1
|
Dalmas P, Kaphan E, Mortier C, Froidefond M, Doudier B, Ninove L, Nougairede A, Durand GA, Lagier JC, Cassir N. An autochthonous case of severe tick-borne encephalitis virus associated meningoencephalitis in France: Is there a place for polyvalent intravenous immunoglobulins? IDCases 2025; 40:e02213. [PMID: 40237002 PMCID: PMC11999177 DOI: 10.1016/j.idcr.2025.e02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/30/2025] [Indexed: 04/17/2025] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a common cause of viral encephalitis in parts of Central and Eastern Europe, with a recent resurgence of cases and geographical expansion. Active immunization results in a high rate of seroconversion and is the most effective measure to reduce the incidence of tick-borne encephalitis (TBE). In France, an endemic country, vaccination is recommended only for travelers staying in rural or forested areas in endemic regions. Polyvalent intravenous immunoglobulin (IVIG) is sometimes used as rescue treatment of viral encephalitis. However, few cases of TBEV meningoencephalitis treated with polyvalent IVIG have been described. We report here a case of autochthonous TBEV meningoencephalitis in a French patient with cranial nerve involvement that was treated with IVIG and discuss the possible mechanisms of action.
Collapse
Affiliation(s)
- Paul Dalmas
- IHU Méditerranée Infection, AP-HM, Marseille, France
| | - Elsa Kaphan
- Division of Internal Medicine and Clinical Immunology, Hôpital Conception, APHM, Marseille, France
| | | | | | | | - Laeticia Ninove
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Antoine Nougairede
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | | | - Jean-Christophe Lagier
- IHU Méditerranée Infection, AP-HM, Marseille, France
- Aix-Marseille Université, IRD, MEPHI, Marseille, France
| | - Nadim Cassir
- IHU Méditerranée Infection, AP-HM, Marseille, France
- Aix-Marseille Université, IRD, MEPHI, Marseille, France
| |
Collapse
|
2
|
Danieli MG, Antonelli E, Gammeri L, Longhi E, Cozzi MF, Palmeri D, Gangemi S, Shoenfeld Y. Intravenous immunoglobulin as a therapy for autoimmune conditions. Autoimmun Rev 2025; 24:103710. [PMID: 39592027 DOI: 10.1016/j.autrev.2024.103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Intravenous immunoglobulin (IVIg) is a medical preparation used as replacement therapy for patients with immunodeficiencies. Over time, IVIg's anti-inflammatory and immunomodulatory effects have been recognized, which have led to the approval of this therapy in the treatment of various pathologies, such as Kawasaki disease, immune thrombocytopenia, and Guillain-Barré syndrome. There are numerous studies in the literature regarding the off-label use of IVIg in the treatment of autoimmune diseases (e.g. myositis and vasculitis), and hematological disorders. Since the role of immunoglobulins in fields other than replacement therapy is now consolidated, in this study we carried out a review of the literature to evaluate the main uses of IVIg therapy. We have focused our attention on the treatment of autoimmune, neurological, hematological, dermatological and pediatric diseases. Furthermore, our analysis of the literature also extended to the potential use of IVIg as an adjuvant treatment of long COVID-19. From our analysis, we found consistent data about IVIg's effectiveness in treating numerous clinical conditions. Treatment with IVIg represents a second-line approach or a valid adjuvant to standard therapies capable of positively influencing the clinical course of many pathologies and reducing or avoiding side effects of standard therapies, with a good safety profile.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- SOS Immunologia delle Malattie Rare e dei Trapianti. AOU delle Marche & Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- Postgraduate School of Internal Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Luca Gammeri
- Postgraduate School of Allergy and Clinical Immunology, University of Messina, 98121 Messina, Italy
| | - Eleonora Longhi
- Postgraduate School in Clinical Pathology and Clinical Biochemistry, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Maria Francesca Cozzi
- Postgraduate School of Internal Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel; Reichman University, Herzelia 46101, Israel.
| |
Collapse
|
3
|
Morse BA, Motovilov K, Michael Brode W, Michael Tee F, Melamed E. A review of intravenous immunoglobulin in the treatment of neuroimmune conditions, acute COVID-19 infection, and post-acute sequelae of COVID-19 Syndrome. Brain Behav Immun 2025; 123:725-738. [PMID: 39389388 DOI: 10.1016/j.bbi.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024] Open
Abstract
Intravenous immunoglobulin (IVIG) is an immunomodulatory therapy that has been studied in several neuroimmune conditions, such as Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, and multiple sclerosis. It has also been proposed as a potential treatment option for acute COVID-19 infection and post-acute sequelae of SARS-CoV-2 infection (PASC). IVIG is thought to function by providing the recipient with a pool of antibodies, which can, in turn, modulate immune responses through multiple mechanisms including neutralization of cytokines and autoantibodies, saturation of neonatal fragment crystallizable receptors, inhibition of complement activation, and regulation of T and B cell mediated inflammation. In acute COVID-19, studies have shown that early administration of IVIG and plasmapheresis in severe cases can reduce the need for mechanical ventilation, shorten ICU and hospital stays, and lower mortality. Similarly, in PASC, while research is still in early stages, IVIG has been shown to alleviate persistent symptoms in small patient cohorts. Furthermore, IVIG has shown benefits in another condition which has symptomatic overlap with PASC, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), though studies have yielded mixed results. It is important to note that IVIG can be associated with several potential adverse effects, such as anaphylaxis, headaches, thrombosis, liver enzyme elevations and renal complications. In addition, the high cost of IVIG can be a deterrent for payers and patients. This review provides a comprehensive update on the use of IVIG in multiple neuroimmune conditions, ME/CFS, acute COVID-19, and PASC, as well as covers its history, production, pricing, and mechanisms of action. We also identify key areas of future research, including the need to optimize the use of Ig product dosing, timing, and patient selection across conditions, particularly in the context of COVID-19 and PASC.
Collapse
Affiliation(s)
- Brinkley A Morse
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - Katherine Motovilov
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA
| | - Francis Michael Tee
- Department of Internal Medicine, Dell Medical School at the University of Texas, Austin, USA.
| | - Esther Melamed
- Department of Neurology, Dell Medical School at the University of Texas, Austin, USA.
| |
Collapse
|
4
|
Brodeur KE, Liu M, Ibanez D, de Groot MJ, Chen L, Du Y, Seyal E, Laza-Briviesca R, Baker A, Chang JC, Chang MH, Day-Lewis M, Dedeoglu F, Dionne A, de Ferranti SD, Friedman KG, Halyabar O, Lo MS, Meidan E, Sundel RP, Henderson LA, Nigrovic PA, Newburger JW, Son MB, Lee PY. Elevation of IL-17 Cytokines Distinguishes Kawasaki Disease From Other Pediatric Inflammatory Disorders. Arthritis Rheumatol 2024; 76:285-292. [PMID: 37610270 PMCID: PMC10842426 DOI: 10.1002/art.42680] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Kawasaki disease (KD) is a systemic vasculitis of young children that can lead to development of coronary artery aneurysms. We aimed to identify diagnostic markers to distinguish KD from other pediatric inflammatory diseases. METHODS We used the proximity extension assay to profile proinflammatory mediators in plasma samples from healthy pediatric controls (n = 30), febrile controls (n = 26), and patients with KD (n = 23), multisystem inflammatory syndrome in children (MIS-C; n = 25), macrophage activation syndrome (n = 13), systemic and nonsystemic juvenile idiopathic arthritis (n = 14 and n = 10, respectively), and juvenile dermatomyositis (n = 9). We validated the key findings using serum samples from additional patients with KD (n = 37) and febrile controls (n = 28). RESULTS High-fidelity proteomic profiling revealed distinct patterns of cytokine and chemokine expression across pediatric inflammatory diseases. Although KD and MIS-C exhibited many similarities, KD differed from MIS-C and other febrile diseases in that most patients exhibited elevation in one or more members of the interleukin-17 (IL-17) cytokine family, IL-17A, IL-17C, and IL-17F. IL-17A was particularly sensitive and specific, discriminating KD from febrile controls with an area under the receiver operator characteristic curve of 0.95 (95% confidence interval 0.89-1.00) in the derivation set and 0.91 (0.85-0.98) in the validation set. Elevation of all three IL-17-family cytokines was observed in over 50% of KD patients, including 19 of 20 with coronary artery aneurysms, but was rare in all other comparator groups. CONCLUSION Elevation of IL-17 family cytokines is a hallmark of KD and may help distinguish KD from its clinical mimics.
Collapse
Affiliation(s)
| | - Meng Liu
- Boston Children's Hospital, Boston, Massachusetts, and Guangdong Second Provincial General Hospital, Guangzhou, China
| | | | - Mareike J de Groot
- Boston Children's Hospital, Boston, Massachusetts, and Heidelberg University Hospital, Heidelberg, Germany
| | - Liang Chen
- Boston Children's Hospital, Boston, Massachusetts
| | - Yan Du
- Boston Children's Hospital, Boston, Massachusetts, and The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Eman Seyal
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | - Mindy S Lo
- Boston Children's Hospital, Boston, Massachusetts
| | - Esra Meidan
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Conti F, Moratti M, Leonardi L, Catelli A, Bortolamedi E, Filice E, Fetta A, Fabi M, Facchini E, Cantarini ME, Miniaci A, Cordelli DM, Lanari M, Pession A, Zama D. Anti-Inflammatory and Immunomodulatory Effect of High-Dose Immunoglobulins in Children: From Approved Indications to Off-Label Use. Cells 2023; 12:2417. [PMID: 37830631 PMCID: PMC10572613 DOI: 10.3390/cells12192417] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The large-scale utilization of immunoglobulins in patients with inborn errors of immunity (IEIs) since 1952 prompted the discovery of their key role at high doses as immunomodulatory and anti-inflammatory therapy, in the treatment of IEI-related immune dysregulation disorders, according to labelled and off-label indications. Recent years have been dominated by a progressive imbalance between the gradual but constant increase in the use of immunoglobulins and their availability, exacerbated by the SARS-CoV-2 pandemic. OBJECTIVES To provide pragmatic indications for a need-based application of high-dose immunoglobulins in the pediatric context. SOURCES A literature search was performed using PubMed, from inception until 1st August 2023, including the following keywords: anti-inflammatory; children; high dose gammaglobulin; high dose immunoglobulin; immune dysregulation; immunomodulation; immunomodulatory; inflammation; intravenous gammaglobulin; intravenous immunoglobulin; off-label; pediatric; subcutaneous gammaglobulin; subcutaneous immunoglobulin. All article types were considered. IMPLICATIONS In the light of the current imbalance between gammaglobulins' demand and availability, this review advocates the urgency of a more conscious utilization of this medical product, giving indications about benefits, risks, cost-effectiveness, and administration routes of high-dose immunoglobulins in children with hematologic, neurologic, and inflammatory immune dysregulation disorders, prompting further research towards a responsible employment of gammaglobulins and improving the therapeutical decisional process.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
| | - Mattia Moratti
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Arianna Catelli
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Elisa Bortolamedi
- Specialty School of Paediatrics, University of Bologna, 40138 Bologna, Italy; (A.C.); (E.B.)
| | - Emanuele Filice
- Department of Pediatrics, Maggiore Hospital, 40133 Bologna, Italy;
| | - Anna Fetta
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy
| | - Marianna Fabi
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Elena Facchini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (M.E.C.)
| | - Maria Elena Cantarini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.F.); (M.E.C.)
| | - Angela Miniaci
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
| | - Duccio Maria Cordelli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy
| | - Marcello Lanari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (A.M.); (A.P.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
| | - Daniele Zama
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (A.F.); (D.M.C.); (M.L.); (D.Z.)
- Paediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
6
|
Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, Dembele M, Kaveri SV, Mazer BD. Intravenous Immunoglobulin: Mechanism of Action in Autoimmune and Inflammatory Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1688-1697. [PMID: 37062358 DOI: 10.1016/j.jaip.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Intravenous immunoglobulin (IVIG) is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the ability of polyclonal normal IgG to act as an effector molecule as well as a regulatory molecule is a clear example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in a number of important conditions that are otherwise resistant to treatment. In this commentary, we will highlight mechanistic studies that shed light on the action of IVIG. This will be approached by identifying effects that are both common and disease-specific, targeting actions that have been demonstrated on cells and processes that represent both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India.
| | - Eisha A Ahmed
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Diana Toscano-Rivero
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Nicholas Vonniessen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Genevieve Genest
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Casey G Cohen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Marieme Dembele
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bruce D Mazer
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Segú-Vergés C, Caño S, Calderón-Gómez E, Bartra H, Sardon T, Kaveri S, Terencio J. Systems biology and artificial intelligence analysis highlights the pleiotropic effect of IVIg therapy in autoimmune diseases with a predominant role on B cells and complement system. Front Immunol 2022; 13:901872. [PMID: 36248801 PMCID: PMC9563374 DOI: 10.3389/fimmu.2022.901872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Intravenous immunoglobulin (IVIg) is used as treatment for several autoimmune and inflammatory conditions, but its specific mechanisms are not fully understood. Herein, we aimed to evaluate, using systems biology and artificial intelligence techniques, the differences in the pathophysiological pathways of autoimmune and inflammatory conditions that show diverse responses to IVIg treatment. We also intended to determine the targets of IVIg involved in the best treatment response of the evaluated diseases. Our selection and classification of diseases was based on a previously published systematic review, and we performed the disease characterization through manual curation of the literature. Furthermore, we undertook the mechanistic evaluation with artificial neural networks and pathway enrichment analyses. A set of 26 diseases was selected, classified, and compared. Our results indicated that diseases clearly benefiting from IVIg treatment were mainly characterized by deregulated processes in B cells and the complement system. Indeed, our results show that proteins related to B-cell and complement system pathways, which are targeted by IVIg, are involved in the clinical response. In addition, targets related to other immune processes may also play an important role in the IVIg response, supporting its wide range of actions through several mechanisms. Although B-cell responses and complement system have a key role in diseases benefiting from IVIg, protein targets involved in such processes are not necessarily the same in those diseases. Therefore, IVIg appeared to have a pleiotropic effect that may involve the collaborative participation of several proteins. This broad spectrum of targets and 'non-specificity' of IVIg could be key to its efficacy in very different diseases.
Collapse
Affiliation(s)
| | - Silvia Caño
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| | | | - Helena Bartra
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Teresa Sardon
- Health Department, Anaxomics Biotech, Barcelona, Spain
| | - Srini Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - José Terencio
- Grifols Innovation and New Technologies (GIANT) Ltd., Dublin, Ireland
| |
Collapse
|
8
|
The short-term predictive value of CD4 + cells for combination therapy with high-dose dexamethasone and immunoglobulin in newly diagnosed primary immune thrombocytopenia patients. Thromb Res 2022; 218:157-168. [PMID: 36054980 DOI: 10.1016/j.thromres.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Dexamethasone (DXM) or immunoglobulin (IVIg) are first-line therapies for primary immune thrombocytopenia (ITP), with an effective rate of 80 %. Some patients with both severe bleeding symptoms and platelet counts of <30 × 109/L received a combination of DXM and IVIg. Autoimmune disorders, especially involving CD4+ T-cells, play a key role in the pathogenesis of ITP. We assumed that variations in the immune status of CD4+ T-cells will lead to different treatment responses. Until now, there have been few relevant clinical studies on CD4+ T-cells and the outcome of first-line therapies. METHODS A prospective study enrolling 42 newly diagnosed ITP patients and 30 normal control volunteers was performed. The profiles of major CD4+ T-cells, including T helper (Th)1, Th2, Th17, and regulatory T (Treg) cells, and the related levels of interleukin (IL)-2, IL-17, and IL-23 were examined. The platelet number was recorded at the time point of day 0, day 14, and day 30. RESULTS Greater concentrations of Th1 and Th17 cells and lower relative numbers of Treg cells were found in the ITP group. As for the treatment outcome on day 14, the profiles of Th2 and IL-2 were significantly greater in the NR group, while the expression of IL-17 was elevated in the CR group. As for the treatment outcome on day 30, higher levels of Th2 cells were observed in those patients who needed 2× pulses of HD DXM compared to those who needed only 1× pulse of HD DXM and IVIg, and receiver operating characteristic curve analysis showed that lower Treg cell may predict favorable values. Meanwhile, the higher IL-23 value may predict a poor early response. CONCLUSIONS Our results indicate that Th1, Th17, and Treg cells and IL-2 and IL-23 participate in the onset of ITP. Higher profiles of Th2, IL-2 and IL-23 may predict poor treatment outcomes. Higher levels of IL-17 and lower profile of Treg may predict sensitivity to HD DXM and IVIg combination therapy.
Collapse
|
9
|
Aggarwal R, Dewan A, Pandey A, Trehan N, Majid MA. Efficacy of high-dose intravenous immunoglobulin in severe and critical COVID-19: A retrospective cohort study. Int Immunopharmacol 2022; 106:108615. [PMID: 35168081 PMCID: PMC8825318 DOI: 10.1016/j.intimp.2022.108615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 01/08/2023]
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Ritesh Aggarwal
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India.
| | - Arun Dewan
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Ankita Pandey
- Department of Internal Medicine, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Nikita Trehan
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| | - Muhammad Aamir Majid
- Department of Critical Care, Max Smart Super Speciality Hospital, New Delhi 110017, India
| |
Collapse
|
10
|
Danieli MG, Piga MA, Paladini A, Longhi E, Mezzanotte C, Moroncini G, Shoenfeld Y. Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol 2021; 94:e13101. [PMID: 34940980 PMCID: PMC8646640 DOI: 10.1111/sji.13101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenged globally with its morbidity and mortality. A small percentage of affected patients (20%) progress into the second stage of the disease clinically presenting with severe or fatal involvement of lung, heart and vascular system, all contributing to multiple-organ failure. The so-called 'cytokines storm' is considered the pathogenic basis of severe disease and it is a target for treatment with corticosteroids, immunotherapies and intravenous immunoglobulin (IVIg). We provide an overview of the role of IVIg in the therapy of adult patients with COVID-19 disease. After discussing the possible underlying mechanisms of IVIg immunomodulation in COVID-19 disease, we review the studies in which IVIg was employed. Considering the latest evidence that show a link between new coronavirus and autoimmunity, we also discuss the use of IVIg in COVID-19 and anti-SARS-CoV-2 vaccination related autoimmune diseases and the post-COVID-19 syndrome. The benefit of high-dose IVIg is evident in almost all studies with a rapid response, a reduction in mortality and improved pulmonary function in critically ill COVID-19 patients. It seems that an early administration of IVIg is crucial for a successful outcome. Studies' limitations are represented by the small number of patients, the lack of control groups in some and the heterogeneity of included patients. IVIg treatment can reduce the stay in ICU and the demand for mechanical ventilation, thus contributing to attenuate the burden of the disease.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Mario Andrea Piga
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Alberto Paladini
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Eleonora Longhi
- Scuola di Medicina e ChirurgiaAlma Mater StudiorumUniversità degli Studi di BolognaBolognaItaly
| | - Cristina Mezzanotte
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Gianluca Moroncini
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Yehuda Shoenfeld
- Ariel UniversityArielIsrael
- The Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterRamat GanIsrael
- Saint Petersburg State UniversitySt. PetersburgRussia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)MoscowRussia
| |
Collapse
|
11
|
Rodríguez de la Concepción ML, Ainsua-Enrich E, Reynaga E, Ávila-Nieto C, Santos JR, Roure S, Mateu L, Paredes R, Puig J, Jimenez JM, Izquierdo-Useros N, Clotet B, Pedro-Botet ML, Carrillo J. High-dose intravenous immunoglobulins might modulate inflammation in COVID-19 patients. Life Sci Alliance 2021; 4:e202001009. [PMID: 34321327 PMCID: PMC8321664 DOI: 10.26508/lsa.202001009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The use of high-dose of intravenous immunoglobulins (IVIGs) as immunomodulators for the treatment of COVID-19-affected individuals has shown promising results. IVIG reduced inflammation in these patients, who progressively restored respiratory function. However, little is known about how they may modulate immune responses in COVID-19 individuals. Here, we have analyzed the levels of 41 inflammatory biomarkers in plasma samples obtained at day 0 (pretreatment initiation), 3, 7, and 14 from five hospitalized COVID-19 patients treated with a 5-d course of 400 mg/kg/d of IVIG. The plasmatic levels of several cytokines (Tumor Necrosis Factor, IL-10, IL-5, and IL-7), chemokines (macrophage inflammatory protein-1α), growth/tissue repairing factors (hepatic growth factor), complement activation (C5a), and intestinal damage such as Fatty acid-binding protein 2 and LPS-binding protein showed a progressive decreasing trend during the next 2 wk after treatment initiation. This trend was not observed in IVIG-untreated COVID-19 patients. Thus, the administration of high-dose IVIG to hospitalized COVID-19 patients may improve their clinical evolution by modulating their hyperinflammatory and immunosuppressive status.
