved. Besides, the effect of moxibustion is better than that of electroacupuncture on TLR2, TLR4, and FOXP3 expression (P < 0.05). CONCLUSION Both electroacupuncture and moxibustion may ameliorate UC by regulating the balance of Th17/Treg. Whether moxibustion has better efficacy than electroacupuncture needs further study.
Collapse
Affiliation(s)
- Jungang Sun
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
- Sichuan Integrative Medicine Hospital, 4th Ren Ming Road, Sichuan 610041, China
| | - Hejiaozi Zhang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
- The First Affiliated Hospital of Chengdu Medical College, 278 Baoguang Avenue, Xindu District, Chengdu, Sichuan 610500, China
| | - Chengyulin Wang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Mingxiao Yang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shyang Chang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu Geng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Hui Yang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Zhiqi Zhuang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiang Wang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Lushuang Xie
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Biao Huang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Na Zhao
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Wei Zhou
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xinhui Cheng
- Dazhou Integrative Medicine Hospital, Dazhou, Sichuan 635000, China
| | - Bei Cai
- West China Hospital, Sichuan University, Chengdu, Sichuan 610014, China
| | - Qiaofeng Wu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Shu Guang Yu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| |
Collapse
|
17
|
A STAT3-dependent transcriptional circuitry inhibits cytotoxic gene expression in T cells. Proc Natl Acad Sci U S A 2017; 114:13236-13241. [PMID: 29180433 DOI: 10.1073/pnas.1711160114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD8+ T cells are preprogrammed for cytotoxic differentiation in the thymus as they acquire expression of the transcription factor Runx3. However, a subset of effector CD8+ T cells (Tc17) produce IL-17 and fail to express cytotoxic genes. Here, we show that the transcription factors directing IL-17 production, STAT3 and RORγt, inhibit cytotoxicity despite persistent Runx3 expression. Cytotoxic gene repression did not require the transcription factor Thpok, which in CD4+ T cells restrains Runx3 functions and cytotoxicity; and STAT3 restrained cytotoxic gene expression in CD8+ T cells responding to viral infection in vivo. STAT3-induced RORγt represses cytotoxic genes by inhibiting the functions but not the expression of the "cytotoxic" transcription factors T-bet and Eomesodermin. Thus, the transcriptional circuitry directing IL-17 expression inhibits cytotoxic functions. However, by allowing expression of activators of the cytotoxic program, this inhibitory mechanism contributes to the instability of IL-17-producing T cells.
Collapse
|
18
|
Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, Tang T, Xi T, Xing Y. Oral Helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm 2017; 111:33-43. [DOI: 10.1016/j.ejpb.2016.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
|
19
|
The Role of Interleukin-23 in the Early Development of Emphysema in HIV1(+) Smokers. J Immunol Res 2016; 2016:3463104. [PMID: 27446965 PMCID: PMC4942665 DOI: 10.1155/2016/3463104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/19/2016] [Indexed: 12/28/2022] Open
Abstract
Rationale. Matrix metalloproteinase-9 (MMP-9) expression is upregulated in alveolar macrophages (AM) of HIV1+ smokers who develop emphysema. Knowing that lung epithelial lining fluid (ELF) of HIV1+ smokers contains increased levels of inflammatory cytokines compared to HIV1− smokers, we hypothesized that upregulation of lung cytokines in HIV1+ smokers may be functionally related to increased MMP-9 expression. Methods. Cytokine arrays evaluated cytokine protein levels in ELF obtained from 5 groups of individuals: HIV1− healthy nonsmokers, HIV1− healthy smokers, HIV1− smokers with low diffusing capacity (DLCO), HIV1+ nonsmokers, and HIV1+ smokers with low DLCO. Results. Increased levels of the Th17 related cytokine IL-23 were found in HIV1− smokers with low DLCO and HIV1+ smokers and nonsmokers. Relative IL-23 gene expression was increased in AM of HIV1+ individuals, with greater expression in AM of HIV1+ smokers with low DLCO. Infection with HIV1 in vitro induced IL-23 expression in normal AM. IL-23 stimulation of AM/lymphocyte cocultures in vitro induced upregulation of MMP-9. Lung T lymphocytes express receptor IL-23R and interact with AM in order to upregulate MMP-9. Conclusion. This mechanism may contribute to the increased tissue destruction in the lungs of HIV1+ smokers and suggests that Th17 related inflammation may play a role.
Collapse
|
20
|
Roudsari MR, Karimi R, Sohrabvandi S, Mortazavian AM. Health effects of probiotics on the skin. Crit Rev Food Sci Nutr 2016; 55:1219-40. [PMID: 24364369 DOI: 10.1080/10408398.2012.680078] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin is the largest organ of the body and is constantly exposed to physical, chemical, bacterial, and fungal challenges. It is well known that probiotics are helpful for specific disorders and different clinical studies have indicated that probiotics have special effects in cutaneous apparatus directly or indirectly that can be considerable from versatile aspects. Probiotic bacteriotherapy can have great potential in preventing and treating the skin diseases including eczema, atopic dermatitis, acne, and allergic inflammation or in skin hypersensitivity, UV-induced skin damage, wound protection, and as a cosmetic product. The current paper comprehensively reviews the different health effects of probiotics on the skin.
Collapse
Affiliation(s)
- M Rahmati Roudsari
- a Skin Research Center , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | | | | | |
Collapse
|
21
|
Abstract
A recently described lineage of lymphocytes, Th17 cells, has been associated with inflammatory and autoimmune diseases. The aim of this article was to assess the immunoexpression of cytokines related to this lineage, interleukin-17 (IL-17) and IL-23 and in reticular and erosive oral lichen planus (OLP). The sample included 41 cases of OLP (23 reticular and 18 erosive) and 10 cases of inflammatory fibrous hyperplasia (IFH). Lymphocytes exhibiting cytoplasmic immunostaining were counted. Epithelial immunostaining was also evaluated. There was no statistical differences in the number of IL-17 and IL-23 lymphocytes between the OLP (55.40 and 48.40, respectively) and IFH (39.30 and 44.40, respectively). A significantly higher number of IL-23 lymphocytes was found in erosive OLP group (63.80) when compared with reticular (41.40) and IFH lesions (44.40) (P=0.019). Furthermore, epithelial immunopositivity for IL-17 and IL-23 was higher in OLP lesions than in IFH (P=0.012 and P=0.011, respectively). A significantly higher number of IL-23 lymphocytes in erosive OLP and the strong epithelial immunopositivity for IL-23 and IL-17 in OLP group could suggest an important participation of TCD4 Th17 response in this disorder.
Collapse
|
22
|
Wang H, Zhang D, Han Q, Zhao X, Zeng X, Xu Y, Sun Z, Chen Q. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med 2015; 45:385-93. [PMID: 26693958 DOI: 10.1111/jop.12405] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2015] [Indexed: 02/05/2023]
Abstract
Oral lichen planus (OLP) is one of the most common chronic inflammatory oral mucosal diseases with T-cell-mediated immune pathogenesis. In subepithelial and lamina propria of OLP local lesions, the presence of CD4(+) T helper (CD4(+) Th) cells appeared as the major lymphocytes. These CD4(+) T lymphocytes can differentiate into distinct Th cell types such as Th1, Th2, Treg, Th17, Th22, Th9, and Tfh within the context of certain cytokines environment. Growing evidence indicated that Th1/Th2 imbalance may greatly participate into the cytokine network of OLP immunopathology. In addition, Th1/Th2 imbalance can be regulated by the Treg subset and also greatly influenced by the emerging novel CD4(+) Th subset Th17. Furthermore, the presence of novel subsets Th22, Th9 and Tfh in OLP patients is yet to be clarified. All these Th subsets and their specific cytokines may play a critical role in determining the character, extent and duration of immune responses in OLP pathogenesis. Therefore, we review the roles of distinct CD4(+) Th subsets and their signature cytokines in determining disease severity and susceptibility of OLP and also reveal the novel therapeutic strategies based on T lymphocytes subsets in OLP treatment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dunfang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zheng Sun
- Department of Oral Medicine, School of Stomatology, Capital Medical University, Beijing, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Pichavant M, Sharan R, Le Rouzic O, Olivier C, Hennegrave F, Rémy G, Pérez-Cruz M, Koné B, Gosset P, Just N, Gosset P. IL-22 Defect During Streptococcus pneumoniae Infection Triggers Exacerbation of Chronic Obstructive Pulmonary Disease. EBioMedicine 2015; 2:1686-96. [PMID: 26870795 PMCID: PMC4740310 DOI: 10.1016/j.ebiom.2015.09.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1β and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1β and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation.