Collapse
Affiliation(s)
| | - Erola Ainsua-Enrich
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Esteban Reynaga
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Jose Ramón Santos
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Silvia Roure
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
- Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain
- CIBERes: Centro de investigaciones en Red de Enfermedades Respiratorias Del Instituto Carlos III, Madrid, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Jordi Puig
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Juan Manuel Jimenez
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
- Chair in Infectious Diseases and Immunity, Centre for Health and Social Care Research (CESS), Faculty of Medicine. University of Vic–Central University of Catalonia (UVic–UCC), Vic, Spain
- Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain
- CIBERes: Centro de investigaciones en Red de Enfermedades Respiratorias Del Instituto Carlos III, Madrid, Spain
| | - María Luisa Pedro-Botet
- Infectious Diseases Department, Fight Against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, Badalona, Spain
- Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain
- CIBERes: Centro de investigaciones en Red de Enfermedades Respiratorias Del Instituto Carlos III, Madrid, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Spain
| |
Collapse
|
12
|
Amadori M, Listorti V, Razzuoli E. Reappraisal of PRRS Immune Control Strategies: The Way Forward. Pathogens 2021; 10:pathogens10091073. [PMID: 34578106 PMCID: PMC8469074 DOI: 10.3390/pathogens10091073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
The control of porcine reproductive and respiratory syndrome (PRRS) is still a major issue worldwide in the pig farming sector. Despite extensive research efforts and the practical experience gained so far, the syndrome still severely affects farmed pigs worldwide and challenges established beliefs in veterinary virology and immunology. The clinical and economic repercussions of PRRS are based on concomitant, additive features of the virus pathogenicity, host susceptibility, and the influence of environmental, microbial, and non-microbial stressors. This makes a case for integrated, multi-disciplinary research efforts, in which the three types of contributing factors are critically evaluated toward the development of successful disease control strategies. These efforts could be significantly eased by the definition of reliable markers of disease risk and virus pathogenicity. As for the host's susceptibility to PRRSV infection and disease onset, the roles of both the innate and adaptive immune responses are still ill-defined. In particular, the overt discrepancy between passive and active immunity and the uncertain role of adaptive immunity vis-à-vis established PRRSV infection should prompt the scientific community to develop novel research schemes, in which apparently divergent and contradictory findings could be reconciled and eventually brought into a satisfactory conceptual framework.
Collapse
Affiliation(s)
- Massimo Amadori
- Italian Network of Veterinary Immunology, 25125 Brescia, Italy
- Correspondence:
| | - Valeria Listorti
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| | - Elisabetta Razzuoli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 16129 Genoa, Italy; (V.L.); (E.R.)
| |
Collapse
|
13
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
14
|
Efficacy of IVIG (intravenous immunoglobulin) for corona virus disease 2019 (COVID-19): A meta-analysis. Int Immunopharmacol 2021; 96:107732. [PMID: 34162133 PMCID: PMC8084608 DOI: 10.1016/j.intimp.2021.107732] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022]
Abstract
Background The benefit of IVIG (Intravenous Immunoglobulin) therapy for COVID-19 remains controversial. We performed a meta-analysis to investigate the efficacy of IVIG treatment in patients with COVID-19. Methods We searched articles from Web of Science, PubMed, Embase, the Cochrane Library, MedRxiv between 1 January 2020 and February 17, 2021. We selected randomized clinical trials and observational studies with a control group to assess the efficiency of IVIG in treating patients with COVID-19. Subjects were divided into ‘non-severe’, ‘severe’ and ‘critical’ three subgroups based on the information of the study and the World Health Organization (WHO) definition of severity. We pooled the data of mortality and other outcomes using either a fixed-effect model or a random-effects model. Results Our meta-analysis retrieved 4 clinical trials and 3 cohort studies including 825 hospitalized patients. The severity of COVID-19 is associated with the efficiency of IVIG. In critical subgroup, IVIG could reduce the mortality compared with the control group [RR = 0.57 (0.42–0.79, I2 = 025%). But there was no significant difference in the severe or non-severe subgroups. Conclusion IVIG has demonstrated clinical efficacy on critical ill patients with COVID-19. There may be a relationship between the efficacy of IVIG and the COVID-19 disease severity. Well-designed clinical trials to identify the clinical and biochemical characteristics in COVID-19 patients’ population that could benefit from IVIG are warranted in the future.
Collapse
|
15
|
Cao W, Liu X, Hong K, Ma Z, Zhang Y, Lin L, Han Y, Xiong Y, Liu Z, Ruan L, Li T. High-Dose Intravenous Immunoglobulin in Severe Coronavirus Disease 2019: A Multicenter Retrospective Study in China. Front Immunol 2021; 12:627844. [PMID: 33679771 PMCID: PMC7933558 DOI: 10.3389/fimmu.2021.627844] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The effective treatment of coronavirus disease 2019 (COVID-19) remains unclear. We reported successful use of high-dose intravenous immunoglobulin (IVIg) in cases of severe COVID-19, but evidence from larger case series is still lacking. Methods A multi-center retrospective study was conducted to evaluate the effectiveness of IVIg administered within two weeks of disease onset at a total dose of 2 g/kg body weight, in addition to standard care. The primary endpoint was 28-day mortality. Efficacy of high-dose IVIg was assessed by using the Cox proportional hazards regression model and the Kaplan-Meier curve adjusted by inverse probability of treatment weighting (IPTW) analysis, and IPTW after multiple imputation (MI) analysis. Results Overall, 26 patients who received high-dose IVIg with standard therapy and 89 patients who received standard therapy only were enrolled in this study. The IVIg group was associated with a lower 28-day mortality rate and less time to normalization of inflammatory markers including IL-6, IL-10, and ferritin compared with the control. The adjusted HR of 28-day mortality in high-dose IVIg group was 0.24 (95% CI 0.06–0.99, p<0.001) in IPTW model, and 0.27 (95% CI 0.10–0.57, p=0.031) in IPTW-MI model. In subgroup analysis, patients with no comorbidities or treated in the first week of disease were associated with more benefit from high-dose IVIg. Conclusions High-dose IVIg administered in severe COVID-19 patients within 14 days of onset was linked to reduced 28-day mortality, more prominent with those having no comorbidities or treated at earlier stage.
Collapse
Affiliation(s)
- Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosheng Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ke Hong
- Department of Infectious Diseases, Jin Yin-tan Hospital, Wuhan, China
| | - Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuelun Zhang
- Medial Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengyin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lianguo Ruan
- Department of Infectious Diseases, Jin Yin-tan Hospital, Wuhan, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
16
|
Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, Gerli R, Perricone R. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms 2021; 9:121. [PMID: 33430200 PMCID: PMC7825648 DOI: 10.3390/microorganisms9010121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Intravenous immunoglobulins (IVIG) are blood preparations pooled from the plasma of donors that have been first employed as replacement therapy in immunodeficiency. IVIG interact at multiple levels with the different components of the immune system and exert their activity against infections. Passive immunotherapy includes convalescent plasma from subjects who have recovered from infection, hyperimmune globulin formulations with a high titer of neutralizing antibodies, and monoclonal antibodies (mAbs). IVIG are used for the prevention and treatment of several infections, especially in immunocompromised patients, or in case of a poorly responsive immune system. The evolution of IVIG from a source of passive immunity to a powerful immunomodulatory/anti-inflammatory agent results in extensive applications in autoimmune diseases. IVIG composition depends on the antibodies of the donor population and the alterations of protein structure due to the processing of plasma. The anti-viral and anti-inflammatory activity of IVIG has led us to think that they may represent a useful therapeutic tool even in COVID-19. The human origin of IVIG carries specific criticalities including risks of blood products, supply, and elevated costs. IVIG can be useful in critically ill patients, as well as early empirical treatment. To date, the need for further well-designed studies stating protocols and the efficacy/tolerability profile of IVIG and convalescent plasma in selected situations are awaited.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| |
Collapse
|
17
|
Is there a Role of Intravenous Immunoglobulin in Immunologic Recurrent Pregnancy Loss? J Immunol Res 2020; 2020:6672865. [PMID: 33426092 PMCID: PMC7781684 DOI: 10.1155/2020/6672865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023] Open
Abstract
Recurrent pregnancy loss (RPL) commonly refers to three or more miscarriages that occur before 20 weeks of pregnancy. The immunological cause of RPL could be either an auto- or alloimmune-related event or both. Because of the discovery of immunological abnormalities in RPL patients in clinical practice, several immunomodulatory therapies were introduced to maintain the immune balance at the maternal-fetal interface. Intravenous immunoglobulin (IVIg) is one of the immunomodulators. In recent years, several studies have analyzed the therapeutic effect of IVIg on RPL patients with antiphospholipid syndrome (APS) or unexplained RPL. However, their results are controversial. IVIg can be used in RPL patients with APS who have previously failed in other treatments. It is recommended that IVIg infusion could be considered used before conception in RPL patients who have cellular immune abnormalities such as increased natural killer (NK) cell counts, NK cell cytotoxicity, or increased T helper (Th)1/Th2 ratio, depending on the cut-off values of each hospital. The aim of this review was to summarize the mechanisms, efficacy, pharmacokinetics, and side effects associated with passive immunization using IVIg in immunologic RPL, according to the literature published in recent years. We hope that more obstetricians will be able to understand the timing and indication of IVIg properly in immunologic RPL patients and effectively enhance pregnancy outcomes for mothers and neonates.
Collapse
|
18
|
Natural Antibodies: from First-Line Defense Against Pathogens to Perpetual Immune Homeostasis. Clin Rev Allergy Immunol 2020; 58:213-228. [PMID: 31161341 DOI: 10.1007/s12016-019-08746-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural antibodies (nAbs) are most commonly defined as immunoglobulins present in the absence of pathological conditions or deliberate immunizations. Occurrence of nAbs in germ- and antigen-free mice suggest that their production is driven, at least in part, by self-antigens. Accordingly, nAbs are constituted of natural autoantibodies (nAAbs), and can belong to the IgM, IgG, or IgA subclasses. These nAbs provide immediate protection against infection while the adaptive arm of the immune system mounts a specific and long-term response. Beyond immediate protection from infection, nAbs have been shown to play various functional roles in the immune system, which include clearance of apoptotic debris, suppression of autoimmune and inflammatory responses, regulation of B cell responses, selection of the B cell repertoires, and regulation of B cell development. These various functions of nAbs are afforded by their reactivity, which is broad, cross-reactive, and shown to recognize evolutionarily fixed epitopes shared between foreign and self-antigens. Furthermore, nAbs have unique characteristics that also contribute to their functional roles and set them apart from antigen-specific antibodies. In further support for the role of nAbs in the protection against infections and in the maintenance of immune homeostasis, the therapeutic preparation of polyclonal immunoglobulins, intravenous immunoglobulin (IVIG), rich in nAbs is commonly used in the replacement therapy of primary and secondary immunodeficiencies and in the immunotherapy of a large number of autoimmune and inflammatory diseases. Here, we review several topics on nAbs features and functions, and therapeutic applications in human diseases.