Collapse
Key Words
- AM, alveolar macrophages
- APC, antigen presenting cells
- BAL, broncho-alveolar lavage
- Bacterial infection
- CFU, colony forming unit
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- Chronic obstructive pulmonary disease
- DC, dendritic cells
- IL-22
- Innate immunity
- NK, natural killer cells
- NKT, natural killer T cells
- PBMC, peripheral blood mononuclear cells
- Sp, Streptococcus pneumoniae
Collapse
Affiliation(s)
- Muriel Pichavant
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Riti Sharan
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Olivier Le Rouzic
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
- Service de Pneumologie, Hôpital Calmette, CHRU, Lille, France
| | - Cécile Olivier
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
- Service de Pneumologie, Hôpital Calmette, CHRU, Lille, France
| | - Florence Hennegrave
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
- Service de Pneumologie, Hôpital Calmette, CHRU, Lille, France
| | - Gaëlle Rémy
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Magdiel Pérez-Cruz
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Bachirou Koné
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| | - Pierre Gosset
- Service d'Anatomo-Pathologie, Hôpital Saint Vincent de Paul, Lille, France
| | - Nicolas Just
- Service de Pneumologie, Hôpital Victor Provo, Roubaix, France
| | - Philippe Gosset
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France
- Université Lille Nord de France, F-59000 Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, F-59021 Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France
- Institut Fédératif de Recherche 142, F-59019 Lille, France
| |
Collapse
|
24
|
Reeves RK, Burgener A, Klatt NR. Targeting the gastrointestinal tract to develop novel therapies for HIV. Clin Pharmacol Ther 2015; 98:381-6. [PMID: 26179624 DOI: 10.1002/cpt.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 01/10/2023]
Abstract
Despite the use of antiretroviral therapy (ART), which delays and/or prevents AIDS pathogenesis, human immunodeficiency virus (HIV)-infected individuals continue to face increased morbidities and mortality rates compared with uninfected individuals. Gastrointestinal (GI) mucosal dysfunction is a key feature of HIV infection, and is associated with mortality. In this study, we review current knowledge about mucosal dysfunction in HIV infection, and describe potential avenues for therapeutic targets to enhance mucosal function and decrease morbidities and mortalities in HIV-infected individuals.
Collapse
Affiliation(s)
- R K Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - A Burgener
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Sweden
| | - N R Klatt
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.,Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
25
|
Dynamic control of Th2 cell responses by STAT3 during allergic lung inflammation in mice. Int Immunopharmacol 2015; 28:846-53. [PMID: 25871878 DOI: 10.1016/j.intimp.2015.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/28/2015] [Indexed: 01/03/2023]
Abstract
Signal transducer and activator of transcription (STAT) family molecules play essential roles during the differentiation of helper T cells from naïve precursors. Although the role of STAT3 in driving Th17 cell polarization has been well established, its role on Th2 responses to allergens remains incompletely understood. By employing T cell-specific STAT3 deficient mice, we demonstrate that STAT3 in T cells plays diverse role on Th2 cells depending on their locations in an animal model of allergic asthma. In the bronchial lymph nodes, STAT3-deficient T cells produced significantly reduced levels of Th2 cytokines. The frequencies of Th2 cells among CD4(+) T cells in the lung were comparable between STAT3-sufficient and STAT3-deficient T cells. By contrast, STAT3-deficient T cells in the airway exhibited significantly enhanced production of Th2 cell cytokines compared to STAT3-sufficient T cells. Interestingly, a major population of IL-4/5 producers among STAT3-deficient T cells in the airway co-produced IFNγ. The frequency of Th17 cells was significantly diminished whereas that of Th1 cells was increased in all the lung-associated tissues. Our results demonstrate the dynamic and opposing roles of STAT3 during the development of Th2 cells from bronchial lymph nodes to the airway and propose the need of careful consideration on STAT3-targeting approaches for the treatment of lung diseases.
Collapse
|
26
|
|
27
|
Luo Z, Wang H, Chen J, Kang J, Sun Z, Wu Y. Overexpression and Potential Regulatory Role of IL-17F in Pathogenesis of Chronic Periodontitis. Inflammation 2014; 38:978-86. [DOI: 10.1007/s10753-014-0060-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Lim H, Kim YU, Yun K, Drouin SM, Chung Y. Distinct regulation of Th2 and Th17 responses to allergens by pulmonary antigen presenting cells in vivo. Immunol Lett 2013; 156:140-8. [DOI: 10.1016/j.imlet.2013.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/02/2013] [Accepted: 10/14/2013] [Indexed: 01/13/2023]
|
29
|
Yin H, Li X, Zhang B, Liu T, Yuan B, Ni Q, Hu S, Gu H. Sirolimus ameliorates inflammatory responses by switching the regulatory T/T helper type 17 profile in murine colitis. Immunology 2013; 139:494-502. [PMID: 23480027 DOI: 10.1111/imm.12096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 12/29/2022] Open
Abstract
Inflammatory bowel disease is characterized by dysregulated immune responses in inflamed intestine, with dominance of interleukin-17 (IL-17)--producing cells and deficiency of regulatory T (Treg) cells. The aim of this study was to investigate the effect and mechanisms of sirolimus, an inhibitor of the mammalian target of rapamycin, on immune responses in a murine model of Crohn's disease. Murine colitis was induced by intrarectal administration of 2,4,6-trinitrobenzene sulphonic acid at day 0. Mice were then treated intraperitoneally with sirolimus daily for 3 days. The gross and histological appearances of the colon and the numbers, phenotype and cytokine production of lymphocytes were compared with these characteristics in a control group. Sirolimus treatment significantly decreased all macroscopic, microscopic and histopathological parameters of colitis that were analysed. The therapeutic effects of sirolimus were associated with a down-regulation of pro-inflammatory cytokines tumour necrosis factor-α, IL-6 and IL-17A. Intriguingly, sirolimus administration resulted in a prominent up-regulation of the regulatory cytokine transforming growth factor-β. Supporting the hypothesis that sirolimus directly affects the functional activity of CD4+ CD25+ Treg cells, we observed a remarkable enhancement of FoxP3 expression in colon tissues and isolated CD4+ T cells of sirolimus-treated mice. Simultaneously, sirolimus treatment led to a significant reduction in the number of CD4+ IL-17A+ T cells in the mesenteric lymph node cells as well as IL-17A production in mesenteric lymph node cells. Therefore, sirolimus may offer a promising new therapeutic strategy for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Loss and dysregulation of Th17 cells during HIV infection. Clin Dev Immunol 2013; 2013:852418. [PMID: 23762098 PMCID: PMC3677006 DOI: 10.1155/2013/852418] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/10/2013] [Indexed: 12/17/2022]
Abstract
Bacterial translocation across the damaged mucosal epithelium has emerged as a major paradigm for chronic immune activation observed during HIV infection. T helper 17 (Th17) cells are a unique lineage of T helper cells that are enriched in mucosal tissues and are thought to play a central role in protecting the integrity of the mucosal barrier and maintaining immune homeostasis at mucosal sites. Th17 cells are lost very early during the course of HIV infection, and their loss has been shown to correlate with bacterial translocation. Interestingly, Th17 cells are unable to completely recover from the early destruction even after successful antiretroviral therapy (ART). Here, we review some of the potential mechanisms for the loss and dysregulation of Th17 cells during HIV infection.
Collapse
|
31
|
Suppressed Th17 levels correlate with elevated PIAS3, SHP2, and SOCS3 expression in CD4 T cells during acute simian immunodeficiency virus infection. J Virol 2013; 87:7093-101. [PMID: 23596301 DOI: 10.1128/jvi.00600-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
T helper 17 (Th17) cells play an important role in mucosal immune homeostasis and maintaining the integrity of the mucosal epithelial barrier. Loss of Th17 cells has been extensively documented during human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. The lack of effective repopulation of Th17 cells has been associated with chronic immune activation mediated by the translocation of microbial products. Using ex vivo analysis of purified peripheral blood CD4 T cells from SIV-infected rhesus macaques, we show that the suppression of interleukin-17 (IL-17) expression correlated with upregulated expression of negative regulatory genes PIAS3, SHP2, and SOCS3 in CD4 T cells. Suppressed Th17 expression was accompanied by elevated levels of soluble CD14 (sCD14) and lipopolysaccharide binding protein (LBP) in the plasma during early stages of infection. Plasma viral loads rather than sCD14 or LBP levels correlated with acute immune activation. Additionally, we observed a significant increase in the expression of CD14 on peripheral blood monocytes that correlated with IL-23 expression and markers of microbial translocation. Taken together, our results provide new insights into the early events associated with acute SIV pathogenesis and suggest additional mechanisms playing a role in suppression of Th17 cells.
Collapse
|
32
|
Interaction Between Oral Lichen Planus and Chronic Periodontitis with Th17-Associated Cytokines in Serum. Inflammation 2013; 36:696-704. [DOI: 10.1007/s10753-013-9594-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Lim H, Kim YU, Drouin SM, Mueller-Ortiz S, Yun K, Morschl E, Wetsel RA, Chung Y. Negative regulation of pulmonary Th17 responses by C3a anaphylatoxin during allergic inflammation in mice. PLoS One 2012; 7:e52666. [PMID: 23285141 PMCID: PMC3527591 DOI: 10.1371/journal.pone.0052666] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/20/2012] [Indexed: 12/14/2022] Open
Abstract
Activation of complement is one of the earliest immune responses to exogenous threats, resulting in various cleavage products including anaphylatoxin C3a. In addition to its contribution to host defense, C3a has been shown to mediate Th2 responses in animal models of asthma. However, the role of C3a on pulmonary Th17 responses during allergic inflammation remains unclear. Here, we show that mice deficient in C3a receptor (C3aR) exhibited (i) higher percentages of endogenous IL-17-producing CD4+ T cells in the lungs, (ii) higher amounts of IL-17 in the bronchoalveolar lavage fluid, and (iii) more neutrophils in the lungs than wild-type mice when challenged with intranasal allergens. Moreover, adoptive transfer experiments showed that the frequencies of antigen-specific IL-17-producing CD4+ T cells were significantly higher in the lungs and bronchial lymph nodes of C3aR-deficient recipients than those of wild-types recipients. Bone-marrow reconstitution study indicated that C3aR-deficiency on hematopoietic cells was required for the increased Th17 responses. Furthermore, C3aR-deficient mice exhibited increased percentages of Foxp3+ regulatory T cells; however, depletion of these cells minimally affected the induction of antigen-specific Th17 cell population in the lungs. Neutralization of IL-17 significantly reduced the number of neutrophils in bronchoalveolar lavage fluid of C3aR-deficient mice. Our findings demonstrate that C3a signals negatively regulate antigen-specific Th17 responses during allergic lung inflammation and the size of Foxp3+ regulatory T cell population in the periphery.