Collapse
|
19
|
Shao Z, Feng Y, Zhong L, Xie Q, Lei M, Liu Z, Wang C, Ji J, Liu H, Gu Z, Hu Z, Su L, Wu M, Liu Z. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunology 2020; 9:e1192. [PMID: 33082954 PMCID: PMC7557105 DOI: 10.1002/cti2.1192] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Coronavirus disease 2019 (COVID‐19) outbreak is a major challenge all over the world, without acknowledged treatment. Intravenous immunoglobulin (IVIG) has been recommended to treat critical coronavirus disease 2019 (COVID‐19) patients in a few reviews, but the clinical study evidence on its efficacy in COVID‐19 patients was lacking. Methods 325 patients with laboratory‐confirmed critical COVID‐19 were enrolled from 4 government‐designated COVID‐19 treatment centres in southern China from December 2019 to March 2020. The primary outcomes were 28‐ and 60‐day mortality, and the secondary outcomes were the total length of in‐hospital and the total duration of the disease. Subgroup analysis was carried out according to clinical classification of COVID‐19, IVIG dosage and timing. Results In the enrolled 325 patients, 174 cases used IVIG and 151 cases did not. The 28‐day mortality was improved with IVIG after adjusting confounding in overall cohort (P = 0.0014), and the in‐hospital and the total duration of disease were longer in the IVIG group (P < 0.001). Subgroup analysis showed that only in patients with critical type, IVIG could significantly reduce the 28‐day mortality, decrease the inflammatory response and improve some organ functions (all P < 0.05); the application of IVIG in the early stage (admission ≤ 7 days) with a high dose (> 15 g per day) exhibited significant reduction in 60‐day mortality in the critical‐type patients. Conclusion Early administration of IVIG with high dose improves the prognosis of critical‐type patients with COVID‐19. This study provides important information on clinical application of IVIG in the treatment of SARS‐CoV‐2 infection, including patient selection and administration dosage and timing.
Collapse
Affiliation(s)
- Ziyun Shao
- Department of Nephrology General Hospital of Central Theater Command of PLA Wuhan 430070 China
| | - Yongwen Feng
- Department of Critical Care Medicine and Hospital Infection Prevention and Control The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University Health Science Center Shenzhen 518035 China.,Department of Critical Care Medicine The Third People's Hospital of Shenzhen Shenzhen 518035 China
| | - Li Zhong
- Department of Critical Care Medicine The First Affiliated Hospital Guizhou University of Chinese Medicine Guiyang 550001 China
| | - Qifeng Xie
- Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| | - Ming Lei
- Department of Nephrology Guangzhou Eighth people's hospital Guangzhou Medical University Guangzhou 510060 China
| | - Zheying Liu
- Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| | - Conglin Wang
- Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| | - Jingjing Ji
- Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| | - Huiheng Liu
- Department of Emergency Zhongshan Hospital of Xiamen University Xiamen 361000 China
| | - Zhengtao Gu
- Department of Treatment Center for Traumatic Injuries The Third Affiliated Hospital Academy of Orthopedics Guangdong Province Southern Medical University Guangzhou Guangdong 515630 China
| | - Zhongwei Hu
- Department of Nephrology Guangzhou Eighth people's hospital Guangzhou Medical University Guangzhou 510060 China
| | - Lei Su
- Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| | - Ming Wu
- Department of Critical Care Medicine and Hospital Infection Prevention and Control The Second People's Hospital of Shenzhen & First Affiliated Hospital of Shenzhen University Health Science Center Shenzhen 518035 China.,Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| | - Zhifeng Liu
- Department of Critical Care Medicine General Hospital of Southern Theater Command of PLA Guangzhou 510010 China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA General Hospital of Southern Theater Command of PLA Guangzhou 510010 China
| |
Collapse
|
20
|
Mimoun A, Delignat S, Peyron I, Daventure V, Lecerf M, Dimitrov JD, Kaveri SV, Bayry J, Lacroix-Desmazes S. Relevance of the Materno-Fetal Interface for the Induction of Antigen-Specific Immune Tolerance. Front Immunol 2020; 11:810. [PMID: 32477339 PMCID: PMC7240014 DOI: 10.3389/fimmu.2020.00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
In humans, maternal IgGs are transferred to the fetus from the second trimester of pregnancy onwards. The transplacental delivery of maternal IgG is mediated by its binding to the neonatal Fc receptor (FcRn) after endocytosis by the syncytiotrophoblast. IgGs present in the maternal milk are also transferred to the newborn through the digestive epithelium upon binding to the FcRn. Importantly, the binding of IgGs to the FcRn is also responsible for the recycling of circulating IgGs that confers them with a long half-life. Maternally delivered IgG provides passive immunity to the newborn, for instance by conferring protective anti-flu or anti-pertussis toxin IgGs. It may, however, lead to the development of autoimmune manifestations when pathological autoantibodies from the mother cross the placenta and reach the circulation of the fetus. In recent years, strategies that exploit the transplacental delivery of antigen/IgG complexes or of Fc-fused proteins have been validated in mouse models of human diseases to impose antigen-specific tolerance, particularly in the case of Fc-fused factor VIII (FVIII) domains in hemophilia A mice or pre-pro-insulin (PPI) in the case of preclinical models of type 1 diabetes (T1D). The present review summarizes the mechanisms underlying the FcRn-mediated transcytosis of IgGs, the physiopathological relevance of this phenomenon, and the repercussion for drug delivery and shaping of the immune system during its ontogeny.
Collapse
Affiliation(s)
- Angelina Mimoun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sandrine Delignat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Ivan Peyron
- HITh, INSERM, UMR_S1176, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Victoria Daventure
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Maxime Lecerf
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Srinivas V Kaveri
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Jagadeesh Bayry
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | |
Collapse
|
21
|
Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020. [PMID: 32380316 DOI: 10.1016/j.autrev.2020.102554.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality.
Collapse
Affiliation(s)
- Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Bernardo Camacho
- Instituto Distrital de Ciencia Biotecnología e Investigación en Salud, IDCBIS, Bogota, Colombia
| | | | | | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - Rubén Manrique
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | - Ruben D Mantilla
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University, Tel Aviv, Israel; Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia.
| |
Collapse
|
22
|
Rojas M, Rodríguez Y, Monsalve DM, Acosta-Ampudia Y, Camacho B, Gallo JE, Rojas-Villarraga A, Ramírez-Santana C, Díaz-Coronado JC, Manrique R, Mantilla RD, Shoenfeld Y, Anaya JM. Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun Rev 2020; 19:102554. [PMID: 32380316 PMCID: PMC7198427 DOI: 10.1016/j.autrev.2020.102554] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible of the coronavirus disease 2019 (COVID-19) pandemic. Therapeutic options including antimalarials, antivirals, and vaccines are under study. Meanwhile the current pandemic has called attention over old therapeutic tools to treat infectious diseases. Convalescent plasma (CP) constitutes the first option in the current situation, since it has been successfully used in other coronaviruses outbreaks. Herein, we discuss the possible mechanisms of action of CP and their repercussion in COVID-19 pathogenesis, including direct neutralization of the virus, control of an overactive immune system (i.e., cytokine storm, Th1/Th17 ratio, complement activation) and immunomodulation of a hypercoagulable state. All these benefits of CP are expected to be better achieved if used in non-critically hospitalized patients, in the hope of reducing morbidity and mortality. Coronavirus disease 19 (COVID-19) is an emerging viral threat with major repercussions for public health. There is not specific treatment for COVID-19. Convalescent plasma (CP) emerges as the first option of management for hospitalized patients with COVID-19. Transference of neutralizing antibodies helps to control COVID-19 infection and modulates inflammatory response. Other plasma components may enhance the antiviral and anti-inflammatory properties of CP.
Collapse
Affiliation(s)
- Manuel Rojas
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yhojan Rodríguez
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Bernardo Camacho
- Instituto Distrital de Ciencia Biotecnología e Investigación en Salud, IDCBIS, Bogota, Colombia
| | | | | | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - Rubén Manrique
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | - Ruben D Mantilla
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, affiliated to Tel-Aviv University, Tel Aviv, Israel; Laboratory of the Mosaics of Autoimmunity, Saint Petersburg State University, Saint-Petersburg, Russian Federation
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia; Clínica del Occidente, Bogota, Colombia.
| |
Collapse
|
23
|
Guo Z, Xu Y, Zheng Q, Liu Y, Liu X. Analysis of chromosomes and the T helper 17 and regulatory T cell balance in patients with recurrent spontaneous abortion. Exp Ther Med 2020; 19:3159-3166. [PMID: 32256804 PMCID: PMC7086275 DOI: 10.3892/etm.2020.8537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
The present study investigated the genetic etiology and possible immunological pathogenesis of recurrent spontaneous abortion by analyzing chromosome abnormalities, and the balance between T helper 17 (Th17) and regulatory T (Treg) cells. A total of 54 patients with recurrent spontaneous abortion were selected. The villus and decidual tissues, and peripheral venous blood were collected from each patient. Villus chromosome analysis was performed by high-throughput gene sequencing. Flow cytometry was used to detect Th17 and Treg cells in patients without chromosome abnormalities (n=30) and the control group (normal pregnancy; n=32). Immunoglobulin (IG) combined with human chorionic gonadotropin hormone (HCG) treatment was given to patients without chromosome abnormalities (n=30). Changes in the expression levels of Th17 and Treg cells before and after treatment were compared with patients with successful pregnancy (n=18). Before treatment, compared with the control group, the proportion of Th17 cells in peripheral blood and decidual tissue was increased and the proportion of Treg cells decreased. After treatment, compared with patients before treatment, the proportion of Th17 cells decreased and Treg cells increased, and the Th17 and Treg cells balance was reversed with a biased towards Treg cells. The present results suggested that the Th17 and Treg cell immune imbalance may be an important immune factor in recurrent spontaneous abortion. IG combined with HCG therapy may improve pregnancy outcomes by reversing the imbalance between Th17 and Treg cells.
Collapse
Affiliation(s)
- Zhaorong Guo
- Department of Obstetrics and Gynecology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, Shandong 264400, P.R. China
| | - Yanting Xu
- Department of Obstetrics and Gynecology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, Shandong 264400, P.R. China
| | - Qiaoling Zheng
- Department of Obstetrics and Gynecology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, Shandong 264400, P.R. China
| | - Yunyun Liu
- Department of Obstetrics and Gynecology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, Shandong 264400, P.R. China
| | - Xiaoyan Liu
- Department of Obstetrics and Gynecology, Weihai Central Hospital Affiliated to Qingdao University, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
24
|
Karnam A, Rambabu N, Das M, Bou-Jaoudeh M, Delignat S, Käsermann F, Lacroix-Desmazes S, Kaveri SV, Bayry J. Therapeutic normal IgG intravenous immunoglobulin activates Wnt-β-catenin pathway in dendritic cells. Commun Biol 2020; 3:96. [PMID: 32132640 PMCID: PMC7055225 DOI: 10.1038/s42003-020-0825-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
Therapeutic normal IgG intravenous immunoglobulin (IVIG) is a well-established first-line immunotherapy for many autoimmune and inflammatory diseases. Though several mechanisms have been proposed for the anti-inflammatory actions of IVIG, associated signaling pathways are not well studied. As β-catenin, the central component of the canonical Wnt pathway, plays an important role in imparting tolerogenic properties to dendritic cells (DCs) and in reducing inflammation, we explored whether IVIG induces the β-catenin pathway to exert anti-inflammatory effects. We show that IVIG in an IgG-sialylation independent manner activates β-catenin in human DCs along with upregulation of Wnt5a secretion. Mechanistically, β-catenin activation by IVIG requires intact IgG and LRP5/6 co-receptors, but FcγRIIA and Syk are not implicated. Despite induction of β-catenin, this pathway is dispensable for anti-inflammatory actions of IVIG in vitro and for mediating the protection against experimental autoimmune encephalomyelitis in vivo in mice, and reciprocal regulation of effector Th17/Th1 and regulatory T cells.