Collapse
Affiliation(s)
- Hoyong Lim
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Young Uk Kim
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, the University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Scott M. Drouin
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, the University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Stacey Mueller-Ortiz
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Kyoungah Yun
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
- Daejon Health Sciences College, Daejon, South Korea
| | - Eva Morschl
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Rick A. Wetsel
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, the University of Texas Health Science Center, Houston, Houston, Texas, United States of America
| | - Yeonseok Chung
- Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, the University of Texas Medical School at Houston, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, the University of Texas Health Science Center, Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Size and dynamics of mucosal and peripheral IL-17A+ T-cell pools in pediatric age, and their disturbance in celiac disease. Mucosal Immunol 2012; 5:513-23. [PMID: 22569303 DOI: 10.1038/mi.2012.26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal interleukin (IL)-17A-producing T cells contribute to protective antimicrobial responses and to epithelial barrier integrity; their role in celiac disease (CD) is debated. We analyzed the frequency and developmental dynamics of mucosal (intraepithelial lymphocytes (IEL)) and circulating (peripheral blood (PB)) IL-17A (T17) and/or interferon (IFN)-γ-producing (T1, T1/T17) T-cell populations in 86 pediatric controls and 116 age-matched CD patients upon phorbol myristate acetate/ionomycin or CD3/CD28 stimulation. T17 and T1/17 are physiologically present among IEL and PB populations, and their frequency is selectively and significantly reduced in CD IEL. The physiological age-dependent increase of Th17 IEL is also absent in CD, while IFN-γ-producing PB-T cells significantly accumulate with patient's age. Finally, the amplitude of IL-17A+ and IFN-γ+ T-cell pools are significantly correlated in different individuals; this relationship only applies to CD4+ T cells in controls, while it involves also the CD4- counterpart in CD patients. In conclusion, both size and dynamics of mucosa-associated and circulating IL-17A+ T-cell pools are finely regulated in human pediatric subjects, and severely disturbed in CD. The impaired IL-17A+ IEL-T pool may negatively impact on epithelial barrier efficiency, and contribute to CD mucosa damage; the disturbed dynamics of circulating IL-17A+ and IFN-γ+ T-cell pools may be involved in the extraintestinal autoimmune manifestations associated with CD.
Collapse
|
35
|
IL-7 induces expression and activation of integrin α4β7 promoting naive T-cell homing to the intestinal mucosa. Blood 2012; 120:2610-9. [PMID: 22896005 DOI: 10.1182/blood-2012-06-434779] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-7 (IL-7) is a nonredundant cytokine that plays a critical role in T-cell homeostasis and promotes immunologic reconstitution in lymphopenic hosts. Here, we show that IL-7, at doses that reflect suprahomeostatic concentrations achieved in lymphopenic hosts, is a potent and selective inducer of the gut-homing integrin α4β7 in human T cells, as documented both ex vivo and in vivo in patients enrolled in a clinical trial of IL-7 treatment. Induction of α4β7 by IL-7 occurs primarily in naive T cells and is associated with functional activation of the integrin, as indicated by increased binding activity for the specific α4β7 ligand, MAdCAM-1. The physiologic relevance of these findings was validated by the preferential homing of IL-7-treated naive human T cells to the intestinal compartment in humanized NOD/SCID/IL-2 receptor-γ(null) (NSG) mice. We also show that IL-7 triggers a peculiar activation program in naive T cells, characterized by the acquisition of memory-like phenotypic features and proliferation uncoupled from expression of classic T-cell activation markers. These findings provide a mechanism for the transient in vivo depletion of circulating T cells after IL-7 administration and suggest that intestinal homing and memory-like conversion of naive T cells are critical steps in the IL-7-driven immunologic reconstitution of lymphopenic hosts.