Collapse
Affiliation(s)
- Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Naresh Rambabu
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Melissa Bou-Jaoudeh
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Sandrine Delignat
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, 3014, Bern, Switzerland
| | - Sébastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 15 rue de l'Ecole de Médicine, F-75006, Paris, France.
| |
Collapse
|
25
|
Wang SC, Yang KD, Lin CY, Huang AY, Hsiao CC, Lin MT, Tsai YG. Intravenous immunoglobulin therapy enhances suppressive regulatory T cells and decreases innate lymphoid cells in children with immune thrombocytopenia. Pediatr Blood Cancer 2020; 67:e28075. [PMID: 31736241 DOI: 10.1002/pbc.28075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study aimed to investigate the relationship between CD4+ regulatory T cells (Tregs) and innate lymphoid cells (ILCs) in children with primary immune thrombocytopenia (ITP) undergoing high-dose intravenous immunoglobulin (IVIG) therapy. METHODS We enrolled a cohort of 30 children with newly diagnosed ITP and 30 healthy controls and collected blood samples for levels of Tregs, ILCs, relevant cytokines, and Treg suppression assay at the diagnosis, two days, four weeks, and one year (only platelet count) after high-dose IVIG treatment. IVIG partial responders was defined by a platelet count less than 100 × 109 /L at 12 months after IVIG treatment. RESULTS Children with newly diagnosed ITP exhibited elevated levels of ILC1, ILC2, ILC3, Th17, myeloid dendritic cells (DCs), plasmacytoid DCs, and serum IFN-γ and IL-17A levels, accompanied by a decrease in IL-10-producing Tregs. High-dose IVIG therapy reversed these aberrations. Platelet counts positively correlated with Tregs (rho = 0.72) and negatively correlated with both ILC1 (rho = -0.49) and ILC3 (rho = -0.60) (P < 0.05). Significantly lower Tregs and higher ILC1, ILC3, DCs, and serum IL-17A levels were noted in the partial responders (n = 8) versus responders (n = 22; P < 0.05). We found that Tregs suppressed proliferation of ILCs and CD4+ T cells in CD25-depleted peripheral PBMCs and enhanced the apoptosis of CD4+ CD45RO+ T cells in vitro following IVIG therapy. CONCLUSIONS Effective high-dose IVIG therapy for children with newly diagnosed ITP appears to result in the induction of Tregs, which suppresses ILC proliferation in vitro and is associated with platelet response.
Collapse
Affiliation(s)
- Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan
| | - Kuender D Yang
- Mackay Children's Hospital, and Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Yuang Lin
- Clinical Immunological Center, China Medical University Hospital, Taichung, Taiwan.,Division of Pediatric Nephrology, Childrens' Hospital, China Medical University, Taichung, Taiwan
| | - Alex Y Huang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UH Rainbow Babies and Children's Hospital; Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Chien-Chou Hsiao
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Tsan Lin
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan
| | - Yi-Giien Tsai
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Das M, Karnam A, Stephen-Victor E, Gilardin L, Bhatt B, Kumar Sharma V, Rambabu N, Patil V, Lecerf M, Käsermann F, Bruneval P, Narayanaswamy Balaji K, Benveniste O, Kaveri SV, Bayry J. Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy. Cell Death Dis 2020; 11:50. [PMID: 31974400 PMCID: PMC6978335 DOI: 10.1038/s41419-020-2249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Autophagy plays an important role in the regulation of autoimmune and autoinflammatory responses of the immune cells. Defective autophagy process is associated with various autoimmune and inflammatory diseases. Moreover, in many of these diseases, the therapeutic use of normal immunoglobulin G or intravenous immunoglobulin (IVIG), a pooled normal IgG preparation, is well documented. Therefore, we explored if IVIG immunotherapy exerts therapeutic benefits via induction of autophagy in the immune cells. Here we show that IVIG induces autophagy in peripheral blood mononuclear cells (PBMCs). Further dissection of this process revealed that IVIG-induced autophagy is restricted to inflammatory cells like monocytes, dendritic cells, and M1 macrophages but not in cells associated with Th2 immune response like M2 macrophages. IVIG induces autophagy by activating AMP-dependent protein kinase, beclin-1, class III phosphoinositide 3-kinase and p38 mitogen-activated protein kinase and by inhibiting mammalian target of rapamycin. Mechanistically, IVIG-induced autophagy is F(ab')2-dependent but sialylation independent, and requires endocytosis of IgG by innate cells. Inhibition of autophagy compromised the ability of IVIG to suppress the inflammatory cytokines in innate immune cells. Moreover, IVIG therapy in inflammatory myopathies such as dermatomyositis, antisynthetase syndrome and immune-mediated necrotizing myopathy induced autophagy in PBMCs and reduced inflammatory cytokines in the circulation, thus validating the translational importance of these results. Our data provide insight on how circulating normal immunoglobulins maintain immune homeostasis and explain in part the mechanism by which IVIG therapy benefits patients with autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Laurent Gilardin
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Varun Kumar Sharma
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Naresh Rambabu
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Veerupaxagouda Patil
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France
| | - Maxime Lecerf
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Fabian Käsermann
- CSL Behring, Research, CSL Biologics Research Center, 3014, Bern, Switzerland
| | - Patrick Bruneval
- Service d'anatomie pathologique, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | | | - Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Institut National de la Santé et de la Recherche Médicale Unité 974, Sorbonne Université, 75013, Paris, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, 75006, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| |
Collapse
|
27
|
Gu X, Lin W, Xu Y, Che D, Tan Y, Lu Z, Pi L, Fu L, Zhou H, Jiang Z, Gu X. The rs1051931 G>A Polymorphism in the PLA2G7 Gene Confers Resistance to Immunoglobulin Therapy in Kawasaki Disease in a Southern Chinese Population. Front Pediatr 2020; 8:338. [PMID: 32656171 PMCID: PMC7324548 DOI: 10.3389/fped.2020.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Kawasaki disease (KD) is a common cardiovascular disease in infants and young children, with fever, rash, and conjunctivitis as the main clinical manifestations, which can lead to the occurrence of coronary aneurysms. Intravenous immunoglobulin (IVIG) is the preferred treatment for KD patients, but 10-20% of patients are resistant to IVIG. Lipoprotein-associated phospholipase A 2 (Lp-PLA2) is a potential therapeutic target for coronary atherosclerotic heart disease, and the polymorphism of Phospholipase A2 Group VII (PLA2G7) is closely related to the activity of Lp-PLA2, of which rs1051931 is the strongest. Therefore, the rs1051931 polymorphism may be a predictor of IVIG resistance in KD patients. Methods: A total of 760 KD cases, including 148 IVIG-resistant patients and 612 IVIG-responsive patients, were genotyped for rs1051931 in PLA2G7, we compared the effects of rs1051931 on IVIG treatment in KD patients by odds ratios (OR) and 95% confidence interval (CI). Results: The homozygous mutation AA may be a protective factor for IVIG resistance in KD patients (adjusted OR = 3.47, 95% CI = 1.14-10.57, P = 0.0284) and is more evident in patients with KD aged <60 months (adjusted OR = 3.68, 95% CI = 1.10-12.28, P = 0.0399). Conclusions: The PLA2G7 rs1051931 G>A polymorphism may be suitable as a biomarker for the diagnosis or prognosis of IVIG resistance in KD in a southern Chinese population.
Collapse
Affiliation(s)
- Xueping Gu
- Department of Blood Transfusion and Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Wenchun Lin
- Department of Pneumology, Guangzhou Women and Children's Medical Center, Guangzhou Medical College, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yaqian Tan
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhaoliang Lu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Blood Transfusion and Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Blood Transfusion and Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
28
|
Dinh T, Oh J, Cameron DW, Lee SH, Cowan J. Differential immunomodulation of T-cells by immunoglobulin replacement therapy in primary and secondary antibody deficiency. PLoS One 2019; 14:e0223861. [PMID: 31613907 PMCID: PMC6793872 DOI: 10.1371/journal.pone.0223861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022] Open
Abstract
Patients with primary or secondary antibody deficiency (PAD or SAD) are at increased risk of recurrent infections that can be alleviated by immunoglobulin replacement therapy (IRT). In addition to replenishing antibody levels, IRT has been suggested to modulate immune response in patients with antibody deficiency. Although both commonly treated with IRT, the underlying causes of PAD and SAD vary greatly, suggesting differential modulation of T-cell function that may lead to different responses to IRT. To explore this, peripheral blood mononuclear cells (PBMCs) were sampled from 17 PAD and 14 SAD patients before and 2–10 months after initiation of IRT, and analyzed for changes in T-cell phenotype and function. Proportions of CD4, CD8, Treg, or memory T-cells did not significantly change post-IRT compared to pre-IRT. However, we report distinct modulation in T-cell function between PAD and SAD patients post-IRT. Upon α-CD3/CD28 stimulation, proportion of IFN-γ+ CD4 and CD8 T-cells increased in SAD (p = 0.005) but not PAD patients post-IRT compared to baseline. Interestingly, total T-cell proliferation was reduced post-IRT in both PAD and SAD patients, although the reduction in proliferation was primarily due to reduced CD4 T-cell proliferation in PAD (p = 0.025) in contrast to CD8 T-cells in SAD (p = 0.042). In summary, even though IRT provides patients with passive humoral immunity-mediated protection in PAD and SAD, our findings suggest that IRT immunomodulation of T-cells is different in T-cell subsets depending on underlying immunodeficiency.
Collapse
Affiliation(s)
- Tri Dinh
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jun Oh
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Donald William Cameron
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (SHL); (JC)
| | - Juthaporn Cowan
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- * E-mail: (SHL); (JC)
| |
Collapse
|
29
|
Intravenous Immunoglobulin (IVIg) Induce a Protective Phenotype in Microglia Preventing Neuronal Cell Death in Ischaemic Stroke. Neuromolecular Med 2019; 22:121-132. [PMID: 31559534 DOI: 10.1007/s12017-019-08571-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Targeting the immune system and thereby modulating the inflammatory response in ischemic stroke has shown promising therapeutic potential in various preclinical trials. Among those, intravenous immunoglobulins (IVIg) have moved into the focus of attention. In a murine model of experimental stroke, we explored the therapeutic potential of IVIg on the neurological outcome and the inflammatory response. Further, we used an in vitro system to assess effects of IVIg-stimulated microglia on neuronal survival. Treatment with IVIg resulted in decreased lesion sizes, without significant effects on the infiltration and activation pattern of peripheral immune cells. However, in microglia IVIg induced a switch towards an upregulation of protective polarization markers, and the ablation of microglia led to the loss of neuroprotective IVIg effects. Functionally, IVIg stimulated microglia ameliorated neuronal cell death elicited by oxygen and glucose deprivation in vitro. Notably, application of IVIg in vivo led to a comparable decrease of apoptotic neurons in the penumbra area. Although neuroprotective effects of IVIg in vivo and in vitro have been established in previous studies, we were able to show for the first time, that IVIg modulates the polarization of microglia during the pathogenesis of stroke.