Collapse
|
36
|
Noda K, Kodama S, Umemoto S, Nomi N, Hirano T, Suzuki M. Th17 cells contribute to nontypeable Haemophilus influenzae-specific protective immunity induced by nasal vaccination with P6 outer membrane protein and α-galactosylceramide. Microbiol Immunol 2011; 55:574-81. [PMID: 21605159 DOI: 10.1111/j.1348-0421.2011.00352.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nasal vaccination is an effective therapeutic means of preventing upper respiratory infection. Recently, nasal vaccination with P6 outer membrane protein of nontypeable Haemophilus influenzae (NTHi) and alpha-galactosylceramide (α-GalCer) was reported to induce NTHi-specific protective immunity. The present study investigated the role of the Th17 cells induced by nasal vaccination. Mice were immunized with P6 and α-GalCer, and their P6-specific immune responses were examined. Cytokine-producing cells were analyzed by flow cytometry, and expression of cytokines in P6-specific CD4+ T cells was determined by reverse transcription-polymerase chain reaction. Bacterial challenges were performed with live NTHi. To examine the role of Th17 cells, bacterial clearance was also evaluated after interleukin (IL)-17 neutralization. P6-specific nasal wash immunoglobulin (Ig) A and serum IgG were increased after immunization with P6 and α-GalCer. Specific IgA-producing cells increased markedly in the nasal passages (NPs) of the immunized mice. In addition to P6-specific Th1 and Th2 cells, IL-17-producing Th17 cells were induced in the NPs and spleen. Bacterial clearance was enhanced by nasal vaccination. Interestingly, impaired NTHi clearance was shown after IL-17 neutralization. These findings suggest that nasal vaccination with P6 and α-GalCer is an effective regimen for the induction of NTHi-specific protective immunity in the upper respiratory tract. In addition to antigen-specific secretory-IgA, specific Th17 cells induced by nasal vaccination contribute to protection against NTHi.
Collapse
Affiliation(s)
- Kenji Noda
- Department of Otolaryngology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hazama-cho, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Moreira AP, Cavassani KA, Ismailoglu UB, Hullinger R, Dunleavy MP, Knight DA, Kunkel SL, Uematsu S, Akira S, Hogaboam CM. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J Clin Invest 2011; 121:4420-32. [PMID: 22005301 DOI: 10.1172/jci44999] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/14/2011] [Indexed: 11/17/2022] Open
Abstract
TLRs are a family of receptors that mediate immune system pathogen recognition. In the respiratory system, TLR activation has both beneficial and deleterious effects in asthma. For example, clinical data indicate that TLR6 activation exerts protective effects in asthma. Here, we explored the mechanism or mechanisms through which TLR6 mediates this effect using mouse models of Aspergillus fumigatus-induced and house dust mite antigen-induced (HDM antigen-induced) chronic asthma. Tlr6-/- mice with fungal- or HDM antigen-induced asthma exhibited substantially increased airway hyperresponsiveness, inflammation, and remodeling compared with WT asthmatic groups. Surprisingly, whole-lung levels of IL-23 and IL-17 were markedly lower in Tlr6-/- versus WT asthmatic mice. Tlr6-/- DCs generated less IL-23 upon activation with lipopolysaccharide, zymosan, or curdlan. Impaired IL-23 generation in Tlr6-/- mice also corresponded with lower levels of expression of the pathogen-recognition receptor dectin-1 and expansion of Th17 cells both in vivo and in vitro. Exogenous IL-23 treatment of asthmatic Tlr6-/- mice restored IL-17A production and substantially reduced airway hyperresponsiveness, inflammation, and lung fungal burden compared with that in untreated asthmatic Tlr6-/- mice. Together, our data demonstrate that TLR6 activation is critical for IL-23 production and Th17 responses, which both regulate the allergic inflammatory response in chronic fungal-induced asthma. Thus, therapeutics targeting TLR6 activity might prove efficacious in the treatment of clinical asthma.
Collapse
Affiliation(s)
- Ana Paula Moreira
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
The role of the intestinal context in the generation of tolerance and inflammation. Clin Dev Immunol 2011; 2012:157948. [PMID: 21949668 PMCID: PMC3178197 DOI: 10.1155/2012/157948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023]
Abstract
The mucosal surface of the intestine alone forms the largest area exposed to exogenous antigens as well as the largest collection of lymphoid tissue in the body. The enormous amount of nonpathogenic and pathogenic bacteria and food-derived antigens that we are daily exposed sets an interesting challenge to the immune system: a protective immune activity must coexist with efficient regulatory mechanisms in order to maintain a health status of these organisms. This paper discusses how the immune system assimilates the perturbations from the environment without generating tissue damage.