Collapse
|
30
|
Kim KW, Kim HR, Kim BM, Won JY, Lee KA, Lee SH. Intravenous Immunoglobulin Controls Th17 Cell-Mediated Osteoclastogenesis. Immune Netw 2019; 19:e27. [PMID: 31501715 PMCID: PMC6722271 DOI: 10.4110/in.2019.19.e27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study was to determine the regulatory role of intravenous Ig (IVIg) in Th17 cytokine–induced RANK ligand (RANKL) expression and osteoclast (OC) differentiation from OC precursors (pre-OC). Human CD14+ monocytes were isolated and stimulated by Th17 cytokines (IL-17, IL-21, and IL-22) and RANKL expression was investigated using a real-time PCR. CD14+ monocytes were incubated with RANKL, Th17 cytokines, and M-CSF, with/without IVIg, and OC differentiation was determined by counting tartrate-resistant acid phosphatase-positive multinucleated cells. OC differentiation was investigated after monocytes were cocultured with Th17 cells in the presence of IVIg. Th17 cell differentiation was determined using enzyme-linked immunosorbent assay and flow cytometry after CD4+ T cells were cultured with IVIg under Th17 condition. Th17 cytokines stimulated monocytes to express RANKL and IVIg suppressed the Th17 cytokine-induced RANKL expression. OCs were differentiated when pre-OC were cocultured with RANKL or Th17 cytokines and IVIg reduced the osteoclastogenesis. IVIg also decreased osteoclastogenesis when pre-OC were cocultured with Th17 cells. IVIg decreased both Th17 and Th1 cell differentiation while it did not affect Treg cell differentiation. In summary, IVIg inhibited Th17 cytokine-induced RANKL expression and OC differentiation. IVIg reduced osteoclastogenesis when monocytes were cocultured with Th17 cells. IVIg also reduced Th17 polarization. IVIg could be a new therapeutic option for Th17 cell–mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06951, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06951, Korea
| | - Ji-Yeon Won
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Kyung-Ann Lee
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul 04401, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| |
Collapse
|
31
|
Hoffmann JHO, Enk AH. High-Dose Intravenous Immunoglobulin in Skin Autoimmune Disease. Front Immunol 2019; 10:1090. [PMID: 31244821 PMCID: PMC6579842 DOI: 10.3389/fimmu.2019.01090] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022] Open
Abstract
The immunomodulatory potential and low incidence of severe side effects of high-dose intravenous immunoglobulin (IVIg) treatment led to its successful application in a variety of dermatological autoimmune diseases over the last two decades. IVIg is usually administered at a dose of 2 g per kg body weight distributed over 2–5 days every 4 weeks. They are most commonly used as a second- or third-line treatment in dermatological autoimmune disease (pemphigus vulgaris, pemphigus foliaceus, bullous pemphigoid, mucous membrane pemphigoid, epidermolysis bullosa acquisita, dermatomyositis, systemic vasculitis, and systemic lupus erythematosus). However, first-line treatment may be warranted in special circumstances like concomitant malignancy, a foudroyant clinical course, and contraindications against alternative treatments. Furthermore, IVIg can be considered first line in scleromyxedema. Production of IVIg for medical use is strictly regulated to ensure a low risk of pathogen transmission and comparable quality of individual batches. More common side effects include nausea, headache, fatigue, and febrile infusion reactions. Serious side effects are rare and include thrombosis and embolism, pulmonary edema, renal failure, aseptic meningitis, and severe anaphylactic reactions. Regarding the mechanism of action, one can discriminate between functions of the Fcγ region and the F(ab)2 region and their effects on a cellular level. These functions are not mutually exclusive, and more than one pathway may contribute to the beneficial effects. Here, we present a historical background, details on manufacturing, hypotheses on the mechanisms of action, information on the clinical application in the abovementioned conditions, and a brief outlook on future directions of IVIg treatment in dermatology.
Collapse
Affiliation(s)
| | - Alexander H Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
João C, Negi VS, Kazatchkine MD, Bayry J, Kaveri SV. Passive Serum Therapy to Immunomodulation by IVIG: A Fascinating Journey of Antibodies. THE JOURNAL OF IMMUNOLOGY 2019; 200:1957-1963. [PMID: 29507120 DOI: 10.4049/jimmunol.1701271] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
Abstract
The immunoregulatory and anti-infective properties of normal circulating polyclonal Abs have been exploited for the therapeutic purposes in the form of IVIG as well as several hyperimmune globulins. Current knowledge on the therapeutic use of normal Igs is based on the discoveries made by several pioneers of the field. In this paper, we review the evolution of IVIG over the years. More importantly, the process started as an s.c. replacement in γ globulin-deficient patients, underwent metamorphosis into i.m. Ig, was followed by IVIG, and is now back to s.c. forms. Following successful use of IVIG in immune thrombocytopenic purpura, there has been an explosion in the therapeutic applications of IVIG in diverse autoimmune and inflammatory conditions. In addition to clinically approved pathological conditions, IVIG has been used as an off-label drug in more than 100 different indications. The current worldwide consumption of IVIG is over 100 tons per year.
Collapse
Affiliation(s)
- Cristina João
- Hematology Department, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal.,Immunology Department, Nova Medical School, Nova University of Lisbon, Lisbon 1169-056, Portugal
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Michel D Kazatchkine
- United Nations Special Envoy for AIDS in Eastern Europe and Central Asia, Geneva CH-1211, Switzerland
| | - Jagadeesh Bayry
- INSERM Unité 1138, Paris F-75006, France; .,Sorbonne Université, UMR S 1138, Paris F-75006, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris F-75006, France; and.,Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immuno-Intervention Thérapeutique, Paris F-75006, France
| | - Srini V Kaveri
- INSERM Unité 1138, Paris F-75006, France; .,Sorbonne Université, UMR S 1138, Paris F-75006, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris F-75006, France; and.,Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immuno-Intervention Thérapeutique, Paris F-75006, France
| |
Collapse
|
33
|
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2019; 29:491-498. [PMID: 28666326 DOI: 10.1093/intimm/dxx039] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Department of Pediatric Rheumatology, National Referral Centre of Auto-inflammatory Diseases, CHU de Bicêtre, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
34
|
Martínez T, Garcia-Robledo JE, Plata I, Urbano MA, Posso-Osorio I, Rios-Serna LJ, Barrera MC, Tobón GJ. Mechanisms of action and historical facts on the use of intravenous immunoglobulins in systemic lupus erythematosus. Autoimmun Rev 2019; 18:279-286. [PMID: 30639648 DOI: 10.1016/j.autrev.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022]
Abstract
The current existing therapies for severe cases of systemic lupus erythematosus (SLE) patients are still limited. Intravenous immunoglobulin (IVIGs), which are purified from the plasma of thousands of healthy human donors, have been profiled as efficacious and life-saving options for SLE patients refractory to conventional therapy. The specific mechanism of action by which IVIGs generate immunomodulation in SLE is not currently understood. In this manuscript, we reviewed some of the hypothesis that have been postulated to explain the IVIG effects, including those on T and B cell intracellular signalling and activation, as well as the interferon signalling pathways involved in the detection of nucleic acids and the defective removal of immune complexes and debris.
Collapse
Affiliation(s)
- Tatiana Martínez
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | | | - Ilich Plata
- Medical School, Universidad Icesi, Cali, Colombia
| | | | - Ivan Posso-Osorio
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Lady J Rios-Serna
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - María Claudia Barrera
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina traslacional. Fundación Valle del Lili, Univesidad Icesi, Colombia; Laboratory of immunology, Fundación Valle del Lili, Cali, Colombia.
| |
Collapse
|
35
|
Immunoglobulin Therapy. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Ho YK, Chen HH, Huang CC, Lee CI, Lin PY, Lee MS, Lee TH. Peripheral CD56 +CD16 + NK Cell Populations in the Early Follicular Phase Are Associated With Successful Clinical Outcomes of Intravenous Immunoglobulin Treatment in Women With Repeated Implantation Failure. Front Endocrinol (Lausanne) 2019; 10:937. [PMID: 32038492 PMCID: PMC6985091 DOI: 10.3389/fendo.2019.00937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/27/2019] [Indexed: 11/29/2022] Open
Abstract
The percentage of peripheral CD56+CD16+ NK cells in the early follicular phase on days 2-3 of the menstrual cycle in repeated implantation failure (RIF) patients was used to evaluate the impact of intravenous immunoglobulin (IVIG) on ART cycles. A total 283 patients with RIF consisting of at least 3 ART failures and at least 2 high quality embryo transfers were recruited. A logistic regression analysis for the peripheral immunological profile was completed to predict implantation success and compare the implantation and pregnancy rates between groups with ≤10.6 and >10.6% of CD56+CD16+ NK cells in the early follicular phase. The logistic regression and receiving operating curve analyses showed that patients with ≤ 10.6% of peripheral CD56+CD16+ NK cells in the early follicular phase showed a lower pregnancy rate within the RIF group without IVIG. Patients with peripheral CD56+CD16+ NK cells ≤ 10.6% and without IVIG treatment showed significantly lower implantation and pregnancy rates (12.3 and 30.3%, respectively) when compared with the CD56+CD16+ NK cells >10.6% group (24.9 and 48.0%, respectively, p < 0.05). Furthermore, the patients with CD56+CD16+ NK cells ≤ 10.6% given IVIG starting before ET had significantly higher implantation, pregnancy, and live birth rates (27.5, 57.4, and 45.6%, respectively) when compared with the non-IVIG group (12.3, 30.3, and 22.7%, respectively, p < 0.05). Our results showed that a low percentage of peripheral CD56+CD16+ NK cells (≤10.6%) in the early follicular phase is a potential indicator of reduced pregnancy and implantation success rates in RIF patients, and IVIG treatment will likely benefit this patient subgroup.
Collapse
Affiliation(s)
- Yao-Kai Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiu-Hui Chen
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Chun-I Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Pin-Yao Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- *Correspondence: Maw-Sheng Lee
| | - Tsung-Hsien Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Division of Infertility, Lee Women's Hospital, Taichung, Taiwan
- Tsung-Hsien Lee
| |
Collapse
|
37
|
Galeotti C, Stephen-Victor E, Karnam A, Das M, Gilardin L, Maddur MS, Wymann S, Vonarburg C, Chevailler A, Dimitrov JD, Benveniste O, Bruhns P, Kaveri SV, Bayry J. Intravenous immunoglobulin induces IL-4 in human basophils by signaling through surface-bound IgE. J Allergy Clin Immunol 2018; 144:524-535.e8. [PMID: 30529242 DOI: 10.1016/j.jaci.2018.10.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Therapeutic normal IgG or intravenous immunoglobulin (IVIG) exerts anti-inflammatory effects through several mutually nonexclusive mechanisms. Recent data in mouse models of autoimmune disease suggest that IVIG induces IL-4 in basophils by enhancing IL-33 in SIGN-related 1-positive innate cells. However, translational insight on these data is lacking. OBJECTIVE We sought to investigate the effect of IVIG on human basophil functions. METHODS Isolated circulating basophils from healthy donors were cultured in the presence of IL-3, IL-33, GM-CSF, thymic stromal lymphopoietin, or IL-25. The effect of IVIG and F(ab')2 and Fc IVIG fragments was examined based on expression of various surface molecules, phosphorylation of spleen tyrosine kinase, induction of cytokines, and histamine release. Basophil phenotypes were also analyzed from IVIG-treated patients with myopathy. Approaches, such as depletion of anti-IgE reactivity from IVIG, blocking antibodies, or inhibitors, were used to investigate the mechanisms. RESULTS We report that IVIG directly induces activation of IL-3-primed human basophils, but IL-33 and other cytokines were dispensable for this effect. Activation of basophils by IVIG led to enhanced expression of CD69 and secretion of IL-4, IL-6, and IL-8. IVIG-treated patients with myopathy displayed enhanced expression of CD69 on basophils. The spleen tyrosine kinase pathway is implicated in these functions of IVIG and were mediated by F(ab')2 fragments. Mechanistically, IVIG induced IL-4 in human basophils by interacting with basophil surface-bound IgE but independent of FcγRII, type II Fc receptors, C-type lectin receptors, and sialic acid-binding immunoglobulin-like lectins. CONCLUSION These results uncovered a pathway of promoting the TH2 response by IVIG through direct interaction of IgG with human basophils.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France; Service de Rhumatologie Pédiatrique, Centre de Référence des Maladies Auto-Inflammatoires rares et des Amyloses, CHU de Bicêtre, Le Kremlin Bicêtre, France
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France
| | - Laurent Gilardin
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France; Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Mohan S Maddur
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandra Wymann
- Research Department, CSL Behring AG, Bern, Switzerland
| | | | - Alain Chevailler
- Laboratoire d'Immunologie et d'Allergologie, CHU d'Angers, Université d'Angers, INSERM Unité 1232, LabEx IGO "Immuno-Graft-Onco", Angers, France
| | - Jordan D Dimitrov
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Olivier Benveniste
- Département de Médecine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale Unité 974, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM, U1222, Paris, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale and Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
38
|
Humbert L, Cornu M, Proust-Lemoine E, Bayry J, Wemeau JL, Vantyghem MC, Sendid B. Chronic Mucocutaneous Candidiasis in Autoimmune Polyendocrine Syndrome Type 1. Front Immunol 2018; 9:2570. [PMID: 30510552 PMCID: PMC6254185 DOI: 10.3389/fimmu.2018.02570] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is an autosomal recessive disease caused by mutations in the autoimmune regulator (AIRE) gene, characterized by the clinical triad of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and adrenal insufficiency. CMC can be complicated by systemic candidiasis or oral squamous cell carcinoma (SCC), and may lead to death. The role of chronic Candida infection in the etiopathogenesis of oral SCC is unclear. Long-term use of fluconazole has led to the emergence of Candida albicans strains with decreased susceptibility to azoles. CMC is associated with an impaired Th17 cell response; however, it remains unclear whether decreased serum IL-17 and IL-22 levels are related to a defect in cytokine production or to neutralizing autoantibodies resulting from mutations in the AIRE gene.
Collapse
Affiliation(s)
- Linda Humbert
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
| | - Marjorie Cornu
- Department Parasitology-Mycology, CHU, Lille, France
- Inserm, U995-LIRIC, Fungal Associated Invasive & Inflammatory Diseases, Lille, France
| | | | - Jagadeesh Bayry
- Inserm, Center de Recherche des Cordeliers, Sorbonne Université, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Louis Wemeau
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology and Metabolism, CHU Lille, Lille, France
- UMR 1190, Translational Research in Diabetes Inserm, Lille, France
- European Genomic Institute for Diabetes, Univ Lille, Lille, France
| | - Boualem Sendid
- Department Parasitology-Mycology, CHU, Lille, France
- Inserm, U995-LIRIC, Fungal Associated Invasive & Inflammatory Diseases, Lille, France
| |
Collapse
|
39
|
Combined Treatment with Zinc Aspartate and Intravenous Immunoglobulins (IVIGs) Ameliorates Experimental Autoimmune Encephalomyelitis (EAE). J Immunol Res 2018; 2018:5982169. [PMID: 30356433 PMCID: PMC6178489 DOI: 10.1155/2018/5982169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 11/18/2022] Open
Abstract
Intravenous immunoglobulins (IVIGs) are widely used in replacement therapy of primary and secondary immunodeficiency disorders and in approved autoimmune indications. In addition, IVIG application is used off-label for treatment of other autoimmune diseases, e.g., multiple sclerosis (MS), an inflammatory autoimmune disorder with a clear T cell-mediated immune pathogenesis. The trace element zinc is shown to play a regulatory role in the maintenance of immune functions. Changes of zinc homeostasis affect both the innate and the adaptive immune system. On one hand, therapeutic zinc supplementation can normalize impaired immune functions due to zinc deficiency. On the other hand, therapeutic zinc supplementation is under consideration as a possible option to treat T cell-mediated autoimmune diseases. The aim of the present study was to investigate the influence of IVIG (Octagam®), zinc aspartate (Unizink®), and the combined application of both preparations in the experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Therapeutic intraperitoneal application of zinc aspartate significantly diminished clinical signs during the relapsing-remitting phase of EAE in SJL/J mice. In contrast, IVIG given in a therapeutic manner did not influence the course of EAE. Interestingly, the combined application of both, IVIG and zinc aspartate, significantly reduced the severity of the disease during the acute and the relapsing-remitting phase of the EAE. Our data suggest that the combination of IVIG and zinc aspartate may have beneficial effects in autoimmune diseases, like MS. Further studies should verify the benefit of a controlled immunosuppressive therapy with IVIG and zinc for such diseases.
Collapse
|
40
|
Muyayalo KP, Li ZH, Mor G, Liao AH. Modulatory effect of intravenous immunoglobulin on Th17/Treg cell balance in women with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80:e13018. [PMID: 29984444 DOI: 10.1111/aji.13018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a growing problem worldwide. In a majority of cases, the cause remains unknown but there is increasing evidence that immunologic factors play an important role. Intravenous immunoglobulin (IVIg) therapy has been proposed to have immune modulatory effects and therefore been applicable for the treatment of patients with RSA. Although its efficacy is still controversial, several recent studies suggest that IVIg treatment may improve pregnancy outcomes. CD4+ T cells and their related cytokines play an important role in maternal-fetal immune regulation, and an imbalance of Th17/Treg cell ratio has been proposed as a cause for RSA. We review the scientific evidence supporting a modulatory effect of IVIg on Th17/Treg cell balance and discuss the potential mechanisms how IVIg might enhance Treg cells function. We propose that correction of Th17/Treg cell dysregulation could be one of the mechanisms that can explain the positive therapeutic effects of IVIg therapy. Consequently, selecting patients with abnormal Th17/Treg cell ratios could increase the success of IVIg therapy.
Collapse
Affiliation(s)
- Kahinho P Muyayalo
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Hui Li
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Reproductive Immunology Unit, Department of Obstetrics Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, Connecticut
| | - Ai-Hua Liao
- Family Planning Research Institute, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Triptolide prevents osteoarthritis via inhibiting hsa-miR-20b. Inflammopharmacology 2018; 27:109-119. [DOI: 10.1007/s10787-018-0509-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
|
42
|
Arneth BM. Activation of CD4 and CD8 T cell receptors and regulatory T cells in response to human proteins. PeerJ 2018; 6:e4462. [PMID: 29568705 PMCID: PMC5846456 DOI: 10.7717/peerj.4462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/15/2018] [Indexed: 11/20/2022] Open
Abstract
This study assessed in detail the influence of four different human proteins on the activation of CD4+ and CD8+ T lymphocytes and on the formation of regulatory T cells. Human whole-blood samples were incubated with four different human proteins. The effects of these proteins on the downstream immune-system response, on the expression of extracellular activation markers on and intracellular cytokines in T lymphocytes, and on the number of regulatory T cells (T-reg cells) were investigated via flow cytometry. Incubation with β-actin or glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which are cytoplasmic proteins, increased the expression of both extracellular activation markers (CD69 and HLA-DR) and intracellular cytokines but did not significantly affect the number of T-reg cells. In contrast, incubation with human albumin or insulin, which are serum proteins, reduced both extracellular activation markers and intracellular cytokine expression and subsequently increased the number of T-reg cells. These findings may help to explain the etiological basis of autoimmune diseases.
Collapse
Affiliation(s)
- Borros M Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Hessen, Germany
| |
Collapse
|
43
|
Liu P, Li L, Fan P, Zheng J, Zhao D. High-dose of intravenous immunoglobulin modulates immune tolerance in premature infants. BMC Pediatr 2018; 18:74. [PMID: 29466960 PMCID: PMC5822672 DOI: 10.1186/s12887-018-1055-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIG) is commonly used to improve the immunomodulatory effects, although its regulatory effect on premature Treg cells is unclear. The purpose of this study is to study the effect of high dose of IVIG (HD-IVIG) on Treg cells expression and cytokine profile in premature birth. METHODS Fifty-two premature infants were enrolled in this study and thirty-one premature infants who were suspected to have intrauterine infection received HD-IVIG (1-2 g/kg) at the first day of birth; the remaining 21 premature infants were assigned as the control group. The peripheral blood CD4 + T and foxp3+ Treg cells were checked by flow cytometry, and cytokine concentrations were detected by cytometric bead array. RESULTS With the gestational age growth, peripheral blood CD4 + T and foxp3+ Treg cells of prematurity gradually declined from 50% to 35% and from 8% to 6%, respectively. Meanwhile, HD-IVIG increased the percentage of CD4 + T and foxp3+ Treg cells compared with their baseline levels (p < 0.001). HD-IVIG demonstrated different regulating effects on cytokines secretion, increased IL-17 and TGF-β, and inhibited IL-6 secretion. CONCLUSION Our results demonstrated that HD-IVIG not only enhanced the premature immune tolerance, but also suppressed the excessive inflammation response mediated by IL-6. TRIAL REGISTRATION This study was under the clinical study registration (ChiCTR-ORC-16008872, date of registration, 2016-07-21).