Collapse
|
40
|
|
41
|
Kodama S, Abe N, Hirano T, Suzuki M. A single nasal dose of CCL20 chemokine induces dendritic cell recruitment and enhances nontypable Haemophilus influenzae-specific immune responses in the nasal mucosa. Acta Otolaryngol 2011; 131:989-96. [PMID: 21534717 DOI: 10.3109/00016489.2011.576429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONCLUSION The results of the present study indicate the potential of CCL20 as an effective mucosal adjuvant and suggest that nasal vaccination with P6 in combination with nasal CCL20 might be an effective regimen for the induction of nontypable Haemophilus influenzae (NTHi)-specific protective immunity. OBJECTIVES Nasal vaccination is an effective therapeutic regimen for preventing upper respiratory infections. In the development of nasal vaccine, an appropriate adjuvant is required. In the present study we examined the efficacy of CCL20 as a mucosal adjuvant. METHODS CCL20 was administered intranasally to mice, which were then immunized intranasally with P6 protein of NTHi, and P6-specific immune responses were examined. In addition, NTHi challenges were performed and the level of NTHi was quantified in nasal washes. RESULTS Nasal application of CCL20 induced an increase in the number of dendritic cells in nasal-associated lymphoid tissue. P6-specific nasal wash immunoglobulin (Ig)A and serum IgG titers were elevated significantly after nasal immunization. Enhanced NTHi clearance from the nasopharynx was also observed.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, Yufu, Japan.
| | | | | | | |
Collapse
|
42
|
Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir Res 2011; 12:114. [PMID: 21867534 PMCID: PMC3179723 DOI: 10.1186/1465-9921-12-114] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/25/2011] [Indexed: 02/08/2023] Open
Abstract
Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.
Collapse
Affiliation(s)
- Berislav Bosnjak
- Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
43
|
Abstract
Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
44
|
Farid R, Ahanchian H, Jabbari F, Moghiman T. Effect of a new synbiotic mixture on atopic dermatitis in children: a randomized-controlled trial. IRANIAN JOURNAL OF PEDIATRICS 2011; 21:225-30. [PMID: 23056792 PMCID: PMC3446166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 10/19/2010] [Accepted: 03/02/2011] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Atopic dermatitis (AD) is the most common chronic relapsing skin disease seen in infancy and childhood. The intestinal microbiota play an important role in immune development and may play a role in the development of allergic disorders. Manipulation of the intestinal microbiota by synbiotics may therefore offer an approach to the prevention or treatment of AD and allergic diseases. We studied the clinical and immunologic effects of a new symbiotic (a mixture of seven probiotic strains of bacteria and Fructooligosaccharide) in infants and children with AD. METHODS In a randomized, double-blind, placebo-controlled study, 40 infants and children aged 3 months to 6 years with AD received either a synbiotic or placebo for 8 weeks. The Severity Scoring of Atopic Dermatitis (SCORAD) index was recorded at baseline and also at 4 and 8 weeks of treatment. FINDINGS There was no significant difference between the probiotic and placebo group in baseline characteristics including sex, age, family history, corticosteroid usage and prick testing. Mean age was 23 months. The synbiotic group showed a significantly greater reduction in SCORAD than did the placebo group (P=0.001). No specific effect was demonstrated of the probiotics employed on cytokine profile (P=0.4, P=0.6). Egg white was the most common (45%) allergen followed by peanut and cow's milk. CONCLUSION This study provides evidence that a mixture of seven strains of probiotics and Fructooligosaccharide can clinically improve the severity of AD in young children. Further studies are needed to investigate the effects on underlying immune responses and the potential long term benefits for patients with AD.
Collapse
Affiliation(s)
| | - Hamid Ahanchian
- Corresponding Author: Address: Department of Pediatric Allergy and Immunology, Ghaem Hospital,Mashhad University of Medical Sciences, Mashhad, Iran. E-mail:
| | | | | |
Collapse
|
45
|
Palomares O, O'Mahony L, Akdis CA. The many routes of dendritic cells to ensure immune regulation. J Allergy Clin Immunol 2011; 127:1541-2. [DOI: 10.1016/j.jaci.2011.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
|
46
|
Huvenne W, Lanckacker EA, Krysko O, Bracke KR, Demoor T, Hellings PW, Brusselle GG, Joos GF, Bachert C, Maes T. Exacerbation of cigarette smoke-induced pulmonary inflammation by Staphylococcus aureus enterotoxin B in mice. Respir Res 2011; 12:69. [PMID: 21615971 PMCID: PMC3125222 DOI: 10.1186/1465-9921-12-69] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Background Cigarette smoke (CS) is a major risk factor for the development of COPD. CS exposure is associated with an increased risk of bacterial colonization and respiratory tract infection, because of suppressed antibacterial activities of the immune system and delayed clearance of microbial agents from the lungs. Colonization with Staphylococcus aureus results in release of virulent enterotoxins, with superantigen activity which causes T cell activation. Objective To study the effect of Staphylococcus aureus enterotoxin B (SEB) on CS-induced inflammation, in a mouse model of COPD. Methods C57/Bl6 mice were exposed to CS or air for 4 weeks (5 cigarettes/exposure, 4x/day, 5 days/week). Endonasal SEB (10 μg/ml) or saline was concomitantly applied starting from week 3, on alternate days. 24 h after the last CS and SEB exposure, mice were sacrificed and bronchoalveolar lavage (BAL) fluid and lung tissue were collected. Results Combined exposure to CS and SEB resulted in a raised number of lymphocytes and neutrophils in BAL, as well as increased numbers of CD8+ T lymphocytes and granulocytes in lung tissue, compared to sole CS or SEB exposure. Moreover, concomitant CS/SEB exposure induced both IL-13 mRNA expression in lungs and goblet cell hyperplasia in the airway wall. In addition, combined CS/SEB exposure stimulated the formation of dense, organized aggregates of B- and T- lymphocytes in lungs, as well as significant higher CXCL-13 (protein, mRNA) and CCL19 (mRNA) levels in lungs. Conclusions Combined CS and SEB exposure aggravates CS-induced inflammation in mice, suggesting that Staphylococcus aureus could influence the pathogenesis of COPD.
Collapse
Affiliation(s)
- Wouter Huvenne
- Upper Airways Research Laboratory (URL), ENT Department, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kodama S, Hirano T, Noda K, Umemoto S, Suzuki M. Nasal immunization with plasmid DNA encoding P6 protein and immunostimulatory complexes elicits nontypeable Haemophilus influenzae-specific long-term mucosal immune responses in the nasopharynx. Vaccine 2011; 29:1881-90. [PMID: 21237276 DOI: 10.1016/j.vaccine.2010.12.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/26/2010] [Accepted: 12/30/2010] [Indexed: 11/16/2022]
Abstract
Nasal vaccination is an effective therapeutic regimen for preventing upper respiratory infection, while DNA vaccines represent a new approach for controlling infectious diseases. Here, we examined the efficacy of nasally administered DNA vaccine on upper respiratory infections. A DNA plasmid encoding the P6 outer membrane protein of nontypeable Haemophilus influenzae (NTHi) was constructed. Mice were immunized 3 times intranasally with the DNA plasmid and Matrix-M, an immunostimulatory complex adjuvant. P6-specific immune responses were examined using purified P6 protein. Nasal-associated lymphoid tissue (NALT) CD4(+) T cells were purified and incubated with feeder cells in the presence of P6, and the expression of cytokine mRNA was examined. In addition, NTHi challenges were performed and the level of NTHi was quantified in nasal washes. P6-specific nasal wash IgA and serum IgG were elevated following immunization with the DNA plasmid and Matrix-M. The number of specific IgA-producing cells increased in the nasal passages of the immunized mice. In addition to Th1 and Th2 cytokine expression, IL-17 was detected in P6-specific NALT CD4(+) T cells. Moreover, DNA vaccination enhanced bacterial clearance. These findings suggest that a successful DNA vaccination protocol has been developed for inducing in vivo immune responses against NTHi. Nasal vaccination with P6 DNA vaccine and Matrix-M might be a new effective regimen for the induction of specific protective immunity in the upper respiratory tract.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hazama-cho, Yufu, Oita 879-5593, Japan.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
T(H)2 heterogeneity: Does function follow form? J Allergy Clin Immunol 2010; 126:1094-8. [PMID: 20951419 DOI: 10.1016/j.jaci.2010.08.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 12/24/2022]
Abstract
T(H)2 immune responses are required for the 2 fundamental pathological processes characteristic of allergic disease: IgE-mediated hypersensitivity and eosinophilic inflammation. The 3 established T(H)2 cytokines, IL-4, IL-5, and IL-13, each play a nonredundant role in allergic disease pathology. The recent explosion of T(H) subpopulations combined with the wide availability of polychromatic cytokine staining has facilitated the discovery of T(H)2 lineage heterogeneity. In this article we review T(H)2 heterogeneity and ask the following question: At what point do these subpopulations graduate from in vitro curiosities to immunologically robust therapeutic targets? We propose criteria to establish a T-cell subset as a biologically relevant entity and address the evidence to support these T(H)2 subpopulations having a unique function or specific contribution to allergic pathology or host defense.
Collapse
|
50
|
Abstract
Recent advances in stem cell research have redefined previous concepts of hematopoietic hierarchy, lineage commitment, and cell fate. The immune system is comprised of several well-defined cell lineages of which many exhibit high levels of plasticity or capacity in changing their phenotype. The CD4 T helper cells provide a peculiar example of apparently defined cell subsets, at times described as lineages, but also highly sensitive to tissue environmental cues that may change their fate. The classical Th1/Th2 CD4 T cell differentiation referred to for many years as the main CD4 T cell fate dichotomy and the later additions of CD4 helper T cell variants, such as T helper 17 (Th17) and induced regulatory T cells (iTreg), have added complexity but also doubts on the accuracy of defining CD4 T cell subsets as fixed T cell lineages.
Collapse
Affiliation(s)
- Daniel Mucida
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | |
Collapse
|