Collapse
Affiliation(s)
- Pin Liu
- Pediatrics and Neonatology Department, Zhongnan Hospital of Wuhan University, Donghu road 169, Wuhan, 430071 China
| | - Lijun Li
- Pediatrics and Neonatology Department, Zhongnan Hospital of Wuhan University, Donghu road 169, Wuhan, 430071 China
| | - Panpan Fan
- Pediatrics and Neonatology Department, Zhongnan Hospital of Wuhan University, Donghu road 169, Wuhan, 430071 China
| | - Junwen Zheng
- Pediatrics and Neonatology Department, Zhongnan Hospital of Wuhan University, Donghu road 169, Wuhan, 430071 China
| | - Dongchi Zhao
- Pediatrics and Neonatology Department, Zhongnan Hospital of Wuhan University, Donghu road 169, Wuhan, 430071 China
| |
Collapse
|
44
|
Han AR, Lee SK. Immune modulation of i.v. immunoglobulin in women with reproductive failure. Reprod Med Biol 2018; 17:115-124. [PMID: 29692668 PMCID: PMC5902469 DOI: 10.1002/rmb2.12078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Background The mechanism of maternal immune tolerance of the semi‐allogenic fetus has been explored extensively. The immune reaction to defend from invasion by pathogenic microorganisms should be maintained during pregnancy. An imbalance between the immune tolerance to the fetus and immune activation to the pathogenic organisms is associated with poor pregnancy outcomes. This emphasizes that the immune mechanism of successful reproduction is not just immune suppression, but adequate immune modulation. Methods In this review, the action of i.v. immunoglobulin G (IVIg) on the immune system and its efficacy in reproductive failure (RF) was summarized. Also suggested is the indication of IVIg therapy for women with RF. Main findings (Results) Based on the mechanism of the immune regulation of IVIg and following confirmation of the immune modulation effects of it in various aberrant immune parameters in patients with RF, it is obvious that IVIg is effective in recurrent pregnancy losses and repeated implantation failures with immunologic disturbances. Conclusion The authors recommend IVIg therapy in patients with RF with aberrant cellular immunologic parameters, including a high natural killer cell proportion and its cytotoxicity or elevated T helper 1 to T helper 2 ratio, based on each clinic's cut‐off values. Further clinical studies about the safety of IVIg in the fetus and its efficacy in other immunologic abnormalities of RF are needed.
Collapse
Affiliation(s)
- Ae R Han
- Department of Obstetrics and Gynecology Gangseo Mizmedi Hospital Seoul South Korea.,Department of Obstetrics and Gynecology Eulji University College of Medicine Daejeon South Korea
| | - Sung K Lee
- Department of Obstetrics and Gynecology Konyang University College of Medicine Daejeon South Korea
| |
Collapse
|
45
|
Lion J, Burbach M, Cross A, Poussin K, Taflin C, Kaveri S, Haziot A, Glotz D, Mooney N. Endothelial Cell Amplification of Regulatory T Cells Is Differentially Modified by Immunosuppressors and Intravenous Immunoglobulin. Front Immunol 2017; 8:1761. [PMID: 29312302 PMCID: PMC5735077 DOI: 10.3389/fimmu.2017.01761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Immunosuppressive treatment is a prerequisite for both organ transplantation and tolerance of the allograft. However, long-term immunosuppression has been associated with a higher incidence of malignancies and infections. Immunosuppressors mainly target circulating immune cells and little is known of their “off-target” effects, such as their impact on endothelial cells (ECs). In chronic antibody-mediated rejection (AMR), the allograft endothelium is a target of damage, histologically detected as transplant glomerulopathy, and which correlates with poor graft survival. Under inflammatory conditions, EC expression of HLA class II antigens can lead to CD4+-T lymphocyte alloactivation and selective expansion of pro-inflammatory Th17 and pro-tolerance Treg subsets. This response can be modified and preactivation of the EC by HLA-DR antibody binding promoted a proinflammatory Th17 response. However, whether or not immunosuppressors alter EC immunogenicity has not been examined. In alloimmunized patients with AMR, cyclosporine A (CsA) and mycophenolic acid (MPA) are often combined with intravenous immunoglobulins (IVIgs). This study reports changes in the microvascular EC phenotype and function after treatment with CsA, MPA, or IVIg. Both CsA and MPA decreased HLA-DR and increased CD54 expression, whereas IVIg increased HLA-DR expression. Interleukin 6 secretion was reduced by all three immunomodulators. Preincubation of ECs with CsA or MPA limited, while IVIg amplified, Treg expansion. Because CsA, MPA, and IVIg are known for their ability to act upon leukocytes, we confirmed that ECs maintained their immunoregulatory role when allogeneic leukocytes were pretreated with CsA, MPA, or IVIg. The results reveal that individual immunosuppressors, used in the induction and maintenance of renal allograft tolerance, had direct and distinct effects on ECs. Results of experiments associating IVIg with either CsA or MPA underlined the differences observed using individual immunosuppressors. Paradoxically, CsA or MPA may increase EC mediated inflammatory responses and long-term exposure may contribute to limitation of allograft tolerance. In contrast, IVIg interaction with the endothelium may mediate some of its immunosuppressive effects through promotion of Treg expansion, contributing to the maintenance of allograft tolerance.
Collapse
Affiliation(s)
- Julien Lion
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Maren Burbach
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France.,Department of Nephrology and Transplantation, APHP, Hopital Saint Louis, Paris, France
| | - Amy Cross
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Karine Poussin
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Cécile Taflin
- Department of Nephrology and Transplantation, APHP, Hopital Saint Louis, Paris, France
| | - Srini Kaveri
- U1138, Institut national de la santé et de la recherche médicale, Centre de Recherche des Cordeliers, Paris, France
| | - Alain Haziot
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France
| | - Denis Glotz
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France.,Department of Nephrology and Transplantation, APHP, Hopital Saint Louis, Paris, France.,Université Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, Strasbourg, France
| | - Nuala Mooney
- U1160, Alloimmunité-Autoimmunité-Transplantation, Institut national de la santé et de la recherche médicale, Hôpital Saint Louis, Paris, France.,Université Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, Strasbourg, France
| |
Collapse
|
46
|
Hoffmann JHO, Enk AH. High-dose intravenous immunoglobulins for the treatment of dermatological autoimmune diseases. J Dtsch Dermatol Ges 2017; 15:1211-1226. [PMID: 29228499 DOI: 10.1111/ddg.13389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/23/2017] [Indexed: 12/27/2022]
Abstract
Based on their immunomodulatory properties, high-dose intravenous immunoglobulins (IVIGs) are successfully used in the treatment of various dermatological autoimmune diseases, in particular pemphigus vulgaris and dermatomyositis. In autoimmune bullous diseases, IVIGs can be used in an adjuvant setting (second- or third-line therapy) once combined immunosuppressive regimens have failed. In dermatomyositis, IVIGs may already be employed as an adjuvant second-line therapy after failure of corticosteroid monotherapy. In scleromyxedema, IVIGs may be considered as first-line treatment, given the lack of effective and safe alternatives. Other potential indications for IVIGs may include severe recalcitrant cases of systemic vasculitis and systemic lupus erythematosus. Toxic epidermal necrolysis may be an indication for high-dose IVIGs if administered early. Common, readily manageable side effects include nausea, headache, fatigue, and febrile infusion reactions. Severe adverse events such as thromboembolic events, anaphylaxis, and acute renal failure are very uncommon. The risk of viral transmission is very low. Potential mechanisms of action include upregulation of inhibitory Fc receptors, reduction of the half-life of endogenous immunoglobulins due to displacement from protective receptor sites, neutralization of autoantibodies by anti-idiotypic antibodies, as well as inhibition of complement activation.
Collapse
Affiliation(s)
| | - Alexander H Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
Hoffmann JH, Enk AH. Hochdosierte intravenöse Immunglobuline bei dermatologischen Autoimmunerkrankungen. J Dtsch Dermatol Ges 2017. [DOI: 10.1111/ddg.13389_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Thom V, Arumugam TV, Magnus T, Gelderblom M. Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury. Front Immunol 2017; 8:875. [PMID: 28824617 PMCID: PMC5534474 DOI: 10.3389/fimmu.2017.00875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg.
Collapse
Affiliation(s)
- Vivien Thom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Corbí AL, Sánchez-Ramón S, Domínguez-Soto A. The potential of intravenous immunoglobulins for cancer therapy: a road that is worth taking? Immunotherapy 2017; 8:601-12. [PMID: 27140412 DOI: 10.2217/imt.16.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Much has been learned recently about the role of immunoglobulins as effector molecules of the adaptive immunity and as active elements in the maintenance of immune homeostasis. The increasing number of pathologies where intravenous immunoglobulins (IVIg) display a beneficial action illustrates their therapeutic relevance. Considering recent findings on the ability of IVIg to modulate macrophage polarization, herein we review evidences on the antitumoral activity of IVIg. Fragmentary and nonconclusive, available evidences are just suggestive of the potential of IVIg in antitumoral therapy, but encourage for the generation of additional evidences through well-designed clinical trials, and for additional studies to address the molecular effects of IVIg as a means to avoid the extrapolation of data gathered from animal models.
Collapse
Affiliation(s)
- Angel L Corbí
- Centro de Investigaciones Biológicas, CSIC. Ramiro de Maeztu, 9. 28040 Madrid, SPAIN
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology & IdISSC, Hospital Clínico San Carlos, Prof Martín Lagos, S/N, 28040 Madrid, Spain; and, Department of Microbiology I, Complutense University School of Medicine, Madrid, Spain
| | | |
Collapse
|
50
|
Quinti I, Mitrevski M. Modulatory Effects of Antibody Replacement Therapy to Innate and Adaptive Immune Cells. Front Immunol 2017; 8:697. [PMID: 28670314 PMCID: PMC5472665 DOI: 10.3389/fimmu.2017.00697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/29/2017] [Indexed: 11/16/2022] Open
Abstract
Intravenous immunoglobulin administered at replacement dosages modulates innate and adaptive immune cells in primary antibody deficiencies (PAD) in a different manner to what observed when high dosages are used or when their effect is analyzed by in vitro experimental conditions. The effects seem to be beneficial on innate cells in that dendritic cells maturate, pro-inflammatory monocytes decrease, and neutrophil function is preserved. The effects are less clear on adaptive immune cells. IVIg induced a transient increase of Treg and a long-term increase of CD4 cells. More complex and less understood is the interplay of IVIg with defective B cells of PAD patients. The paucity of data underlies the need of more studies on patients with PAD before drawing conclusions on the in vivo mechanisms of action of IVIg based on in vitro investigations.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Milica Mitrevski
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|